-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLatinSquare.txt
187 lines (154 loc) · 4.3 KB
/
LatinSquare.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Problem
Vestigium means "trace" in Latin. In this problem we work with Latin squares and matrix traces.
The trace of a square matrix is the sum of the values on the main diagonal (which runs from the upper left to the lower right).
An N-by-N square matrix is a Latin square if each cell contains one of N different values, and no value is repeated within a row or a column. In this problem, we will deal only with "natural Latin squares" in which the N values are the integers between 1 and N.
Given a matrix that contains only integers between 1 and N, we want to compute its trace and check whether it is a natural Latin square. To give some additional information, instead of simply telling us whether the matrix is a natural Latin square or not, please compute the number of rows and the number of columns that contain repeated values.
Input
The first line of the input gives the number of test cases, T. T test cases follow. Each starts with a line containing a single integer N: the size of the matrix to explore. Then, N lines follow. The i-th of these lines contains N integers Mi,1, Mi,2 ..., Mi,N. Mi,j is the integer in the i-th row and j-th column of the matrix.
Output
For each test case, output one line containing Case #x: k r c, where x is the test case number (starting from 1), k is the trace of the matrix, r is the number of rows of the matrix that contain repeated elements, and c is the number of columns of the matrix that contain repeated elements.
Limits
Test set 1 (Visible Verdict)
Time limit: 20 seconds per test set.
Memory limit: 1GB.
1 ≤ T ≤ 100.
2 ≤ N ≤ 100.
1 ≤ Mi,j ≤ N, for all i, j.
Sample
Input
Output
3
4
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
4
2 2 2 2
2 3 2 3
2 2 2 3
2 2 2 2
3
2 1 3
1 3 2
1 2 3
Case #1: 4 0 0
Case #2: 9 4 4
Case #3: 8 0 2
In Sample Case #1, the input is a natural Latin square, which means no row or column has repeated elements. All four values in the main diagonal are 1, and so the trace (their sum) is 4.
In Sample Case #2, all rows and columns have repeated elements. Notice that each row or column with repeated elements is counted only once regardless of the number of elements that are repeated or how often they are repeated within the row or column. In addition, notice that some integers in the range 1 through N may be absent from the input.
In Sample Case #3, the leftmost and rightmost columns have repeated elements.
Limits
Test set 1 (Visible Verdict)
Time limit: 20 seconds per test set.
Memory limit: 1GB.
1 ≤ T ≤ 100.
2 ≤ N ≤ 100.
1 ≤ Mi,j ≤ N, for all i, j.
Sample
Input
3
4
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
4
2 2 2 2
2 3 2 3
2 2 2 3
2 2 2 2
3
2 1 3
1 3 2
1 2 3
Output
Case #1: 4 0 0
Case #2: 9 4 4
Case #3: 8 0 2
#include<iostream>
using namespace std;
class Diagonal
{
private:
int n;
int *A;
int sum;
public:
Diagonal(int n)
{
this->n=n;
A=new int[n*n];
file_upload
Upload file
C++ (G++)
keyboard_arrow_down
Syntax pre-check
Show Test Input
Submit attempt
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <vector>
using namespace std;
// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef vector<int> vi;
// END NO SAD
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<vector<ll>> matrix;
typedef pair<ll, ll> pll;
// remember you may need to reset state
int g[105][105];
void rsolve() {
int n;
cin >> n;
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
cin >> g[i][j];
}
}
int ret = 0;
int rr = 0;
int cc = 0;
for(int i = 0; i < n; i++) {
ret += g[i][i];
bool rrr = false;
bool ccc = false;
for(int j = 0; j < n; j++) {
for(int k = 0; k < j; k++) {
rrr |= g[i][j] == g[i][k];
ccc |= g[j][i] == g[k][i];
}
}
rr += rrr;
cc += ccc;
}
cout << ret << " " << rr << " " << cc << "\n";
}
void solve() {
int t;
cin >> t;
for(int casenum = 1; casenum <= t; casenum++) {
cout << "Case #" << casenum << ": ";
rsolve();
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
solve();
}