forked from tusen-ai/simpledet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet_v1b.py
280 lines (240 loc) · 12.8 KB
/
resnet_v1b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from __future__ import print_function
import mxnet as mx
import mxnext as X
from mxnext.backbone.resnet_v1b import Builder
bn_count = [10000]
class TridentResNetV1bBuilder(Builder):
def __init__(self):
super().__init__()
@staticmethod
def bn_shared(data, name, normalizer, branch_ids=None, share_weight=True):
if branch_ids is None:
branch_ids = range(len(data))
gamma = X.var(name + "_gamma")
beta = X.var(name + "_beta")
moving_mean = X.var(name + "_moving_mean")
moving_var = X.var(name + "_moving_var")
bn_layers = []
for i, data_i in zip(branch_ids, data):
if share_weight:
bn_i = normalizer(data=data_i, name=name + "_shared%d" % i,
gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var)
else:
bn_i = normalizer(data=data_i, name=name + "_branch%d" % i)
bn_layers.append(bn_i)
return bn_layers
@staticmethod
def conv_shared(data, name, kernel, num_filter, branch_ids=None, no_bias=True, share_weight=True,
pad=(0, 0), stride=(1, 1), dilate=(1, 1)):
if branch_ids is None:
branch_ids = range(len(data))
weight = X.var(name + '_weight')
if no_bias:
bias = None
else:
bias = X.var(name + '_bias')
conv_layers = []
for i in range(len(data)):
data_i = data[i]
stride_i = stride[i] if type(stride) is list else stride
dilate_i = dilate[i] if type(dilate) is list else dilate
pad_i = pad[i] if type(pad) is list else pad
branch_i = branch_ids[i]
if share_weight:
conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i,
name=name + '_shared%d' % branch_i, no_bias=no_bias, weight=weight, bias=bias)
else:
conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i,
name=name + '_branch%d' % branch_i, no_bias=no_bias)
conv_layers.append(conv_i)
return conv_layers
@staticmethod
def deform_conv_shared(data, name, conv_offset, kernel, num_filter, branch_ids=None, no_bias=True, share_weight=True,
num_deformable_group=4, pad=(0, 0), stride=(1, 1), dilate=(1, 1)):
if branch_ids is None:
branch_ids = range(len(data))
weight = X.var(name + '_weight')
if no_bias:
bias = None
else:
bias = X.var(name + '_bias')
conv_layers = []
for i in range(len(data)):
data_i = data[i]
stride_i = stride[i] if type(stride) is list else stride
dilate_i = dilate[i] if type(dilate) is list else dilate
pad_i = pad[i] if type(pad) is list else pad
conv_offset_i = conv_offset[i] if type(conv_offset) is list else conv_offset
branch_i = branch_ids[i]
if share_weight:
conv_i = mx.contrib.symbol.DeformableConvolution(
data=data_i, offset=conv_offset_i, kernel=kernel, num_filter=num_filter, stride=stride_i, num_deformable_group=4,
dilate=dilate_i, pad=pad_i, no_bias=no_bias, weight=weight, bias=bias, name=name + '_shared%d' % branch_i)
else:
conv_i = mx.contrib.symbol.DeformableConvolution(
data=data_i, offset=conv_offset_i, kernel=kernel, num_filter=num_filter, stride=stride_i, num_deformable_group=4,
dilate=dilate_i, pad=pad_i, no_bias=no_bias, name=name + '_branch%d' % branch_i)
conv_layers.append(conv_i)
return conv_layers
@staticmethod
def stack_branch_symbols(data_list):
data = mx.symbol.stack(*data_list, axis=1)
data = mx.symbol.Reshape(data, (-3, -2))
return data
@classmethod
def resnet_trident_unit(cls, data, name, filter, stride, dilate, proj, norm_type, norm_mom, ndev,
branch_ids, branch_bn_shared, branch_conv_shared, branch_deform=False):
"""
One resnet unit is comprised of 2 or 3 convolutions and a shortcut.
:param data:
:param name:
:param filter:
:param stride:
:param dilate:
:param proj:
:param norm_type:
:param norm_mom:
:param ndev:
:param branch_ids:
:param branch_bn_shared:
:param branch_conv_shared:
:param branch_deform:
:return:
"""
if branch_ids is None:
branch_ids = range(len(data))
norm = X.normalizer_factory(type=norm_type, ndev=ndev, mom=norm_mom)
conv1 = cls.conv_shared(
data, name=name + "_conv1", num_filter=filter // 4, kernel=(1, 1),
branch_ids=branch_ids, share_weight=branch_conv_shared)
bn1 = cls.bn_shared(
conv1, name=name + "_bn1", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared)
relu1 = [X.relu(bn) for bn in bn1]
if not branch_deform:
conv2 = cls.conv_shared(
relu1, name=name + "_conv2", num_filter=filter // 4, kernel=(3, 3),
pad=dilate, stride=stride, dilate=dilate,
branch_ids=branch_ids, share_weight=branch_conv_shared)
else:
conv2_offset = cls.conv_shared(
relu1, name=name + "_conv2_offset", num_filter=72, kernel=(3, 3),
pad=(1, 1), stride=(1, 1), dilate=(1, 1), no_bias=False,
branch_ids=branch_ids, share_weight=branch_conv_shared)
conv2 = cls.deform_conv_shared(
relu1, name=name + "_conv2", conv_offset=conv2_offset, num_filter=filter // 4, kernel=(3, 3),
pad=dilate, stride=stride, dilate=dilate, num_deformable_group=4,
branch_ids=branch_ids, share_weight=branch_conv_shared)
bn2 = cls.bn_shared(
conv2, name=name + "_bn2", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared)
relu2 = [X.relu(bn) for bn in bn2]
conv3 = cls.conv_shared(
relu2, name=name + "_conv3", num_filter=filter, kernel=(1, 1),
branch_ids=branch_ids, share_weight=branch_conv_shared)
bn3 = cls.bn_shared(
conv3, name=name + "_bn3", normalizer=norm, branch_ids=branch_ids, share_weight=branch_bn_shared)
if proj:
shortcut = cls.conv_shared(
data, name=name + "_sc", num_filter=filter, kernel=(1, 1),
branch_ids=branch_ids, share_weight=branch_conv_shared)
shortcut = cls.bn_shared(
shortcut, name=name + "_sc_bn", normalizer=norm, branch_ids=branch_ids,
share_weight=branch_bn_shared)
else:
shortcut = data
plus = [X.add(bn3_i, shortcut_i, name=name + "_plus_branch{}".format(i)) \
for i, bn3_i, shortcut_i in zip(branch_ids, bn3, shortcut)]
return [X.relu(p) for p in plus]
@classmethod
def resnet_trident_stage(cls, data, name, num_block, filter, stride, dilate, norm_type, norm_mom, ndev,
num_trident_block, num_branch, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform):
"""
One resnet stage is comprised of multiple resnet units. Refer to depth config for more information.
