Skip to content

Latest commit

 

History

History
112 lines (91 loc) · 2.45 KB

5_gridUniquePath.md

File metadata and controls

112 lines (91 loc) · 2.45 KB

Unique Paths

  • GOOGLE QUESTION

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Recursive Solution (TLE)

  • Simple recursive solution
  • Time Complexity: O(2^n)
class Solution {
public:
    int uniquePaths(int m, int n) {
        if(m<1||n<1) return 0;
        if(m==1&&n==1) return 1;
        return uniquePaths(m-1,n)+uniquePaths(m,n-1);
    }
};

Recursive + Memoization

  • Time complexity: m x n
  • Space complexity: m x n
class Solution{
private:
    int helper(int m, int n, vector<vector<int>> &dp){
        if (m < 0 || n < 0) return 0;
        if (m == 0 && n == 0) return 1;
        if(dp[m][n]>0) return dp[m][n];
        return dp[m][n]=helper(m - 1, n, dp) + helper(m, n - 1, dp);
    }

public:
    int uniquePaths(int m, int n){
        vector<vector<int>> dp(m, vector<int>(n, -1));
        return helper(m - 1, n - 1, dp);
    }
};

Tabulation Solution

  • Time complexity: m x n
  • Space complexity: m x n
class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[m][n];

        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(i==0||j==0) dp[i][j]=1;
                else{
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};

Combinatorics Solution

class Solution{
public:
    int uniquePaths(int m, int n){
        int N = n + m - 2;
        int r = m - 1;
        double res = 1;

        for (int i = 1; i <= r; i++){
            res = res * (N - r + i) / i;
        }
        return (int)res;
    }
};

Codestudio

int helper(int m, int n, int i, int j,vector<vector<int>> &memo)
{
    if (i >= m || j >= n) return 0;
    if (i == m - 1 && j == n - 1) return 1;
    if(memo[i][j]!=-1) return memo[i][j];
    int right = helper(m, n, i, j + 1, memo);
    int down = helper(m, n, i + 1, j, memo);
    return memo[i][j]=right + down;
}
int uniquePaths(int m, int n)
{
    vector<vector<int>> memo(m,vector<int> (n, -1));
    return helper(m, n, 0, 0,memo);
}