forked from tusen-ai/simpledet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfully_annotated_config.py
476 lines (406 loc) · 18.2 KB
/
fully_annotated_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
from symbol.builder import add_anchor_to_arg
from symbol.builder import ResNetV1bFPN as Backbone
from models.FPN.builder import FPNNeck as Neck
from models.FPN.builder import FPNRoiAlign as RoiExtractor
from models.FPN.builder import FPNBbox2fcHead as BboxHead
from mxnext.complicate import normalizer_factory
from models.maskrcnn.builder import MaskFasterRcnn as Detector
from models.maskrcnn.builder import MaskFPNRpnHead as RpnHead
from models.maskrcnn.builder import MaskFasterRcnn4ConvHead as MaskHead
from models.maskrcnn.builder import BboxPostProcessor
from models.maskrcnn.process_output import process_output
def get_config(is_train):
class General:
# number of iteration for print the metrics to stdout
log_frequency = 10
# the directory name for the experiment, the default is the name of config
name = __name__.rsplit("/")[-1].rsplit(".")[-1]
# batch size per GPU
batch_image = 2 if is_train else 1
# use FP16 for weight and activation
# recommend to toggle when you are training on Volta or later GPUs
fp16 = False
# number of threads used for the data loader
# this term affects both the CPU utilization and the MEM usage
# lower this if you are training on Desktop
loader_worker = 8
# switch the built in profile to find the bottleneck of network
profile = False
class KvstoreParam:
# the type of communicator used to sync model parameters
kvstore = "nccl" # "local", "aggregated"
batch_image = General.batch_image
# GPUs to use
gpus = [0, 1, 2, 3, 4, 5, 6, 7]
fp16 = General.fp16
class NormalizeParam:
# the type of normalizer used for network
# see also ModelParam.pretrain.fixed_param for the freeze of gamma/beta
normalizer = normalizer_factory(type="fixbn") # freeze bn stats
normalizer = normalizer_factory(type="localbn") # use bn stats in one GPU
normalizer = normalizer_factory(type="syncbn", ndev=len(KvstoreParam.gpus)) # use bn stats across GPUs
normalizer = normalizer_factory(type="gn") # use GroupNorm
class BackboneParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
# some backbone component accept additional configs, like the depth for ResNet
depth = 50
class NeckParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
class RpnParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
batch_image = General.batch_image
# use ONNX-compatible proposal operator instead of the one written in C++/CUDA
nnvm_proposal = True
# use in-network rpn target operator instead of the label generated by data loader
# if your network is quite fast, the CPU might not feed the labels fast enough
# else you can offload the rpn target generation to CPU to save GPU resources
nnvm_rpn_target = False
# anchor grid generated are used in the rpn target assign and proposal decoding
class anchor_generate:
scale = (8,)
ratio = (0.5, 1.0, 2.0)
stride = (4, 8, 16, 32, 64)
# number of anchors per image
image_anchor = 256
# to avoid generate the same anchor grid more than once
# we cache an anchor grid in the arg_params
# max_side specify the max side of resized input image
# 3000 is a safe bet, increase it if necessary
max_side = 1400
# valid when use nnvm_rpn_target, controls the rpn target assign
class anchor_assign:
# number of pixels the anchor box could extend out of the image border
allowed_border = 0
# iou lower bound with groundtruth box for foreground anchor
pos_thr = 0.7
# iou upper bound with groundtruth box for background anchor
neg_thr = 0.3
# every groundtruth box will match the anchors overlaps most with it by default
# increase the threshold to avoid matching low quality anchors
min_pos_thr = 0.0
# number of anchors per image
image_anchor = 256
# fraction of foreground anchors per image
pos_fraction = 0.5
# rpn head structure
class head:
# number of channels for the 3x3 conv in rpn head
conv_channel = 256
# mean and std for rpn regression target
mean = (0, 0, 0, 0)
std = (1, 1, 1, 1)
# the proposal generation for RCNN
class proposal:
# number of top-scored proposals to take before NMS
pre_nms_top_n = 2000 if is_train else 1000
# number of top-scored proposals to take after NMS
post_nms_top_n = 2000 if is_train else 1000
# proposal NMS threshold
nms_thr = 0.7
# min proposal box to keep, 0 means keep all
min_bbox_side = 0
# the proposal sampling for RCNN during training
class subsample_proposal:
# add gt to proposals
proposal_wo_gt = False
# number of proposals sampled per image during training
image_roi = 512
# the maxinum fraction of foreground proposals
fg_fraction = 0.25
# iou lower bound with gt bbox for foreground proposals
fg_thr = 0.5
# iou upper bound with gt bbox for background proposals
bg_thr_hi = 0.5
