-
Notifications
You must be signed in to change notification settings - Fork 22
/
cellular_automaton.py
584 lines (481 loc) · 19.1 KB
/
cellular_automaton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#!/usr/bin/env python3
from functools import lru_cache
from multiprocessing.pool import Pool
import itertools as it # for cartesian product
import time
import random
import os
import logging
import argparse
import numpy as np
import matplotlib.pyplot as plt
#######################################################
MAX_STEPS = 1000
steps = range(MAX_STEPS)
cellSize = 0.4 # m
vmax = 1.2
dt = cellSize / vmax # time step
from_x, to_x = 1, 63 # todo parse this too
from_y, to_y = 1, 63 # todo parse this too
DEFAULT_BOX = [from_x, to_x, from_y, to_y]
del from_x, to_x, from_y, to_y
# DFF = np.ones( (dim_x, dim_y) ) # dynamic floor field
#######################################################
logfile = 'log.dat'
logging.basicConfig(filename=logfile, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def get_parser_args():
parser = argparse.ArgumentParser(
description='Cellular Automaton. Floor Field Model [Burstedde2001] Simulation of pedestrian'
'dynamics using a two-dimensional cellular automaton Physica A, 295, 507-525, 2001')
parser.add_argument('-s', '--ks', type=float, default=2,
help='sensitivity parameter for the Static Floor Field (default 2)')
parser.add_argument('-d', '--kd', type=float, default=1,
help='sensitivity parameter for the Dynamic Floor Field (default 1)')
parser.add_argument('-n', '--numPeds', type=int, default=10, help='Number of agents (default 10)')
parser.add_argument('-p', '--plotS', action='store_const', const=True, default=False,
help='plot Static Floor Field')
parser.add_argument('--plotD', action='store_const', const=True, default=False,
help='plot Dynamic Floor Field')
parser.add_argument('--plotAvgD', action='store_const', const = True, default=False,
help='plot average Dynamic Floor Field')
parser.add_argument('-P', '--plotP', action='store_const', const=True, default=False,
help='plot Pedestrians')
parser.add_argument('-r', '--shuffle', action='store_const', const=True, default=True,
help='random shuffle')
parser.add_argument('-v', '--reverse', action='store_const', const=True, default=False,
help='reverse sequential update')
parser.add_argument('-l', '--log', type=argparse.FileType('w'), default='log.dat',
help='log file (default log.dat)')
parser.add_argument('--decay', type=float, default=0.3,
help='the decay probability of the Dynamic Floor Field (default 0.2')
parser.add_argument('--diffusion', type=float, default=0.1,
help='the diffusion probability of the Dynamic Floor Field (default 0.2)')
parser.add_argument('-W', '--width', type=float, default=4.0,
help='the width of the simulation area in meter, excluding walls')
parser.add_argument('-H', '--height', type=float, default=4.0,
help='the height of the simulation room in meter, excluding walls')
parser.add_argument('-c', '--clean', action='store_const', const=True, default=False,
help='remove files from directories dff/ sff/ and peds/')
parser.add_argument('-N', '--nruns', type=int, default=1,
help='repeat the simulation N times')
parser.add_argument('--parallel', action='store_const', const=True, default=False,
