-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmyflaskapp.py
124 lines (100 loc) · 4.99 KB
/
myflaskapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from flask import Flask, render_template, request, jsonify
import pandas as pd
import csv
import json
app = Flask(__name__, template_folder='./templates', static_folder='./static')
@app.route('/')
def index():
# items_predicted = ['Old_school_bond', 'Rune_platebody', 'Adamant_platebody', "Red_spiders'_eggs", 'Ruby_necklace', 'Amulet_of_strength']
# items_predicted = ["Red_spiders'_eggs", 'Ruby_necklace', 'Amulet_of_strength', "Green_d'hide_vamb", 'Staff_of_fire', \
# 'Blue_wizard_robe', 'Adamant_axe', 'Adamant_scimitar', 'Zamorak_monk_top', 'Staff_of_water', 'Staff_of_air', \
# 'Adamantite_bar', 'Amulet_of_power', "Green_d'hide_chaps", 'Mithril_platebody', 'Zamorak_monk_bottom', \
# "Green_d'hide_body", 'Rune_axe', 'Adamant_platebody', 'Runite_ore', 'Rune_scimitar', 'Rune_pickaxe', \
# 'Rune_full_helm', 'Rune_kiteshield', 'Rune_2h_sword', 'Rune_platelegs', 'Rune_platebody', 'Old_school_bond']
items_predicted = ['Amulet_of_strength', "Green_d'hide_vamb", 'Staff_of_fire', 'Zamorak_monk_top', 'Staff_of_air', \
'Adamantite_bar', 'Zamorak_monk_bottom', 'Adamant_platebody', 'Runite_ore', 'Rune_scimitar', 'Rune_pickaxe', \
'Rune_full_helm', 'Rune_kiteshield', 'Rune_2h_sword', 'Rune_platelegs', 'Rune_platebody', 'Old_school_bond']
data = {}
names = {}
count = 0
buy_avg = pd.read_csv('data/rsbuddy/buy_average.csv')
buy_avg = buy_avg.set_index('timestamp')
buy_avg = buy_avg.drop_duplicates()
buy_avg = buy_avg.reset_index()
buy_avg = buy_avg.replace(to_replace=0, method='ffill')
for item_predicted in items_predicted:
df = pd.read_csv('data/predictions/{}.csv'.format(item_predicted))
# print(item_predicted)
# print(df.tail(10))
current_df = buy_avg[['timestamp', item_predicted]]
current_df = current_df.rename(columns={'timestamp': 'ts', item_predicted: 'real'})
merged_df = pd.merge_asof(df, current_df, left_on='timestamp', right_on='ts', direction='backward')
merged_df = merged_df.tail(48) # Only show the last 48 time steps (24 hours worth of data)
chart_data = merged_df.to_dict(orient='records')
data['{}'.format(count)] = chart_data
names[count] = item_predicted
count += 1
# print(data)
return render_template("index.html", data=data, names=names)
# Webserver's suggestion engine
@app.route('/suggest')
def suggest():
# Prediction index is the type of prediction we want to compare to
# 1 - univariate
# 2 - multivar single step
# 3 to 7 - multivar multi steps 1 to 5
prediction_index = request.args.get("pred", default=1, type=int)
if (prediction_index > 7): return "Incorrect prediction index, please enter number between 1 and 7."
items_predicted = ['Amulet_of_strength', "Green_d'hide_vamb", 'Staff_of_fire', 'Zamorak_monk_top', 'Staff_of_air', \
'Adamantite_bar', 'Zamorak_monk_bottom', 'Adamant_platebody', 'Runite_ore', 'Rune_scimitar', 'Rune_pickaxe', \
'Rune_full_helm', 'Rune_kiteshield', 'Rune_2h_sword', 'Rune_platelegs', 'Rune_platebody', 'Old_school_bond']
data = {}
buy_avg = pd.read_csv('data/rsbuddy/buy_average.csv')
buy_avg = buy_avg.set_index('timestamp')
buy_avg = buy_avg.drop_duplicates()
buy_avg = buy_avg.replace(to_replace=0, method='ffill')
# Get latest real price values
temp_last_row = None
with open('data/predictions/{}.csv'.format(items_predicted[0]), mode='r') as infile:
for row in reversed(list(csv.reader(infile))):
temp_last_row = row
break
buy_avg = buy_avg.loc[~buy_avg.index.duplicated(keep='first')]
closest_real_values = buy_avg.iloc[buy_avg.index.get_loc(int(temp_last_row[0]), method='nearest')]
# Get all values predicted
for item_predicted in items_predicted:
with open('data/predictions/{}.csv'.format(item_predicted), mode='r') as infile:
last_row = None
for row in reversed(list(csv.reader(infile))):
last_row = row
break
# Save the real, predicted and profit values
real_val = int(closest_real_values[item_predicted])
pred_val = int(last_row[prediction_index])
data[item_predicted] = [real_val, pred_val, pred_val-real_val]
model_used = ""
if (prediction_index == 1): model_used = "univariate"
elif (prediction_index == 2): model_used = "multivariate single step"
elif (prediction_index > 2): model_used = "multivariate multi step - {} steps forward".format(prediction_index - 2)
return render_template("suggest.html", data=data, title=model_used)
# A route to return all of the available entries in our catalog.
@app.route('/api', methods=['GET'])
def api_all():
if 'name' in request.args:
name = str(request.args['name'])
else:
return "Error: No name field provided. Please specify an name."
try:
with open('data/predictions/{}.csv'.format(name), mode='r') as infile:
reader = csv.reader(infile)
header_row = next(reader)
print(header_row)
last_row = []
for row in reader:
last_row = row
mydict = {name:last_row[idx] for idx, name in enumerate(header_row)}
except EnvironmentError:
return "File not found. Please specify different name"
return jsonify(mydict)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=80)