forked from tusen-ai/simpledet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinput.py
216 lines (175 loc) · 7.5 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import division
from __future__ import print_function
import cv2
import numpy as np
import mxnet as mx
from core.detection_input import DetectionAugmentation
class ResizeCrop2DImageBbox(DetectionAugmentation):
def __init__(self, pResize):
super(ResizeCrop2DImageBbox, self).__init__()
self.p = pResize
def apply(self, input_record):
p = self.p
image = input_record["image"]
gt_bbox = input_record["gt_bbox"].astype(np.float32)
assert p.short == p.long
output_size = p.short
# compute the accurate scale_factor using rounded scaled image size
height, width = image.shape[:2]
max_image_size = float(max(height, width))
image_scale = float(output_size) / max_image_size
scaled_height = int(float(height) * image_scale)
scaled_width = int(float(width) * image_scale)
# resize input image and crop it to the output size
scaled_image = cv2.resize(image, (scaled_width, scaled_height),
interpolation=cv2.INTER_LINEAR)
scaled_image = scaled_image[
0:0 + output_size,
0:0 + output_size, :]
# resize boxes and crop it to the output size
gt_bbox[:, :4] = gt_bbox[:, :4] * image_scale
bbox_offset = np.stack([0, 0,
0, 0,])
gt_bbox[:, :4] -= np.reshape(bbox_offset, [1, 4])
gt_bbox[:, :4] = np.clip(gt_bbox[:, :4], 0, output_size)
input_record["image"] = scaled_image
input_record["gt_bbox"] = gt_bbox
input_record["im_info"] = np.array([scaled_image.shape[0], scaled_image.shape[1], image_scale], dtype=np.float32)
class RandResizeCrop2DImageBbox(DetectionAugmentation):
"""
input: image, ndarray(h, w, rgb)
gt_bbox, ndarry(n, 5)
output: image, ndarray(h', w', rgb)
im_info, tuple(h', w', scale)
gt_bbox, ndarray(n, 5)
"""
def __init__(self, pResize):
super(RandResizeCrop2DImageBbox, self).__init__()
self.p = pResize # type: ResizeParam
def apply(self, input_record):
p = self.p
image = input_record["image"]
gt_bbox = input_record["gt_bbox"].astype(np.float32)
assert p.short == p.long
# select a random scale factor
scale_min = p.scale_min
scale_max = p.scale_max
output_size = p.short
random_scale_factor = np.random.uniform(scale_min, scale_max)
scaled_size = int(random_scale_factor * output_size)
# recompute the accurate scale_factor using rounded scaled image size
height, width = image.shape[:2]
max_image_size = float(max(height, width))
image_scale = float(scaled_size) / max_image_size
# select non-zero random offset (x, y) if scaled image is large than output_size
scaled_height = int(float(height) * image_scale)
scaled_width = int(float(width) * image_scale)
offset_y = float(scaled_height - output_size)
offset_x = float(scaled_width - output_size)
offset_y = max(0.0, offset_y) * np.random.uniform(0, 1)
offset_x = max(0.0, offset_x) * np.random.uniform(0, 1)
offset_y = int(offset_y)
offset_x = int(offset_x)
# resize input image and crop it to the output size
scaled_image = cv2.resize(image, (scaled_width, scaled_height),
interpolation=cv2.INTER_LINEAR)
scaled_image = scaled_image[
offset_y:offset_y + output_size,
offset_x:offset_x + output_size, :]
# resize boxes and crop it to the output size
gt_bbox[:, :4] = gt_bbox[:, :4] * image_scale
bbox_offset = np.stack([offset_x, offset_y,
offset_x, offset_y,])
gt_bbox[:, :4] -= np.reshape(bbox_offset, [1, 4])
gt_bbox[:, :4] = np.clip(gt_bbox[:, :4], 0, output_size)
input_record["image"] = scaled_image
input_record["gt_bbox"] = gt_bbox
input_record["im_info"] = np.array([scaled_image.shape[0], scaled_image.shape[1], image_scale], dtype=np.float32)
if __name__ == "__main__":
import pickle as pkl
import time
import pycocotools.mask as mask_util
from core.detection_input import ReadRoiRecord, \
ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
RenameRecord, AnchorTarget2D, AnchorLoader
from models.NASFPN.input import RandResizeCrop2DImageBbox
class ResizeParam:
short = 640
long = 640
scale_min = 0.8
scale_max = 1.2
class PadParam:
short = 640
long = 640
max_num_gt = 100
class AnchorTarget2DParam:
class generate:
short = 640 // 16
long = 640 // 16
stride = 16
scales = (2, 4, 8, 16, 32)
aspects = (0.5, 1.0, 2.0)
class assign:
allowed_border = 0
pos_thr = 0.7
neg_thr = 0.3
min_pos_thr = 0.0
class sample:
image_anchor = 256
pos_fraction = 0.5
class RenameParam:
mapping = dict(image="data")
transform = [
ReadRoiRecord(None),
RandResizeCrop2DImageBbox(ResizeParam),
Flip2DImageBbox(),
Pad2DImageBbox(PadParam),
ConvertImageFromHwcToChw(),
AnchorTarget2D(AnchorTarget2DParam),
RenameRecord(RenameParam.mapping)
]
DEBUG = True
with open("data/cache/coco_val2017.roidb", "rb") as fin:
roidb = pkl.load(fin)
roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
roidb = [roidb[i] for i in np.random.choice(len(roidb), 20, replace=False)]
print(roidb[0])
flipped_roidb = []
for rec in roidb:
new_rec = rec.copy()
new_rec["flipped"] = True
flipped_roidb.append(new_rec)
roidb = roidb + flipped_roidb
loader = AnchorLoader(roidb=roidb,
transform=transform,
data_name=["data", "im_info", "gt_bbox"],
label_name=["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"],
batch_size=2,
shuffle=False,
kv=None)
tic = time.time()
while True:
try:
data_batch = loader.next()
if DEBUG:
import uuid
print(data_batch.provide_data)
print(data_batch.provide_label)
print(data_batch.data[0].shape)
print(data_batch.label[1].shape)
print(data_batch.label[2].shape)
data = data_batch.data[0]
gt_bbox = data_batch.data[2]
for i, (im, bbox) in enumerate(zip(data, gt_bbox)):
im = im.transpose((1, 2, 0))[:, :, ::-1].asnumpy()
im = np.uint8(im)
valid_instance = np.where(bbox[:, -1] != -1)[0]
bbox = bbox[valid_instance].asnumpy()
for j, bbox_j in enumerate(bbox):
x1, y1, x2, y2 = bbox_j[:4].astype(int)
cv2.rectangle(im, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.imwrite(str(uuid.uuid4()) + '.jpg', im)
except StopIteration:
toc = time.time()
print("{} samples/s".format(len(roidb) / (toc - tic)))
break