Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

./train.sh results got aborted (core dumped) #180

Open
Rheza001 opened this issue Apr 6, 2020 · 3 comments
Open

./train.sh results got aborted (core dumped) #180

Rheza001 opened this issue Apr 6, 2020 · 3 comments

Comments

@Rheza001
Copy link

Rheza001 commented Apr 6, 2020

Please help me. i'm stuck in this problem. when i tried to run ./train.sh, i got this error:

rheza@rheza-pc:~/Documents/BirdWatcher/caffe/examples/MobileNet-SSD$ ./train.sh
I0407 01:31:07.614326 5755 caffe.cpp:210] Use CPU.
I0407 01:31:07.615535 5755 solver.cpp:63] Initializing solver from parameters:
train_net: "example/MobileNetSSD_train.prototxt"
test_net: "example/MobileNetSSD_test.prototxt"
test_iter: 673
test_interval: 10000
base_lr: 0.0005
display: 10
max_iter: 120000
lr_policy: "multistep"
gamma: 0.5
weight_decay: 5e-05
snapshot: 1000
snapshot_prefix: "snapshot/mobilenet"
solver_mode: CPU
debug_info: false
train_state {
level: 0
stage: ""
}
snapshot_after_train: true
test_initialization: false
average_loss: 10
stepvalue: 20000
stepvalue: 40000
iter_size: 1
type: "RMSProp"
eval_type: "detection"
ap_version: "11point"
I0407 01:31:07.615903 5755 solver.cpp:96] Creating training net from train_net file: example/MobileNetSSD_train.prototxt
I0407 01:31:07.618894 5755 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: example/MobileNetSSD_train.prototxt
I0407 01:31:07.618934 5755 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
I0407 01:31:07.619567 5755 net.cpp:58] Initializing net from parameters:
name: "MobileNet-SSD"
state {
phase: TRAIN
level: 0
stage: ""
}
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.007843
mirror: true
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5
resize_param {
prob: 1
resize_mode: WARP
height: 300
width: 300
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0
}
expand_param {
prob: 0.5
max_expand_ratio: 4
}
}
data_param {
source: "trainval_lmdb/"
batch_size: 24
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample: 1
max_trials: 1
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
min_jaccard_overlap: 0.1
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
min_jaccard_overlap: 0.3
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
min_jaccard_overlap: 0.7
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
min_jaccard_overlap: 0.9
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1
min_aspect_ratio: 0.5
max_aspect_ratio: 2
}
sample_constraint {
max_jaccard_overlap: 1
}
max_sample: 1
max_trials: 50
}
label_map_file: "labelmap.prototxt"
}
}
layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "Convolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "Convolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
group: 64
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "Convolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "Convolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "Convolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "Convolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "Convolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "Convolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "Convolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "Convolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "Convolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "Convolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "Convolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv14_1"
type: "Convolution"
bottom: "conv13"
top: "conv14_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_1/bn"
type: "BatchNorm"
bottom: "conv14_1"
top: "conv14_1"
}
layer {
name: "conv14_1/scale"
type: "Scale"
bottom: "conv14_1"
top: "conv14_1"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_1/relu"
type: "ReLU"
bottom: "conv14_1"
top: "conv14_1"
}
layer {
name: "conv14_2"
type: "Convolution"
bottom: "conv14_1"
top: "conv14_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_2/bn"
type: "BatchNorm"
bottom: "conv14_2"
top: "conv14_2"
}
layer {
name: "conv14_2/scale"
type: "Scale"
bottom: "conv14_2"
top: "conv14_2"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_2/relu"
type: "ReLU"
bottom: "conv14_2"
top: "conv14_2"
}
layer {
name: "conv15_1"
type: "Convolution"
bottom: "conv14_2"
top: "conv15_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_1/bn"
type: "BatchNorm"
bottom: "conv15_1"
top: "conv15_1"
}
layer {
name: "conv15_1/scale"
type: "Scale"
bottom: "conv15_1"
top: "conv15_1"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_1/relu"
type: "ReLU"
bottom: "conv15_1"
top: "conv15_1"
}
layer {
name: "conv15_2"
type: "Convolution"
bottom: "conv15_1"
top: "conv15_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_2/bn"
type: "BatchNorm"
bottom: "conv15_2"
top: "conv15_2"
}
layer {
name: "conv15_2/scale"
type: "Scale"
bottom: "conv15_2"
top: "conv15_2"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_2/relu"
type: "ReLU"
bottom: "conv15_2"
top: "conv15_2"
}
layer {
name: "conv16_1"
type: "Convolution"
bottom: "conv15_2"
top: "conv16_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_1/bn"
type: "BatchNorm"
bottom: "conv16_1"
top: "conv16_1"
}
layer {
name: "conv16_1/scale"
type: "Scale"
bottom: "conv16_1"
top: "conv16_1"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_1/relu"
type: "ReLU"
bottom: "conv16_1"
top: "conv16_1"
}
layer {
name: "conv16_2"
type: "Convolution"
bottom: "conv16_1"
top: "conv16_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_2/bn"
type: "BatchNorm"
bottom: "conv16_2"
top: "conv16_2"
}
layer {
name: "conv16_2/scale"
type: "Scale"
bottom: "conv16_2"
top: "conv16_2"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_2/relu"
type: "ReLU"
bottom: "conv16_2"
top: "conv16_2"
}
layer {
name: "conv17_1"
type: "Convolution"
bottom: "conv16_2"
top: "conv17_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_1/bn"
type: "BatchNorm"
bottom: "conv17_1"
top: "conv17_1"
}
layer {
name: "conv17_1/scale"
type: "Scale"
bottom: "conv17_1"
top: "conv17_1"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_1/relu"
type: "ReLU"
bottom: "conv17_1"
top: "conv17_1"
}
layer {
name: "conv17_2"
type: "Convolution"
bottom: "conv17_1"
top: "conv17_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_2/bn"
type: "BatchNorm"
bottom: "conv17_2"
top: "conv17_2"
}
layer {
name: "conv17_2/scale"
type: "Scale"
bottom: "conv17_2"
top: "conv17_2"
param {
lr_mult: 0.1
decay_mult: 0
}
param {
lr_mult: 0.2
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_2/relu"
type: "ReLU"
bottom: "conv17_2"
top: "conv17_2"
}
layer {
name: "conv11_mbox_loc"
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv11_mbox_loc_perm"
type: "Permute"
bottom: "conv11_mbox_loc"
top: "conv11_mbox_loc_perm"
permute_param {
order: 0
or
I0407 01:31:07.624553 5755 layer_factory.hpp:77] Creating layer data
I0407 01:31:07.624944 5755 net.cpp:100] Creating Layer data
I0407 01:31:07.624984 5755 net.cpp:408] data -> data
I0407 01:31:07.625072 5755 net.cpp:408] data -> label
I0407 01:31:07.625355 5758 db_lmdb.cpp:35] Opened lmdb trainval_lmdb/
I0407 01:31:07.631899 5755 annotated_data_layer.cpp:62] output data size: 24,3,300,300
I0407 01:31:07.632081 5755 net.cpp:150] Setting up data
I0407 01:31:07.632103 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632130 5755 net.cpp:157] Top shape: 1 1 1 8 (8)
I0407 01:31:07.632141 5755 net.cpp:165] Memory required for data: 25920032
I0407 01:31:07.632176 5755 layer_factory.hpp:77] Creating layer data_data_0_split
I0407 01:31:07.632277 5755 net.cpp:100] Creating Layer data_data_0_split
I0407 01:31:07.632299 5755 net.cpp:434] data_data_0_split <- data
I0407 01:31:07.632333 5755 net.cpp:408] data_data_0_split -> data_data_0_split_0
I0407 01:31:07.632370 5755 net.cpp:408] data_data_0_split -> data_data_0_split_1
I0407 01:31:07.632392 5755 net.cpp:408] data_data_0_split -> data_data_0_split_2
I0407 01:31:07.632414 5755 net.cpp:408] data_data_0_split -> data_data_0_split_3
I0407 01:31:07.632437 5755 net.cpp:408] data_data_0_split -> data_data_0_split_4
I0407 01:31:07.632462 5755 net.cpp:408] data_data_0_split -> data_data_0_split_5
I0407 01:31:07.632474 5755 net.cpp:408] data_data_0_split -> data_data_0_split_6
I0407 01:31:07.632503 5755 net.cpp:150] Setting up data_data_0_split
