Calculates the mechanical specific energy for the given well
og.model.general.mse(
newmap("wellId", "{well_id}",
"weightOnBit", value_N,
"rotarySpeed", value_rad/s,
"torqueOnBit", value_N.m,
"rateOfPenetration", value_m/s)
)
Output: MSE (Pa)
Calculates the hydraulic mechanical specific energy for the given well
og.model.general.hmse(
newmap("wellId", "{well_id}",
"weightOnBit", value_N,
"rotarySpeed", value_rad/s,
"torqueOnBit", value_N.m,
"rateOfPenetration", value_m/s,
"fluidFlow", value_m3/s,
"bitPressureLoss" value_Pa,
"energyReductionFactor", value)
)
Output: HMSE (Pa)
Calculates the drilling specific energy for the given well
og.model.general.dse(
newmap("wellId", "{well_id}",
"weightOnBit", value_N,
"rotarySpeed", value_rad/s,
"torqueOnBit", value_N.m,
"rateOfPenetration", value_m/s,
"bitHydraulicPower", value_,
"lambda" value)
)
Output: DSE (Pa)
Calculates the d-exponent for the given well
og.model.general.dExponent(
newmap("wellId", "{well_id}",
"weightOnBit", value_N,
"rotarySpeed", value_rad/s,
"rateOfPenetration", value_m/s)
)
Output: d-exponent (-)
Given a well, this function computes the volume between two well locations.
Obs: These methods (well, Well between, and Well in Region) do not take into account the material of the work column, it only considers the space available for fluid (drilling mud, cement, etc). For work column volume, refer to og.model.general.pipeDisplacement.
og.model.general.wellVolume(
newmap("wellId", "{well_id}")
)
Given a well, this function computes the volume between two well locations.
- startPosition: Starting location where volume will be computed ({measuredDepth: number, isAnnular: boolean})
- endPosition: Starting location where volume will be computed ({measuredDepth: number, isAnnular: boolean})
og.model.general.wellVolumeBetween(
newmap("wellId", "{well_id}",
"startPosition", {measuredDepth: number, isAnnular: boolean},
"endPosition", {measuredDepth: number, isAnnular: boolean},
)
)
Given a well, this function computes the volume between two well locations. The expected parameters are: isAnnular: flag indicating if region is annular or not (boolean)
og.model.general.wellVolumeInRegion(
newmap("wellId", "{well_id}",
"isAnnular", value_boolean
)
)
Calculates the pipe displacement (steel total volume) for the given well
og.model.general.pipeDisplacement(
newmap("wellId", "{well_id}",
"bitDepth", value_m)
)
Output: Pipe Displacement (m3)
Shows the last casing shoe measured depth
og.model.general.openHoleStartDepth(
newmap("wellId", "{well_id}")
)
og.model.general.wellJSON(
newmap("wellId", "{well_id}")
)
og.model.general.equivalentGeometry(
newmap("wellId", "{well_id}")
)
Calculates the time the fluid takes to travel through a well portion. For this function, the flow rate and depth are fixed during all periods of time.
og.model.general.fluidCourseTime(
newmap("wellId", "{well_id}"
"bitDepth", value_m,
"fluidFlow", value_m3/s,
"isAnnular", boolean)
)
Output: Bottom’s up time (s)
Example Pipes:
=> og.model.general.fluidCourseTime( newmap(
'wellId', '11',
'bitDepth', BITDEP#*0.3048, --ft to meters
'fluidFlow', FLOWIN#*0.000063090196, -- gpm to m3/s
'isAnnular', true)
) every minute -- output is in seconds
=>_#/60 as {bottom_up [min]}
Example Pipes
Calculate annular volume and annular velocity
-- Annular Volume
def @@fluid_flow: 0.05; --m3/s
def @@bit_depth: 1000; --m
=> og.model.general.fluidCourseTime(
newmap("wellId", "1"
"bitDepth", @@bit_depth,
"fluidFlow", @@fluid_flow,
"isAnnular", true)
)->result/@@fluid_flow as annular_volume
--Annular Velocity (average)
=> og.model.general.fluidCourseTime(
newmap("wellId", "1"
"bitDepth", @@bit_depth,
"fluidFlow", @@fluid_flow,
"isAnnular", true)
)->result as bottom_up_time
=>@@bit_depth/bottom_up_time as annular_velocity
Calculates lag time and lag depth for a given interval of data, only using the information of fluid flow, i.e, do not take into account the cuttings velocities (see on cuttings this feature).
og.model.general.lagTime(
newmap("wellId", "{well_id}"
"bitDepth", value_m,
"intervalData</span>", value)
)
Calculate shear rate and Shear Stress from rheometer readings
og.model.general.shearRateShearStressFromRheometer(
newmap(
"rheometerReadings", newmap(
3.0, value_theta_rpm3,
6.0, value_theta_rpm6,
100.0, value_theta_rpm100,
200.0, value_theta_rpm200,
300.0, value_theta_rpm300,
600.0, value_theta_rpm600
),
"powerLawExponent", value_exponent
))
Calculate Rheological Parameter from rheometer readings
og.model.general.rheologicalModelCalibration(
newmap(
"rheometerReadings", newmap(
3.0, value_theta_rpm3,
6.0, value_theta_rpm6,
100.0, value_theta_rpm100,
200.0, value_theta_rpm200,
300.0, value_theta_rpm300,
600.0, value_theta_rpm600
),
"fluidType", "FluidType"
))
Fluid Types:
- HERSCHEL_BULKLEY
- POWER_LAW
- BINGHAM
- NEWTONIAN
Example