diff --git a/pymbar/mbar.py b/pymbar/mbar.py index 5f9f9da2..957bf2a0 100644 --- a/pymbar/mbar.py +++ b/pymbar/mbar.py @@ -71,8 +71,8 @@ class MBAR: """ # ========================================================================= - def __init__(self, u_kn, N_k, maximum_iterations=10000, relative_tolerance=1.0e-7, solver_tolerance=DEFAULT_SOLVER_TOLERANCE, verbose=False, initial_f_k=None, - solver_protocol=None, initialize='zeros', x_kindices=None, nbootstraps=None, rseed=None, **kwargs): + def __init__(self, u_kn, N_k, maximum_iterations=10000, relative_tolerance=1.0e-7, solver_tolerance=DEFAULT_SOLVER_TOLERANCE, bootstrap_solver_tolerance=DEFAULT_SOLVER_TOLERANCE, + verbose=False, initial_f_k=None, solver_protocol=None, initialize='zeros', x_kindices=None, nbootstraps=None, rseed=None, **kwargs): """Initialize multistate Bennett acceptance ratio (MBAR) on a set of simulation data. @@ -113,6 +113,8 @@ def __init__(self, u_kn, N_k, maximum_iterations=10000, relative_tolerance=1.0e- Set to determine the relative tolerance convergence criteria (default 1.0e-7) solver_tolerance : float, optional Set the tolerance for which to use for solving the mbar equation (see solve_mbar_once()) (default 1.0e-12) + bootstrap_solver_tolerance : float, optional + Set the tolerance for which to use for solving the mbar equation (see solve_mbar_once()) (default 1.0e-12) when bootstrapping verbosity : bool, optional Set to True if verbose debug output is desired (default False) initial_f_k : np.ndarray, float, shape=(K), optional @@ -331,7 +333,7 @@ def __init__(self, u_kn, N_k, maximum_iterations=10000, relative_tolerance=1.0e- new_kindices = k_indices[np.random.randint(int(N_k[k]), size=int(N_k[k]))] rinit[k_indices] = new_kindices - self.f_k_boots[b,:] = mbar_solvers.solve_mbar_for_all_states(self.u_kn[:,rinit], self.N_k, f_k_init, solver_protocol, solver_tolerance) + self.f_k_boots[b,:] = mbar_solvers.solve_mbar_for_all_states(self.u_kn[:,rinit], self.N_k, f_k_init, solver_protocol, bootstrap_solver_tolerance) if verbose: if b%10==0: print("Calculated {:d}/{:d} bootstrap samples".format(b,self.nbootstraps))