I0407 01:31:07.632553 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632575 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632604 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632701 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632715 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632732 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632766 5755 net.cpp:157] Top shape: 24 3 300 300 (6480000)
I0407 01:31:07.632786 5755 net.cpp:165] Memory required for data: 207360032
I0407 01:31:07.632805 5755 layer_factory.hpp:77] Creating layer conv0
I0407 01:31:07.632861 5755 net.cpp:100] Creating Layer conv0
I0407 01:31:07.632880 5755 net.cpp:434] conv0 <- data_data_0_split_0
I0407 01:31:07.632901 5755 net.cpp:408] conv0 -> conv0
I0407 01:31:07.633342 5755 net.cpp:150] Setting up conv0
I0407 01:31:07.633366 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.633389 5755 net.cpp:165] Memory required for data: 276480032
I0407 01:31:07.633430 5755 layer_factory.hpp:77] Creating layer conv0/bn
I0407 01:31:07.633461 5755 net.cpp:100] Creating Layer conv0/bn
I0407 01:31:07.633479 5755 net.cpp:434] conv0/bn <- conv0
I0407 01:31:07.633499 5755 net.cpp:395] conv0/bn -> conv0 (in-place)
I0407 01:31:07.633626 5755 net.cpp:150] Setting up conv0/bn
I0407 01:31:07.633653 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.633674 5755 net.cpp:165] Memory required for data: 345600032
I0407 01:31:07.633699 5755 layer_factory.hpp:77] Creating layer conv0/scale
I0407 01:31:07.633725 5755 net.cpp:100] Creating Layer conv0/scale
I0407 01:31:07.633750 5755 net.cpp:434] conv0/scale <- conv0
I0407 01:31:07.633770 5755 net.cpp:395] conv0/scale -> conv0 (in-place)
I0407 01:31:07.633805 5755 layer_factory.hpp:77] Creating layer conv0/scale
I0407 01:31:07.634006 5755 net.cpp:150] Setting up conv0/scale
I0407 01:31:07.634032 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.634052 5755 net.cpp:165] Memory required for data: 414720032
I0407 01:31:07.634075 5755 layer_factory.hpp:77] Creating layer conv0/relu
I0407 01:31:07.634095 5755 net.cpp:100] Creating Layer conv0/relu
I0407 01:31:07.634112 5755 net.cpp:434] conv0/relu <- conv0
I0407 01:31:07.634177 5755 net.cpp:395] conv0/relu -> conv0 (in-place)
I0407 01:31:07.634208 5755 net.cpp:150] Setting up conv0/relu
I0407 01:31:07.634235 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.634255 5755 net.cpp:165] Memory required for data: 483840032
I0407 01:31:07.634274 5755 layer_factory.hpp:77] Creating layer conv1/dw
I0407 01:31:07.634295 5755 net.cpp:100] Creating Layer conv1/dw
I0407 01:31:07.634312 5755 net.cpp:434] conv1/dw <- conv0
I0407 01:31:07.634346 5755 net.cpp:408] conv1/dw -> conv1/dw
I0407 01:31:07.634388 5755 net.cpp:150] Setting up conv1/dw
I0407 01:31:07.634407 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.634435 5755 net.cpp:165] Memory required for data: 552960032
I0407 01:31:07.634454 5755 layer_factory.hpp:77] Creating layer conv1/dw/bn
I0407 01:31:07.634479 5755 net.cpp:100] Creating Layer conv1/dw/bn
I0407 01:31:07.634496 5755 net.cpp:434] conv1/dw/bn <- conv1/dw
I0407 01:31:07.634526 5755 net.cpp:395] conv1/dw/bn -> conv1/dw (in-place)
I0407 01:31:07.634642 5755 net.cpp:150] Setting up conv1/dw/bn
I0407 01:31:07.634660 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.634680 5755 net.cpp:165] Memory required for data: 622080032
I0407 01:31:07.634704 5755 layer_factory.hpp:77] Creating layer conv1/dw/scale
I0407 01:31:07.634733 5755 net.cpp:100] Creating Layer conv1/dw/scale
I0407 01:31:07.634752 5755 net.cpp:434] conv1/dw/scale <- conv1/dw
I0407 01:31:07.634771 5755 net.cpp:395] conv1/dw/scale -> conv1/dw (in-place)
I0407 01:31:07.634796 5755 layer_factory.hpp:77] Creating layer conv1/dw/scale
I0407 01:31:07.635004 5755 net.cpp:150] Setting up conv1/dw/scale
I0407 01:31:07.635033 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.635056 5755 net.cpp:165] Memory required for data: 691200032
I0407 01:31:07.635079 5755 layer_factory.hpp:77] Creating layer conv1/dw/relu
I0407 01:31:07.635362 5755 net.cpp:100] Creating Layer conv1/dw/relu
I0407 01:31:07.635430 5755 net.cpp:434] conv1/dw/relu <- conv1/dw
I0407 01:31:07.635452 5755 net.cpp:395] conv1/dw/relu -> conv1/dw (in-place)
I0407 01:31:07.635473 5755 net.cpp:150] Setting up conv1/dw/relu
I0407 01:31:07.635489 5755 net.cpp:157] Top shape: 24 32 150 150 (17280000)
I0407 01:31:07.635519 5755 net.cpp:165] Memory required for data: 760320032
I0407 01:31:07.635535 5755 layer_factory.hpp:77] Creating layer conv1
I0407 01:31:07.635557 5755 net.cpp:100] Creating Layer conv1
I0407 01:31:07.635576 5755 net.cpp:434] conv1 <- conv1/dw
I0407 01:31:07.635604 5755 net.cpp:408] conv1 -> conv1
I0407 01:31:07.635674 5755 net.cpp:150] Setting up conv1
I0407 01:31:07.635692 5755 net.cpp:157] Top shape: 24 64 150 150 (34560000)
I0407 01:31:07.635722 5755 net.cpp:165] Memory required for data: 898560032
I0407 01:31:07.635741 5755 layer_factory.hpp:77] Creating layer conv1/bn
I0407 01:31:07.635761 5755 net.cpp:100] Creating Layer conv1/bn
I0407 01:31:07.635778 5755 net.cpp:434] conv1/bn <- conv1
I0407 01:31:07.635809 5755 net.cpp:395] conv1/bn -> conv1 (in-place)
I0407 01:31:07.635932 5755 net.cpp:150] Setting up conv1/bn
I0407 01:31:07.635951 5755 net.cpp:157] Top shape: 24 64 150 150 (34560000)
I0407 01:31:07.635970 5755 net.cpp:165] Memory required for data: 1036800032
I0407 01:31:07.636008 5755 layer_factory.hpp:77] Creating layer conv1/scale
I0407 01:31:07.636029 5755 net.cpp:100] Creating Layer conv1/scale
I0407 01:31:07.636047 5755 net.cpp:434] conv1/scale <- conv1
I0407 01:31:07.636067 5755 net.cpp:395] conv1/scale -> conv1 (in-place)
I0407 01:31:07.636101 5755 layer_factory.hpp:77] Creating layer conv1/scale
I0407 01:31:07.636330 5755 net.cpp:150] Setting up conv1/scale
I0407 01:31:07.636350 5755 net.cpp:157] Top shape: 24 64 150 150 (34560000)
I0407 01:31:07.636369 5755 net.cpp:165] Memory required for data: 1175040032
I0407 01:31:07.636404 5755 layer_factory.hpp:77] Creating layer conv1/relu
I0407 01:31:07.636426 5755 net.cpp:100] Creating Layer conv1/relu
I0407 01:31:07.636443 5755 net.cpp:434] conv1/relu <- conv1
I0407 01:31:07.636464 5755 net.cpp:395] conv1/relu -> conv1 (in-place)
I0407 01:31:07.636492 5755 net.cpp:150] Setting up conv1/relu
I0407 01:31:07.636508 5755 net.cpp:157] Top shape: 24 64 150 150 (34560000)
I0407 01:31:07.636528 5755 net.cpp:165] Memory required for data: 1313280032
I0407 01:31:07.636544 5755 layer_factory.hpp:77] Creating layer conv2/dw
I0407 01:31:07.636566 5755 net.cpp:100] Creating Layer conv2/dw
I0407 01:31:07.636591 5755 net.cpp:434] conv2/dw <- conv1
I0407 01:31:07.636611 5755 net.cpp:408] conv2/dw -> conv2/dw
I0407 01:31:07.636660 5755 net.cpp:150] Setting up conv2/dw
I0407 01:31:07.636685 5755 net.cpp:157] Top shape: 24 64 75 75 (8640000)
I0407 01:31:07.636705 5755 net.cpp:165] Memory required for data: 1347840032
I0407 01:31:07.636724 5755 layer_factory.hpp:77] Creating layer conv2/dw/bn
I0407 01:31:07.636744 5755 net.cpp:100] Creating Layer conv2/dw/bn
I0407 01:31:07.636760 5755 net.cpp:434] conv2/dw/bn <- conv2/dw
I0407 01:31:07.636787 5755 net.cpp:395] conv2/dw/bn -> conv2/dw (in-place)
I0407 01:31:07.636843 5755 net.cpp:150] Setting up conv2/dw/bn
I0407 01:31:07.636862 5755 net.cpp:157] Top shape: 24 64 75 75 (8640000)
I0407 01:31:07.636888 5755 net.cpp:165] Memory required for data: 1382400032
I0407 01:31:07.636911 5755 layer_factory.hpp:77] Creating layer conv2/dw/scale
I0407 01:31:07.636934 5755 net.cpp:100] Creating Layer conv2/dw/scale
I0407 01:31:07.636952 5755 net.cpp:434] conv2/dw/scale <- conv2/dw
I0407 01:31:07.636983 5755 net.cpp:395] conv2/dw/scale -> conv2/dw (in-place)
I0407 01:31:07.637008 5755 layer_factory.hpp:77] Creating layer conv2/dw/scale
I0407 01:31:07.637078 5755 net.cpp:150] Setting up conv2/dw/scale
I0407 01:31:07.637095 5755 net.cpp:157] Top shape: 24 64 75 75 (8640000)
I0407 01:31:07.637115 5755 net.cpp:165] Memory required for data: 1416960032
I0407 01:31:07.637136 5755 layer_factory.hpp:77] Creating layer conv2/dw/relu
I0407 01:31:07.637158 5755 net.cpp:100] Creating Layer conv2/dw/relu
I0407 01:31:07.637199 5755 net.cpp:434] conv2/dw/relu <- conv2/dw
I0407 01:31:07.637219 5755 net.cpp:395] conv2/dw/relu -> conv2/dw (in-place)
I0407 01:31:07.637238 5755 net.cpp:150] Setting up conv2/dw/relu
I0407 01:31:07.637253 5755 net.cpp:157] Top shape: 24 64 75 75 (8640000)
