-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstepper.c
executable file
·612 lines (558 loc) · 25.8 KB
/
stepper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
Copyright (c) 2012 Chuck Harrison for http://opensourceecology.org/wiki/CNC_Torch_Table
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include <avr/interrupt.h>
#include "stepper.h"
#include "config.h"
#include "settings.h"
#include <math.h>
#include <stdlib.h>
#include <util/delay.h>
#include "nuts_bolts.h"
#include <avr/interrupt.h>
#include "planner.h"
#include "motion_control.h"
#include "protocol.h"
#include "limits.h"
#include "print.h"
#include <avr/pgmspace.h>
// Some useful constants
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND)
// Stepper state variable. Contains running data and trapezoid variables for coordinated motion.
typedef struct {
// Used by the bresenham line algorithm
int32_t counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z;
uint32_t event_count;
uint32_t step_events_completed; // The number of step events left in current motion
// Used by the trapezoid generator
uint32_t cycles_per_step_event; // The number of machine cycles between each step event
uint32_t trapezoid_tick_cycle_counter; // The cycles since last trapezoid_tick. Used to generate ticks at a steady
// pace without allocating a separate timer
uint32_t trapezoid_adjusted_rate; // The current rate of step_events according to the trapezoid generator
uint32_t min_safe_rate; // Minimum safe rate for full deceleration rate reduction step. Otherwise halves step_rate.
} stepper_t;
static stepper_t st;
static block_t *current_block; // A pointer to the block currently being traced
// Used by independent_axis mode (e.g. homing)
static indep_t_ptr indep_frame;
bool indep_mode;
// Used by the stepper driver interrupt
static uint8_t step_pulse_time; // Step pulse reset time after step rise
static uint8_t out_bits; // The next stepping-bits to be output
uint8_t out_bits0; // The stepping-bit state between pulses
static volatile uint8_t busy; // True when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
#if STEP_PULSE_DELAY > 0
static uint8_t step_bits; // Stores out_bits output to complete the step pulse delay
#endif
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates by block->rate_delta
// during the first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is always +/- block->rate_delta and is applied at a constant rate following the midpoint rule
// by the trapezoid generator, which is called ACCELERATION_TICKS_PER_SECOND times per second.
static void set_step_events_per_minute(uint32_t steps_per_minute);
static void set_motion_state_indep(indep_t_ptr it); // forward declaration
void inline disable_steppers() {
// TBD: respect settings flag BITFLAG_INVERT_ST_ENABLE
STEPPERS_DISABLE_PORT = (STEPPERS_DISABLE_PORT & ~STEPPERS_DISABLE_MASK)
| (~STEPPERS_DISABLE_INVERT_MASK & STEPPERS_DISABLE_MASK); }
static void inline enable_steppers() {
STEPPERS_DISABLE_PORT = (STEPPERS_DISABLE_PORT & ~STEPPERS_DISABLE_MASK)
| (STEPPERS_DISABLE_INVERT_MASK & STEPPERS_DISABLE_MASK); }
// Stepper state initialization. Motion should only start if cycle or homing is in progress
// Startup init and limits call this function but shouldn't start the cycle.
// Caller (st_cycle_start or st_indep_start) should enable steppers first.
void st_wake_up()
{
if (sys.state == STATE_CYCLE || sys.state == STATE_HOMING) {
// Initialize stepper output bits
out_bits = out_bits0;
// Initialize step pulse timing from settings. Here to ensure updating after re-writing.
#ifdef STEP_PULSE_DELAY
// Set total step pulse time after direction pin set. Ad hoc computation from oscilloscope.
step_pulse_time = -(((settings.pulse_microseconds+STEP_PULSE_DELAY-2)*TICKS_PER_MICROSECOND) >> 3);
// Set delay between direction pin write and step command.
OCR2A = -(((settings.pulse_microseconds)*TICKS_PER_MICROSECOND) >> 3);
#else // Normal operation
// Set step pulse time. Ad hoc computation from oscilloscope. Uses two's complement.
