-
Notifications
You must be signed in to change notification settings - Fork 25
/
picture1.js
1245 lines (1176 loc) · 59.8 KB
/
picture1.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*cv.imread can read from an img tag or a canvas tag.
But looks like cv.imshow can only show to a canvas tag.
xxx
*/
var cv = "cv is not initialized. Call Picture.init()"
var RotatingCalipers = "RotatingCalipers is not initialized. Call Picture.init()"
var Picture = class Picture{
//the width and height are for the show_window made (if any)
//iF the picture pixels are more than the window dimensions, the window will scroll.
static init({width=320, height=240}={}){
if(typeof(cv) === "string") { //calling init a 2nd time some times screws up do to timing,
//probably due to the show_video call.
cv = require("./node_modules/opencv.js/opencv")
RotatingCalipers = require("rotating-calipers/rotating-calipers.js")
//load_files(__dirname + "/node_modules/rotating-calipers/rotating-calipers.js")
// Picture.show_video({width: width, height: height, callback: SW.close_window}) //immediately closes itself, but needs to open temporarily just to complete "initing".
//Picture.take_picture({callback: null}) //the first time I call take_picture,
//it doesn't work due to timing/async. So this "inits" the video
//so that take_picture will work the first time.
}
}
//see https://stackoverflow.com/questions/5867534/how-to-save-canvas-data-to-file
static save_picture({canvas_id_or_mat="canvas_id", path="my_pic.png"}={}){
let sw_index = null
let canvas_elt
if(canvas_id_or_mat instanceof HTMLElement){
canvas_elt = canvas_id_or_mat
}
else if(typeof(canvas_id_or_mat) == "string"){
canvas_elt = value_of_path(canvas_id_or_mat)
}
else if(Picture.is_mat(canvas_id_or_mat)){
let mat = canvas_id_or_mat
let width = mat.cols
let height = mat.rows
sw_index = show_window({title: "storage for save_picture",
content: '<canvas id="canvas_for_save_picture_id"' +
' width="' + width +
'px" height="' + height +
'px"/>'})
canvas_elt = canvas_for_save_picture_id
//canvas_elt.style.display = "none" //we still see the elt but it is at 240 x 320
canvas_elt.visibility = "hidden"
//the below fails to work for render_canvas_content's call to cv.imshow
//so we've gotta have a real elt connected to the dom.
//canvas_elt = document.createElement('canvas');
//canvas_elt.id = "canvas_for_save_picture_id"
//canvas_elt.width = width
//canvas_elt.height = height
Picture.render_canvas_content(canvas_elt, mat)
}
else {
dde_error("Picture.save_picture passed canvas_id_or_mat of: " + canvas_id_or_mat +
"<br/>but that isn't a canvas or a mat.")
}
let img = canvas_elt.toDataURL()
let data = img.replace(/^data:image\/\w+;base64,/, "")
//let buf = Buffer.from(data, 'base64')
write_file(path, data, 'base64')
if(sw_index !== null) { SW.close_window(sw_index) }
}
static snapshot_to_file({camera_id, path="my_pic.png"} = {}){
if(!camera_id){
Picture.show_video_cameras(function(devices) {
if(devices.length == 0) { dde_error("In snapshot_to_file, could not find any cameras connected to your computer.") }
else {
Picture.snapshot_to_file({camera_id: devices[0].deviceId, path: path})
}
})
}
else{
navigator.mediaDevices.getUserMedia({ video: {deviceId: camera_id} }).then(function(stream){
//https://developers.google.com/web/updates/2016/12/imagecapture
const mediaStreamTrack = stream.getVideoTracks()[0];
const imageCapture = new ImageCapture(mediaStreamTrack);
imageCapture.takePhoto()
.then(blob => {
let img = document.createElement("img")
img.src = URL.createObjectURL(blob);
img.onload = () => { URL.revokeObjectURL(img.src); }
//https://www.nashvail.me/blog/canvas-image
const canvas_elt = document.createElement("canvas")
canvas_elt.width = mediaStreamTrack.getSettings().width
canvas_elt.height = mediaStreamTrack.getSettings().height
const context = canvas_elt.getContext("2d")
img.onload = () => {
context.drawImage(img, 0, 0)
let img_data = canvas_elt.toDataURL()
let data = img_data.replace(/^data:image\/\w+;base64,/, "")
//let buf = Buffer.from(data, 'base64')
write_file(path, data, 'base64')
}
})
.catch(error => console.error('takePhoto() error:', error));
})
}
}
static show_video_cameras(callback){
navigator.mediaDevices.enumerateDevices()
.then(function(devices) {
let video_devices = []
devices.forEach(function(device) {
if(device.kind == "videoinput") {
video_devices.push(device)
out("<p/><b>MediaDeviceInfo</b>" +
"<br/>kind: " + device.kind +
"<br/>label: " + device.label +
"<br/>deviceId: " + device.deviceId +
"<br/>groupId: " + device.groupId
)
}
})
if(callback) { callback(video_devices) }
})
}
static show_picture({canvas_id="canvas_id", //string of a canvas_id or canvasId dom elt