help='use multithreading')
parser.add_argument('--moore', action='store_const', const=True, default=False,
help='use moore neighborhood. Default= Von Neumann')
parser.add_argument('--box', type=int, nargs=4, default=DEFAULT_BOX,
help='Rectangular box, initially populated with agents: from_x, to_x, from_y, to_y. Default: The whole room')
_args = parser.parse_args()
return _args
def init_obstacles():
return np.ones((dim_x, dim_y), int) # obstacles/walls/boundaries
def init_walls(exit_cells, ):
"""
define where are the walls. Consider the exits
"""
OBST = init_obstacles()
OBST[0, :] = OBST[-1, :] = OBST[:, -1] = OBST[:, 0] = -1
for e in exit_cells:
OBST[e] = 1
return OBST
def check_N_pedestrians(_box, N_pedestrians):
"""
check if <N_pedestrian> is too big. if so change it to fit in <box>
"""
# holding box, where to distribute pedestrians
# ---------------------------------------------------
_from_x = _box[0]
_to_x = _box[1]
_from_y = _box[2]
_to_y = _box[3]
# ---------------------------------------------------
nx = _to_x - _from_x + 1
ny = _to_y - _from_y + 1
if N_pedestrians > nx * ny:
logging.warning("N_pedestrians (%d) is too large (max. %d). Set to max." % (N_pedestrians, nx * ny))
N_pedestrians = nx * ny
return N_pedestrians
def init_peds(N, box):
"""
distribute N pedestrians in box
"""
from_x, to_x = box[:2]
from_y, to_y = box[2:]
nx = to_x - from_x + 1
ny = to_y - from_y + 1
PEDS = np.ones(N, int) # pedestrians
EMPTY_CELLS_in_BOX = np.zeros(nx * ny - N, int) # the rest of cells in the box
PEDS = np.hstack((PEDS, EMPTY_CELLS_in_BOX)) # put 0s and 1s together
np.random.shuffle(PEDS) # shuffle them
PEDS = PEDS.reshape((nx, ny)) # reshape to a box
EMPTY_CELLS = np.zeros((dim_x, dim_y), int) # this is the simulation space
EMPTY_CELLS[from_x:to_x + 1, from_y:to_y + 1] = PEDS # put in the box
logging.info("Init peds finished. Box: x: [%.2f, %.2f]. y: [%.2f, %.2f]",
from_x, to_x, from_y, to_y)
return EMPTY_CELLS
def plot_sff2(SFF, walls, i):
"""
plots a numbered image. Useful for making movies
"""
print("plot_sff: %.6d"%i)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
plt.set_cmap('jet')
cmap = plt.get_cmap()
cmap.set_bad(color='k', alpha=0.8)
vect = SFF * walls
vect[vect < 0] = np.Inf
# print (vect)
max_value = np.max(SFF)
min_value = np.min(SFF)
plt.imshow(vect, cmap=cmap, interpolation='nearest', vmin=min_value, vmax=max_value, extent=[0, dim_y, 0, dim_x]) # lanczos nearest
plt.colorbar()
# print(i)
plt.title("%.6d"%i)
figure_name = os.path.join('sff', '%.6d.png'%i)
plt.savefig(figure_name)
plt.close()
def plot_sff(SFF, walls):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
plt.set_cmap('jet')
cmap = plt.get_cmap()
cmap.set_bad(color='k', alpha=0.8)
vect = SFF.copy()
vect[walls < 0] = np.Inf
max_value = np.max(SFF)
min_value = np.min(SFF)
plt.imshow(vect, cmap=cmap, interpolation='nearest', vmin=min_value, vmax=max_value, extent=[0, dim_y, 0, dim_x]) # lanczos nearest
plt.colorbar()
figure_name = os.path.join('sff', 'SFF.png')
plt.savefig(figure_name, dpi=600)
plt.close()
def plot_dff(dff, walls, name="DFF", max_value=None, title=""):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
plt.set_cmap('jet')
cmap = plt.get_cmap()
cmap.set_bad(color='k', alpha=0.8)
vect = dff.copy()
vect[walls < 0] = np.Inf
