-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
144 lines (120 loc) · 4.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import random
import cPickle
from collections import defaultdict
import numpy as np
import scipy.signal as signal
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.ticker import NullLocator
import torch
def seedme(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def config_logging(logging, outf, fname='log.log'):
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(message)s',
datefmt='%m-%d %H:%M',
filename='{}/{}'.format(outf, fname),
filemode='w')
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
def bin2tanh(x): # [0,1] -> [-1,1]
return 2.0*(x - 0.5)
def distance_matrix(sample):
m = sample.size(0)
sample_norm = sample.mul(sample).sum(dim=1)
sample_norm = sample_norm.expand(m, m)
mat = sample.mm(sample.t()).mul(-2) + sample_norm.add(sample_norm.t())
return mat
def sample_entropy(sample):
""" Estimator based on kth nearest neighbor, "A new class of random
vector entropy estimators (Goria et al.)" """
sample = sample.view(sample.size(0), -1)
m, n = sample.shape
mat_ = distance_matrix(sample)
mat, _ = mat_.sort(dim=1)
k = int(np.round(np.sqrt(sample.size(0)))) # heuristic
rho = mat[:,k] # kth nearest
entropy = 0.5*(rho + 1e-16).log().sum()
entropy *= float(n)/m
return entropy
def load_condfile(fname, skiprows=5):
data = np.loadtxt(fname, skiprows=skiprows)
jj, ii, vals = data.T
ij = np.asarray(zip(ii,jj), dtype=int)
return ij, vals
def medfilt_plot(ax, y, x=None, start=500, filter_width=101, symlog=True, **kws):
if x is None:
x = range(len(y))[start:][(filter_width/2):-(filter_width/2)]
ax.plot(x, signal.medfilt(y[start:], filter_width)[(filter_width/2):-(filter_width/2)], **kws)
if symlog:
ax.set_yscale('symlog')
class History(object):
def __init__(self, outdir):
self.outdir = outdir
self.history = defaultdict(list)
def dump(self, **kws):
for k, v in kws.iteritems():
self.history[k].append(v)
def flush(self):
fig, axs = plt.subplots(len(self.history), 1, sharex=True, figsize=(6,6))
for ax, k in zip(axs.flat, self.history):
ax.set_ylabel(k)
medfilt_plot(ax, self.history[k])
axs[-1].set_xlabel('iteration')
fig.savefig('{0}/history.png'.format(self.outdir))
plt.close(fig)
with open('{}/history.pkl'.format(self.outdir), 'wb') as f:
cPickle.dump(self.history, f)
class NetGI(object):
def __init__(self, netG, netI):
self.netG = netG
self.netI = netI
def __call__(self, w):
z = self.netI(w)
x = self.netG(z.view(z.shape[0],z.shape[1],1,1))
return x
def fill_imgs(axs, imgs):
for img, ax in zip(imgs, axs.flat):
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.xaxis.set_major_locator(NullLocator())
ax.yaxis.set_major_locator(NullLocator())
ax.set_xlim(0, img.shape[1]-1)
ax.set_ylim(0, img.shape[0]-1)
ax.imshow(img, origin='lower')
def scatter_ij(ax, ij, vals):
ij0, ij1 = ij[np.where(vals==0)], ij[np.where(vals==1)]
ax.scatter(ij0[:,1], ij0[:,0], marker='x', s=20, c='C1')
ax.scatter(ij1[:,1], ij1[:,0], marker='o', s=20, c='C0')
class Plotter(object):
def __init__(self, outdir, netG, netI, condfile, w_plots):
self.outdir = outdir
self.netGI = NetGI(netG, netI)
self.w_plots = w_plots
self.ij, self.vals = load_condfile(condfile)
def flush(self, iteration):
self.netGI.netI.eval()
with torch.no_grad():
x = self.netGI(self.w_plots).detach().cpu().numpy().squeeze()
self.netGI.netI.train()
ncols = 8
nrows = len(x) / ncols
fig, axs = plt.subplots(nrows, ncols, figsize=(10, 10*nrows/ncols))
fig.subplots_adjust(top=1,right=1,bottom=0,left=0, hspace=.05, wspace=.05)
fill_imgs(axs, x)
for ax in axs.flat:
scatter_ij(ax, self.ij, self.vals)
fig.savefig('{}/samples_{}.png'.format(self.outdir, iteration), bbox_inches='tight', pad_inches=0)
plt.close(fig)