step_pulse_time = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND) >> 3);
#endif
// Enable stepper driver interrupt
TIMSK1 |= (1<<OCIE1A);
}
}
// Independent-move start
void st_indep_start(indep_t_ptr frame)
{
if(1) { // ok to move. TODO: insert some guard tests here
indep_frame = frame;
indep_mode = true;
set_step_events_per_minute(HOME_EVENTS_PER_SECOND*60);
st.event_count = INDEP_EVENT_COUNT;
st.counter_x = -(INDEP_EVENT_COUNT >> 1);
st.counter_y = st.counter_x;
st.counter_z = st.counter_x;
set_motion_state_indep(frame); // for hard limits
st_wake_up();
}
}
// 'axes_moving' & 'axes_dir' bitfields describe the current motion state, needed for hard limits
uint8_t axes_moving, axes_dir;
// update motion state, called at beginning of new block
static void set_motion_state_block(block_t* block)
{
axes_moving = 0;
axes_dir = 0;
uint8_t dir = block->direction_bits;
if(block->steps_x != 0) {
axes_moving |= X_HOME_BIT;
if(dir & X_DIRECTION_BIT) {
axes_dir |= X_HOME_BIT;
}
}
if(block->steps_y != 0) {
axes_moving |= Y_HOME_BIT;
if(dir & Y_DIRECTION_BIT) {
axes_dir |= Y_HOME_BIT;
}
}
if(block->steps_z != 0) {
axes_moving |= Z_HOME_BIT;
if(dir & Z_DIRECTION_BIT) {
axes_dir |= Z_HOME_BIT;
}
}
}
// update motion state, called at beginning of new independent-mode movement
static void set_motion_state_indep(indep_t_ptr it)
{
axes_moving = 0;
axes_dir = 0;
uint8_t ob0 = out_bits0^settings.invert_mask;
while(it) {
switch(it->axis) {
case X_AXIS:
if(ob0 & (1<<X_DIRECTION_BIT)) {
axes_dir |= it->home_mask;
}
break;
case Y_AXIS:
if(ob0 & (1<<Y_DIRECTION_BIT)) {
axes_dir |= it->home_mask;
}
break;
case Z_AXIS:
if(ob0 & (1<<Z_DIRECTION_BIT)) {
axes_dir |= it->home_mask;
}
break;
}
if((it->flags & INDEP_HOMING)
&& (it->home_mask & (home_limit_state()^it->home_nullstate)) ) {
it->state = done;
} else {
axes_moving |= it->home_mask;
}
it = it->next_axis;
}
}
// Stepper shutdown
void st_go_idle()
{
// Disable stepper driver interrupt
TIMSK1 &= ~(1<<OCIE1A);
axes_moving = 0;
//printPgmString(PSTR("st_go_idle\r\n"));
// Disable steppers only upon system alarm activated or by user setting to not be kept enabled.
if ((settings.stepper_idle_lock_time != 0xff) || bit_istrue(sys.execute,EXEC_ALARM)) {
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
// stop and not drift from residual inertial forces at the end of the last movement.
delay_ms(settings.stepper_idle_lock_time);
disable_steppers();
}
}
// Hard limit test is called inside the stepper interrupt
// This version is for a configuration with mid-span home switch, end-of-travel limit switch
// As coded here, no axis can move towards its limit until all axes are clear of their limits.
static inline void test_hard_limits()
{
if ( settings.flags & (1<<BITFLAG_HARD_LIMIT_ENABLE) ) {
uint8_t home_lim = home_limit_state()^LIMITS_INVERT_MASK;
if( ((home_lim^axes_dir) & axes_moving) // we are moving towards a limit switch
&& (home_lim & LIMIT_MASK) ) { // we hit one
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
// This function determines an acceleration velocity change every CYCLES_PER_ACCELERATION_TICK by
// keeping track of the number of elapsed cycles during a de/ac-celeration. The code assumes that
// step_events occur significantly more often than the acceleration velocity iterations.
inline static uint8_t iterate_trapezoid_cycle_counter()
{
st.trapezoid_tick_cycle_counter += st.cycles_per_step_event;
if(st.trapezoid_tick_cycle_counter > CYCLES_PER_ACCELERATION_TICK) {
st.trapezoid_tick_cycle_counter -= CYCLES_PER_ACCELERATION_TICK;
return(true);
} else {
return(false);
}
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with
// config_step_timer. It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
// It is supported by The Stepper Port Reset Interrupt which it uses to reset the stepper port after each pulse.
// The bresenham line tracer algorithm controls all three stepper outputs simultaneously with these two interrupts.
ISR(TIMER1_COMPA_vect)
{
if (busy) { return; } // The busy-flag is used to avoid reentering this interrupt
PORTC |= 0x08; // diagnostic timing test
// Set the direction pins a couple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
// Then pulse the stepping pins
#ifdef STEP_PULSE_DELAY
step_bits = (STEPPING_PORT & ~STEP_MASK) | out_bits; // Store out_bits to prevent overwriting.
#else // Normal operation
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits;
#endif
// Enable step pulse reset timer so that The Stepper Port Reset Interrupt can reset the signal after
// exactly settings.pulse_microseconds microseconds, independent of the main Timer1 prescaler.