I0407 01:31:07.637281 5755 net.cpp:165] Memory required for data: 1451520032
I0407 01:31:07.637298 5755 layer_factory.hpp:77] Creating layer conv2
I0407 01:31:07.637328 5755 net.cpp:100] Creating Layer conv2
I0407 01:31:07.637346 5755 net.cpp:434] conv2 <- conv2/dw
I0407 01:31:07.637374 5755 net.cpp:408] conv2 -> conv2
I0407 01:31:07.637590 5755 net.cpp:150] Setting up conv2
I0407 01:31:07.637609 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.637629 5755 net.cpp:165] Memory required for data: 1520640032
I0407 01:31:07.637648 5755 layer_factory.hpp:77] Creating layer conv2/bn
I0407 01:31:07.637676 5755 net.cpp:100] Creating Layer conv2/bn
I0407 01:31:07.637694 5755 net.cpp:434] conv2/bn <- conv2
I0407 01:31:07.637712 5755 net.cpp:395] conv2/bn -> conv2 (in-place)
I0407 01:31:07.637782 5755 net.cpp:150] Setting up conv2/bn
I0407 01:31:07.637799 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.637820 5755 net.cpp:165] Memory required for data: 1589760032
I0407 01:31:07.637841 5755 layer_factory.hpp:77] Creating layer conv2/scale
I0407 01:31:07.637869 5755 net.cpp:100] Creating Layer conv2/scale
I0407 01:31:07.637887 5755 net.cpp:434] conv2/scale <- conv2
I0407 01:31:07.637907 5755 net.cpp:395] conv2/scale -> conv2 (in-place)
I0407 01:31:07.637930 5755 layer_factory.hpp:77] Creating layer conv2/scale
I0407 01:31:07.638006 5755 net.cpp:150] Setting up conv2/scale
I0407 01:31:07.638025 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.638042 5755 net.cpp:165] Memory required for data: 1658880032
I0407 01:31:07.638072 5755 layer_factory.hpp:77] Creating layer conv2/relu
I0407 01:31:07.638098 5755 net.cpp:100] Creating Layer conv2/relu
I0407 01:31:07.638115 5755 net.cpp:434] conv2/relu <- conv2
I0407 01:31:07.638134 5755 net.cpp:395] conv2/relu -> conv2 (in-place)
I0407 01:31:07.638204 5755 net.cpp:150] Setting up conv2/relu
I0407 01:31:07.638226 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.638245 5755 net.cpp:165] Memory required for data: 1728000032
I0407 01:31:07.638270 5755 layer_factory.hpp:77] Creating layer conv3/dw
I0407 01:31:07.638293 5755 net.cpp:100] Creating Layer conv3/dw
I0407 01:31:07.638309 5755 net.cpp:434] conv3/dw <- conv2
I0407 01:31:07.638329 5755 net.cpp:408] conv3/dw -> conv3/dw
I0407 01:31:07.638392 5755 net.cpp:150] Setting up conv3/dw
I0407 01:31:07.638411 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.638432 5755 net.cpp:165] Memory required for data: 1797120032
I0407 01:31:07.638458 5755 layer_factory.hpp:77] Creating layer conv3/dw/bn
I0407 01:31:07.638480 5755 net.cpp:100] Creating Layer conv3/dw/bn
I0407 01:31:07.638499 5755 net.cpp:434] conv3/dw/bn <- conv3/dw
I0407 01:31:07.638516 5755 net.cpp:395] conv3/dw/bn -> conv3/dw (in-place)
I0407 01:31:07.638576 5755 net.cpp:150] Setting up conv3/dw/bn
I0407 01:31:07.638592 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.638610 5755 net.cpp:165] Memory required for data: 1866240032
I0407 01:31:07.638638 5755 layer_factory.hpp:77] Creating layer conv3/dw/scale
I0407 01:31:07.638667 5755 net.cpp:100] Creating Layer conv3/dw/scale
I0407 01:31:07.638684 5755 net.cpp:434] conv3/dw/scale <- conv3/dw
I0407 01:31:07.638705 5755 net.cpp:395] conv3/dw/scale -> conv3/dw (in-place)
I0407 01:31:07.638732 5755 layer_factory.hpp:77] Creating layer conv3/dw/scale
I0407 01:31:07.638808 5755 net.cpp:150] Setting up conv3/dw/scale
I0407 01:31:07.638825 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.638854 5755 net.cpp:165] Memory required for data: 1935360032
I0407 01:31:07.638877 5755 layer_factory.hpp:77] Creating layer conv3/dw/relu
I0407 01:31:07.639402 5755 net.cpp:100] Creating Layer conv3/dw/relu
I0407 01:31:07.639454 5755 net.cpp:434] conv3/dw/relu <- conv3/dw
I0407 01:31:07.639475 5755 net.cpp:395] conv3/dw/relu -> conv3/dw (in-place)
I0407 01:31:07.639497 5755 net.cpp:150] Setting up conv3/dw/relu
I0407 01:31:07.639513 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.639541 5755 net.cpp:165] Memory required for data: 2004480032
I0407 01:31:07.639559 5755 layer_factory.hpp:77] Creating layer conv3
I0407 01:31:07.639580 5755 net.cpp:100] Creating Layer conv3
I0407 01:31:07.639597 5755 net.cpp:434] conv3 <- conv3/dw
I0407 01:31:07.639616 5755 net.cpp:408] conv3 -> conv3
I0407 01:31:07.640012 5755 net.cpp:150] Setting up conv3
I0407 01:31:07.640041 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.640063 5755 net.cpp:165] Memory required for data: 2073600032
I0407 01:31:07.640082 5755 layer_factory.hpp:77] Creating layer conv3/bn
I0407 01:31:07.640101 5755 net.cpp:100] Creating Layer conv3/bn
I0407 01:31:07.640118 5755 net.cpp:434] conv3/bn <- conv3
I0407 01:31:07.640146 5755 net.cpp:395] conv3/bn -> conv3 (in-place)
I0407 01:31:07.640205 5755 net.cpp:150] Setting up conv3/bn
I0407 01:31:07.640229 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.640249 5755 net.cpp:165] Memory required for data: 2142720032
I0407 01:31:07.640271 5755 layer_factory.hpp:77] Creating layer conv3/scale
I0407 01:31:07.640292 5755 net.cpp:100] Creating Layer conv3/scale
I0407 01:31:07.640309 5755 net.cpp:434] conv3/scale <- conv3
I0407 01:31:07.640928 5755 net.cpp:395] conv3/scale -> conv3 (in-place)
I0407 01:31:07.640964 5755 layer_factory.hpp:77] Creating layer conv3/scale
I0407 01:31:07.641057 5755 net.cpp:150] Setting up conv3/scale
I0407 01:31:07.641077 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.641098 5755 net.cpp:165] Memory required for data: 2211840032
I0407 01:31:07.641126 5755 layer_factory.hpp:77] Creating layer conv3/relu
I0407 01:31:07.641151 5755 net.cpp:100] Creating Layer conv3/relu
I0407 01:31:07.641168 5755 net.cpp:434] conv3/relu <- conv3
I0407 01:31:07.641187 5755 net.cpp:395] conv3/relu -> conv3 (in-place)
I0407 01:31:07.641216 5755 net.cpp:150] Setting up conv3/relu
I0407 01:31:07.641232 5755 net.cpp:157] Top shape: 24 128 75 75 (17280000)
I0407 01:31:07.641252 5755 net.cpp:165] Memory required for data: 2280960032
I0407 01:31:07.641268 5755 layer_factory.hpp:77] Creating layer conv4/dw
I0407 01:31:07.641290 5755 net.cpp:100] Creating Layer conv4/dw
I0407 01:31:07.641315 5755 net.cpp:434] conv4/dw <- conv3
I0407 01:31:07.641335 5755 net.cpp:408] conv4/dw -> conv4/dw
I0407 01:31:07.641422 5755 net.cpp:150] Setting up conv4/dw
I0407 01:31:07.641443 5755 net.cpp:157] Top shape: 24 128 38 38 (4435968)
I0407 01:31:07.641465 5755 net.cpp:165] Memory required for data: 2298703904
I0407 01:31:07.641487 5755 layer_factory.hpp:77] Creating layer conv4/dw/bn
I0407 01:31:07.641516 5755 net.cpp:100] Creating Layer conv4/dw/bn
I0407 01:31:07.641533 5755 net.cpp:434] conv4/dw/bn <- conv4/dw
I0407 01:31:07.641552 5755 net.cpp:395] conv4/dw/bn -> conv4/dw (in-place)
I0407 01:31:07.641609 5755 net.cpp:150] Setting up conv4/dw/bn
I0407 01:31:07.641629 5755 net.cpp:157] Top shape: 24 128 38 38 (4435968)
I0407 01:31:07.641649 5755 net.cpp:165] Memory required for data: 2316447776
I0407 01:31:07.641670 5755 layer_factory.hpp:77] Creating layer conv4/dw/scale
I0407 01:31:07.641708 5755 net.cpp:100] Creating Layer conv4/dw/scale
I0407 01:31:07.641726 5755 net.cpp:434] conv4/dw/scale <- conv4/dw
I0407 01:31:07.641746 5755 net.cpp:395] conv4/dw/scale -> conv4/dw (in-place)
I0407 01:31:07.641774 5755 layer_factory.hpp:77] Creating layer conv4/dw/scale
I0407 01:31:07.641820 5755 net.cpp:150] Setting up conv4/dw/scale
I0407 01:31:07.641839 5755 net.cpp:157] Top shape: 24 128 38 38 (4435968)
I0407 01:31:07.641857 5755 net.cpp:165] Memory required for data: 2334191648
I0407 01:31:07.641877 5755 layer_factory.hpp:77] Creating layer conv4/dw/relu
I0407 01:31:07.641911 5755 net.cpp:100] Creating Layer conv4/dw/relu
I0407 01:31:07.641950 5755 net.cpp:434] conv4/dw/relu <- conv4/dw
I0407 01:31:07.641971 5755 net.cpp:395] conv4/dw/relu -> conv4/dw (in-place)
I0407 01:31:07.642050 5755 net.cpp:150] Setting up conv4/dw/relu
I0407 01:31:07.642069 5755 net.cpp:157] Top shape: 24 128 38 38 (4435968)
I0407 01:31:07.642120 5755 net.cpp:165] Memory required for data: 2351935520
I0407 01:31:07.642138 5755 layer_factory.hpp:77] Creating layer conv4
I0407 01:31:07.642164 5755 net.cpp:100] Creating Layer conv4
I0407 01:31:07.642182 5755 net.cpp:434] conv4 <- conv4/dw
I0407 01:31:07.642211 5755 net.cpp:408] conv4 -> conv4
I0407 01:31:07.643013 5755 net.cpp:150] Setting up conv4
