forked from davidzarruk/Parallel_Computing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCpp_main_OpenACC.cpp
249 lines (187 loc) · 6.01 KB
/
Cpp_main_OpenACC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#include <iostream>
#include <nlopt.hpp>
#include <omp.h>
using namespace std;
//======================================
// Grids
//======================================
// Function to construct the grid for capital (x)
void gridx(const int nx, const float xmin, const float xmax, float* xgrid){
const float size = nx;
const float xstep = (xmax - xmin) /(size - 1);
float it = 0;
for(int i = 0; i < nx; i++){
xgrid[i] = xmin + it*xstep;
it++;
}
}
// Function to construct the grid for productivity (e) using Tauchen (1986)
void gride(const int ne, const float ssigma_eps, const float llambda_eps, const float m, float* egrid){
// This grid is made with Tauchen (1986)
const float size = ne;
const float ssigma_y = sqrt(pow(ssigma_eps, 2) / (1 - pow(llambda_eps, 2)));
const float estep = 2*ssigma_y*m / (size-1);
float it = 0;
for(int i = 0; i < ne; i++){
egrid[i] = (-m*sqrt(pow(ssigma_eps, 2) / (1 - pow(llambda_eps, 2))) + it*estep);
it++;
}
}
// Function to compute CDF of Normal distribution
float normCDF(const float value){
return 0.5 * erfc(-value * M_SQRT1_2);
}
// Function to construct the transition probability matrix for productivity (P) using Tauchen (1986)
void eprob(const int ne, const float ssigma_eps, const float llambda_eps, const float m, const float* egrid, float* P){
// This grid is made with Tauchen (1986)
// P is: first ne elements are transition from e_0 to e_i,
// second ne elementrs are from e_1 to e_i, ...
const float w = egrid[1] - egrid[0];
for(int j = 0; j < ne; j++){
for(int k = 0; k < ne; k++){
if(k == 0){
P[j*ne + k] = normCDF((egrid[k] - llambda_eps*egrid[j] + (w/2))/ssigma_eps);
} else if(k == ne-1){
P[j*ne + k] = 1 - normCDF((egrid[k] - llambda_eps*egrid[j] - (w/2))/ssigma_eps);
} else{
P[j*ne + k] = normCDF((egrid[k] - llambda_eps*egrid[j] + (w/2))/ssigma_eps) - normCDF((egrid[k] - llambda_eps*egrid[j] - (w/2))/ssigma_eps);
}
}
}
}
// Data structure of state and exogenous variables
struct modelState{
int ie;
int ix;
int ne;
int nx;
int T;
int age;
float *P;
float *xgrid;
float *egrid;
float ssigma;
float bbeta;
float *V;
float w;
float r;
};
// Function that computes value function, given vector of state variables
float value(modelState currentState){
int ie = currentState.ie;
int ix = currentState.ix;
int ne = currentState.ne;
int nx = currentState.nx;
int T = currentState.T;
int age = currentState.age;
float *P = currentState.P;
float *xgrid = currentState.xgrid;
float *egrid = currentState.egrid;
float ssigma = currentState.ssigma;
float bbeta = currentState.bbeta;
float *V = currentState.V;
float w = currentState.w;
float r = currentState.r;
float expected;
float utility;
float cons;
float VV = pow(-10.0,5.0);
for(int ixp = 0; ixp < nx; ixp++){
expected = 0.0;
if(age < T-1){
for(int iep = 0; iep < ne; iep++){
expected = expected + P[ie*ne + iep]*V[(age+1)*nx*ne + ixp*ne + iep];
}
}
cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
utility = pow(cons, 1-ssigma) / (1-ssigma) + bbeta*expected;
if(cons <= 0){
utility = pow(-10.0, 5.0);
}
if(utility >= VV){
VV = utility;
}
}
return VV;
}
//======================================
// MAIN MAIN MAIN
//======================================
int main()
{
//--------------------------------//
// Initialization //
//--------------------------------//
// Grid for x
const int nx = 1500;
const float xmin = 0.1;
const float xmax = 4.0;
// Grid for e
const int ne = 15;
const float ssigma_eps = 0.02058;
const float llambda_eps = 0.99;
const float m = 1.5;
// Utility function
const float ssigma = 2;
const float bbeta = 0.97;
const int T = 10;
// Prices
const float r = 0.07;
const float w = 5;
// Initialize the grid for X
float xgrid[nx];
// Initialize the grid for E and the transition probability matrix
float egrid[ne];
float P[ne*ne];
// Initialize value function V
size_t sizeV = T*ne*nx*sizeof(float);
float *V;
V = (float *)malloc(sizeV);
//--------------------------------//
// Grid creation //
//--------------------------------//
gridx(nx, xmin, xmax, xgrid);
gride(ne, ssigma_eps, llambda_eps, m, egrid);
eprob(ne, ssigma_eps, llambda_eps, m, egrid, P);
// Exponential of the grid e
for(int i=0; i<ne; i++){
egrid[i] = exp(egrid[i]);
}
//--------------------------------//
// Life-cycle computation //
//--------------------------------//
cout << " " << endl;
cout << "Life cycle computation: " << endl;
cout << " " << endl;
// Variables for computation time
double t0 = omp_get_wtime();
double t = t0;
for(int age=T-1; age>=0; age--){
#pragma acc data copy(V[0:(T*ne*nx)])
#pragma acc parallel loop
for(int ix = 0; ix<nx; ix++){
for(int ie = 0; ie<ne; ie++){
modelState currentState = {ie, ix, ne, nx, T, age, P, xgrid, egrid, ssigma, bbeta, V, w, r};
V[age*nx*ne + ix*ne + ie] = value(currentState);
}
}
t = omp_get_wtime() - t0;
cout << "Age: " << age+1 << ". Time: " << 1000000*((float)t)/CLOCKS_PER_SEC << " seconds." << endl;
}
cout << " " << endl;
t = omp_get_wtime() - t0;
cout << "TOTAL ELAPSED TIME: " << 1000000*((float)t)/CLOCKS_PER_SEC << " seconds. " << endl;
//--------------------------------//
// Some checks //
//--------------------------------//
cout << " " << endl;
cout << " - - - - - - - - - - - - - - - - - - - - - " << endl;
cout << " " << endl;
cout << "The first entries of the value function: " << endl;
cout << " " << endl;
for(int i = 0; i<3; i++){
cout << V[i] << endl;
}
cout << " " << endl;
return 0;
}