content=null, //mat or file_path
title=undefined,
x=200, y=40, width=320, height=240,
rect_to_draw=null,
rotate=0,
scale_x=1,
scale_y=1,
translate_x=0,
translate_y=0,
show_window_callback=show_window_callback_for_canvas_click}={}){
if (!content) { content = __dirname + "/examples/snickerdoodle_board.png" }
if(!title) {
let title_suffix
if(typeof(content) == "string") { //content might be a long base64 string
title_suffix = content.substr(0, 64)
}
else { title_suffix = Picture.mat_type(content) +
" mat (" + Picture.mat_width(content) +
" x " + Picture.mat_height(content) + ")"}
title = "Picture from: " + title_suffix
}
if ((typeof(content) === "string") && (content.length < 256)){ //presumed not base64 image data
content = make_full_path(content)
}
let canvas_elt
if(is_dom_elt(canvas_id)) {
canvas_elt = canvas_id
canvas_id = canvas_elt.id
}
else if(typeof(canvas_id) == "string") {
canvas_elt = value_of_path(canvas_id)
}
let transforms = {rotate: rotate,
scale_x: scale_x, scale_y: scale_y,
translate_x: translate_x, translate_y: translate_y}
if(canvas_elt) { Picture.render_canvas_content(canvas_elt, content, rect_to_draw, transforms) }
else {
let width_html = ' width="' + width + 'px" '
let height_html = ' height="' + height + 'px" '
let the_html
the_html = '<div style="overflow: scroll;"><canvas class="clickable" id="' + canvas_id + '" ' +
width_html +
height_html +
'style="padding:0px;"/></div>'
let observer = new MutationObserver(function(mutations, observer) {
let show_window_rendered = false
let canvas_elt = value_of_path(canvas_id)
if(canvas_elt){
for (let mutation of mutations) {
if(mutation.type == "childList"){
for(let a_node of mutation.addedNodes){
if (a_node.classList && a_node.classList.contains("show_window")){
observer.disconnect() //or maybe this.disconnect()
Picture.render_canvas_content(canvas_elt, content, rect_to_draw, transforms)
return
}
}
}
}
}
})
let observerConfig = { childList: true, subtree: true } //but even with subtree we don't get the canvas elt in our obserser callback, OBSOLETE: probably because the show-window is constructed with jqwidgets and we can't look inside them.
observer.observe(document, observerConfig)
show_window({title: title,
x: x, y: y, width: width + 10, height: height + 50,
callback: show_window_callback,
content: the_html}) //there isn't a binding to canvas_id so safe to use it. the binding goes away when the user closes the window
}
}
/*static make_transform_style(rotate=0) {
let transform_style = ""
if(rotate !== 0) {
transform_style += "rotate(" + rotate + "deg) "
}
//if(transform_style.length > 0){
// transform_style = "transform: " + transform_style
//}
return transform_style
}*/
//content can be the string name of file with an image in it, or a Mat.
//rect_to_draw can be an array of [x,y,width,height] a cv.Rect or a cv.Point
//see https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
//and https://codepo8.github.io/canvas-images-and-pixels/
static render_canvas_content(canvas_elt, content, rect_to_draw=null, transforms={}) {
if(typeof(content) == "string") { //got a file path
let img = new Image() //Don't pass in width and height because we want the width and height to come from the content file name. canvas_elt.width, canvas_elt.height) //img_id //new Image()
//if(transform_style.length > 0) {img.style.transform = transform_style }
if(is_string_base64(content, true)) { //permit newline at end of content
content = "data:image/jpg;base64," + content
}
img.src = content //"/images/2c.jpg";
let ctx = canvas_elt.getContext("2d")
img.onload = function(){
let imgWidth = img.width
let imgHeight = img.height;
canvas_elt.width = imgWidth
canvas_elt.height = imgHeight
if(transforms.rotate !== 0){
ctx.rotate(degrees_to_radians(transforms.rotate))
}
if((transforms.scale_x !== 1) || (transforms.scale_y !== 1)){
ctx.scale(transforms.scale_x, transforms.scale_y)
}
if((transforms.translate_x !== 0) || (transforms.translate_y !== 0)){
ctx.translate(transforms.translate_x, transforms.translate_y)
}
if(transforms.scale_x < 1) {
imgWidth = imgWidth * -1 //see https://stackoverflow.com/questions/8168217/html-canvas-how-to-draw-a-flipped-mirrored-image
}
ctx.drawImage(img, 0, 0, imgWidth, imgHeight)
}
}
else { //we have a mat, not a file, to show.
//let a_mat = cv.Mat.zeros(mat_or_file_path.rows, mat_or_file_path.cols, mat_or_file_path.type());
//let a_mat = cv.Mat.ones(mat_or_file_path.rows, mat_or_file_path.cols, mat_or_file_path.type());
cv.imshow(canvas_elt.id, content)//mat_or_file_path
}
if(rect_to_draw) {
Picture.render_canvas_rect(canvas_elt, rect_to_draw)
}
}
// draw red rectangle for: [x,y, width, height], cv.Rect, cv.Point, or [[x,y][x,y]...]