TCNT2 = step_pulse_time; // Reload timer counter
TCCR2B = (1<<CS21); // Begin timer2. Full speed, 1/8 prescaler
busy = true;
// Re-enable interrupts to allow ISR_TIMER2_OVERFLOW to trigger on-time and allow serial communications
// regardless of time in this handler. The following code prepares the stepper driver for the next
// step interrupt compare and will always finish before returning to the main program.
sei();
out_bits = out_bits0;
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL && !indep_mode) {
// Anything in the buffer? If so, initialize next motion.
current_block = plan_get_current_block();
if (current_block != NULL) {
if (sys.state == STATE_CYCLE) {
// During feed hold, do not update rate and trap counter. Keep decelerating.
st.trapezoid_adjusted_rate = current_block->initial_rate;
set_step_events_per_minute(st.trapezoid_adjusted_rate); // Initialize cycles_per_step_event
st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2; // Start halfway for midpoint rule.
}
st.min_safe_rate = current_block->rate_delta + (current_block->rate_delta >> 1); // 1.5 x rate_delta
st.counter_x = -(current_block->step_event_count >> 1);
st.counter_y = st.counter_x;
st.counter_z = st.counter_x;
st.event_count = current_block->step_event_count;
st.step_events_completed = 0;
out_bits0 = (out_bits0 & ~DIRECTION_MASK)
| ((current_block->direction_bits ^ settings.invert_mask) & DIRECTION_MASK);
set_motion_state_block(current_block); // for hard limits
} else {
st_go_idle();
bit_true(sys.execute,EXEC_CYCLE_STOP); // Flag main program for cycle end
}
}
if (indep_mode) {
indep_t_ptr it = indep_frame;
while(it) {
if(indep_increment(it)) {
*(&st.counter_x + it->axis) += it->dpdt;
}
it = it->next_axis;
}
} else if (current_block != NULL) {
st.counter_x += current_block->steps_x;
st.counter_y += current_block->steps_y;
st.counter_z += current_block->steps_z;
}
if (current_block != NULL || indep_mode) {
// Execute step displacement profile by bresenham line algorithm
// note: unnecessary to set direction here; it is set at new block & retained in out_bits0
if (st.counter_x > 0) {
out_bits ^= (1<<X_STEP_BIT);
st.counter_x -= st.event_count;
if ((out_bits^settings.invert_mask) & (1<<X_DIRECTION_BIT)) { sys.position[X_AXIS]--; }
else { sys.position[X_AXIS]++; }
}
if (st.counter_y > 0) {
out_bits ^= (1<<Y_STEP_BIT);
st.counter_y -= st.event_count;
if ((out_bits^settings.invert_mask) & (1<<Y_DIRECTION_BIT)) { sys.position[Y_AXIS]--; }
else { sys.position[Y_AXIS]++; }
}
if (st.counter_z > 0) {
out_bits ^= (1<<Z_STEP_BIT);
st.counter_z -= st.event_count;
if ((out_bits^settings.invert_mask) & (1<<Z_DIRECTION_BIT)) { sys.position[Z_AXIS]--; }
else { sys.position[Z_AXIS]++; }
}
// check home & limit switches for hard limit situation
if(out_bits != out_bits0) { // if we are taking a motor step
test_hard_limits();
}
if(!indep_mode) {
st.step_events_completed++; // Iterate step events
// While in block steps, check for de/ac-celeration events and execute them accordingly.
if (st.step_events_completed < current_block->step_event_count) {
if (sys.state == STATE_HOLD) {
// Check for and execute feed hold by enforcing a steady deceleration from the moment of
// execution. The rate of deceleration is limited by rate_delta and will never decelerate
// faster or slower than in normal operation. If the distance required for the feed hold
// deceleration spans more than one block, the initial rate of the following blocks are not
// updated and deceleration is continued according to their corresponding rate_delta.
// NOTE: The trapezoid tick cycle counter is not updated intentionally. This ensures that
// the deceleration is smooth regardless of where the feed hold is initiated and if the
// deceleration distance spans multiple blocks.
if ( iterate_trapezoid_cycle_counter() ) {
// If deceleration complete, set system flags and shutdown steppers.
if (st.trapezoid_adjusted_rate <= current_block->rate_delta) {
// Just go idle. Do not NULL current block. The bresenham algorithm variables must
// remain intact to ensure the stepper path is exactly the same. Feed hold is still
// active and is released after the buffer has been reinitialized.
st_go_idle();
bit_true(sys.execute,EXEC_CYCLE_STOP); // Flag main program that feed hold is complete.
