Skip to content

Latest commit

 

History

History
 
 

model_demos

Model Demos

Short demos for a broad range of NLP and CV models.

Setup Instructions

Install requirements

First, create either a Python virtual environment with PyBuda installed or execute from a Docker container with PyBuda installed.

Installation instructions can be found at Install TT-Buda.

Next, install the model requirements:

pip install -r requirements.txt

Quick Start

With an activate Python environment and all dependencies installed, run:

export PYTHONPATH=.
python cv_demos/resnet/pytorch_resnet.py

Models Support Table

Model e75 e150 n150 Supported Release
ALBERT ✔️ ✔️ ✔️ v0.12.3
Autoencoder (convolutional) ✔️ ✔️ ✔️ v0.12.3
Autoencoder (linear) ✔️ ✔️ ✔️ v0.12.3
BeiT ✔️ ✔️ ✔️ v0.12.3
BERT ✔️ ✔️ ✔️ v0.12.3
CLIP ✔️ ✔️ ✔️ v0.12.3
CodeGen ✔️ ✔️ ✔️ v0.12.3
DeiT ✔️ ✔️ ✔️ v0.12.3
DenseNet ✔️ ✔️ ✔️ v0.12.3
DistilBERT ✔️ ✔️ ✔️ v0.12.3
DLA ✔️ ✔️ ✔️ v0.17.0-alpha
DPR ✔️ ✔️ ✔️ v0.12.3
EfficientNet-Lite ✔️ v0.12.3
Falcon-7B ✔️ v0.12.3
FLAN-T5 ✔️ ✔️ ✔️ v0.12.3
FPN TBD
Fuyu-8B TBD
GhostNet ✔️ ✔️ ✔️ v0.12.3
GoogLeNet ✔️ ✔️ ✔️ v0.12.3
GPT-2 ✔️ ✔️ ✔️ v0.12.3
GPT Neo ✔️ ✔️ ✔️ v0.12.3
Hand Landmark ✔️ v0.12.3
HardNet ✔️ ✔️ ✔️ v0.12.3
HRNet ✔️ ✔️ ✔️ v0.12.3
Inception-v4 ✔️ ✔️ ✔️ v0.12.3
MLP-Mixer ✔️ ✔️ ✔️ v0.12.3
MobileNetSSD ✔️ v0.12.3
MobileNetV1 ✔️ ✔️ ✔️ v0.12.3
MobileNetV2 ✔️ ✔️ ✔️ v0.12.3
MobileNetV3 ✔️ ✔️ ✔️ v0.12.3
OpenPose ✔️ ✔️ ✔️ v0.12.3
OPT ✔️ ✔️ ✔️ v0.12.3
Pose Landmark ✔️ v0.12.3
Perceiver IO ✔️ ✔️ ✔️ v0.17.0-alpha
ResNet ✔️ ✔️ ✔️ v0.12.3
ResNeXt ✔️ ✔️ ✔️ v0.12.3
RetinaNet ✔️ ✔️ ✔️ v0.12.3
RoBERTa ✔️ ✔️ ✔️ v0.12.3
SSD300 ResNet50 TBD
SegFormer ✔️ ✔️ ✔️ v0.17.0-alpha
SqueezeBERT ✔️ ✔️ ✔️ v0.12.3
Stable Diffusion ✔️ v0.12.3
T5 ✔️ ✔️ ✔️ v0.12.3
U-Net ✔️ ✔️ ✔️ v0.12.3
VGG ✔️ ✔️ ✔️ v0.12.3
ViT ✔️ ✔️ ✔️ v0.12.3
ViLT ✔️ ✔️ ✔️ v0.12.3
VoVNet ✔️ ✔️ ✔️ v0.12.3
WideResNet ✔️ ✔️ ✔️ v0.12.3
Whisper ✔️ ✔️ ✔️ v0.12.3
Xception ✔️ ✔️ ✔️ v0.12.3
XGLM ✔️ ✔️ ✔️ v0.12.3
YOLOv3 ✔️ ✔️ ✔️ v0.12.3
YOLOv5 ✔️ ✔️ ✔️ v0.12.3
YOLOv6 TBD

Legend

  • ✔️: Supported on the device
  • ✘: Not supported on the device

Note

Please note that releases identified as alpha (e.g., v0.15.0-alpha) are preliminary and not considered stable. They may not offer the full functionality found in stable versions. Furthermore, alpha releases are compatible only with models specifically released under the same version, as detailed in the above table. For ensured full functionality, we strongly advise opting for a stable release.