I0407 01:31:07.643065 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.643107 5755 net.cpp:165] Memory required for data: 2387423264
I0407 01:31:07.643232 5755 layer_factory.hpp:77] Creating layer conv4/bn
I0407 01:31:07.643265 5755 net.cpp:100] Creating Layer conv4/bn
I0407 01:31:07.643294 5755 net.cpp:434] conv4/bn <- conv4
I0407 01:31:07.643316 5755 net.cpp:395] conv4/bn -> conv4 (in-place)
I0407 01:31:07.643359 5755 net.cpp:150] Setting up conv4/bn
I0407 01:31:07.643386 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.643409 5755 net.cpp:165] Memory required for data: 2422911008
I0407 01:31:07.643435 5755 layer_factory.hpp:77] Creating layer conv4/scale
I0407 01:31:07.643471 5755 net.cpp:100] Creating Layer conv4/scale
I0407 01:31:07.643491 5755 net.cpp:434] conv4/scale <- conv4
I0407 01:31:07.643510 5755 net.cpp:395] conv4/scale -> conv4 (in-place)
I0407 01:31:07.643538 5755 layer_factory.hpp:77] Creating layer conv4/scale
I0407 01:31:07.643596 5755 net.cpp:150] Setting up conv4/scale
I0407 01:31:07.643615 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.643633 5755 net.cpp:165] Memory required for data: 2458398752
I0407 01:31:07.643653 5755 layer_factory.hpp:77] Creating layer conv4/relu
I0407 01:31:07.643683 5755 net.cpp:100] Creating Layer conv4/relu
I0407 01:31:07.643702 5755 net.cpp:434] conv4/relu <- conv4
I0407 01:31:07.643720 5755 net.cpp:395] conv4/relu -> conv4 (in-place)
I0407 01:31:07.643741 5755 net.cpp:150] Setting up conv4/relu
I0407 01:31:07.643765 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.643785 5755 net.cpp:165] Memory required for data: 2493886496
I0407 01:31:07.643803 5755 layer_factory.hpp:77] Creating layer conv5/dw
I0407 01:31:07.643829 5755 net.cpp:100] Creating Layer conv5/dw
I0407 01:31:07.643847 5755 net.cpp:434] conv5/dw <- conv4
I0407 01:31:07.643877 5755 net.cpp:408] conv5/dw -> conv5/dw
I0407 01:31:07.643972 5755 net.cpp:150] Setting up conv5/dw
I0407 01:31:07.643991 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.644011 5755 net.cpp:165] Memory required for data: 2529374240
I0407 01:31:07.644029 5755 layer_factory.hpp:77] Creating layer conv5/dw/bn
I0407 01:31:07.644052 5755 net.cpp:100] Creating Layer conv5/dw/bn
I0407 01:31:07.644078 5755 net.cpp:434] conv5/dw/bn <- conv5/dw
I0407 01:31:07.644098 5755 net.cpp:395] conv5/dw/bn -> conv5/dw (in-place)
I0407 01:31:07.644132 5755 net.cpp:150] Setting up conv5/dw/bn
I0407 01:31:07.644150 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.644177 5755 net.cpp:165] Memory required for data: 2564861984
I0407 01:31:07.644199 5755 layer_factory.hpp:77] Creating layer conv5/dw/scale
I0407 01:31:07.644220 5755 net.cpp:100] Creating Layer conv5/dw/scale
I0407 01:31:07.644237 5755 net.cpp:434] conv5/dw/scale <- conv5/dw
I0407 01:31:07.644268 5755 net.cpp:395] conv5/dw/scale -> conv5/dw (in-place)
I0407 01:31:07.644294 5755 layer_factory.hpp:77] Creating layer conv5/dw/scale
I0407 01:31:07.644333 5755 net.cpp:150] Setting up conv5/dw/scale
I0407 01:31:07.644359 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.644378 5755 net.cpp:165] Memory required for data: 2600349728
I0407 01:31:07.644399 5755 layer_factory.hpp:77] Creating layer conv5/dw/relu
I0407 01:31:07.644421 5755 net.cpp:100] Creating Layer conv5/dw/relu
I0407 01:31:07.644486 5755 net.cpp:434] conv5/dw/relu <- conv5/dw
I0407 01:31:07.644505 5755 net.cpp:395] conv5/dw/relu -> conv5/dw (in-place)
I0407 01:31:07.644526 5755 net.cpp:150] Setting up conv5/dw/relu
I0407 01:31:07.644541 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.644569 5755 net.cpp:165] Memory required for data: 2635837472
I0407 01:31:07.644587 5755 layer_factory.hpp:77] Creating layer conv5
I0407 01:31:07.644610 5755 net.cpp:100] Creating Layer conv5
I0407 01:31:07.644627 5755 net.cpp:434] conv5 <- conv5/dw
I0407 01:31:07.644655 5755 net.cpp:408] conv5 -> conv5
I0407 01:31:07.645952 5755 net.cpp:150] Setting up conv5
I0407 01:31:07.645972 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.645993 5755 net.cpp:165] Memory required for data: 2671325216
I0407 01:31:07.646013 5755 layer_factory.hpp:77] Creating layer conv5/bn
I0407 01:31:07.646039 5755 net.cpp:100] Creating Layer conv5/bn
I0407 01:31:07.646057 5755 net.cpp:434] conv5/bn <- conv5
I0407 01:31:07.646076 5755 net.cpp:395] conv5/bn -> conv5 (in-place)
I0407 01:31:07.646109 5755 net.cpp:150] Setting up conv5/bn
I0407 01:31:07.646194 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.646214 5755 net.cpp:165] Memory required for data: 2706812960
I0407 01:31:07.646245 5755 layer_factory.hpp:77] Creating layer conv5/scale
I0407 01:31:07.646270 5755 net.cpp:100] Creating Layer conv5/scale
I0407 01:31:07.646287 5755 net.cpp:434] conv5/scale <- conv5
I0407 01:31:07.646307 5755 net.cpp:395] conv5/scale -> conv5 (in-place)
I0407 01:31:07.646342 5755 layer_factory.hpp:77] Creating layer conv5/scale
I0407 01:31:07.646390 5755 net.cpp:150] Setting up conv5/scale
I0407 01:31:07.646407 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.646435 5755 net.cpp:165] Memory required for data: 2742300704
I0407 01:31:07.646469 5755 layer_factory.hpp:77] Creating layer conv5/relu
I0407 01:31:07.646488 5755 net.cpp:100] Creating Layer conv5/relu
I0407 01:31:07.646505 5755 net.cpp:434] conv5/relu <- conv5
I0407 01:31:07.646533 5755 net.cpp:395] conv5/relu -> conv5 (in-place)
I0407 01:31:07.646551 5755 net.cpp:150] Setting up conv5/relu
I0407 01:31:07.646567 5755 net.cpp:157] Top shape: 24 256 38 38 (8871936)
I0407 01:31:07.646585 5755 net.cpp:165] Memory required for data: 2777788448
I0407 01:31:07.646602 5755 layer_factory.hpp:77] Creating layer conv6/dw
I0407 01:31:07.646636 5755 net.cpp:100] Creating Layer conv6/dw
I0407 01:31:07.646652 5755 net.cpp:434] conv6/dw <- conv5
I0407 01:31:07.646673 5755 net.cpp:408] conv6/dw -> conv6/dw
I0407 01:31:07.646760 5755 net.cpp:150] Setting up conv6/dw
I0407 01:31:07.646777 5755 net.cpp:157] Top shape: 24 256 19 19 (2217984)
I0407 01:31:07.646797 5755 net.cpp:165] Memory required for data: 2786660384
I0407 01:31:07.646826 5755 layer_factory.hpp:77] Creating layer conv6/dw/bn
I0407 01:31:07.646844 5755 net.cpp:100] Creating Layer conv6/dw/bn
I0407 01:31:07.646862 5755 net.cpp:434] conv6/dw/bn <- conv6/dw
I0407 01:31:07.646881 5755 net.cpp:395] conv6/dw/bn -> conv6/dw (in-place)
I0407 01:31:07.646924 5755 net.cpp:150] Setting up conv6/dw/bn
I0407 01:31:07.646941 5755 net.cpp:157] Top shape: 24 256 19 19 (2217984)
I0407 01:31:07.646960 5755 net.cpp:165] Memory required for data: 2795532320
I0407 01:31:07.646981 5755 layer_factory.hpp:77] Creating layer conv6/dw/scale
I0407 01:31:07.647012 5755 net.cpp:100] Creating Layer conv6/dw/scale
I0407 01:31:07.647029 5755 net.cpp:434] conv6/dw/scale <- conv6/dw
I0407 01:31:07.647049 5755 net.cpp:395] conv6/dw/scale -> conv6/dw (in-place)
I0407 01:31:07.647073 5755 layer_factory.hpp:77] Creating layer conv6/dw/scale
I0407 01:31:07.647115 5755 net.cpp:150] Setting up conv6/dw/scale
I0407 01:31:07.647133 5755 net.cpp:157] Top shape: 24 256 19 19 (2217984)
I0407 01:31:07.647152 5755 net.cpp:165] Memory required for data: 2804404256
I0407 01:31:07.647171 5755 layer_factory.hpp:77] Creating layer conv6/dw/relu
I0407 01:31:07.647189 5755 net.cpp:100] Creating Layer conv6/dw/relu
I0407 01:31:07.647233 5755 net.cpp:434] conv6/dw/relu <- conv6/dw
I0407 01:31:07.647251 5755 net.cpp:395] conv6/dw/relu -> conv6/dw (in-place)
I0407 01:31:07.647271 5755 net.cpp:150] Setting up conv6/dw/relu
I0407 01:31:07.647287 5755 net.cpp:157] Top shape: 24 256 19 19 (2217984)
I0407 01:31:07.647313 5755 net.cpp:165] Memory required for data: 2813276192
I0407 01:31:07.647330 5755 layer_factory.hpp:77] Creating layer conv6
I0407 01:31:07.647356 5755 net.cpp:100] Creating Layer conv6
I0407 01:31:07.647372 5755 net.cpp:434] conv6 <- conv6/dw
I0407 01:31:07.647394 5755 net.cpp:408] conv6 -> conv6
I0407 01:31:07.650038 5755 net.cpp:150] Setting up conv6
I0407 01:31:07.650087 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.650111 5755 net.cpp:165] Memory required for data: 2831020064
I0407 01:31:07.650135 5755 layer_factory.hpp:77] Creating layer conv6/bn
I0407 01:31:07.650205 5755 net.cpp:100] Creating Layer conv6/bn
I0407 01:31:07.650228 5755 net.cpp:434] conv6/bn <- conv6
I0407 01:31:07.650259 5755 net.cpp:395] conv6/bn -> conv6 (in-place)
I0407 01:31:07.650301 5755 net.cpp:150] Setting up conv6/bn
