This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtrain_coco_multi.py
executable file
·218 lines (185 loc) · 7.48 KB
/
train_coco_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from __future__ import division
import argparse
import multiprocessing
import numpy as np
import chainer
from chainer.training import extensions
from chainer.training.triggers import ManualScheduleTrigger
import chainermn
from chainercv.chainer_experimental.datasets.sliceable \
import ConcatenatedDataset
from chainercv.chainer_experimental.datasets.sliceable \
import TransformDataset
from chainercv.chainer_experimental.training.extensions import make_shift
from chainercv.datasets import coco_instance_segmentation_label_names
from chainercv.datasets import COCOInstanceSegmentationDataset
from chainercv.experimental.links import FCISResNet101
from chainercv.experimental.links import FCISTrainChain
from chainercv.experimental.links.model.fcis.utils.proposal_target_creator \
import ProposalTargetCreator
from chainercv.extensions import InstanceSegmentationCOCOEvaluator
from chainercv.links.model.ssd import GradientScaling
from train_sbd import concat_examples
from train_sbd import Transform
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
try:
import cv2
cv2.setNumThreads(0)
except ImportError:
pass
def main():
parser = argparse.ArgumentParser(
description='ChainerCV training example: FCIS')
parser.add_argument('--out', '-o', default='result',
help='Output directory')
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument(
'--lr', '-l', type=float, default=None,
help='Learning rate for multi GPUs')
parser.add_argument('--batchsize', type=int, default=8)
parser.add_argument('--epoch', '-e', type=int, default=18)
parser.add_argument('--cooldown-epoch', '-ce', type=int, default=12)
args = parser.parse_args()
# https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
if hasattr(multiprocessing, 'set_start_method'):
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()
# chainermn
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
np.random.seed(args.seed)
# model
proposal_creator_params = FCISResNet101.proposal_creator_params
proposal_creator_params['min_size'] = 2
fcis = FCISResNet101(
n_fg_class=len(coco_instance_segmentation_label_names),
anchor_scales=(4, 8, 16, 32),
pretrained_model='imagenet', iter2=False,
proposal_creator_params=proposal_creator_params)
fcis.use_preset('coco_evaluate')
proposal_target_creator = ProposalTargetCreator()
proposal_target_creator.neg_iou_thresh_lo = 0.0
model = FCISTrainChain(
fcis, proposal_target_creator=proposal_target_creator)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
# train dataset
train_dataset = COCOInstanceSegmentationDataset(
year='2014', split='train')
vmml_dataset = COCOInstanceSegmentationDataset(
year='2014', split='valminusminival')
# filter non-annotated data
train_indices = np.array(
[i for i, label in enumerate(train_dataset.slice[:, ['label']])
if len(label[0]) > 0],
dtype=np.int32)
train_dataset = train_dataset.slice[train_indices]
vmml_indices = np.array(
[i for i, label in enumerate(vmml_dataset.slice[:, ['label']])
if len(label[0]) > 0],
dtype=np.int32)
vmml_dataset = vmml_dataset.slice[vmml_indices]
train_dataset = TransformDataset(
ConcatenatedDataset(train_dataset, vmml_dataset),
('img', 'mask', 'label', 'bbox', 'scale'),
Transform(model.fcis))
if comm.rank == 0:
indices = np.arange(len(train_dataset))
else:
indices = None
indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
train_dataset = train_dataset.slice[indices]
train_iter = chainer.iterators.SerialIterator(
train_dataset, batch_size=args.batchsize // comm.size)
# test dataset
if comm.rank == 0:
test_dataset = COCOInstanceSegmentationDataset(
year='2014', split='minival', use_crowded=True,
return_crowded=True, return_area=True)
indices = np.arange(len(test_dataset))
test_dataset = test_dataset.slice[indices]
test_iter = chainer.iterators.SerialIterator(
test_dataset, batch_size=1, repeat=False, shuffle=False)
# optimizer
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.MomentumSGD(momentum=0.9),
comm)
optimizer.setup(model)
model.fcis.head.conv1.W.update_rule.add_hook(GradientScaling(3.0))
model.fcis.head.conv1.b.update_rule.add_hook(GradientScaling(3.0))
optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005))
for param in model.params():
if param.name in ['beta', 'gamma']:
param.update_rule.enabled = False
model.fcis.extractor.conv1.disable_update()
model.fcis.extractor.res2.disable_update()
updater = chainer.training.updater.StandardUpdater(
train_iter, optimizer, converter=concat_examples,
device=device)
trainer = chainer.training.Trainer(
updater, (args.epoch, 'epoch'), out=args.out)
# lr scheduler
@make_shift('lr')
def lr_scheduler(trainer):
if args.lr is None:
base_lr = 0.0005 * args.batchsize
else:
base_lr = args.lr
iteration = trainer.updater.iteration
epoch = trainer.updater.epoch
if (iteration * comm.size) < 2000:
rate = 0.1
elif epoch < args.cooldown_epoch:
rate = 1
else:
rate = 0.1
return rate * base_lr
trainer.extend(lr_scheduler)
if comm.rank == 0:
# interval
log_interval = 100, 'iteration'
plot_interval = 3000, 'iteration'
print_interval = 20, 'iteration'
# training extensions
trainer.extend(
extensions.snapshot_object(
model.fcis, filename='snapshot_model.npz'),
trigger=(args.epoch, 'epoch'))
trainer.extend(
extensions.observe_lr(),
trigger=log_interval)
trainer.extend(
extensions.LogReport(log_name='log.json', trigger=log_interval))
report_items = [
'iteration', 'epoch', 'elapsed_time', 'lr',
'main/loss',
'main/rpn_loc_loss',
'main/rpn_cls_loss',
'main/roi_loc_loss',
'main/roi_cls_loss',
'main/roi_mask_loss',
'validation/main/map/iou=0.50:0.95/area=all/max_dets=100',
]
trainer.extend(
extensions.PrintReport(report_items), trigger=print_interval)
trainer.extend(
extensions.ProgressBar(update_interval=10))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(
['main/loss'],
file_name='loss.png', trigger=plot_interval),
trigger=plot_interval)
trainer.extend(
InstanceSegmentationCOCOEvaluator(
test_iter, model.fcis,
label_names=coco_instance_segmentation_label_names),
trigger=ManualScheduleTrigger(
[len(train_dataset) * args.cooldown_epoch,
len(train_dataset) * args.epoch], 'iteration'))
trainer.extend(extensions.dump_graph('main/loss'))
trainer.run()
if __name__ == '__main__':
main()