} else {
st.trapezoid_adjusted_rate -= current_block->rate_delta;
set_step_events_per_minute(st.trapezoid_adjusted_rate);
}
}
} else {
// The trapezoid generator always checks step event location to ensure de/ac-celerations are
// executed and terminated at exactly the right time. This helps prevent over/under-shooting
// the target position and speed.
// NOTE: By increasing the ACCELERATION_TICKS_PER_SECOND in config.h, the resolution of the
// discrete velocity changes increase and accuracy can increase as well to a point. Numerical
// round-off errors can effect this, if set too high. This is important to note if a user has
// very high acceleration and/or feedrate requirements for their machine.
if (st.step_events_completed < current_block->accelerate_until) {
// Iterate cycle counter and check if speeds need to be increased.
if ( iterate_trapezoid_cycle_counter() ) {
st.trapezoid_adjusted_rate += current_block->rate_delta;
if (st.trapezoid_adjusted_rate >= current_block->nominal_rate) {
// Reached nominal rate a little early. Cruise at nominal rate until decelerate_after.
st.trapezoid_adjusted_rate = current_block->nominal_rate;
}
set_step_events_per_minute(st.trapezoid_adjusted_rate);
}
} else if (st.step_events_completed >= current_block->decelerate_after) {
// Reset trapezoid tick cycle counter to make sure that the deceleration is performed the
// same every time. Reset to CYCLES_PER_ACCELERATION_TICK/2 to follow the midpoint rule for
// an accurate approximation of the deceleration curve.
if (st.step_events_completed == current_block-> decelerate_after) {
st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2;
} else {
// Iterate cycle counter and check if speeds need to be reduced.
if ( iterate_trapezoid_cycle_counter() ) {
// NOTE: We will only do a full speed reduction if the result is more than the minimum safe
// rate, initialized in trapezoid reset as 1.5 x rate_delta. Otherwise, reduce the speed by
// half increments until finished. The half increments are guaranteed not to exceed the
// CNC acceleration limits, because they will never be greater than rate_delta. This catches
// small errors that might leave steps hanging after the last trapezoid tick or a very slow
// step rate at the end of a full stop deceleration in certain situations. The half rate
// reductions should only be called once or twice per block and create a nice smooth
// end deceleration.
if (st.trapezoid_adjusted_rate > st.min_safe_rate) {
st.trapezoid_adjusted_rate -= current_block->rate_delta;
} else {
st.trapezoid_adjusted_rate >>= 1; // Bit shift divide by 2
}
if (st.trapezoid_adjusted_rate < current_block->final_rate) {
// Reached final rate a little early. Cruise to end of block at final rate.
st.trapezoid_adjusted_rate = current_block->final_rate;
}
set_step_events_per_minute(st.trapezoid_adjusted_rate);
}
}
} else {
// No accelerations. Make sure we cruise exactly at the nominal rate.
if (st.trapezoid_adjusted_rate != current_block->nominal_rate) {
st.trapezoid_adjusted_rate = current_block->nominal_rate;
set_step_events_per_minute(st.trapezoid_adjusted_rate);
}
}
}
} else {
// If current block is finished, reset pointer
current_block = NULL;
plan_discard_current_block();
}
}
}
busy = false;
PORTC &= ~(0x08); // diagnostic timing test
}
// This interrupt is set up by ISR_TIMER1_COMPAREA when it sets the motor port bits. It resets
// the motor port after a short period (settings.pulse_microseconds) completing one step cycle.
// NOTE: Interrupt collisions between the serial and stepper interrupts can cause delays by
// a few microseconds, if they execute right before one another. Not a big deal, but can
// cause issues at high step rates if another high frequency asynchronous interrupt is
// added to Grbl.
ISR(TIMER2_OVF_vect)
{
// Reset stepping pins (leave the direction pins)
STEPPING_PORT = out_bits0;
TCCR2B = 0; // Disable Timer2 to prevent re-entering this interrupt when it's not needed.
}
#ifdef STEP_PULSE_DELAY
// This interrupt is used only when STEP_PULSE_DELAY is enabled. Here, the step pulse is
// initiated after the STEP_PULSE_DELAY time period has elapsed. The ISR TIMER2_OVF interrupt
// will then trigger after the appropriate settings.pulse_microseconds, as in normal operation.
// The new timing between direction, step pulse, and step complete events are setup in the
// st_wake_up() routine.
ISR(TIMER2_COMPA_vect)
{
STEPPING_PORT = step_bits; // Begin step pulse.