im = ax.imshow(vect, cmap=cmap, interpolation='nearest', vmin=0, vmax=max_value, extent=[0, dim_y, 0, dim_x]) # lanczos nearest
plt.colorbar(im, format='%.1f')
#cbar = plt.colorbar()
if title:
plt.title(title)
figure_name = os.path.join('dff', name+'.png')
plt.savefig(figure_name, dpi=600)
plt.close()
logging.info("plot dff. figure: {}.png".format(name))
def plot_peds(peds, walls, i):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
cmap = plt.get_cmap("gray")
cmap.set_bad(color='b', alpha=0.8)
N = np.sum(peds)
# print N, type(N)
# print peds+walls
#ax.axes.autoscale(False)
grid_x = np.arange(1, dim_x-1, cellSize)
grid_y = np.arange(1, dim_y-1, cellSize)
ax.imshow(peds + walls, cmap=cmap, interpolation='nearest', vmin=-1, vmax=2) # 1-peds because I want the peds to be black
plt.grid(True, color='k', alpha=0.3)
plt.yticks(np.arange(1.5, peds.shape[0], 1))
plt.xticks(np.arange(1.5, peds.shape[1], 1))
plt.setp(ax.get_xticklabels(), visible=False)
plt.setp(ax.get_yticklabels(), visible=False)
ax.tick_params(axis='both', which='both', length=0)
S = 't: %3.3d | N: %3.3d ' % (i, N)
plt.title("%8s" % S)
figure_name = os.path.join('peds', 'peds%.6d.png' % i)
plt.savefig(figure_name)
plt.close()
def init_DFF():
"""
"""
return np.zeros((dim_x, dim_y))
def update_DFF(dff, diff):
#for cell in diff:
# assert walls[cell] > -10
# dff[cell] += 1
dff += diff
for i, j in it.chain(it.product(range(1, dim_x - 1), range(1, dim_y - 1)), exit_cells):
for _ in range(int(dff[i, j])):
if np.random.rand() < delta: # decay
dff[i, j] -= 1
elif np.random.rand() < alpha: # diffusion
dff[i, j] -= 1
dff[random.choice(get_neighbors((i, j)))] += 1
assert walls[i, j] > -10 or dff[i, j] == 0, (dff, i, j)
# dff[:] = np.ones((dim_x, dim_y))
@lru_cache(1)
def init_SFF(_exit_cells, _dim_x, _dim_y, drawS):
# start with exit's cells
SFF = np.empty((_dim_x, _dim_y)) # static floor field
SFF[:] = np.sqrt(_dim_x ** 2 + _dim_y ** 2)
make_videos = 0
if make_videos and drawS:
plot_sff2(SFF, walls, 1)
cells_initialised = []
for e in _exit_cells:
cells_initialised.append(e)
SFF[e] = 0
if make_videos and drawS:
plot_sff2(SFF, walls, 2)
i = 3
while cells_initialised:
cell = cells_initialised.pop(0)
neighbor_cells = get_neighbors(cell)
for neighbor in neighbor_cells:
# print ("cell",cell, "neighbor",neighbor)
if SFF[cell] + 1 < SFF[neighbor]:
SFF[neighbor] = SFF[cell] + 1
cells_initialised.append(neighbor)
# print(SFF)
# print(cells_initialised)
if make_videos and drawS:
plot_sff2(SFF, walls, i)
i += 1
return SFF
@lru_cache(16*1024)
def get_neighbors(cell):
"""
von Neumann neighborhood
"""
neighbors = []
i, j = cell
if i < dim_x - 1 and walls[(i + 1, j)] >= 0:
neighbors.append((i + 1, j))
if i >= 1 and walls[(i - 1, j)] >= 0:
neighbors.append((i - 1, j))
if j < dim_y - 1 and walls[(i, j + 1)] >= 0:
neighbors.append((i, j + 1))
if j >= 1 and walls[(i, j - 1)] >= 0:
neighbors.append((i, j - 1))
# moore
if moore:
if i >= 1 and j >= 1 and walls[(i-1, j - 1)] >= 0:
neighbors.append((i-1, j - 1))
if i < dim_x - 1 and j < dim_y -1 and walls[(i+1, j+1)] >= 0:
neighbors.append((i+1, j + 1))
if i < dim_x - 1 and j >= 1 and walls[(i+1, j-1)] >= 0:
neighbors.append((i+1, j - 1))
if i >= 1 and j < dim_y -1 and walls[(i-1, j+1)] >= 0:
neighbors.append((i-1, j + 1))