# iou lower bound with gt bbox for background proposals
# set to non-zero value could remove some trivial background proposals
bg_thr_lo = 0.0
# the target encoding for RCNN bbox head
class bbox_target:
# 1(background) + num_class
# could be num_class if using sigmoid activition instead of softmax one
num_reg_class = 1 + 80
# share the regressor for all classes
class_agnostic = False
# the mean, std, and weight for bbox head regression target
weight = (1.0, 1.0, 1.0, 1.0)
mean = (0.0, 0.0, 0.0, 0.0)
std = (0.1, 0.1, 0.2, 0.2)
class BboxParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
# num_class may be different from RpnParam.bbox_target.num_reg_class
# if the class_agnostic regressor is adopted
num_class = 1 + 80
image_roi = RpnParam.subsample_proposal.image_roi
batch_image = General.batch_image
class regress_target:
class_agnostic = RpnParam.bbox_target.class_agnostic
mean = RpnParam.bbox_target.mean
std = RpnParam.bbox_target.std
class MaskParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
# output resolution of mask head
resolution = 28
# number of channels for 3x3 convs in mask head
dim_reduced = 256
# mask head only trains on foreground proposals
# so we discard all the background proposals to save computation
num_fg_roi = int(RpnParam.subsample_proposal.image_roi * RpnParam.subsample_proposal.fg_fraction)
class RoiParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
# Each RoI is pooled into an out_size x out_size fixed-length representation
out_size = 7
# the total stride of the feature map to pool from
stride = (4, 8, 16, 32)
# FPN specific configs
# objects of size in [224^2, 448^2) will be assgin to P4
roi_canonical_scale = 224
roi_canonical_level = 4
class MaskRoiParam:
# you can control the FP16 option and normalizer for each individual component
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
# Each RoI is pooled into an out_size x out_size fixed-length representation
out_size = 14
# the total stride of the feature map to pool from
stride = (4, 8, 16, 32)
# FPN specific configs
# objects of size in [224^2, 448^2) will be assgin to P4
roi_canonical_scale = 224
roi_canonical_level = 4
class DatasetParam:
# specify the roidbs to read for training/validation
if is_train:
# == coco_train2017
image_set = ("coco_train2014", "coco_valminusminival2014")
else:
# == coco_val2017
image_set = ("coco_minival2014", )
class OptimizeParam:
class optimizer:
type = "sgd"
# learning rate will automaticly adapt to different batch size
# the base learning rate is 0.02 for 16 images
lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
momentum = 0.9
wd = 0.0001
clip_gradient = None
class schedule:
# correspond to the 1x, 2x, ... training schedule
mult = 2
begin_epoch = 0
end_epoch = 6 * mult
lr_mode = "step" # or "cosine"
# lr step factor
lr_factor = 0.1
# lr step iterations
if mult <= 1:
lr_iter = [60000 * mult * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image),
80000 * mult * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)]
else:
# follow the practice in arXiv:1811.08883
# reduce the lr in the last 60k and 20k iterations
lr_iter = [-60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image),
-20000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)]
# follow the practice in arXiv:1706.02677
class warmup:
type = "gradual"
lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image / 3
iter = 500
class TestParam:
# detection below min_det_score will be removed in the evaluation
min_det_score = 0.05
# only the top max_det_per_image detecitons will be evaluated
max_det_per_image = 100
# callback, useful in multi-scale testing
process_roidb = lambda x: x
# callback, useful in scale-aware post-processing
process_output = lambda x, y: process_output(x, y)
# the model name and epoch used during test
# by default the last checkpoint is employed
# user can override this with --epoch N when invoking script
class model:
prefix = "experiments/{}/checkpoint".format(General.name)
epoch = OptimizeParam.schedule.end_epoch
class nms:
type = "nms" # or "softnms"
thr = 0.5
# we make use of the coco test toolchain
# if no coco format annotation file is specified
# test script will generate one on the fly from roidb
class coco:
annotation = "data/coco/annotations/instances_minival2014.json"
# compose the components to for a detector
backbone = Backbone(BackboneParam)
neck = Neck(NeckParam)
rpn_head = RpnHead(RpnParam, MaskParam)
roi_extractor = RoiExtractor(RoiParam)
mask_roi_extractor = RoiExtractor(MaskRoiParam)
bbox_head = BboxHead(BboxParam)
mask_head = MaskHead(BboxParam, MaskParam, MaskRoiParam)
bbox_post_processer = BboxPostProcessor(TestParam)
detector = Detector()
if is_train:
train_sym = detector.get_train_symbol(backbone, neck, rpn_head, roi_extractor, mask_roi_extractor, bbox_head, mask_head)
test_sym = None
else:
train_sym = None
