-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtexp.py
354 lines (326 loc) · 11.1 KB
/
rtexp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#Copyright 2014, 2015 Carolina Feher da Silva
#
#This file is part of rtexp.
#
#rtexp is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#rtexp is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with rtexp. If not, see <http://www.gnu.org/licenses/>.
import random, math, sys, os, ifnn, time, ga, configparser
# Read experiment configuration
config = configparser.ConfigParser()
config.read(sys.argv[1])
config = config['EXP']
EXT_STIMULI = float(config['EXT_STIMULI'])
CUE_STIMULI = float(config.get('CUE_STIMULI', EXT_STIMULI))
TAU = float(config.get('TAU', 10))
COST_FACTOR = float(config['COST_FACTOR'])
MIN_GENE = float(config['MIN_GENE'])
MAX_GENE = float(config['MAX_GENE'])
MUTATION_STEP = float(config['MUTATION_STEP'])
GENERATIONS = int(config['GENERATIONS'])
SAVE = int(config['SAVE'])
if GENERATIONS % SAVE != 0:
sys.stderr.write('Bad number of generations.\n')
sys.exit(-1)
RUNS = int(config['RUNS'])
NUM_POPS = int(config['NUM_POPS'])
NUM_INDS = int(config['NUM_INDS'])
MIGRAR = int(config['MIGRAR'])
MAX_STAGNATION = int(config['MAX_STAGNATION'])
NOISE = int(config['NOISE'])
NOISE_SIGMA = float(config['NOISE_SIGMA'])
DIR = config['DIR']
FILENAME = os.path.join(DIR, 'r%03d-g%03d')
def advance_nn(self, nn, s):
return nn.advance(s)
def advance_nn_with_noise(self, nn, s):
noise = [random.gauss(0, NOISE_SIGMA) for i in range(nn.num_neurons())]
return nn.advance_with_noise(s, noise)
class Task:
# Time parameters
PRE_TIME = 50
MIN_CUE_TIME = 100
MAX_CUE_TIME = None
MAX_RT = 1000
advance = advance_nn_with_noise if NOISE else advance_nn
@classmethod
def define_trials(cls, valid, neutral, invalid, catch, reps):
cls.trials = (
('L', 'V'),
('R', 'V'),
) * valid * reps + (
('L', 'I'),
('R', 'I'),
) * invalid * reps + (
('L', 'N'),
('R', 'N'),
) * neutral * reps + (
('C', 'V'),
) * round(catch * valid * 2 * reps) + (
('C', 'I'),
) * round(catch * invalid * 2 * reps) + (
('C', 'N'),
) * round(catch * neutral * 2 * reps)
def run(self, c, nn):
results = []
for params in self.trials:
nn.reset()
s = [0] * nn.num_input_neurons()
for i in range(self.PRE_TIME):
output = self.advance(nn, s)
side, vcue = params
if vcue == 'N':
cue = [0, CUE_STIMULI, 0]
elif side == 'L' and vcue == 'V' or side == 'R' and vcue == 'I':
cue = [CUE_STIMULI, 0, 0]
else:
cue = [0, 0, CUE_STIMULI]
t = -random.randint(self.MIN_CUE_TIME, self.MAX_CUE_TIME)
rt = None
s[1:4] = cue
while t <= self.MAX_RT:
if t == 0:
if side == 'L':
s[0] = EXT_STIMULI
elif side == 'R':
s[4] = EXT_STIMULI
else:
assert side == 'C'
assert len(s) == nn.num_input_neurons()
output = self.advance(nn, s)
result = self.got_result(output, side)
if result is not None:
result['params'] = params
result['rt'] = t
results.append(result)
break
else:
t += 1
else:
result = {}
result['params'] = params
result['rt'] = None
results.append(result)
self.set_fitness(c, results)
@staticmethod
def get_fitness(rt):
return 1000 * math.exp(-0.01 * rt)
@staticmethod
def print_stats(c):
# Printing statistics
print("%10d" % c.fitness, end='\t')
if c.rt_valid is not None:
print("% 7.2f" % c.rt_valid, end='\t')
else:
print("-------", end='\t')
if c.rt_neutral is not None:
print("% 7.2f" % c.rt_neutral, end='\t')
else:
print("-------", end='\t')
if c.rt_invalid is not None:
print("% 7.2f" % c.rt_invalid, end='\t')
else:
print("-------", end='\t')
print('\t'.join(['%3d' for i in c.count]) % c.count, end='\t')
print()
class SimpleRTTask(Task):
def got_result(self, output, side):
if output[0]:
return {}
else:
return None
def set_fitness(self, c, results):
c.fitness = 0
anticipated = 0
resp = 0
miss = 0
catch = 0
rt_valid = []
rt_invalid = []
rt_neutral = []
for r in results:
side, vcue = r['params']
if r['rt'] is not None:
resp += 1
if side == 'C': # responded in a catch trial
pass
elif r['rt'] <= 0: # anticipated
anticipated += 1
else:
c.fitness += self.get_fitness(r['rt'])
if vcue == 'V':
rt_valid.append(r['rt'])
elif vcue == 'I':
