-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpearson_mini_bell_curves.py
40 lines (32 loc) · 1.23 KB
/
pearson_mini_bell_curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Define the data
data = {
'IQ Scores': [88, 70, 60, 52],
'Physical Health and Vitality': [78, 88, 73, 71],
'Reproductive Success': [64, 68, 85, 51],
'Moral Character and Criminality': [92, 72, 89, 73],
'Economic Productivity': [57, 60, 73, 93]
}
groups = ['Group A', 'Group B', 'Group C', 'Group D']
colors = ['red', 'blue', 'green', 'orange'] # Define colors for each group
# Calculate the mean and standard deviation of the IQ scores
iq_scores = data['IQ Scores']
mean_iq = np.mean(iq_scores)
std_iq = np.std(iq_scores)
# Generate points on the x axis between -3 and 3 standard deviations of the mean
points = np.linspace(mean_iq - 3*std_iq, mean_iq + 3*std_iq, 100)
# Plot the bell curve
plt.plot(points, norm.pdf(points, mean_iq, std_iq), linestyle='dotted')
# Plot each group's IQ score on the bell curve
for group, color in zip(iq_scores, colors):
plt.plot(group, norm.pdf(group, mean_iq, std_iq), 'o', color=color)
# Add a legend
plt.legend(['Mean IQ (Dotted Bell Curve)'] + groups)
# Show the plot
plt.title('Bell Curve Comparison of IQ Scores')
plt.xlabel('IQ Scores')
plt.ylabel('Probability Density')
# Display the plot
plt.show()