static render_canvas_rect(canvas_elt, full_data_rect){
if(typeof(canvas_elt) == "string") { canvas_elt = value_of_path(canvas_elt) }
if(!canvas_elt) { dde_error("Picture.draw_rect_on_canvas got invalid rect: " + rect) }
if (Picture.is_min_area_rect(full_data_rect)) {
Picture.render_canvas_rect(canvas_elt, [full_data_rect.center_x, full_data_rect.center_y])
}
let rect = Picture.rect_to_array(full_data_rect)
let ctx = canvas_elt.getContext("2d")
ctx.beginPath();
ctx.lineWidth="1";
ctx.strokeStyle="red";
if(rect.length == 0) {} //draw nothing
else if ((rect.length == 4) && (typeof(rect[0]) == "number")){
ctx.rect(...rect)
}
else { //assume each inner rect is an array of x and y
ctx.moveTo(rect[0][0], rect[0][1]);
for (var i = 1; i < rect.length; i++) {
ctx.lineTo(rect[i][0], rect[i][1])
}
ctx.closePath();
}
ctx.stroke();
if (full_data_rect.hasOwnProperty("slope")){
ctx.beginPath();
ctx.lineWidth="1";
ctx.strokeStyle="green"
let x1 = 0
let y1 = x1 * full_data_rect.slope + full_data_rect.y_intercept
let x2 = 320
let y2 = x2 * full_data_rect.slope + full_data_rect.y_intercept
ctx.moveTo(x1, y1)
ctx.lineTo(x2, y2)
ctx.stroke();
}
}
//returns array of x, y, width, height. if rect_or_point is a point,
//make a square with a side of point_side and shift x & y left and up s that
//the square's center will be the original x and y
//Can also return an array of arrays of x & y, if that's what rect_or_point is.
static rect_to_array(rect_or_point, point_side=3) {
let result
if(rect_or_point instanceof cv.Rect) {
result = [rect_or_point.x, rect_or_point.y, rect_or_point.width, rect_or_point.height]
}
else if (rect_or_point instanceof cv.Point) {
let the_x = rect_or_point.x
let the_y = rect_or_point.y
if (point_side > 2){
let the_shift = Math.round(point_side / 2)
the_x -= the_shift
the_y -= the_shift
}
result = [the_x, the_y, point_side, point_side]
}
else if (Array.isArray(rect_or_point)){
if(rect_or_point.length == 0) { result = rect_or_point }
else if (Array.isArray(rect_or_point[0]) &&
(rect_or_point[0].length == 2) &&
(typeof(rect_or_point[0][0]) == "number")) { //array of points, each of which is an array of x and y
result = rect_or_point
}
else if((rect_or_point.length == 4) && (typeof(rect_or_point[0]) == "number")) { //the usual for canvas drawing a rect
result = rect_or_point
}
else if ((rect_or_point.length == 2) && (typeof(rect_or_point[0]) == "number")){ //a point. Turn into a array of points so we can concatenate it
let the_x = rect_or_point[0]
let the_y = rect_or_point[1]
if (point_side > 2){
let the_shift = Math.round(point_side / 2)
the_x -= the_shift
the_y -= the_shift
}
result = [the_x, the_y, point_side, point_side]
}
else { dde_error("Picture.rect_to_array passed rect: " + rect_or_point +
" which is not a cv.Rect, cv.Point, array of 4 numbers or array of arrays of x & y.")
}
}
else if (Picture.is_min_area_rect(rect_or_point)) {
result = rect_or_point.vertices
}
else {
dde_error("Picture.rect_to_array passed: " + rect_or_point +
" which is not a cv.Rect, cv.Point, array of 4 numbers or array of arrays of x & y.")
}
return result
}
//used as the default callback for take_picture
static show_picture_of_mat(mat){
Picture.show_picture({content: mat, width: mat.cols, height: mat.rows})
}
static show_video({video_id="video_id",
content="webcam",
title=undefined,
x=400, y=0, width=320, height=240,
play=true,
camera_id=undefined,
visible=true,
callback=undefined}={}
){
let video_elt
if(is_dom_elt(video_id)){
video_elt = video_id
video_id = video_elt.id
}
else if(typeof(video_id) == "string") {
video_elt = value_of_path(video_id)
if(video_elt == undefined){
if(!title) { title = "Video from: " + content + "(" + width + " x " + height + ")" }
let the_html
if (content.includes("youtu.be")) {
let last_slash_pos = content.lastIndexOf("/")
let youtube_code = content.substring(last_slash_pos + 1)
let play_html = (play ? "1" : "0")
let sep = (content.includes("?") ? "&" : "?") //if we've got ?t=30 on the end of content to start playing 30 secs into the video, this compenstates for it.
the_html = '<iframe allowfullscreen ' +
' width="' + width +
'" height="' + height +
'" src="https://www.youtube.com/embed/' +
youtube_code + sep +
'autoplay=' + play_html +
'"></iframe>'
}
else {
the_html = '<video id="' + video_id +
'" width="' + width +
'" height="' + height +
'" preload="auto' +
'" controls></video>'
}
let sw_index = show_window({title: title,
x: x, y: y,
width: width + 10,
height: height + 50, //stick "controls" in the video tag to get controls for when playing a file
content: the_html}) //there isn't a binding to video_id so safe to use it. the binding goes away when the user closes the window
if(!visible) {
let sw_elt = SW.get_window_of_index(sw_index)
sw_elt.style.visibility = "hidden"
}
if(content.includes("youtu.be")){ return }
//else { video_elt = html_to_dom_elt(the_html)}
}
}
else { dde_error("show_video passed invalid type of video_id: " + video_id +
"<br/> It must be a string or a video dom elt.")