rt_invalid.append(r['rt'])
else:
assert vcue == 'N'
rt_neutral.append(r['rt'])
else:
if side == 'C':
c.fitness += 1000
catch += 1
else:
miss += 1
c.rt_valid = median(rt_valid)
c.rt_invalid = median(rt_invalid)
c.rt_neutral = median(rt_neutral)
c.count = (resp, miss, anticipated, catch)
class ChoiceRTTask(Task):
def got_result(self, output, side):
if output[0] and output[1]:
return {'correct': False}
elif output[0]:
return {'correct': (side == 'L')}
elif output[1]:
return {'correct': (side == 'R')}
else:
return None
def set_fitness(self, c, results):
c.fitness = 0
anticipated = 0
resp = 0
miss = 0
wrong = 0
catch = 0
rt_valid = []
rt_invalid = []
rt_neutral = []
for r in results:
side, vcue = r['params']
if r['rt'] is not None:
resp += 1
if side == 'C': # responded in a catch trial
pass
elif r['rt'] <= 0: # anticipated
anticipated += 1
elif r['correct']:
c.fitness += self.get_fitness(r['rt'])
if vcue == 'V':
rt_valid.append(r['rt'])
elif vcue == 'I':
rt_invalid.append(r['rt'])
else:
assert vcue == 'N'
rt_neutral.append(r['rt'])
else:
wrong += 1
else:
if side == 'C':
c.fitness += 1000
catch += 1
else:
miss += 1
c.rt_valid = median(rt_valid)
c.rt_invalid = median(rt_invalid)
c.rt_neutral = median(rt_neutral)
c.count = (resp, miss, anticipated, wrong, catch)
def avg(l):
try:
return sum(l) / float(len(l))
except:
return None
def median(l):
if len(l) == 0:
return None
l.sort()
if len(l) % 2 == 0:
return avg((l[len(l) // 2 - 1], l[len(l) // 2]))
else:
return l[len(l) // 2]
def simplert_fitness_function(pop):
#print(' fitness\tvalidRT\tinvldRT\tneutrRT\tres\tmis\tant\tcat')
for c in pop:
trials = SimpleRTTask()
trials.run(c, make_network(c))
#print()
def choicert_fitness_function(pop):
#print(' fitness\tvalidRT\tneutrRT\tinvldRT\tres\tmis\tant\twro\tcat')
for c in pop:
trials = ChoiceRTTask()
trials.run(c, make_network(c))
#print()
if config['TYPE'] == 'Simple':
ga.Population.evaluate_fitness = simplert_fitness_function
#print('Simple RT task selected.')
OUTPUT_NEURONS = 1
else:
ga.Population.evaluate_fitness = choicert_fitness_function
#print('Choice RT task selected.')
OUTPUT_NEURONS = 2
ga.Run.MAX_STAGNATION = MAX_STAGNATION
INPUT_NEURONS = 5
HIDDEN_NEURONS = int(config['HIDDEN_NEURONS'])
NEURONS = INPUT_NEURONS + HIDDEN_NEURONS + OUTPUT_NEURONS
VALID = int(config['VALID'])
INVALID = int(config['INVALID'])
NEUTRAL = int(config['NEUTRAL'])
CATCH = float(config.get('CATCH', 0))
REPS = int(config['REPS'])
Task.MAX_CUE_TIME = int(config.get('MAX_CUE_TIME', 200))
# For the simple GA
def get_list_genes():
list_genes = []
for i in range(NEURONS):
list_genes.append(ga.Gene(MIN_GENE, MAX_GENE, MUTATION_STEP)) # bias
for i in range(NEURONS * NEURONS): # synapses
list_genes.append(ga.Gene(MIN_GENE, MAX_GENE, MUTATION_STEP))
return list_genes
def make_network(c):
return ifnn.Network(INPUT_NEURONS, OUTPUT_NEURONS, HIDDEN_NEURONS, c, TAU)
def friendly_time(t):
s = []
if t > 86400:
s.append('%d day(s)' % (t // 86400))
t = t % 86400
if t > 3600:
s.append('%d hour(s)' % (t // 3600))
t = t % 3600
if t > 60:
s.append('%d minute(s)' % (t // 60))
t = t % 60
s.append('%d seconds(s)' % int(t))
return ' '.join(s)
def sub_pop(run, i):
newpop = ga.Population.get_random(NUM_INDS, get_list_genes())
run[i] = newpop
Task.define_trials(VALID, NEUTRAL, INVALID, CATCH, REPS)
if __name__ == '__main__':
if not os.path.exists(DIR):
os.mkdir(DIR)
for run_number in range(RUNS):
print("Run", run_number + 1)
arquivo = FILENAME % (run_number, 0)
if os.path.exists(arquivo):
with open(arquivo, 'rb') as f:
run = ga.Run.load(f)
else:
run = ga.Run()
for i in range(NUM_POPS):
pop = ga.Population.get_random(NUM_INDS, get_list_genes())
run.append(pop)
with open(arquivo, 'wb') as f:
run.dump(f)
print("Generation 0")
while run.g < GENERATIONS:
new_g = run.g + SAVE
arquivo = FILENAME % (run_number, new_g)
if os.path.exists(arquivo):
with open(arquivo, 'rb') as f:
run = ga.Run.load(f)
else:
run.iterate(SAVE)
assert run.g == new_g
if MIGRAR and run.g % MIGRAR == 0:
run.migrate()
with open(arquivo, 'wb') as f:
run.dump(f)
print("Generation %d" % (run.g))