# not shuffling singnificantly alters the simulation...
random.shuffle(neighbors)
return neighbors
def seq_update_cells(peds, sff, dff, kappaD, kappaS, shuffle, reverse):
"""
sequential update
input
- peds:
- sff:
- dff:
- prob_walls:
- kappaD:
- kappaS:
- rand: random shuffle
return
- new peds
"""
tmp_peds = np.empty_like(peds) # temporary cells
np.copyto(tmp_peds, peds)
dff_diff = np.zeros((dim_x, dim_y))
grid = list(it.product(range(1, dim_x - 1), range(1, dim_y - 1))) + list(exit_cells)
if shuffle: # sequential random update
random.shuffle(grid)
elif reverse: # reversed sequential update
grid.reverse()
for (i, j) in grid: # walk through all cells in geometry
if peds[i, j] == 0:
continue
if (i, j) in exit_cells:
tmp_peds[i, j] = 0
dff_diff[i, j] += 1
continue
p = 0
probs = {}
cell = (i, j)
for neighbor in get_neighbors(cell): # get the sum of probabilities
# original code:
# probability = np.exp(-kappaS * sff[neighbor]) * np.exp(kappaD * dff[neighbor]) * \
# (1 - tmp_peds[neighbor])
# the absolute value of the exponents can get very large yielding 0 or
# inifite probability.
# to prevent this we multiply every probability with exp(kappaS * sff[cell) and
# exp(-kappaD * dff[cell]).
# since the probabilities are normalized this doesn't have any effect on the model
probability = np.exp(kappaS * (sff[cell] - sff[neighbor])) * \
np.exp(kappaD * (dff[neighbor] - dff[cell])) * \
(1 - tmp_peds[neighbor])
p += probability
probs[neighbor] = probability
if p == 0: # pedestrian in cell can not move
continue
r = np.random.rand() * p
# print ("start update")
for neighbor in get_neighbors(cell): #TODO: shuffle?
r -= probs[neighbor]
if r <= 0: # move to neighbor cell
tmp_peds[neighbor] = 1
tmp_peds[i, j] = 0
dff_diff[i, j] += 1
break
return tmp_peds, dff_diff
def print_logs(N_pedestrians, width, height, t, dt, nruns, Dt):
"""
print some infos to the screen
"""
print ("Simulation of %d pedestrians" % N_pedestrians)
print ("Simulation space (%.2f x %.2f) m^2" % (width, height))
print ("SFF: %.2f | DFF: %.2f" % (kappaS, kappaD))
print ("Mean Evacuation time: %.2f s, runs: %d" % (t * dt / nruns, nruns))
print ("Total Run time: %.2f s" % Dt)
print ("Factor: x%.2f" % (dt * t / Dt))
def setup_dir(dir, clean):
print("make ", dir)
if os.path.exists(dir) and clean:
os.system('rm -rf %s' % dir)
os.makedirs(dir, exist_ok=True)
def simulate(args):
n, npeds, box, sff, shuffle, reverse, drawP, giveD = args
print("init %d agents in box=[%d, %d, %d, %d]"%(npeds, box[0], box[1], box[2], box[3]))
peds = init_peds(npeds, box)
dff = init_DFF()
old_dffs = []
for t in steps: # simulation loop
print('\tn: %3d ---- t: %3d | N: %3d' % (n, t, int(np.sum(peds))))
if drawP:
plot_peds(peds, walls, t)
peds, dff_diff = seq_update_cells(peds, sff, dff, kappaD, kappaS,
shuffle, reverse)
update_DFF(dff, dff_diff)
if giveD:
old_dffs.append((t, dff.copy()))
if not peds.any(): # is everybody out? TODO: check this. Some bug is lurking here
print("Quite simulation")
break
# else:
# raise TimeoutError("simulation taking too long")
if giveD:
return t, old_dffs
else:
return t
def check_box(box):
"""
exit if box is not well defined
"""
assert (box[0] < box[1]), "from_x smaller than to_x"
assert (box[2] < box[3]), "from_y smaller than to_y"
def main(args):
