forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
142 lines (120 loc) Β· 5.78 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from functools import partial
import paddle
from utils import (
convert_example,
create_data_loader,
get_relation_type_dict,
reader,
unify_prompt_name,
)
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.datasets import MapDataset, load_dataset
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.transformers import UIE, UIEM, AutoTokenizer
from paddlenlp.utils.log import logger
@paddle.no_grad()
def evaluate(model, metric, data_loader, multilingual=False):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
multilingual(bool): Whether is the multilingual model.
"""
model.eval()
metric.reset()
for batch in data_loader:
if multilingual:
start_prob, end_prob = model(batch["input_ids"], batch["position_ids"])
else:
start_prob, end_prob = model(
batch["input_ids"], batch["token_type_ids"], batch["position_ids"], batch["attention_mask"]
)
start_ids = paddle.cast(batch["start_positions"], "float32")
end_ids = paddle.cast(batch["end_positions"], "float32")
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
return precision, recall, f1
def do_eval():
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
if args.multilingual:
model = UIEM.from_pretrained(args.model_path)
else:
model = UIE.from_pretrained(args.model_path)
test_ds = load_dataset(reader, data_path=args.test_path, max_seq_len=args.max_seq_len, lazy=False)
class_dict = {}
relation_data = []
if args.debug:
for data in test_ds:
class_name = unify_prompt_name(data["prompt"])
# Only positive examples are evaluated in debug mode
if len(data["result_list"]) != 0:
p = "η" if args.schema_lang == "ch" else " of "
if p not in data["prompt"]:
class_dict.setdefault(class_name, []).append(data)
else:
relation_data.append((data["prompt"], data))
relation_type_dict = get_relation_type_dict(relation_data, schema_lang=args.schema_lang)
else:
class_dict["all_classes"] = test_ds
trans_fn = partial(
convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len, multilingual=args.multilingual
)
for key in class_dict.keys():
if args.debug:
test_ds = MapDataset(class_dict[key])
else:
test_ds = class_dict[key]
test_ds = test_ds.map(trans_fn)
data_collator = DataCollatorWithPadding(tokenizer)
test_data_loader = create_data_loader(test_ds, mode="test", batch_size=args.batch_size, trans_fn=data_collator)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(model, metric, test_data_loader, args.multilingual)
logger.info("-----------------------------")
logger.info("Class Name: %s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1))
if args.debug and len(relation_type_dict.keys()) != 0:
for key in relation_type_dict.keys():
test_ds = MapDataset(relation_type_dict[key])
test_ds = test_ds.map(trans_fn)
test_data_loader = create_data_loader(
test_ds, mode="test", batch_size=args.batch_size, trans_fn=data_collator
)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(model, metric, test_data_loader)
logger.info("-----------------------------")
if args.schema_lang == "ch":
logger.info("Class Name: Xη%s" % key)
else:
logger.info("Class Name: %s of X" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.")
parser.add_argument("--test_path", type=str, default=None, help="The path of test set.")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--debug", action='store_true', help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.")
parser.add_argument("--multilingual", action='store_true', help="Whether is the multilingual model.")
parser.add_argument("--schema_lang", choices=["ch", "en"], default="ch", help="Select the language type for schema.")
args = parser.parse_args()
# yapf: enable
do_eval()