}
//if we create the video tag above, it needs some time to render.
setTimeout(function(event){
if(video_elt == undefined) {video_elt = window[video_id] } //this really
//should be unnecessary and shouldn't actually make a difference,
//but when the html for the video_tag is defined above
//the *should be* global var of video_id isn't bound yet
//remarkably, its in the window object. So this fixes the broken dom.
if(!is_dom_elt(video_elt) || (video_elt.tagName != "VIDEO")) {
dde_error("Picture.show_video doesn't have a proper VIDEO dom element to play the video in. <br/>" +
video_elt)
}
if (content == "webcam") {
if(navigator.mediaDevices && navigator.mediaDevices.getUserMedia) {
navigator.mediaDevices.getUserMedia({ video: {deviceId: camera_id} }).then(function(stream) {
//video_elt.src = window.URL.createObjectURL(stream);
video_elt.srcObject = stream;
if(play) {
//video_elt.pause() //without this, we sometimes get an error if there is a previous video running. Shoot, this doesn't work either.
//video_elt.onloadstart, function () {
// setTimeout( function() {
// video_elt.play().then( () => {
// if(callback) {callback.call(this, video_elt)}
// })}, 10);
//}
//from https://stackoverflow.com/questions/36803176/how-to-prevent-the-play-request-was-interrupted-by-a-call-to-pause-error
let isPlaying = video_elt.currentTime > 0 &&
!video_elt.paused &&
!video_elt.ended &&
video_elt.readyState > 2;
if (isPlaying) {
if(callback) {callback.call(this, video_elt)}
}
else {
//calling the below with camera, sometimes errors if you close , reopen, play twice
video_elt.play().then( () => {
if(callback) {callback.call(this, video_elt)} //just in case "this" is a job instance, we want the callback to get it
})
}
}
})
}
else { dde_error("Video not supported on this computer.") }
}
else { // content should be a path to a video file like a .mp4
video_elt.src = content // "http://techslides.com/demos/sample-videos/small.mp4"
if(play) { video_elt.play().then( () => {
if(callback) {callback.call(this, video_elt) }
}) }
}
},
150)
}
//beware, must have a valid video elt THAT IS RENDERED in video_id or this will error.
static take_picture({video_id="video_id", camera_id=undefined,
width=320, height=240,
callback=Picture.show_picture_of_mat}={}){
Picture.init(width, height) //first time called, pops up show_window with video from camera in it, 2nd thr nth does nothing
let video_elt
if(is_dom_elt(video_id)){
video_elt = video_id
video_id = video_elt.id
}
else if(typeof(video_id) == "string") {
video_elt = value_of_path(video_id)
if(video_elt == undefined){
let show_video_callback = function() {
Picture.take_picture({video_id: video_id, width: width, height: height, callback: callback})
}
Picture.show_video({video_id: video_id, camera_id: camera_id, width: width, height: height, visible: false, callback: show_video_callback})
return
//a video show window will pop up but the below code won't be able to return its mat.
/*let the_html = '<video id="' + video_id +
'" width="' + 320 + //width +
'" height="' + 240 + //height +
'" controls/>'
video_elt = html_to_dom_elt(the_html) //hidden video_elt. but this fails in getting take_picture to return a mat with the actual picture in it. So to return a mat, you must have a video_elt alreaedy preseent before calling take_picture.
*/
}
}
if(video_elt.tagName != "VIDEO"){
dde_error("Picture.take_picture got a video_id: " + video_id +
"that is not the id of, or domElt of a video.")
}
let mat = Picture.video_to_mat(video_elt, width, height)
//out("is mat: " + Picture.is_mat(mat))
if (callback) {
//callback(mat)
callback.call(this, mat) //just in case "this" is a job instance, we want the callback to get it
}
//return mat //don't do because,
// 1. it can't always return a useful mat and
// 2. if it does return a mat, and we're using this fn in a job,
// then the mat would go on the do_list and job doesn't know what to do
// with a mat so it errors. Better to just return undefined
}
static video_to_mat(video_id, width, height) {
if (typeof(video_id) == "string") { video_id = value_of_path(video_id) }
let width_to_use = (width ? width : video_id.width)
let height_to_use = (height ? height : video_id.height)
let offScreenCanvas = document.createElement('canvas');
offScreenCanvas.width = width_to_use
offScreenCanvas.height = height_to_use
let context = offScreenCanvas.getContext("2d");
context.drawImage(video_id, 0, 0, width_to_use, height_to_use)
let mat = cv.imread(offScreenCanvas)
return mat
}
// pixel operators, accept either a number or an array of 4 as input
static pixel_to_gray(pixel){
if (typeof(pixel) == "number") { return pixel }
else { return Math.round((pixel[0] + pixel[1] + pixel[2]) / 3) }
}
static pixel_to_color(pixel){
if (typeof(pixel) == "number") { return [pixel, pixel, pixel, 255]}
else { return pixel }
}
//____________Low level mat methods__________
// see https://docs.opencv.org/3.4.1/df/d24/tutorial_js_image_display.html
//mat.channels() => 1 if gray mat, 3 if rgb, 4 if rgba. For picture from a normal webcam, this will be 4
//HTML canvas only supports 8 bits per color compnent values so Each channel in opencv.js is 8 bit so values from each compoent range from 0 to 255 inclusive
//mat.delete()
//cv.imread(img_or_canvas_elt_or_id_string) => mat
//mat1.setTo([100, 0, 100, 255]) //set all pixels to the given array of 4 non-neg-ints < 256
//type can be null (any mat type), "rgba", "gray", or a cv type number.