test_sym = detector.get_test_symbol(backbone, neck, rpn_head, roi_extractor, mask_roi_extractor, bbox_head, mask_head, bbox_post_processer)
class ModelParam:
train_symbol = train_sym
test_symbol = test_sym
# training model from scratch
from_scratch = False
# use random seed when initializating
random = True
# sublinear memory checkpointing
memonger = False
# checkpointing up to a layer
# recompute early stage of a network is cheaper
memonger_until = "stage3_unit21_plus"
class pretrain:
# the model name and epoch used for initialization
prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
epoch = 0
# any params partially match the fixed_param will be fixed
# fixed params will not be updated
fixed_param = ["conv0", "stage1", "gamma", "beta"]
# any params partially match the excluded_param will not be fixed
excluded_param = ["mask_fcn"]
# callback, useful for adding cached anchor or complex initialization
def process_weight(sym, arg, aux):
for stride in RpnParam.anchor_generate.stride:
add_anchor_to_arg(
sym, arg, aux, RpnParam.anchor_generate.max_side,
stride, RpnParam.anchor_generate.scale,
RpnParam.anchor_generate.ratio)
# data processing
class NormParam:
# mean/std for input image
mean = tuple(i * 255 for i in (0.485, 0.456, 0.406)) # RGB order
std = tuple(i * 255 for i in (0.229, 0.224, 0.225))
# data processing
class ResizeParam:
# the input is resized to a short side not exceeding short
# and a long side not exceeding long
short = 800
long = 1333
# SimpleDet is written in MXNet symbolic API which features the fastest
# execution while requires static input shape
# All the inputs are padded to the maximum shape item on the dataset
class PadParam:
# the resized input is padded to short x long with 0 in bottom-right corner
short = 800
long = 1333
max_num_gt = 100
max_len_gt_poly = 2500
# this control the rpn target generation offloaded to CPU data loader
# refer to RpnParam.anchor_generate for more infos
class AnchorTarget2DParam:
def __init__(self):
self.generate = self._generate()
class _generate:
def __init__(self):
self.stride = (4, 8, 16, 32, 64)
# the shorts and longs have to be pre-computed since the
# loader knows nothing of the network
# the downsampled side can be calculated as ceil(side / 2)
self.short = (200, 100, 50, 25, 13)
self.long = (334, 167, 84, 42, 21)
scales = (8, )
aspects = (0.5, 1.0, 2.0)
class assign:
allowed_border = 0
pos_thr = 0.7
neg_thr = 0.3
min_pos_thr = 0.0
class sample:
image_anchor = 256
pos_fraction = 0.5
# align blobs name between loader and network
class RenameParam:
mapping = dict(image="data")
from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
RenameRecord, Norm2DImage
from models.maskrcnn.input import PreprocessGtPoly, EncodeGtPoly, \
Resize2DImageBboxMask, Flip2DImageBboxMask, Pad2DImageBboxMask
from models.FPN.input import PyramidAnchorTarget2D
# modular data augmentation design
if is_train:
transform = [
ReadRoiRecord(None),
Norm2DImage(NormParam),
PreprocessGtPoly(),
Resize2DImageBboxMask(ResizeParam),
Flip2DImageBboxMask(),
EncodeGtPoly(PadParam),
Pad2DImageBboxMask(PadParam),
ConvertImageFromHwcToChw(),
RenameRecord(RenameParam.mapping)
]
data_name = ["data"]
label_name = ["im_info", "gt_bbox", "gt_poly"]
if not RpnParam.nnvm_rpn_target:
transform.append(PyramidAnchorTarget2D(AnchorTarget2DParam()))
label_name += ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
else:
transform = [
ReadRoiRecord(None),
Norm2DImage(NormParam),
Resize2DImageBbox(ResizeParam),
ConvertImageFromHwcToChw(),
RenameRecord(RenameParam.mapping)
]
data_name = ["data", "im_info", "im_id", "rec_id"]
label_name = []
import core.detection_metric as metric
from models.maskrcnn.metric import SigmoidCELossMetric
from mxboard import SummaryWriter
# summary writer logs metric to tensorboard for a better track of training
sw = SummaryWriter(logdir="./tflogs", flush_secs=5)
rpn_acc_metric = metric.AccWithIgnore(
name="RpnAcc",
output_names=["rpn_cls_loss_output", "rpn_cls_label_blockgrad_output"],
label_names=[],
summary=sw
)
rpn_l1_metric = metric.L1(
name="RpnL1",
output_names=["rpn_reg_loss_output", "rpn_cls_label_blockgrad_output"],
label_names=[],
summary=sw
)
box_acc_metric = metric.AccWithIgnore(
name="RcnnAcc",
output_names=["bbox_cls_loss_output", "bbox_label_blockgrad_output"],
label_names=[],
summary=sw
)
box_l1_metric = metric.L1(
name="RcnnL1",
output_names=["bbox_reg_loss_output", "bbox_label_blockgrad_output"],
label_names=[],
summary=sw
)
mask_cls_metric = SigmoidCELossMetric(
name="MaskCE",
output_names=["mask_loss_output"],
label_names=[],
summary=sw
)
metric_list = [rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric, mask_cls_metric]
return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
ModelParam, OptimizeParam, TestParam, \
transform, data_name, label_name, metric_list