forked from rgrosse/compositional_structure_search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
38 lines (26 loc) · 1.09 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
from experiments import init_experiment, QuickParams
from observations import DataMatrix
###
### First follow the configuration directions in README.md. Then run the following:
###
### python example.py
### python experiments.py everything example
###
def read_array(fname):
return np.array([map(float, line.split()) for line in open(fname)])
def read_list(fname):
return map(str.strip, open(fname).readlines())
def init():
X = read_array('example_data/animals-data.txt')
row_labels = read_list('example_data/animals-names.txt')
col_labels = read_list('example_data/animals-features.txt')
# normalize to zero mean, unit variance
X -= X.mean()
X /= X.std()
# since the data were binary, add a small amount of noise to prevent degeneracy
X = np.random.normal(X, np.sqrt(0.1))
data_matrix = DataMatrix.from_real_values(X, row_labels=row_labels, col_labels=col_labels)
init_experiment('example', data_matrix, QuickParams(search_depth=2))
if __name__ == '__main__':
init()