:param data:
:param name:
:param num_block:
:param filter:
:param stride:
:param dilate:
:param norm_type:
:param norm_mom:
:param ndev:
:param num_branch:
:param branch_ids:
:param branch_bn_shared:
:param branch_conv_shared:
:return:
"""
assert isinstance(dilate, list) and len(dilate) == num_branch, 'dilate should be a list with num_branch items.'
num_trident_block = num_trident_block or (num_block - 1) # transform all blocks by default
d = [(d, d) for d in dilate]
data = cls.resnet_unit(data, "{}_unit1".format(name), filter, stride, 1, True, norm_type, norm_mom, ndev)
for i in range(2, num_block + 1):
# [i ... num_block] == [1 ... num_trident_block]
if i == (num_block - num_trident_block + 1):
data = [data] * num_branch
if i >= (num_block - num_trident_block + 1):
if branch_deform and i >= num_block - 2:
unit_deform = True
else:
unit_deform = False
# cast back to fp32 as deformable conv is not optimized for fp16
if unit_deform and i == num_block - 2:
for j in range(num_branch):
data[j] = X.to_fp32(data[j], name="deform_to32")
data = cls.resnet_trident_unit(
data, "{}_unit{}".format(name, i), filter, (1, 1), d, False, norm_type, norm_mom, ndev,
branch_ids, branch_bn_shared, branch_conv_shared, branch_deform=unit_deform)
else:
data = cls.resnet_unit(data, "{}_unit{}".format(name, i), filter, 1, 1, False, norm_type, norm_mom, ndev)
return data
@classmethod
def resnet_trident_c4(cls, data, num_block, stride, dilate, norm_type, norm_mom, ndev, num_trident_block,
num_branch, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform):
return cls.resnet_trident_stage(
data, "stage3", num_block, 1024, stride, dilate, norm_type, norm_mom, ndev, num_trident_block,
num_branch, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform)
@classmethod
def resnet_factory(cls, depth, use_3x3_conv0, use_bn_preprocess, num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type="local", norm_mom=0.9, ndev=None, fp16=False):
num_c2_unit, num_c3_unit, num_c4_unit, num_c5_unit = cls.depth_config[depth]
data = X.var("data")
if fp16:
data = X.to_fp16(data, "data_fp16")
c1 = cls.resnet_c1(data, use_3x3_conv0, use_bn_preprocess, norm_type, norm_mom, ndev)
c2 = cls.resnet_c2(c1, num_c2_unit, 1, 1, norm_type, norm_mom, ndev)
c3 = cls.resnet_c3(c2, num_c3_unit, 2, 1, norm_type, norm_mom, ndev)
c4 = cls.resnet_trident_c4(c3, num_c4_unit, 2, branch_dilates, norm_type, norm_mom, ndev, num_trident_block,
num_branch, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform)
# stack branch features and merge into batch dim
c4 = cls.stack_branch_symbols(c4)
c5 = cls.resnet_c5(c4, num_c5_unit, 1, 2, norm_type, norm_mom, ndev)
return c1, c2, c3, c4, c5
@classmethod
def resnet_c4_factory(cls, depth, use_3x3_conv0, use_bn_preprocess, num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type="local", norm_mom=0.9, ndev=None, fp16=False):
c1, c2, c3, c4, c5 = cls.resnet_factory(depth, use_3x3_conv0, use_bn_preprocess, num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type, norm_mom, ndev, fp16)
return c4
@classmethod
def resnet_c4c5_factory(cls, depth, use_3x3_conv0, use_bn_preprocess, num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type="local", norm_mom=0.9, ndev=None, fp16=False):
c1, c2, c3, c4, c5 = cls.resnet_factory(depth, use_3x3_conv0, use_bn_preprocess,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type, norm_mom, ndev, fp16)
return c4, c5
def get_backbone(self, depth, endpoint, normalizer, fp16,num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform):
# parse endpoint
if endpoint == "c4":
factory = self.resnet_c4_factory
elif endpoint == "c4c5":
factory = self.resnet_c4c5_factory
else:
raise KeyError("Unknown backbone endpoint {}".format(endpoint))
return factory(depth, False, False, num_trident_block,
num_branch, branch_dilates, branch_ids, branch_bn_shared, branch_conv_shared, branch_deform,
norm_type=normalizer, fp16=fp16)