global kappaS, kappaD, dim_y, dim_x, exit_cells, SFF, alpha, delta, walls, parallel, box, moore
# init parameters
drawS = args.plotS # plot or not
drawP = args.plotP # plot or not
kappaS = args.ks
kappaD = args.kd
npeds = args.numPeds
shuffle = args.shuffle
reverse = args.reverse
drawD = args.plotD
drawD_avg = args.plotAvgD
clean_dirs = args.clean
width = args.width # in meters
height = args.height # in meters
parallel = args.parallel
box = args.box
check_box(box)
moore = args.moore
# check if no box is specified
if moore:
print("Neighborhood: Moore")
else:
print("Neighborhood: Von Neumann")
if parallel and drawP :
raise NotImplementedError("cannot plot pedestrians when multiprocessing")
# TODO check if width and hight are multiples of cellSize
dim_y = int(width / cellSize + 2 + 0.00000001) # number of columns, add ghost cells
dim_x = int(height / cellSize + 2 + 0.00000001) # number of rows, add ghost cells
print("cellsize: ", cellSize, " dim_x: ", dim_x, " dim_y: ", dim_y)
if box == DEFAULT_BOX:
print("box == room")
box = [1, dim_x - 2, 1, dim_y - 2]
nruns = args.nruns
exit_cells = frozenset(((dim_x // 2, dim_y - 1), (dim_x // 2 + 1, dim_y - 1),
(dim_x - 1, dim_y//2 + 1) , (dim_x - 1, dim_y//2),
(0, dim_y//2 + 1) , (1, dim_y//2),
(dim_x//2 + 1, 0) , (dim_x//2, 0)
))
delta = args.decay
alpha = args.diffusion
npeds = check_N_pedestrians(box, npeds)
walls = init_walls(exit_cells)
sff = init_SFF(exit_cells, dim_x, dim_y, drawS)
init_obstacles()
if drawS:
setup_dir('sff', clean_dirs)
plot_sff(sff, walls)
t1 = time.time()
tsim = 0
if drawP: setup_dir('peds', clean_dirs)
if drawD or drawD_avg: setup_dir('dff', clean_dirs)
times = []
old_dffs = []
if not parallel:
for n in range(nruns):
print("n= ", n, " nruns=", nruns)
if drawD_avg or drawD:
t, dffs = simulate((n, npeds, box, sff, shuffle, reverse,
drawP, drawD_avg or drawD))
old_dffs += dffs
else:
t = simulate((n, npeds, box, sff, shuffle, reverse, drawP,
drawD_avg or drawD))
tsim += t
print("time ", tsim)
times.append(t * dt)
if moore:
print("save moore.npy")
np.save("moore.npy",times)
else:
print("save neumann.npy")
np.save("neumann.npy",times)
else:
nproc = min(nruns, 8)
print('using {} processes'.format(nproc))
jobs = [(n, npeds, box, sff, shuffle, reverse, drawP, drawD_avg or drawD)
for n in range(nruns)]
with Pool(nproc) as pool:
results = pool.map(simulate, jobs)
if drawD_avg or drawD:
ts, chunked_dffs = zip(*results)
times = [t * dt for t in ts]
tsim = sum(ts)
old_dffs = sum(chunked_dffs, [])
else:
times = [t * dt for t in results]
tsim = sum(results)
t2 = time.time()
print_logs(npeds, width, height, tsim, dt, nruns, t2 - t1)
if drawD_avg:
print('plotting average DFF')
if moore:
title = "DFF-avg_Moore_runs_%d_N%d_S%.2f_D%.2f"%(nruns, npeds, kappaS, kappaD)
else:
title = "DFF-avg_Neumann_runs_%d_N%d_S%.2f_D%.2f"%(nruns, npeds, kappaS, kappaD)
plot_dff(sum(x[1] for x in old_dffs) / tsim, walls, title)
# title=r"$t = {:.2f}$ s, N={}, #runs = {}, $\kappa_S={}\;, \kappa_D={}$".format(sum(times), npeds, nruns, kappaS, kappaD)
if drawD:
print('plotting DFFs...')
max_dff = max(field.max() for _, field in old_dffs)
for tm, dff in old_dffs:
print("t: %3.4d" % tm)
plot_dff(dff, walls, "DFF-%3.4d"%tm, max_dff, "t: %3.4d" % tm)
return times
if __name__ == "__main__":
args = get_parser_args()
main(args)