-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTEP3c_Count_MRD.py
245 lines (152 loc) · 6.36 KB
/
STEP3c_Count_MRD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# coding: utf-8
# To specify the site-packages location:
import sys
sys.path.insert(0, '/home/.conda/envs/tensorflow/lib/python3.6/site-packages')
import glob
import os
import itertools
import re
from collections import Counter
import numpy
import tensorflow
import keras
import sklearn.metrics
import deepometry.model
import csv
def _shape(pathname):
"""
Infer the shape of the sample data from a single sample.
:param pathname: Path to a sample.
:return: Sample dimensions.
"""
return numpy.load(pathname).shape
def load(pathnames, labels, patient_to_exclude):
"""
Load training and target data.
Assumes data is stored in a directory corresponding to some class label.
:param pathnames: List of image pathnames.
:param labels: List of class labels.
:return: Tuple (training, target) data, as NumPy arrays.
"""
print('Before exclusion: ',len(pathnames))
pathnames = [x for x in pathnames if patient_to_exclude not in x]
print('After exclusion: ',len(pathnames))
x = numpy.empty((len(pathnames),) + _shape(pathnames[0]), dtype=numpy.uint8)
y = numpy.empty((len(pathnames),), dtype=numpy.uint8)
label_to_index = {label: index for index, label in enumerate(sorted(labels))}
for index, pathname in enumerate(pathnames):
if (os.path.isfile(pathname) == True):
label = os.path.split(os.path.dirname(pathname))[-1]
x[index] = numpy.load(pathname)
y[index] = label_to_index[label]
return x, y
def sample(directories):
"""
Sample pathnames from directories.
For each directory, samples are randomly selected equally across subdirectories.
:param directories: List of directories to select samples from. Assumes subdirectories of each directory
correspond to class labels. Contents of subdirectories are NPY files containing data
of that label.
:return: List of sampled pathnames.
"""
pathnames = []
for directory in directories:
subdirectories = sorted(glob.glob(os.path.join(directory, "*")))
subdirectory_pathnames = [glob.glob(os.path.join(subdirectory, "*")) for subdirectory in subdirectories]
nsamples = max([len(pathnames) for pathnames in subdirectory_pathnames])
#nsamples = 70000
pathnames += [list(numpy.random.permutation(pathnames)[:nsamples]) for pathnames in subdirectory_pathnames]
pathnames = sum(pathnames, [])
return pathnames
def get_class_weights(y):
counter = Counter(y)
majority = max(counter.values())
return {cls: float(majority/count) for cls, count in counter.items()}
def collect_pathnames(directories, labels):
"""
:param directories: List of directories to select samples from. Assumes subdirectories of each directory
correspond to class labels. Contents of subdirectories are NPY files containing data
of that label.
:return: List of pathnames.
"""
pathnames = []
for directory in directories:
subdirectories = sorted(glob.glob(os.path.join(directory, "*")))
# transform the files of the same label into directory
subdirectory_pathnames = [glob.glob("{}/*.npy".format(subdirectory)) for subdirectory in subdirectories ]
nsamples = max([len(pathnames) for pathnames in subdirectory_pathnames])
pathnames += [list(numpy.random.permutation(pathnames)[:nsamples]) for pathnames in subdirectory_pathnames]
pathnames = sum(pathnames, [])
return pathnames
def load_include(pathnames, labels, patient_to_include):
"""
Load training and target data.
Assumes data is stored in a directory corresponding to some class label.
:param pathnames: List of image pathnames.
:param labels: List of class labels.
:return: Tuple (training, target) data, as NumPy arrays.
"""
#print('All cells in treated patients: ',len(pathnames))
pathnames = [x for x in pathnames if patient_to_include in x]
print('Cells in this patient: ',len(pathnames))
x = numpy.empty((len(pathnames),) + _shape(pathnames[0]), dtype=numpy.uint8)
y = numpy.empty((len(pathnames),), dtype=numpy.uint8)
label_to_index = {label: index for index, label in enumerate(sorted(labels))}
for index, pathname in enumerate(pathnames):
if (os.path.isfile(pathname) == True):
label = os.path.split(os.path.dirname(pathname))[-1]
x[index] = numpy.load(pathname)
y[index] = label_to_index[label]
return x, y
labels = ["Leukemic", "Normal", "Others"]
directories = ["/parsed_data/"]
samples = sample(directories)
pathnames_to_test = collect_pathnames(directories, labels)
patients_to_test = [
'LK155_pres',
'LK155_day11',
'LK155_day29',
'LK157_pres',
'LK157_day8',
'LK157_day15',
'LK167_pres',
'LK167_day12',
'LK171_pres',
'LK171_day11',
'LK172_pres',
'LK172_day29',
'LK174_pres',
'LK174_day29',
'LK175_pres',
'LK175_day8',
'LK177_pres',
'LK177_day8',
'LK181_pres',
'LK181_day8'
]
# build session running on GPU 1
configuration = tensorflow.ConfigProto()
configuration.gpu_options.allow_growth = True
configuration.gpu_options.visible_device_list = "1"
session = tensorflow.Session(config = configuration)
# apply session
keras.backend.set_session(session)
drop_how_many = 6
model = deepometry.model.Model(shape=(48,48,(8-drop_how_many)), units=len(labels))
model.compile()
model.model.load_weights('/models/resnet_drop_' + str(drop_how_many) + '_channels/mode
for patient_to_test in patients_to_test:
for i in [drop_how_many]:#range(8):
print("Testing: ", patient_to_test,", dropped ",i, " channels")
model_directory = str('/models/resnet_to_test_' + patient_to_test + '_drop_' + str(i) + '_channels')
if not os.path.exists(model_directory):
os.makedirs(model_directory)
xx_test, y_test = load_include(pathnames_to_test, labels, patient_to_test)
x_test = xx_test[:,:,:,i:]
#print("Testing set: ", x_test.shape)
predictions = model.predict(x=x_test, batch_size=256, verbose=0)
y_pred = numpy.argmax(predictions, -1)
cm = sklearn.metrics.confusion_matrix(y_test, y_pred)
numpy.save(os.path.join(model_directory, str('confusion_matrix_'+patient_to_test + '_drop_' + str(i) + '_channels'+'.npy') ), cm)
del(xx_test,x_test,y_test)
keras.backend.clear_session()