//returns a boolean
static is_mat(mat, type=null) {
if((typeof(mat) === "object") &&
(typeof(window.cv) === "object") && //just in case cv is not initialized yet, don't have in screw up to_source_code and inspect
(mat instanceof cv.Mat)) {
let mat_type = mat.type()
switch (type) {
case null: return true //mat can be of any mat_type
case "rgba": return mat_type === cv.CV_8UC4
case "gray": return mat_type === cv.CV_8UC1
case "grey": dde_error('Picture.is_mat passed type of: "grey". Please use "gray" instead.')
default: return mat_type === type //type should be a number here.
}
}
else { return false }
}
static mat_type(mat){
let mat_type = mat.type()
if (mat_type === cv.CV_8UC4) { return "rgba" }
else if (mat_type === cv.CV_8UC1) { return "gray" }
else { return mat_type }
}
//makes mat filled with random colors.
//each color value is from 0 to 255 inclusive.
//r,g,b,a where higher number means "more" of that component.
//for alpha 0 is completely transparent whereas 255 is opague (usually what you want).
static make_mat({type="rgba", width=320, height=240, color=[0, 0, 0, 255]} = {}) {
if(typeof(type) == "string") {
switch (type){
case "rgba": type = cv.CV_8UC4 //8 bits, unsigned, for 4 channels
break;
case "gray": type = cv.CV_8UC1
break;
case "grey": dde_error('Picture.make_mat called with type of "grey". Please use "gray" instead.')
break;
default:
if(is_integer(type)) {} //ok as is
else {
dde_error("make_mat called with invalid type string of: " + type)
}
break;
}
}
if(typeof(color) == "number") { color = [color, color, color, 255] } //weirdly, even gray mats needs a 4 elt clor.
if(color.length == 3) { color = color.slice().push(255) }
return new cv.Mat(height, width, type, color) //same as: new cv.Scalar(...color)
}
static make_similar_mat(mat_in, color=[0, 0, 0, 255]){
return Picture.make_mat({type: mat_in.type(),
width: Picture.mat_width(mat_in),
height: Picture.mat_height(mat_in),
color: color})
}
static mat_width(mat) { return mat.cols }
static mat_height(mat) { return mat.rows }
static mat_red(mat, x, y){
//return mat.data[y, mat.cols * mat.channels() + x * mat.channels()]
return Picture.mat_pixel(mat, x, y)[0]
}
static mat_green(mat, x, y){
//return mat.data[y, mat.cols * mat.channels() + x * mat.channels() + 1]
return Picture.mat_pixel(mat, x, y)[1]
}
static mat_blue(mat, x, y){
//return mat.data[y, mat.cols * mat.channels() + x * mat.channels() + 2]
return Picture.mat_pixel(mat, x, y)[2]
}
static mat_alpha(mat, x, y){
//return mat.data[y, mat.cols * mat.channels() + x * mat.channels() + 3]
return Picture.mat_pixel(mat, x, y)[3]
}
static mat_gray(mat, x, y) {
return mat.ucharAt(y, x)
}
//a pixel is an array of 4 ints each 0 to 255 inclusive.
//you can get the component values a la pixel[0] //for red.
//you can set them a la pixel[0] = 255
static mat_pixel(mat, x, y) { return mat.ucharPtr(y, x) }//note row, col order as per opencv brain damage.