}
#endif
// Reset and clear stepper subsystem variables
void st_reset()
{
memset(&st, 0, sizeof(st));
set_step_events_per_minute(MINIMUM_STEPS_PER_MINUTE);
current_block = NULL;
busy = false;
indep_mode=false;
axes_moving = 0;
disable_steppers();
}
// Initialize and start the stepper motor subsystem
void st_init()
{
// Configure directions of interface pins
STEPPING_DDR |= STEPPING_MASK;
out_bits0 = (STEPPING_PORT & ~STEPPING_MASK) | settings.invert_mask;
// nothing ever changes X_STEP_BIT, Y_STEP_BIT, Z_STEP_BIT locations in out_bits0
STEPPING_PORT = out_bits0;
STEPPERS_DISABLE_DDR |= STEPPERS_DISABLE_MASK;
// for diagnostic timing test
DDRC |= 0x08;
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Configure Timer 2
TCCR2A = 0; // Normal operation
TCCR2B = 0; // Disable timer until needed.
TIMSK2 |= (1<<TOIE2); // Enable Timer2 Overflow interrupt
#ifdef STEP_PULSE_DELAY
TIMSK2 |= (1<<OCIE2A); // Enable Timer2 Compare Match A interrupt
#endif
// Start in the idle state, but first wake up to check for keep steppers enabled option.
enable_steppers();
st_wake_up();
st_go_idle();
}
// Configures the prescaler and ceiling of timer 1 to produce the given rate as accurately as possible.
// Returns the actual number of cycles per interrupt
static uint32_t config_step_timer(uint32_t cycles) // cycles = desired clock ticks per interrupt
{
uint16_t ceiling;
uint8_t prescaler;
uint32_t actual_cycles;
if (cycles <= 0xffffL) {
ceiling = cycles;
prescaler = 1; // prescaler: 0
actual_cycles = ceiling;
} else if (cycles <= 0x7ffffL) {
ceiling = cycles >> 3;
prescaler = 2; // prescaler: 8
actual_cycles = ceiling * 8L;
} else if (cycles <= 0x3fffffL) {
ceiling = cycles >> 6;
prescaler = 3; // prescaler: 64
actual_cycles = ceiling * 64L;
} else if (cycles <= 0xffffffL) {
ceiling = (cycles >> 8);
prescaler = 4; // prescaler: 256
actual_cycles = ceiling * 256L;
} else if (cycles <= 0x3ffffffL) {
ceiling = (cycles >> 10);
prescaler = 5; // prescaler: 1024
actual_cycles = ceiling * 1024L;
} else {
// Okay, that was slower than we actually go. Just set the slowest speed
ceiling = 0xffff;
prescaler = 5;
actual_cycles = 0xffff * 1024;
}
// Set prescaler
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (prescaler<<CS10);
// Set ceiling
OCR1A = ceiling;
return(actual_cycles);
}
static void set_step_events_per_minute(uint32_t steps_per_minute)
{
if (steps_per_minute < MINIMUM_STEPS_PER_MINUTE) { steps_per_minute = MINIMUM_STEPS_PER_MINUTE; }
st.cycles_per_step_event = config_step_timer((TICKS_PER_MICROSECOND*1000000*60)/steps_per_minute);
}
// Planner external interface to start stepper interrupt and execute the blocks in queue. Called
// by the main program functions: planner auto-start and run-time command execution.
// TODO: Update sys.cycle_start and feed_hold variables to a sys.state variable. This state
// variable will manage all of Grbl's processes and keep them separate.
void st_cycle_start()
{
if (sys.state == STATE_QUEUED) {
sys.state = STATE_CYCLE;
enable_steppers();
st_wake_up();
}
}
// Execute a feed hold with deceleration, only during cycle. Called by main program.
void st_feed_hold()
{
if (sys.state == STATE_CYCLE) {
sys.state = STATE_HOLD;
sys.auto_start = false; // Disable planner auto start upon feed hold.
}
}
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
// runtime command execution in the main program, ensuring that the planner re-plans safely.
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
// Only the planner de/ac-celerations profiles and stepper rates have been updated.
void st_cycle_reinitialize()
{
if (current_block != NULL) {
// Replan buffer from the feed hold stop location.
plan_cycle_reinitialize(current_block->step_event_count - st.step_events_completed);
// Update initial rate and timers after feed hold.
st.trapezoid_adjusted_rate = 0; // Resumes from rest
set_step_events_per_minute(st.trapezoid_adjusted_rate);
st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2; // Start halfway for midpoint rule.
st.step_events_completed = 0;
sys.state = STATE_QUEUED;
} else {
sys.state = STATE_IDLE;
}
}