-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
143 lines (117 loc) · 3.98 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
# Import the data
data = pd.read_csv('/Users/catarina_palmeirao/Desktop/code/mnist/mnist_train.csv')
data = np.array(data)
m, n = data.shape
np.random.shuffle(data)
# Transpose and split the data
data_dev = data[0:1000].T
Y_dev = data_dev[0]
X_dev = data_dev[1:n]
X_dev = X_dev / 255.
data_train = data[1000:m].T
Y_train = data_train[0]
X_train = data_train[1:n]
X_train = X_train / 255.
# Initialize parameters with He initialization
def init_params():
W1 = np.random.randn(10, 784) * np.sqrt(2. / 784)
b1 = np.zeros((10, 1))
W2 = np.random.randn(10, 10) * np.sqrt(2. / 10)
b2 = np.zeros((10, 1))
return W1, b1, W2, b2
# ReLU activation function
def ReLU(Z):
return np.maximum(Z, 0)
# Softmax function
def softmax(Z):
expZ = np.exp(Z - np.max(Z, axis=0, keepdims=True))
return expZ / expZ.sum(axis=0, keepdims=True)
# Forward propagation
def forward_prop(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
# One-hot encoding function
def one_hot(Y):
one_hot_Y = np.zeros((Y.size, Y.max() + 1))
one_hot_Y[np.arange(Y.size), Y] = 1
return one_hot_Y.T
# Derivative of ReLU
def deriv_ReLU(Z):
return Z > 0
# Backward propagation
def back_prop(Z1, A1, Z2, A2, W2, X, Y):
m = Y.size
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = W2.T.dot(dZ2) * deriv_ReLU(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1, axis=1, keepdims=True)
return dW1, db1, dW2, db2
# Update parameters
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 -= alpha * dW1
b1 -= alpha * db1
W2 -= alpha * dW2
b2 -= alpha * db2
return W1, b1, W2, b2
# Prediction function
def get_predictions(A2):
return np.argmax(A2, axis=0)
# Accuracy calculation
def get_accuracy(predictions, Y):
return np.sum(predictions == Y) / Y.size
# Compute cross-entropy loss
def compute_loss(A2, Y):
m = Y.size
one_hot_Y = one_hot(Y)
log_probs = np.multiply(one_hot_Y, np.log(A2))
loss = - np.sum(log_probs) / m
return loss
# Gradient descent function with loss and accuracy monitoring
def gradient_descent(X, Y, alpha, iterations):
W1, b1, W2, b2 = init_params()
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = back_prop(Z1, A1, Z2, A2, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 50 == 0:
loss = compute_loss(A2, Y)
predictions = get_predictions(A2)
accuracy = get_accuracy(predictions, Y)
print(f"Iteration {i}: Loss = {loss:.4f}, Accuracy = {accuracy:.2f}")
return W1, b1, W2, b2
# Train the model
W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 0.1, 200)
# Evaluate on the development set
Z1_dev, A1_dev, Z2_dev, A2_dev = forward_prop(W1, b1, W2, b2, X_dev)
predictions_dev = get_predictions(A2_dev)
accuracy_dev = get_accuracy(predictions_dev, Y_dev)
print(f"Development Set Accuracy: {accuracy_dev:.2f}")
def make_predictions(X, W1, b1, W2, b2):
_, _, _, A2 = forward_prop(W1, b1, W2, b2, X)
predictions = get_predictions(A2)
return predictions
def test_prediction(index, W1, b1, W2, b2):
current_image = X_train[:, index, None]
prediction = make_predictions(X_train[:, index, None], W1, b1, W2, b2)
label = Y_train[index]
print("Prediction: ", prediction)
print("Label: ", label)
current_image = current_image.reshape((28, 28)) * 255
plt.gray()
plt.imshow(current_image, interpolation='nearest')
plt.show()
test_prediction(0, W1, b1, W2, b2)
test_prediction(1, W1, b1, W2, b2)
test_prediction(2, W1, b1, W2, b2)
test_prediction(3, W1, b1, W2, b2)
dev_predictions = make_predictions(X_dev, W1, b1, W2, b2)
get_accuracy(dev_predictions, Y_dev)