static set_mat_red(mat, x, y, value=0){
Picture.mat_pixel(mat, x, y)[0] = value
}
static set_mat_green(mat, x, y, value=0){
Picture.mat_pixel(mat, x, y)[1] = value
}
static set_mat_blue(mat, x, y, value=0){
Picture.mat_pixel(mat, x, y)[2] = value
}
static set_mat_alpha(mat, x, y, value=0){
Picture.mat_pixel(mat, x, y)[3] = value
}
static set_mat_gray(mat, x, y, value=0) {
if(Array.isArray(value)) { value = value[0] }
mat.ucharPtr(y, x)[0] = value
}
static set_mat_pixel(mat, x, y, color=[0, 0, 0, 1]) {
let pixel = mat.ucharPtr(y, x)
for(let i = 0; i < pixel.length; i++) {
pixel[i] = color[i]
}
}
static set_mat_reds(mat, value=0){
let width = Picture.mat_width(mat)
let height = Picture.mat_height(mat)
for(let x = 0; x < width; x++) {
for(let y = 0; y < height; y++){
Picture.set_mat_red(mat, x, y, value)
}
}
}
static set_mat_greens(mat, value=0){
let width = Picture.mat_width(mat)
let height = Picture.mat_height(mat)
for(let x = 0; x < width; x++) {
for(let y = 0; y < height; y++){
Picture.set_mat_green(mat, x, y, value)
}
}
}
static set_mat_blues(mat, value=0){
let width = Picture.mat_width(mat)
let height = Picture.mat_height(mat)
for(let x = 0; x < width; x++) {
for(let y = 0; y < height; y++){
Picture.set_mat_blue(mat, x, y, value)
}
}
}
static set_mat_alphas(mat, value=0){
let width = Picture.mat_width(mat)
let height = Picture.mat_height(mat)
for(let x = 0; x < width; x++) {
for(let y = 0; y < height; y++){
Picture.set_mat_alpha(mat, x, y, value)
}
}
}
static set_mat_grays(mat, value=0){
let width = Picture.mat_width(mat)
let height = Picture.mat_height(mat)
for(let x = 0; x < width; x++) {
for(let y = 0; y < height; y++){
Picture.set_mat_gray(mat, x, y, value)
}
}
}
static set_mat_pixels(mat, color=[0, 0, 0, 255]){
if(typeof(color) == "number") {color = [color, color, color, 255] }
mat.setTo(color)
//let width = Picture.mat_width(mat)
//let height = Picture.mat_height(mat)
//for(let i = 0; i < width; i++) {
// for(let j = 0; j < height; j++){
// Picture.set_mat_pixel(mat, i, j, color)
// }
//}
}
//________higher level operations_______
static mat_average_color(mat, return_integer=false) {
let result = cv.mean(mat)
if (return_integer) { result = Math.round((result[0] + result[1] +result[2]) / 3) }
return result
}
static mat_to_gray(mat_in, mat_out=null) {
if(Picture.is_mat(mat_in, "gray")) { return mat_in }
if(!mat_out) { mat_out = Picture.make_similar_mat(mat_in) }
cv.cvtColor(mat_in, mat_out, cv.COLOR_RGBA2GRAY)
return mat_out
}
static mats_diff({mat_in1, mat_in2, mat_out=null, out_opaque=true}){
if(!mat_out) { mat_out = Picture.make_similar_mat(mat_in1) }
cv.absdiff(mat_in1, mat_in2, mat_out)
if(out_opaque) { Picture.set_mat_alphas(mat_out, 255) }
return mat_out
}
static threshold({mat_in, mat_out=null, thresh=30,
max_value=Picture.max_color_component_value,
threshold_type=cv.THRESH_BINARY}) {
if(!mat_out) { mat_out = Picture.make_similar_mat(mat_in) }
cv.threshold(mat_in, mat_out, thresh, max_value, threshold_type)
return mat_out
}
//mat_in must be gray. remove salt and pepper noise
static remove_noise({mat_in, mat_out=null, noise_size=3}){
if(!mat_out) { mat_out = Picture.make_similar_mat(mat_in) }
cv.medianBlur(mat_in, mat_out, noise_size)
return mat_out
}
static center_point(mat_in){
let width = Picture.mat_width(mat_in)
let height = Picture.mat_height(mat_in)
let sum_x = 0
let sum_y = height
let point_count = 0
for(let y = 0; y < height; y++) {
for(let x = 0; x < width; x++){
let val = Picture.mat_gray(mat_in, x, y)
if(val > 0) { //because opencv threshold doesn't reliably filter out low value pixels.
sum_x += x
sum_y += y
point_count += 1
}
}
}
return new cv.Point(Math.round(sum_x / point_count), Math.round(sum_y / point_count))
}
//return an array of avg_x and avg_y locations of the points in the arg.
static average_point(points){
let avg_x = 0
let avg_y = 0
for(let pt of points) {
avg_x += pt[0]
avg_y += pt[1]
}
return [Math.round(avg_x / points.length),
Math.round(avg_y / points.length)]
}
//returns an array of arrays, the inner arrays contain x and y of a point
static mat_to_points(mat_in, threshold=1){
let width = Picture.mat_width(mat_in)
let height = Picture.mat_height(mat_in)
let result = []
for(let y = 0; y < height; y++) {
for(let x = 0; x < width; x++){
let val = Picture.mat_gray(mat_in, x, y)
if(val >= threshold) { //because opencv threshold doesn't reliably filter out low value pixels.
result.push([x, y])
}
}
}
return result
}
//returns an array 4 non-neg integers, the x, y, width, height of a rect that
//encloses tne positive valued pixels. mat is expected to be a gray image.
static mat_to_rect(mat_in){
let width = Picture.mat_width(mat_in)
let height = Picture.mat_height(mat_in)
let min_x = width
let min_y = height
let max_x = 0
let max_y = 0
for(let y = 0; y < height; y++) {
for(let x = 0; x < width; x++){
let val = Picture.mat_gray(mat_in, x, y)
if(val > 0) { //because opencv threshold doesn't reliably filter out low value pixels.
min_x = Math.min(min_x, x)
max_x = Math.max(max_x, x)
min_y = Math.min(min_y, y)
max_y = Math.max(max_y, y)
}
}
}
return new cv.Rect(min_x, min_y, max_x - min_x, max_y - min_y)
}
//returns a lit obj with area, width, height, center_x, center_y, angle, vertices.
//rect_center_x, rect_center_y (always the rect center but will likely
//be different than center_x. y if avg_center==true.
