forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamchat.py
69 lines (60 loc) · 2.82 KB
/
streamchat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stream Chat for GLM-4 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
help='The huggingface repo id for the GLM-4 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
help='Qustion you want to ask')
parser.add_argument('--disable-stream', action="store_true",
help='Disable stream chat')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
disable_stream = args.disable_stream
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
trust_remote_code=True,
load_in_4bit=True,
optimize_model=True,
use_cache=True,
cpu_embedding=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
with torch.inference_mode():
if disable_stream:
# Chat
response, history = model.chat(tokenizer, args.question, history=[])
print('-'*20, 'Chat Output', '-'*20)
print(response)
else:
# Stream chat
response_ = ""
print('-'*20, 'Stream Chat Output', '-'*20)
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
print(response.replace(response_, ""), end="")
response_ = response