I0407 01:31:07.650318 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.650338 5755 net.cpp:165] Memory required for data: 2848763936
I0407 01:31:07.650369 5755 layer_factory.hpp:77] Creating layer conv6/scale
I0407 01:31:07.650391 5755 net.cpp:100] Creating Layer conv6/scale
I0407 01:31:07.650409 5755 net.cpp:434] conv6/scale <- conv6
I0407 01:31:07.650429 5755 net.cpp:395] conv6/scale -> conv6 (in-place)
I0407 01:31:07.650466 5755 layer_factory.hpp:77] Creating layer conv6/scale
I0407 01:31:07.650511 5755 net.cpp:150] Setting up conv6/scale
I0407 01:31:07.650528 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.650559 5755 net.cpp:165] Memory required for data: 2866507808
I0407 01:31:07.650585 5755 layer_factory.hpp:77] Creating layer conv6/relu
I0407 01:31:07.650612 5755 net.cpp:100] Creating Layer conv6/relu
I0407 01:31:07.650629 5755 net.cpp:434] conv6/relu <- conv6
I0407 01:31:07.650656 5755 net.cpp:395] conv6/relu -> conv6 (in-place)
I0407 01:31:07.650678 5755 net.cpp:150] Setting up conv6/relu
I0407 01:31:07.650694 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.650713 5755 net.cpp:165] Memory required for data: 2884251680
I0407 01:31:07.650729 5755 layer_factory.hpp:77] Creating layer conv7/dw
I0407 01:31:07.650774 5755 net.cpp:100] Creating Layer conv7/dw
I0407 01:31:07.650792 5755 net.cpp:434] conv7/dw <- conv6
I0407 01:31:07.650813 5755 net.cpp:408] conv7/dw -> conv7/dw
I0407 01:31:07.650982 5755 net.cpp:150] Setting up conv7/dw
I0407 01:31:07.651008 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.651034 5755 net.cpp:165] Memory required for data: 2901995552
I0407 01:31:07.651069 5755 layer_factory.hpp:77] Creating layer conv7/dw/bn
I0407 01:31:07.651099 5755 net.cpp:100] Creating Layer conv7/dw/bn
I0407 01:31:07.651121 5755 net.cpp:434] conv7/dw/bn <- conv7/dw
I0407 01:31:07.651155 5755 net.cpp:395] conv7/dw/bn -> conv7/dw (in-place)
I0407 01:31:07.651206 5755 net.cpp:150] Setting up conv7/dw/bn
I0407 01:31:07.651228 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.651263 5755 net.cpp:165] Memory required for data: 2919739424
I0407 01:31:07.651293 5755 layer_factory.hpp:77] Creating layer conv7/dw/scale
I0407 01:31:07.651324 5755 net.cpp:100] Creating Layer conv7/dw/scale
I0407 01:31:07.651355 5755 net.cpp:434] conv7/dw/scale <- conv7/dw
I0407 01:31:07.651454 5755 net.cpp:395] conv7/dw/scale -> conv7/dw (in-place)
I0407 01:31:07.651494 5755 layer_factory.hpp:77] Creating layer conv7/dw/scale
I0407 01:31:07.651552 5755 net.cpp:150] Setting up conv7/dw/scale
I0407 01:31:07.651576 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.651597 5755 net.cpp:165] Memory required for data: 2937483296
I0407 01:31:07.651620 5755 layer_factory.hpp:77] Creating layer conv7/dw/relu
I0407 01:31:07.651651 5755 net.cpp:100] Creating Layer conv7/dw/relu
I0407 01:31:07.651723 5755 net.cpp:434] conv7/dw/relu <- conv7/dw
I0407 01:31:07.651755 5755 net.cpp:395] conv7/dw/relu -> conv7/dw (in-place)
I0407 01:31:07.651779 5755 net.cpp:150] Setting up conv7/dw/relu
I0407 01:31:07.651800 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.651821 5755 net.cpp:165] Memory required for data: 2955227168
I0407 01:31:07.651849 5755 layer_factory.hpp:77] Creating layer conv7
I0407 01:31:07.651878 5755 net.cpp:100] Creating Layer conv7
I0407 01:31:07.651898 5755 net.cpp:434] conv7 <- conv7/dw
I0407 01:31:07.651935 5755 net.cpp:408] conv7 -> conv7
I0407 01:31:07.657287 5755 net.cpp:150] Setting up conv7
I0407 01:31:07.657351 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.657375 5755 net.cpp:165] Memory required for data: 2972971040
I0407 01:31:07.657402 5755 layer_factory.hpp:77] Creating layer conv7/bn
I0407 01:31:07.657428 5755 net.cpp:100] Creating Layer conv7/bn
I0407 01:31:07.657454 5755 net.cpp:434] conv7/bn <- conv7
I0407 01:31:07.657477 5755 net.cpp:395] conv7/bn -> conv7 (in-place)
I0407 01:31:07.657514 5755 net.cpp:150] Setting up conv7/bn
I0407 01:31:07.657539 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.657559 5755 net.cpp:165] Memory required for data: 2990714912
I0407 01:31:07.657582 5755 layer_factory.hpp:77] Creating layer conv7/scale
I0407 01:31:07.657606 5755 net.cpp:100] Creating Layer conv7/scale
I0407 01:31:07.657624 5755 net.cpp:434] conv7/scale <- conv7
I0407 01:31:07.657651 5755 net.cpp:395] conv7/scale -> conv7 (in-place)
I0407 01:31:07.657682 5755 layer_factory.hpp:77] Creating layer conv7/scale
I0407 01:31:07.657722 5755 net.cpp:150] Setting up conv7/scale
I0407 01:31:07.657748 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.657768 5755 net.cpp:165] Memory required for data: 3008458784
I0407 01:31:07.657788 5755 layer_factory.hpp:77] Creating layer conv7/relu
I0407 01:31:07.657811 5755 net.cpp:100] Creating Layer conv7/relu
I0407 01:31:07.657847 5755 net.cpp:434] conv7/relu <- conv7
I0407 01:31:07.657867 5755 net.cpp:395] conv7/relu -> conv7 (in-place)
I0407 01:31:07.657889 5755 net.cpp:150] Setting up conv7/relu
I0407 01:31:07.657905 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.657932 5755 net.cpp:165] Memory required for data: 3026202656
I0407 01:31:07.657950 5755 layer_factory.hpp:77] Creating layer conv8/dw
I0407 01:31:07.657984 5755 net.cpp:100] Creating Layer conv8/dw
I0407 01:31:07.658001 5755 net.cpp:434] conv8/dw <- conv7
I0407 01:31:07.658030 5755 net.cpp:408] conv8/dw -> conv8/dw
I0407 01:31:07.658185 5755 net.cpp:150] Setting up conv8/dw
I0407 01:31:07.658246 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.658264 5755 net.cpp:165] Memory required for data: 3043946528
I0407 01:31:07.658283 5755 layer_factory.hpp:77] Creating layer conv8/dw/bn
I0407 01:31:07.658308 5755 net.cpp:100] Creating Layer conv8/dw/bn
I0407 01:31:07.658332 5755 net.cpp:434] conv8/dw/bn <- conv8/dw
I0407 01:31:07.658351 5755 net.cpp:395] conv8/dw/bn -> conv8/dw (in-place)
I0407 01:31:07.658390 5755 net.cpp:150] Setting up conv8/dw/bn
I0407 01:31:07.658406 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.658433 5755 net.cpp:165] Memory required for data: 3061690400
I0407 01:31:07.658455 5755 layer_factory.hpp:77] Creating layer conv8/dw/scale
I0407 01:31:07.658491 5755 net.cpp:100] Creating Layer conv8/dw/scale
I0407 01:31:07.658509 5755 net.cpp:434] conv8/dw/scale <- conv8/dw
I0407 01:31:07.658537 5755 net.cpp:395] conv8/dw/scale -> conv8/dw (in-place)
I0407 01:31:07.658566 5755 layer_factory.hpp:77] Creating layer conv8/dw/scale
I0407 01:31:07.658608 5755 net.cpp:150] Setting up conv8/dw/scale
I0407 01:31:07.658634 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.658653 5755 net.cpp:165] Memory required for data: 3079434272
I0407 01:31:07.658674 5755 layer_factory.hpp:77] Creating layer conv8/dw/relu
I0407 01:31:07.658692 5755 net.cpp:100] Creating Layer conv8/dw/relu
I0407 01:31:07.658764 5755 net.cpp:434] conv8/dw/relu <- conv8/dw
I0407 01:31:07.658785 5755 net.cpp:395] conv8/dw/relu -> conv8/dw (in-place)
I0407 01:31:07.658805 5755 net.cpp:150] Setting up conv8/dw/relu
I0407 01:31:07.658829 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.658849 5755 net.cpp:165] Memory required for data: 3097178144
I0407 01:31:07.658865 5755 layer_factory.hpp:77] Creating layer conv8
I0407 01:31:07.658897 5755 net.cpp:100] Creating Layer conv8
I0407 01:31:07.658924 5755 net.cpp:434] conv8 <- conv8/dw
I0407 01:31:07.658944 5755 net.cpp:408] conv8 -> conv8
I0407 01:31:07.664489 5755 net.cpp:150] Setting up conv8
I0407 01:31:07.664548 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.664579 5755 net.cpp:165] Memory required for data: 3114922016
I0407 01:31:07.664628 5755 layer_factory.hpp:77] Creating layer conv8/bn
I0407 01:31:07.664666 5755 net.cpp:100] Creating Layer conv8/bn
I0407 01:31:07.664701 5755 net.cpp:434] conv8/bn <- conv8
I0407 01:31:07.664734 5755 net.cpp:395] conv8/bn -> conv8 (in-place)
I0407 01:31:07.664782 5755 net.cpp:150] Setting up conv8/bn
I0407 01:31:07.664816 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.664839 5755 net.cpp:165] Memory required for data: 3132665888
I0407 01:31:07.664875 5755 layer_factory.hpp:77] Creating layer conv8/scale
I0407 01:31:07.664901 5755 net.cpp:100] Creating Layer conv8/scale
I0407 01:31:07.664937 5755 net.cpp:434] conv8/scale <- conv8
I0407 01:31:07.664970 5755 net.cpp:395] conv8/scale -> conv8 (in-place)
I0407 01:31:07.665001 5755 layer_factory.hpp:77] Creating layer conv8/scale
