-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain.py
executable file
·151 lines (123 loc) · 6.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import utils
from model import Model
def get_negative_mask(batch_size):
negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool)
for i in range(batch_size):
negative_mask[i, i] = 0
negative_mask[i, i + batch_size] = 0
negative_mask = torch.cat((negative_mask, negative_mask), 0)
return negative_mask
def train(net, data_loader, train_optimizer, temperature, debiased, tau_plus):
net.train()
total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader)
for pos_1, pos_2, target in train_bar:
pos_1, pos_2 = pos_1.cuda(non_blocking=True), pos_2.cuda(non_blocking=True)
feature_1, out_1 = net(pos_1)
feature_2, out_2 = net(pos_2)
# neg score
out = torch.cat([out_1, out_2], dim=0)
neg = torch.exp(torch.mm(out, out.t().contiguous()) / temperature)
mask = get_negative_mask(batch_size).cuda()
neg = neg.masked_select(mask).view(2 * batch_size, -1)
# pos score
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0)
# estimator g()
if debiased:
N = batch_size * 2 - 2
Ng = (-tau_plus * N * pos + neg.sum(dim = -1)) / (1 - tau_plus)
# constrain (optional)
Ng = torch.clamp(Ng, min = N * np.e**(-1 / temperature))
else:
Ng = neg.sum(dim=-1)
# contrastive loss
loss = (- torch.log(pos / (pos + Ng) )).mean()
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += batch_size
total_loss += loss.item() * batch_size
train_bar.set_description('Train Epoch: [{}/{}] Loss: {:.4f}'.format(epoch, epochs, total_loss / total_num))
return total_loss / total_num
# test for one epoch, use weighted knn to find the most similar images' label to assign the test image
def test(net, memory_data_loader, test_data_loader):
net.eval()
total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, []
with torch.no_grad():
# generate feature bank
for data, _, target in tqdm(memory_data_loader, desc='Feature extracting'):
feature, out = net(data.cuda(non_blocking=True))
feature_bank.append(feature)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.tensor(memory_data_loader.dataset.labels, device=feature_bank.device)
# loop test data to predict the label by weighted knn search
test_bar = tqdm(test_data_loader)
for data, _, target in test_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
feature, out = net(data)
total_num += data.size(0)
# compute cos similarity between each feature vector and feature bank ---> [B, N]
sim_matrix = torch.mm(feature, feature_bank)
# [B, K]
sim_weight, sim_indices = sim_matrix.topk(k=k, dim=-1)
# [B, K]
sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices)
sim_weight = (sim_weight / temperature).exp()
# counts for each class
one_hot_label = torch.zeros(data.size(0) * k, c, device=sim_labels.device)
# [B*K, C]
one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1).long(), value=1.0)
# weighted score ---> [B, C]
pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.unsqueeze(dim=-1), dim=1)
pred_labels = pred_scores.argsort(dim=-1, descending=True)
total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_top5 += torch.sum((pred_labels[:, :5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
test_bar.set_description('KNN Test Epoch: [{}/{}] Acc@1:{:.2f}% Acc@5:{:.2f}%'
.format(epoch, epochs, total_top1 / total_num * 100, total_top5 / total_num * 100))
return total_top1 / total_num * 100, total_top5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train SimCLR')
parser.add_argument('--feature_dim', default=128, type=int, help='Feature dim for latent vector')
parser.add_argument('--temperature', default=0.5, type=float, help='Temperature used in softmax')
parser.add_argument('--tau_plus', default=0.1, type=float, help='Positive class priorx')
parser.add_argument('--k', default=200, type=int, help='Top k most similar images used to predict the label')
parser.add_argument('--batch_size', default=256, type=int, help='Number of images in each mini-batch')
parser.add_argument('--epochs', default=500, type=int, help='Number of sweeps over the dataset to train')
parser.add_argument('--debiased', default=True, type=bool, help='Debiased contrastive loss or standard loss')
# args parse
args = parser.parse_args()
feature_dim, temperature, tau_plus, k = args.feature_dim, args.temperature, args.tau_plus, args.k
batch_size, epochs, debiased = args.batch_size, args.epochs, args.debiased
# data prepare
train_data = utils.STL10Pair(root='data', split='train+unlabeled', transform=utils.train_transform)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True,
drop_last=True)
memory_data = utils.STL10Pair(root='data', split='train', transform=utils.test_transform)
memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_data = utils.STL10Pair(root='data', split='test', transform=utils.test_transform)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
# model setup and optimizer config
model = Model(feature_dim).cuda()
model = nn.DataParallel(model)
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
c = len(memory_data.classes)
print('# Classes: {}'.format(c))
# training loop
if not os.path.exists('results'):
os.mkdir('results')
for epoch in range(1, epochs + 1):
train_loss = train(model, train_loader, optimizer, temperature, debiased, tau_plus)
if epoch % 25 == 0:
test_acc_1, test_acc_5 = test(model, memory_loader, test_loader)
torch.save(model.state_dict(), 'results/model_{}.pth'.format(epoch))