//if avg_center==false, rect_center and center are the same.
//vertices is an array of arrays, each contains an x and y value.
//if the recognized object is large, and at an angle,
//an x or y value will occassionally be negative.
//returns null if no points are found above the threshold in mat_in
//https://github.com/sntran/RotatingCalipers/blob/master/demo.html
static mat_to_min_area_rect({mat_in, threshold=1, avg_center=true}){
let points = Picture.mat_to_points(mat_in, threshold)
if(points.length == 0) { return null}
if(typeof(RotatingCalipers) === "string"){
Picture.init()
}
let solver = new RotatingCalipers(points)
let mar = solver.minAreaEnclosingRectangle() //.vertices
//all the values in mar are epsilon differnt than an integer so clean it up
mar.width = Math.round(mar.width)
mar.height = Math.round(mar.height)
mar.area = Math.round(mar.area)
for(let vert of mar.vertices){
for(let i = 0; i < vert.length; i++){ //i will only be 0 or 1
vert[i] = Math.round(vert[i])
}
}
mar.rect_center_x = Math.round((mar.vertices[0][0] + mar.vertices[2][0]) / 2)
mar.rect_center_y = Math.round((mar.vertices[0][1] + mar.vertices[2][1]) / 2)
if (avg_center) {
let avg_pt = Picture.average_point(points)
mar.center_x = avg_pt[0]
mar.center_y = avg_pt[1]
}
else {
mar.center_x = mar.rect_center_x
mar.center_y = mar.rect_center_y
}
mar.angle = Picture.points_to_angle(mar.vertices[0][0], mar.vertices[0][1],
mar.vertices[1][0], mar.vertices[1][1]) //degrees 0 means straight up 1 means rotated clockwide 1 degree.
// 0 <= angle < 180
let transposed_points = Vector.transpose(points) //[[all x's], [all y's]
let line_obj = Vector.poly_fit(transposed_points[0], transposed_points[1], 1)
mar.slope_degrees = atand(line_obj[0][0]) //arc_tan_degrees, defined in James W code
mar.slope = line_obj[0][0]
mar.y_intercept = line_obj[1][0]
return mar
}
static is_min_area_rect(obj){
return (typeof(obj) == "object" && obj.vertices && obj.hasOwnProperty("center_x"))
}
//0 <= angle < 180. 0 means straight up. 90 means straight to the right.
//https://stackoverflow.com/questions/9614109/how-to-calculate-an-angle-from-points
static points_to_angle(x1, y1, x2, y2){
//if (y1 === y2) { return 0 }
//else if (x1 === x2) { return 90 }
//else {
//if (x1 > x2) { let temp = x1; x1 = x2; x2 = temp }
//if (y1 > y2) { let temp = y1; y1 = y2; y2 = temp }
let width = x2 - x1
let height = y2 - y1
//let hypot = Math.hypot(width, height)
let deg = Math.atan2(height, width) * 180 / Math.PI //acos(height / hypot)
return deg
//}
}
//https://github.com/sntran/RotatingCalipers/blob/master/demo.html
static mat_to_convex_hull(mat_in, threshold=1){
let points = Picture.mat_to_points(mat_in, threshold)
if(typeof(RotatingCalipers) === "string"){
Picture.init()
}
let solver = new RotatingCalipers(points)
let hull = solver.convexHull()
return hull
}
//returns a min_area_rect locating an object in mat_in1 or null if none found.
static locate_object({mat_in1, mat_in2=null, mat_out=null, threshold=30,
noise_size=3, out_format="min_area_rect", //or "rect", "hull"
avg_center=true,
show=true}){
if(mat_in2) { mat_out = Picture.mats_diff({mat_in1: mat_in1, mat_in2: mat_in2, mat_out: mat_out})}
else { mat_out = mat_in1 }
mat_out = Picture.mat_to_gray(mat_out)
mat_out = Picture.threshold({mat_in: mat_out, thresh: threshold})
mat_out = Picture.remove_noise({mat_in: mat_out, noise_size: noise_size})
let rect_to_draw
switch(out_format) {
case "rect":
rect_to_draw = Picture.mat_to_rect(mat_out)
//rect_to_draw = rect
break;
case "min_area_rect":
rect_to_draw = Picture.mat_to_min_area_rect({mat_in: mat_out, avg_center: avg_center})
//let pt = Picture.rect_to_array([rect.center_x, rect.center_y])
//rect_to_draw = rect.vertices.slice() //copy
//rect_to_draw.push([rect_to_draw[0][0], rect_to_draw[0][1]]) //copy first point as new last so the rect will draw completely
//rect_to_draw = rect_to_draw.concat(pt)
break;
case "hull":
rect_to_draw = Picture.mat_to_convex_hull( {mat_in: mat_out, avg_center: avg_center})
//rect_to_draw = rect
break;
default:
dde_error("Picture.locate_object passed invalid out_format of: " + out_format +
'<br/> Valid formats are: ""min_area_rect" (the default), "rect", "hull".')
