-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathgravity_collision.cpp
175 lines (160 loc) · 7.23 KB
/
gravity_collision.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
Drop an object to a planar ground with gravity.
It may bounce up a few times depending on the restitution coefficients.
Collisions are detected and printed to stdout. Releated threads:
- http://stackoverflow.com/questions/11175694/bullet-physics-simplest-collision-example
- http://stackoverflow.com/questions/9117932/detecting-collisions-with-bullet
- http://gamedev.stackexchange.com/questions/22442/how-get-collision-callback-of-two-specific-objects-using-bullet-physics
- http://www.bulletphysics.org/mediawiki-1.5.8/index.php?title=Collision_Callbacks_and_Triggers
Derived from gravity.cpp
*/
#include <cstdio>
#include <cstdlib>
#include <map>
#include <type_traits>
#include <vector>
#include <btBulletDynamicsCommon.h>
#include "common.hpp"
constexpr float gravity = 0.0f;
// How inclined the ground plane is towards +x.
constexpr float groundXNormal = 0.0f;
constexpr float initialX = 0.0f;
constexpr float initialY = 10.0f;
constexpr float initialZ = 0.0f;
constexpr float initialLinearVelocityX = 0.0f;
constexpr float initialLinearVelocityY = -10.0f;
constexpr float initialLinearVelocityZ = 0.0f;
constexpr float timeStep = 1.0f / 60.0f;
// TODO some combinations of coefficients smaller than 1.0
// make the ball go up higher / not lose height. Why?
constexpr float groundRestitution = 1.0f;
constexpr float objectRestitution = 1.0f;
constexpr int nSteps = 500;
std::map<const btCollisionObject*,std::vector<btManifoldPoint*>> objectsCollisions;
void myTickCallback(btDynamicsWorld *dynamicsWorld, btScalar timeStep) {
objectsCollisions.clear();
int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numManifolds; i++) {
btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
auto *objA = contactManifold->getBody0();
auto *objB = contactManifold->getBody1();
auto& collisionsA = objectsCollisions[objA];
auto& collisionsB = objectsCollisions[objB];
int numContacts = contactManifold->getNumContacts();
for (int j = 0; j < numContacts; j++) {
btManifoldPoint& pt = contactManifold->getContactPoint(j);
collisionsA.push_back(&pt);
collisionsB.push_back(&pt);
}
}
}
int main() {
btDefaultCollisionConfiguration *collisionConfiguration
= new btDefaultCollisionConfiguration();
btCollisionDispatcher *dispatcher = new btCollisionDispatcher(collisionConfiguration);
btBroadphaseInterface *overlappingPairCache = new btDbvtBroadphase();
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver;
btDiscreteDynamicsWorld *dynamicsWorld = new btDiscreteDynamicsWorld(
dispatcher, overlappingPairCache, solver, collisionConfiguration);
dynamicsWorld->setGravity(btVector3(0, gravity, 0));
dynamicsWorld->setInternalTickCallback(myTickCallback);
btAlignedObjectArray<btCollisionShape*> collisionShapes;
// Ground.
{
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, 0, 0));
btCollisionShape* groundShape;
#if 0
// x / z plane at y = -1 (not 0 to compensate the radius of the falling object).
groundShape = new btStaticPlaneShape(btVector3(groundXNormal, 1, 0), -1);
#else
// A cube of width 10 at y = -6 (upper surface at -1).
// Does not fall because we won't call:
// colShape->calculateLocalInertia
// TODO: remove this from this example into a collision shape example.
groundTransform.setOrigin(btVector3(-5, -6, 0));
groundShape = new btBoxShape(
btVector3(btScalar(5.0), btScalar(5.0), btScalar(5.0)));
#endif
collisionShapes.push_back(groundShape);
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(0, myMotionState, groundShape, btVector3(0, 0, 0));
btRigidBody* body = new btRigidBody(rbInfo);
body->setRestitution(groundRestitution);
dynamicsWorld->addRigidBody(body);
}
// Object.
{
btCollisionShape *colShape;
#if 0
colShape = new btSphereShape(btScalar(1.0));
#else
// Because of numerical instabilities, the cube bumps all over,
// moving on the x and z directions as well as y.
colShape = new btBoxShape(
btVector3(btScalar(1.0), btScalar(1.0), btScalar(1.0)));
#endif
collisionShapes.push_back(colShape);
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(initialX, initialY, initialZ));
btVector3 localInertia(0, 0, 0);
btScalar mass(1.0f);
colShape->calculateLocalInertia(mass, localInertia);
btDefaultMotionState *myMotionState = new btDefaultMotionState(startTransform);
btRigidBody *body = new btRigidBody(btRigidBody::btRigidBodyConstructionInfo(
mass, myMotionState, colShape, localInertia));
body->setRestitution(objectRestitution);
body->setLinearVelocity(btVector3(initialLinearVelocityX, initialLinearVelocityY, initialLinearVelocityZ));
dynamicsWorld->addRigidBody(body);
}
// Main loop.
std::printf(COMMON_PRINTF_HEADER " collision a b normal\n");
for (std::remove_const<decltype(nSteps)>::type step = 0; step < nSteps; ++step) {
dynamicsWorld->stepSimulation(timeStep);
auto nCollisionObjects = dynamicsWorld->getNumCollisionObjects();
for (decltype(nCollisionObjects) objectIndex = 0; objectIndex < nCollisionObjects; ++objectIndex) {
btRigidBody *body = btRigidBody::upcast(dynamicsWorld->getCollisionObjectArray()[objectIndex]);
commonPrintBodyState(body, step, objectIndex);
auto& manifoldPoints = objectsCollisions[body];
if (manifoldPoints.empty()) {
std::printf("0 ");
} else {
std::printf("1 ");
for (auto& pt : manifoldPoints) {
std::vector<btVector3> data;
data.push_back(pt->getPositionWorldOnA());
data.push_back(pt->getPositionWorldOnB());
data.push_back(pt->m_normalWorldOnB);
for (auto& v : data) {
std::printf(
COMMON_PRINTF_FLOAT " " COMMON_PRINTF_FLOAT " " COMMON_PRINTF_FLOAT " ",
v.getX(), v.getY(), v.getZ()
);
}
}
}
std::printf("\n");
}
}
// Cleanup.
for (int i = dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; --i) {
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState()) {
delete body->getMotionState();
}
dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for (int i = 0; i < collisionShapes.size(); ++i) {
delete collisionShapes[i];
}
delete dynamicsWorld;
delete solver;
delete overlappingPairCache;
delete dispatcher;
delete collisionConfiguration;
collisionShapes.clear();
}