I0407 01:31:07.665060 5755 net.cpp:150] Setting up conv8/scale
I0407 01:31:07.665091 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.665136 5755 net.cpp:165] Memory required for data: 3150409760
I0407 01:31:07.665159 5755 layer_factory.hpp:77] Creating layer conv8/relu
I0407 01:31:07.665194 5755 net.cpp:100] Creating Layer conv8/relu
I0407 01:31:07.665230 5755 net.cpp:434] conv8/relu <- conv8
I0407 01:31:07.665253 5755 net.cpp:395] conv8/relu -> conv8 (in-place)
I0407 01:31:07.665287 5755 net.cpp:150] Setting up conv8/relu
I0407 01:31:07.665323 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.665343 5755 net.cpp:165] Memory required for data: 3168153632
I0407 01:31:07.665364 5755 layer_factory.hpp:77] Creating layer conv9/dw
I0407 01:31:07.665410 5755 net.cpp:100] Creating Layer conv9/dw
I0407 01:31:07.665446 5755 net.cpp:434] conv9/dw <- conv8
I0407 01:31:07.665484 5755 net.cpp:408] conv9/dw -> conv9/dw
I0407 01:31:07.665632 5755 net.cpp:150] Setting up conv9/dw
I0407 01:31:07.665661 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.665699 5755 net.cpp:165] Memory required for data: 3185897504
I0407 01:31:07.665724 5755 layer_factory.hpp:77] Creating layer conv9/dw/bn
I0407 01:31:07.665760 5755 net.cpp:100] Creating Layer conv9/dw/bn
I0407 01:31:07.665797 5755 net.cpp:434] conv9/dw/bn <- conv9/dw
I0407 01:31:07.665834 5755 net.cpp:395] conv9/dw/bn -> conv9/dw (in-place)
I0407 01:31:07.665899 5755 net.cpp:150] Setting up conv9/dw/bn
I0407 01:31:07.665928 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.665961 5755 net.cpp:165] Memory required for data: 3203641376
I0407 01:31:07.665983 5755 layer_factory.hpp:77] Creating layer conv9/dw/scale
I0407 01:31:07.666024 5755 net.cpp:100] Creating Layer conv9/dw/scale
I0407 01:31:07.666047 5755 net.cpp:434] conv9/dw/scale <- conv9/dw
I0407 01:31:07.666121 5755 net.cpp:395] conv9/dw/scale -> conv9/dw (in-place)
I0407 01:31:07.666172 5755 layer_factory.hpp:77] Creating layer conv9/dw/scale
I0407 01:31:07.666236 5755 net.cpp:150] Setting up conv9/dw/scale
I0407 01:31:07.666265 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.666301 5755 net.cpp:165] Memory required for data: 3221385248
I0407 01:31:07.666324 5755 layer_factory.hpp:77] Creating layer conv9/dw/relu
I0407 01:31:07.666345 5755 net.cpp:100] Creating Layer conv9/dw/relu
I0407 01:31:07.666424 5755 net.cpp:434] conv9/dw/relu <- conv9/dw
I0407 01:31:07.666457 5755 net.cpp:395] conv9/dw/relu -> conv9/dw (in-place)
I0407 01:31:07.666497 5755 net.cpp:150] Setting up conv9/dw/relu
I0407 01:31:07.666532 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.666566 5755 net.cpp:165] Memory required for data: 3239129120
I0407 01:31:07.666610 5755 layer_factory.hpp:77] Creating layer conv9
I0407 01:31:07.666636 5755 net.cpp:100] Creating Layer conv9
I0407 01:31:07.666668 5755 net.cpp:434] conv9 <- conv9/dw
I0407 01:31:07.666710 5755 net.cpp:408] conv9 -> conv9
F0407 01:31:07.673615 5759 math_functions.cpp:250] Check failed: a <= b (0 vs. -1.19209e-07)
*** Check failure stack trace: ***
I0407 01:31:07.677111 5755 net.cpp:150] Setting up conv9
I0407 01:31:07.677577 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.677608 5755 net.cpp:165] Memory required for data: 3256872992
I0407 01:31:07.677647 5755 layer_factory.hpp:77] Creating layer conv9/bn
I0407 01:31:07.677682 5755 net.cpp:100] Creating Layer conv9/bn
I0407 01:31:07.677714 5755 net.cpp:434] conv9/bn <- conv9
I0407 01:31:07.677739 5755 net.cpp:395] conv9/bn -> conv9 (in-place)
I0407 01:31:07.677788 5755 net.cpp:150] Setting up conv9/bn
I0407 01:31:07.677808 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.677834 5755 net.cpp:165] Memory required for data: 3274616864
I0407 01:31:07.677857 5755 layer_factory.hpp:77] Creating layer conv9/scale
I0407 01:31:07.677883 5755 net.cpp:100] Creating Layer conv9/scale
I0407 01:31:07.679563 5755 net.cpp:434] conv9/scale <- conv9
I0407 01:31:07.679589 5755 net.cpp:395] conv9/scale -> conv9 (in-place)
I0407 01:31:07.679631 5755 layer_factory.hpp:77] Creating layer conv9/scale
I0407 01:31:07.679684 5755 net.cpp:150] Setting up conv9/scale
I0407 01:31:07.679702 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.679723 5755 net.cpp:165] Memory required for data: 3292360736
I0407 01:31:07.679752 5755 layer_factory.hpp:77] Creating layer conv9/relu
I0407 01:31:07.679780 5755 net.cpp:100] Creating Layer conv9/relu
I0407 01:31:07.679805 5755 net.cpp:434] conv9/relu <- conv9
I0407 01:31:07.679826 5755 net.cpp:395] conv9/relu -> conv9 (in-place)
I0407 01:31:07.679847 5755 net.cpp:150] Setting up conv9/relu
I0407 01:31:07.679864 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.679893 5755 net.cpp:165] Memory required for data: 3310104608
I0407 01:31:07.679908 5755 layer_factory.hpp:77] Creating layer conv10/dw
I0407 01:31:07.679944 5755 net.cpp:100] Creating Layer conv10/dw
I0407 01:31:07.679965 5755 net.cpp:434] conv10/dw <- conv9
I0407 01:31:07.679986 5755 net.cpp:408] conv10/dw -> conv10/dw
I0407 01:31:07.680155 5755 net.cpp:150] Setting up conv10/dw
I0407 01:31:07.680174 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.680193 5755 net.cpp:165] Memory required for data: 3327848480
I0407 01:31:07.680220 5755 layer_factory.hpp:77] Creating layer conv10/dw/bn
I0407 01:31:07.680240 5755 net.cpp:100] Creating Layer conv10/dw/bn
I0407 01:31:07.680259 5755 net.cpp:434] conv10/dw/bn <- conv10/dw
I0407 01:31:07.680285 5755 net.cpp:395] conv10/dw/bn -> conv10/dw (in-place)
I0407 01:31:07.680322 5755 net.cpp:150] Setting up conv10/dw/bn
I0407 01:31:07.680339 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.680367 5755 net.cpp:165] Memory required for data: 3345592352
I0407 01:31:07.680392 5755 layer_factory.hpp:77] Creating layer conv10/dw/scale
I0407 01:31:07.680421 5755 net.cpp:100] Creating Layer conv10/dw/scale
I0407 01:31:07.680439 5755 net.cpp:434] conv10/dw/scale <- conv10/dw
I0407 01:31:07.680461 5755 net.cpp:395] conv10/dw/scale -> conv10/dw (in-place)
I0407 01:31:07.680503 5755 layer_factory.hpp:77] Creating layer conv10/dw/scale
I0407 01:31:07.680542 5755 net.cpp:150] Setting up conv10/dw/scale
I0407 01:31:07.680577 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.680596 5755 net.cpp:165] Memory required for data: 3363336224
I0407 01:31:07.680625 5755 layer_factory.hpp:77] Creating layer conv10/dw/relu
I0407 01:31:07.680646 5755 net.cpp:100] Creating Layer conv10/dw/relu
I0407 01:31:07.680665 5755 net.cpp:434] conv10/dw/relu <- conv10/dw
I0407 01:31:07.680691 5755 net.cpp:395] conv10/dw/relu -> conv10/dw (in-place)
I0407 01:31:07.680711 5755 net.cpp:150] Setting up conv10/dw/relu
I0407 01:31:07.680727 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.680747 5755 net.cpp:165] Memory required for data: 3381080096
I0407 01:31:07.680771 5755 layer_factory.hpp:77] Creating layer conv10
I0407 01:31:07.680805 5755 net.cpp:100] Creating Layer conv10
I0407 01:31:07.680830 5755 net.cpp:434] conv10 <- conv10/dw
I0407 01:31:07.680856 5755 net.cpp:408] conv10 -> conv10
@ 0x7f85ed16c0cd google::LogMessage::Fail()
@ 0x7f85ed16df33 google::LogMessage::SendToLog()
@ 0x7f85ed16bc28 google::LogMessage::Flush()
@ 0x7f85ed16e999 google::LogMessageFatal::~LogMessageFatal()
@ 0x7f85ed7b3987 caffe::caffe_rng_uniform<>()
I0407 01:31:07.703788 5755 net.cpp:150] Setting up conv10
I0407 01:31:07.705435 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.705483 5755 net.cpp:165] Memory required for data: 3398823968
I0407 01:31:07.705534 5755 layer_factory.hpp:77] Creating layer conv10/bn
I0407 01:31:07.705581 5755 net.cpp:100] Creating Layer conv10/bn
I0407 01:31:07.705619 5755 net.cpp:434] conv10/bn <- conv10
I0407 01:31:07.705646 5755 net.cpp:395] conv10/bn -> conv10 (in-place)
I0407 01:31:07.705705 5755 net.cpp:150] Setting up conv10/bn
I0407 01:31:07.705739 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.705760 5755 net.cpp:165] Memory required for data: 3416567840
I0407 01:31:07.705802 5755 layer_factory.hpp:77] Creating layer conv10/scale
I0407 01:31:07.705840 5755 net.cpp:100] Creating Layer conv10/scale
I0407 01:31:07.705860 5755 net.cpp:434] conv10/scale <- conv10
I0407 01:31:07.705899 5755 net.cpp:395] conv10/scale -> conv10 (in-place)
I0407 01:31:07.705938 5755 layer_factory.hpp:77] Creating layer conv10/scale
I0407 01:31:07.705991 5755 net.cpp:150] Setting up conv10/scale
