-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodern_statistical_app.py
88 lines (81 loc) · 3.12 KB
/
modern_statistical_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
import pandas as pd
# Initialize Dash app
app = dash.Dash(__name__)
app.title = "Modern Statistical Analysis Visualization"
# Data for the visualization
modern_data = pd.DataFrame({
"Group": ["White", "Black", "Asian", "Hispanic", "Other"],
"IQ": [101, 98, 96, 95, 100],
"Educational Attainment": [90, 75, 79, 70, 80],
"Crime Statistics": [40, 39, 33, 40, 41],
"Income Disparity": [70, 65, 85, 60, 65],
"Health Outcomes": [80, 55, 75, 65, 70]
})
# App layout
app.layout = html.Div([
html.H1("Modern Statistical Analysis Visualization"),
dcc.Graph(id="stat-chart"),
html.Div([
html.Label("Adjust Weights:"),
html.Div([
html.Label("IQ"),
dcc.Slider(id="weight-iq", min=0, max=5, step=0.1, value=1, marks={i: str(i) for i in range(6)}),
]),
html.Div([
html.Label("Educational Attainment"),
dcc.Slider(id="weight-education", min=0, max=5, step=0.1, value=1, marks={i: str(i) for i in range(6)}),
]),
html.Div([
html.Label("Crime Statistics"),
dcc.Slider(id="weight-crime", min=0, max=5, step=0.1, value=1, marks={i: str(i) for i in range(6)}),
]),
html.Div([
html.Label("Income Disparity"),
dcc.Slider(id="weight-income", min=0, max=5, step=0.1, value=1, marks={i: str(i) for i in range(6)}),
]),
html.Div([
html.Label("Health Outcomes"),
dcc.Slider(id="weight-health", min=0, max=5, step=0.1, value=1, marks={i: str(i) for i in range(6)}),
]),
], style={"margin-top": "20px"}),
])
# Callback to update chart based on weights
@app.callback(
Output("stat-chart", "figure"),
[Input("weight-iq", "value"),
Input("weight-education", "value"),
Input("weight-crime", "value"),
Input("weight-income", "value"),
Input("weight-health", "value")]
)
def update_chart(weight_iq, weight_education, weight_crime, weight_income, weight_health):
# Apply weights to data
weighted_data = modern_data.copy()
weighted_data["IQ"] *= weight_iq
weighted_data["Educational Attainment"] *= weight_education
weighted_data["Crime Statistics"] *= weight_crime
weighted_data["Income Disparity"] *= weight_income
weighted_data["Health Outcomes"] *= weight_health
# Create the bar chart
fig = go.Figure()
for col, color in zip(
["IQ", "Educational Attainment", "Crime Statistics", "Income Disparity", "Health Outcomes"],
["#636EFA", "#EF553B", "#00CC96", "#AB63FA", "#FFA15A"]
):
fig.add_trace(go.Bar(x=weighted_data["Group"], y=weighted_data[col], name=col, marker=dict(color=color)))
# Update layout for clarity
fig.update_layout(
barmode="group",
title="Weighted Statistical Values by Group",
xaxis_title="Group",
yaxis_title="Weighted Values",
plot_bgcolor="white",
legend_title="Variables"
)
return fig
if __name__ == "__main__":
app.run_server(debug=True, host="0.0.0.0", port=8080)