}
if (show) { Picture.show_picture({content: mat_out, rect_to_draw: rect_to_draw}) }
return rect_to_draw
}
static detect_blobs({mat_in, mat_out=null, white_level=128,
show_picture=true, show_keypoints=true, sort_by="max_size_first",
opencv_result_format = false,
thresholdStep = 10,
minThreshold = 50,
maxThreshold = 220,
minRepeatability = 2,
minDistBetweenBlobs = 10,
filterByColor = true, //true to filter by color or false to not filter by color
blobColor = 0, //0 to select darker blobs, 255 for lighter blobs
filterByArea = true, //true to filter by area, false to not filter by area.
minArea = 40, //area is in pixels
maxArea = 700, //a non negative integer Number.MAX_VALUE;
filterByCircularity = true, //true to filter by circularity, false to not filter by circularity
minCircularity = 0, //0 means the furthest from a circle you can get.
maxCircularity = 1, //1 means perfect circle. 0.785 is a square.
filterByInertia = false, //true to filterByInertia by inertia, false to not filter by inertia
minInertiaRatio = 0.1, //0 to 1. 0 means a line, 1 means a circle
maxInertiaRatio = 1, //0 to 1. An ellipse is recognized by a value between 0 and 1.
filterByConvexity = false, //true to filter by convexivity, false to not filter by cinvexivity
minConvexity = 0.95, //0 to 1 0 means lots of concave parts of the perimeter (like a star)
maxConvexity = 1}={}){
//if(!mat_out) { mat_out = Picture.make_similar_mat(mat_in) }
//let low_mat = Picture.make_similar_mat(mat_in, [0, 0, 0, 0])
//let high_mat = Picture.make_similar_mat(mat_in, [white_level, white_level, white_level, 255])
mat_out = new cv.Mat();
let low_mat = new cv.Mat(mat_in.rows , mat_in.cols, mat_in.type(), [0, 0, 0, 0]);
let high_mat = new cv.Mat(mat_in.rows , mat_in.cols, mat_in.type(), [white_level, white_level, white_level, 255]);
cv.inRange(mat_in, low_mat, high_mat, mat_out);
//cv.imshow("output_canvas_id", dst_mat);
//Picture.show_picture({//canvas_id: "canvas2_id", content: mat_out})
let detector = new cv.SimpleBlobDetector(Picture.detect_blobs_fill_in_args(arguments[0]));
let keypoints = new cv.KeyPointVector();
//var image = cv.Mat.ones(5, 5, cv.CV_8UC3);
detector.detect(mat_out, keypoints);
let key_pt_reasonable_array = Picture.keypoints_to_reasonable_array(keypoints, sort_by)
if(show_picture) {
let dst_mat2 = Picture.make_similar_mat(mat_in)
cv.drawKeypoints(mat_out, keypoints, dst_mat2,
cv.Scalar.all(-1), //draw each point in a different color
cv.DrawMatchesFlags_DRAW_RICH_KEYPOINTS //draw points at size of found point
)
for (let pt of key_pt_reasonable_array){
cv.putText(dst_mat2, "" + pt.i, new cv.Point(pt.x, pt.y),
cv.FONT_HERSHEY_PLAIN, 2.0, new cv.Scalar(255, 0, 0, 255))
//cv.addText(mat_out, "" + pt.i, new cv.Point(pt.x, pt.y), cv.FONT_HERSHEY_PLAIN)
}
Picture.show_picture({content: dst_mat2})
}
for (let kp of key_pt_reasonable_array){
let pix = Picture.mat_pixel(mat_in, kp.x, kp.y)
kp.gray = Picture.pixel_to_gray(pix)
kp.color = Picture.pixel_to_color(pix)
}
if(show_keypoints) {
Picture.display_keypoint_data(key_pt_reasonable_array)
}
if (opencv_result_format) { return keypoints}
else { return key_pt_reasonable_array }
}
static detect_blobs_fill_in_args(obj){
if(!obj.hasOwnProperty("thresholdStep")) { obj.thresholdStep = 10 }
if(!obj.hasOwnProperty("minThreshold")) { obj.minThreshold = 50 }
if(!obj.hasOwnProperty("maxThreshold")) { obj.maxThreshold = 220 }
if(!obj.hasOwnProperty("minRepeatability")) { obj.minRepeatability = 2 }
if(!obj.hasOwnProperty("minDistBetweenBlobs")) { obj.minDistBetweenBlobs = 10 }
if(!obj.hasOwnProperty("filterByColor")) { obj.filterByColor = true }
if(!obj.hasOwnProperty("blobColor")) { obj.blobColor = 0 }
if(!obj.hasOwnProperty("filterByArea")) { obj.filterByArea = true }
if(!obj.hasOwnProperty("minArea")) { obj.minArea = 40 }
if(!obj.hasOwnProperty("maxArea")) { obj.maxArea = 700 }
if(!obj.hasOwnProperty("filterByCircularity")) { obj.filterByCircularity = true }
if(!obj.hasOwnProperty("minCircularity")) { obj.minCircularity = 0 }
if(!obj.hasOwnProperty("maxCircularity")) { obj.maxCircularity = 1 }
if(!obj.hasOwnProperty("filterByInertia")) { obj.filterByInertia = false }
if(!obj.hasOwnProperty("minInertiaRatio")) { obj.minInertiaRatio = 0.1 }
if(!obj.hasOwnProperty("maxInertiaRatio")) { obj.maxInertiaRatio = 1 }