I0407 01:31:07.706027 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.706049 5755 net.cpp:165] Memory required for data: 3434311712
I0407 01:31:07.706079 5755 layer_factory.hpp:77] Creating layer conv10/relu
I0407 01:31:07.706116 5755 net.cpp:100] Creating Layer conv10/relu
I0407 01:31:07.706182 5755 net.cpp:434] conv10/relu <- conv10
I0407 01:31:07.706223 5755 net.cpp:395] conv10/relu -> conv10 (in-place)
I0407 01:31:07.706245 5755 net.cpp:150] Setting up conv10/relu
I0407 01:31:07.706262 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.706290 5755 net.cpp:165] Memory required for data: 3452055584
I0407 01:31:07.706307 5755 layer_factory.hpp:77] Creating layer conv11/dw
I0407 01:31:07.706351 5755 net.cpp:100] Creating Layer conv11/dw
I0407 01:31:07.706373 5755 net.cpp:434] conv11/dw <- conv10
@ 0x7f85ed78c9e8 caffe::SampleBBox()
I0407 01:31:07.709905 5755 net.cpp:408] conv11/dw -> conv11/dw
I0407 01:31:07.710197 5755 net.cpp:150] Setting up conv11/dw
I0407 01:31:07.710238 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.710264 5755 net.cpp:165] Memory required for data: 3469799456
I0407 01:31:07.710297 5755 layer_factory.hpp:77] Creating layer conv11/dw/bn
I0407 01:31:07.711845 5755 net.cpp:100] Creating Layer conv11/dw/bn
I0407 01:31:07.711881 5755 net.cpp:434] conv11/dw/bn <- conv11/dw
I0407 01:31:07.711905 5755 net.cpp:395] conv11/dw/bn -> conv11/dw (in-place)
I0407 01:31:07.711969 5755 net.cpp:150] Setting up conv11/dw/bn
I0407 01:31:07.712005 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.712039 5755 net.cpp:165] Memory required for data: 3487543328
I0407 01:31:07.712095 5755 layer_factory.hpp:77] Creating layer conv11/dw/scale
I0407 01:31:07.712139 5755 net.cpp:100] Creating Layer conv11/dw/scale
I0407 01:31:07.712167 5755 net.cpp:434] conv11/dw/scale <- conv11/dw
I0407 01:31:07.712188 5755 net.cpp:395] conv11/dw/scale -> conv11/dw (in-place)
I0407 01:31:07.712241 5755 layer_factory.hpp:77] Creating layer conv11/dw/scale
I0407 01:31:07.712299 5755 net.cpp:150] Setting up conv11/dw/scale
I0407 01:31:07.712337 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.712366 5755 net.cpp:165] Memory required for data: 3505287200
I0407 01:31:07.712419 5755 layer_factory.hpp:77] Creating layer conv11/dw/relu
I0407 01:31:07.712453 5755 net.cpp:100] Creating Layer conv11/dw/relu
I0407 01:31:07.712494 5755 net.cpp:434] conv11/dw/relu <- conv11/dw
I0407 01:31:07.712520 5755 net.cpp:395] conv11/dw/relu -> conv11/dw (in-place)
I0407 01:31:07.712572 5755 net.cpp:150] Setting up conv11/dw/relu
I0407 01:31:07.712594 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.713093 5755 net.cpp:165] Memory required for data: 3523031072
I0407 01:31:07.713119 5755 layer_factory.hpp:77] Creating layer conv11
I0407 01:31:07.713182 5755 net.cpp:100] Creating Layer conv11
I0407 01:31:07.713223 5755 net.cpp:434] conv11 <- conv11/dw
I0407 01:31:07.713310 5755 net.cpp:408] conv11 -> conv11
@ 0x7f85ed78cd40 caffe::GenerateSamples()
@ 0x7f85ed78cf90 caffe::GenerateBatchSamples()
@ 0x7f85ed5b2e52 caffe::AnnotatedDataLayer<>::load_batch()
@ 0x7f85ed6a98ea caffe::BasePrefetchingDataLayer<>::InternalThreadEntry()
I0407 01:31:07.724553 5755 net.cpp:150] Setting up conv11
I0407 01:31:07.726023 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.726052 5755 net.cpp:165] Memory required for data: 3540774944
I0407 01:31:07.726125 5755 layer_factory.hpp:77] Creating layer conv11/bn
I0407 01:31:07.726167 5755 net.cpp:100] Creating Layer conv11/bn
I0407 01:31:07.726191 5755 net.cpp:434] conv11/bn <- conv11
I0407 01:31:07.726227 5755 net.cpp:395] conv11/bn -> conv11 (in-place)
I0407 01:31:07.727397 5755 net.cpp:150] Setting up conv11/bn
I0407 01:31:07.727417 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.727445 5755 net.cpp:165] Memory required for data: 3558518816
I0407 01:31:07.727471 5755 layer_factory.hpp:77] Creating layer conv11/scale
I0407 01:31:07.727499 5755 net.cpp:100] Creating Layer conv11/scale
I0407 01:31:07.727524 5755 net.cpp:434] conv11/scale <- conv11
I0407 01:31:07.727545 5755 net.cpp:395] conv11/scale -> conv11 (in-place)
I0407 01:31:07.727586 5755 layer_factory.hpp:77] Creating layer conv11/scale
I0407 01:31:07.727629 5755 net.cpp:150] Setting up conv11/scale
I0407 01:31:07.727655 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.727675 5755 net.cpp:165] Memory required for data: 3576262688
I0407 01:31:07.727696 5755 layer_factory.hpp:77] Creating layer conv11/relu
I0407 01:31:07.727725 5755 net.cpp:100] Creating Layer conv11/relu
I0407 01:31:07.727743 5755 net.cpp:434] conv11/relu <- conv11
I0407 01:31:07.727767 5755 net.cpp:395] conv11/relu -> conv11 (in-place)
I0407 01:31:07.727797 5755 net.cpp:150] Setting up conv11/relu
I0407 01:31:07.727814 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.727833 5755 net.cpp:165] Memory required for data: 3594006560
I0407 01:31:07.727859 5755 layer_factory.hpp:77] Creating layer conv11_conv11/relu_0_split
I0407 01:31:07.727883 5755 net.cpp:100] Creating Layer conv11_conv11/relu_0_split
I0407 01:31:07.727901 5755 net.cpp:434] conv11_conv11/relu_0_split <- conv11
I0407 01:31:07.727931 5755 net.cpp:408] conv11_conv11/relu_0_split -> conv11_conv11/relu_0_split_0
I0407 01:31:07.727962 5755 net.cpp:408] conv11_conv11/relu_0_split -> conv11_conv11/relu_0_split_1
I0407 01:31:07.727994 5755 net.cpp:408] conv11_conv11/relu_0_split -> conv11_conv11/relu_0_split_2
I0407 01:31:07.728018 5755 net.cpp:408] conv11_conv11/relu_0_split -> conv11_conv11/relu_0_split_3
I0407 01:31:07.728041 5755 net.cpp:150] Setting up conv11_conv11/relu_0_split
I0407 01:31:07.728067 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.728087 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.728106 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.728132 5755 net.cpp:157] Top shape: 24 512 19 19 (4435968)
I0407 01:31:07.728152 5755 net.cpp:165] Memory required for data: 3664982048
I0407 01:31:07.728169 5755 layer_factory.hpp:77] Creating layer conv12/dw
I0407 01:31:07.728205 5755 net.cpp:100] Creating Layer conv12/dw
I0407 01:31:07.728224 5755 net.cpp:434] conv12/dw <- conv11_conv11/relu_0_split_0
I0407 01:31:07.728245 5755 net.cpp:408] conv12/dw -> conv12/dw
I0407 01:31:07.728404 5755 net.cpp:150] Setting up conv12/dw
I0407 01:31:07.728425 5755 net.cpp:157] Top shape: 24 512 10 10 (1228800)
I0407 01:31:07.728446 5755 net.cpp:165] Memory required for data: 3669897248
I0407 01:31:07.728472 5755 layer_factory.hpp:77] Creating layer conv12/dw/bn
I0407 01:31:07.728492 5755 net.cpp:100] Creating Layer conv12/dw/bn
I0407 01:31:07.728509 5755 net.cpp:434] conv12/dw/bn <- conv12/dw
I0407 01:31:07.728536 5755 net.cpp:395] conv12/dw/bn -> conv12/dw (in-place)
I0407 01:31:07.728574 5755 net.cpp:150] Setting up conv12/dw/bn
I0407 01:31:07.728591 5755 net.cpp:157] Top shape: 24 512 10 10 (1228800)
I0407 01:31:07.728621 5755 net.cpp:165] Memory required for data: 3674812448
I0407 01:31:07.728644 5755 layer_factory.hpp:77] Creating layer conv12/dw/scale
I0407 01:31:07.728677 5755 net.cpp:100] Creating Layer conv12/dw/scale
I0407 01:31:07.728772 5755 net.cpp:434] conv12/dw/scale <- conv12/dw
@ 0x7f85e92e9bcd (unknown)
I0407 01:31:07.728816 5755 net.cpp:395] conv12/dw/scale -> conv12/dw (in-place)
I0407 01:31:07.729979 5755 layer_factory.hpp:77] Creating layer conv12/dw/scale
I0407 01:31:07.730049 5755 net.cpp:150] Setting up conv12/dw/scale
I0407 01:31:07.730068 5755 net.cpp:157] Top shape: 24 512 10 10 (1228800)
I0407 01:31:07.730088 5755 net.cpp:165] Memory required for data: 3679727648
I0407 01:31:07.730149 5755 layer_factory.hpp:77] Creating layer conv12/dw/relu
I0407 01:31:07.730183 5755 net.cpp:100] Creating Layer conv12/dw/relu
I0407 01:31:07.730206 5755 net.cpp:434] conv12/dw/relu <- conv12/dw
I0407 01:31:07.730239 5755 net.cpp:395] conv12/dw/relu -> conv12/dw (in-place)
I0407 01:31:07.730268 5755 net.cpp:150] Setting up conv12/dw/relu
I0407 01:31:07.730289 5755 net.cpp:157] Top shape: 24 512 10 10 (1228800)
I0407 01:31:07.730322 5755 net.cpp:165] Memory required for data: 3684642848
I0407 01:31:07.730340 5755 layer_factory.hpp:77] Creating layer conv12
I0407 01:31:07.730376 5755 net.cpp:100] Creating Layer conv12
I0407 01:31:07.730398 5755 net.cpp:434] conv12 <- conv12/dw
I0407 01:31:07.730424 5755 net.cpp:408] conv12 -> conv12
@ 0x7f85e6a776db start_thread
@ 0x7f85eb76188f clone
Aborted (core dumped)

@Rheza001
Copy link
Author

Rheza001 commented Apr 6, 2020

i only trained 80 data. should i create more?

@mhmdghazal
Copy link

i have a similar issue

@TNemes-3141
Copy link

After spending way too much time on this problem and trying endless solutions, I finally found what causes this issue. This error is particularly treacherous as in the most cases, it decides simply not to give an error message.

See the original thread here: weiliu89/caffe#669 (comment)

Before compiling, you must edit the source code a little bit. Go to caffe/src/caffe/util/math_functions.cpp and in line 247, you find this function, which you should edit to look like this:

void caffe_rng_uniform(const int n, Dtype a, Dtype b, Dtype* r) {
  CHECK_GE(n, 0);
  CHECK(r);
  
  if (a > b) {
    Dtype c = a;
    a = b;
    b = c;
  }
  CHECK_LE(a, b);
  boost::uniform_real<Dtype> random_distribution(a, caffe_nextafter<Dtype>(b));
  boost::variate_generator<caffe::rng_t*, boost::uniform_real<Dtype> >
      variate_generator(caffe_rng(), random_distribution);
  for (int i = 0; i < n; ++i) {
    r[i] = variate_generator();
  }
}

Note that I just added an if statement (that switches the variables a and b if a is larger than b) and removed the const flag in the parameter's line from Dtype a and Dtype b.
Then simply do:

make clean
make -j$(nproc)
make py -j$(nproc)
make test -j$(nproc)
make runtest -j$(nproc) # You should run the tests after compiling to make sure you don't run into any other unexpected error.

For me, this worked very well!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants