-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathglfw_compute_shader_heat_equation.c
540 lines (499 loc) · 17.8 KB
/
glfw_compute_shader_heat_equation.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
Heat equation. TODO CPU only for now. Works fast enough for current algorithm.
But maybe we can use some algorithm that is a weighted average of a square,
where the GPU would be way faster?
Usage:
./prog
[width
[window_width
[work_group_width
[cpu
[conduction_coeff
[select_boundary
[steps_per_frame
]]]]]
Example:
./prog 512 512 16 1 0.5 2
- width: window width
- work_group_width. Must divide width.
- cpu: if '1', use CPU, else GPU. If set, work_group_width is ignored.
Controls:
- mouse hover controls internal boundary
- left click: toggle internal boundary to 1.0 or 0.0
It is hard to view function values with colors like this, because the range is too limited.
A solution would be to us a 3D plot, but that might require moving the camera around to see certain spots...
## Algorithm
TODO: find the name of this naive integration. How imprecise it it?
I think it is this: https://en.wikipedia.org/wiki/Successive_over-relaxation
One limitation of this method is that temperature changes can
only move one square at a time.
In the real word, a temperature change on one side of the room
immediately affects the other side (very little).
This is notably not the case for the wave equation, which has finite propagation speed.
And a denser grid implies more steps to propagate.
The decent method will likely require matrix multiplications?
## Bibliography
- https://www.youtube.com/watch?v=VIxBOJ6FJDY OpenCL OpenGL interop by Douglas Andrade, no source, no comparison to CPU
*/
#include "common.h"
static const GLuint WINDOW_WIDTH = 512;
static const GLuint WIDTH = 256;
static const GLuint WORK_GROUP_WIDTH = 16;
static const GLfloat vertices_xy_uv[] = {
-1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 0.0, 0.0,
1.0, -1.0, 1.0, 0.0,
-1.0, -1.0, 1.0, 1.0,
};
static const GLuint indices[] = {
0, 1, 2,
0, 2, 3,
};
static unsigned int moving_boundary_value_swap = 1;
static GLfloat moving_boundary_value = 0.99;
static const GLchar *vertex_shader_source =
"#version 330 core\n"
"in vec2 coord2d;\n"
"in vec2 vertexUv;\n"
"out vec2 fragmentUv;\n"
"void main() {\n"
" gl_Position = vec4(coord2d, 0, 1);\n"
" fragmentUv = vertexUv;\n"
"}\n";
static const GLchar *fragment_shader_source =
"#version 330 core\n"
"in vec2 fragmentUv;\n"
"out vec3 color;\n"
"uniform sampler2D textureSampler;\n"
"void main() {\n"
" float r = texture(textureSampler, fragmentUv.yx).r;\n"
" color = vec3(r, r, r);\n"
"}\n";
static const char compute_shader_source_template[] =
"#version 430\n"
"layout (local_size_x = %d, local_size_y = %d) in;\n"
"layout (r32f, binding = 0) uniform image2D img_output;\n"
"layout (std430, binding=0) buffer temperatures {\n"
" float temperature[];\n"
"};\n"
"uniform uint width;\n"
"void main() {\n"
" ivec2 gid = ivec2(gl_GlobalInvocationID.xy);\n"
" ivec2 dims = imageSize(img_output);\n"
" uint i = gid.y * width + gid.x;\n"
" float t = temperature[i];\n"
" vec4 pixel = vec4(t, 0.0, 0.0, 1.0);\n"
" imageStore(img_output, gid, pixel);\n"
" temperature[i] = mod(t + 0.01, 1.0);\n"
"}\n";
/* The external boundary. */
void init_boundary(GLfloat *temperatures, size_t width, size_t height, int which, int time) {
const float PI2 = 2.0 * acos(-1.0);
const unsigned int sin_periods = 2;
switch (which) {
case 1:
/* Linear decrease.
*
* 1.0---0.5
* | |
* | |
* 0.5---0.0
* */
for (size_t i = 0; i < height; ++i) {
temperatures[i * width + 0 ] = 0.5 + (0.5 * (i / (float)height));
temperatures[i * width + width - 1] = 0.5 * (i / (float)height);
}
for (size_t j = 1; j < width - 1; ++j) {
temperatures[ j] = 0.5 * (1.0 - (j / (float)width));
temperatures[(height - 1) * width + j] = 0.99 - (0.5 * (j / (float)width));
}
break;
case 2:
/* Sin, edges fixed
*
* 0.5---0.5
* | |
* | |
* 0.5---0.5
*
* Does N periods in the middle.
* */
for (size_t i = 0; i < height; ++i) {
float f = 0.5 * (0.99 + sin(sin_periods * PI2 * (i / (float)height)));
temperatures[i * width + 0 ] = f;
temperatures[i * width + width - 1] = f;
}
for (size_t j = 1; j < width - 1; ++j) {
float f = 0.5 * (0.99 + sin(sin_periods * PI2 * (j / (float)width)));
temperatures[ j] = f;
temperatures[(height - 1) * width + j] = f;
}
break;
case 3:
/* Standing waves with time, edges fixed:
*
* 0.5---0.5
* | |
* | |
* 0.5---0.5
* */
for (size_t i = 0; i < height; ++i) {
float f = 0.5 * (0.99 + sin(PI2 * (sin_periods * i / (float)height)) * cos(time/1000.0));
temperatures[i * width + 0 ] = f;
temperatures[i * width + width - 1] = f;
}
for (size_t j = 1; j < width - 1; ++j) {
float f = 0.5 * (0.99 + sin(PI2 * (sin_periods * j / (float)width)) * cos(time/1000.0));
temperatures[ j] = f;
temperatures[(height - 1) * width + j] = f;
}
break;
case 0:
default:
/*
* Const at 1.0.
*
* 1.0---1.0
* | |
* | |
* 1.0---1.0
* */
for (size_t i = 0; i < height; ++i) {
temperatures[i * width + 0 ] = 0.99;
temperatures[i * width + width - 1] = 0.99;
}
for (size_t j = 1; j < width - 1; ++j) {
temperatures[ j] = 0.99;
temperatures[(height - 1) * width + j] = 0.99;
}
break;
}
}
/* An internal fixed boundary. We let derivatives be calculated on it for simplicity,
* but ignore the result and reset this every time setup.
*
* This allows easy user interaction to move the square around.
* */
void moving_boundary_set_square(
GLfloat *temperatures,
size_t width,
size_t height,
size_t square_x,
size_t square_y,
size_t square_width,
size_t square_height,
GLfloat moving_boundary_value
) {
size_t n_temperatures = width * height;
size_t square_height_half = square_height / 2;
size_t square_width_half = square_width / 2;
for (size_t i = 0; i < square_height; ++i) {
for (size_t j = 0; j < square_width; ++j) {
size_t y = square_y + i;
size_t x = square_x + j;
if (
y > square_height_half &&
y < height + square_height_half &&
x > square_width_half &&
x < width + square_width_half
) {
size_t idx = (y - square_height_half) * width + (x - square_width_half);
temperatures[idx] = moving_boundary_value;
}
}
}
}
void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) {
if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) {
if (moving_boundary_value_swap) {
moving_boundary_value = 0.0;
} else {
moving_boundary_value = 0.99;
}
moving_boundary_value_swap = !moving_boundary_value_swap;
}
}
int main(int argc, char **argv) {
GLFWwindow *window;
GLfloat
*temperatures = NULL,
*temperatures2 = NULL,
*temperature_buf = NULL
;
GLint
coord2d_location,
textureSampler_location,
vertexUv_location,
width_location
;
GLuint
compute_program,
ebo,
height,
window_height,
program,
ssbo,
texture,
width,
window_width,
work_group_width,
vao,
vbo
;
char *compute_shader_source, *work_group_width_str;
double
cursor_pos_x = 0.0,
cursor_pos_y = 0.0,
window_grid_ratio_x = 0.0,
window_grid_ratio_y = 0.0
;
int cpu, step = 0, which_boundary;
float conduction_coeff;
size_t
n_temperatures,
square_x,
square_y,
square_width,
square_height
;
unsigned int steps_per_frame, window_x;
/* CLI arguments. */
if (argc > 1) {
width = strtol(argv[1], NULL, 10);
} else {
width = WIDTH;
}
height = width;
if (argc > 2) {
window_width = strtol(argv[2], NULL, 10);
} else {
window_width = WINDOW_WIDTH;
}
window_height = window_width;
if (argc > 3) {
work_group_width = strtol(argv[3], NULL, 10);
} else {
work_group_width = WORK_GROUP_WIDTH;
}
if (argc > 4) {
cpu = (argv[4][0] == '1');
} else {
cpu = 0;
}
/* TODO remove this when we implement GPU. */
cpu = 1;
/* Must be between 0.0 and 1.0.
*
* Physics allows it to be in 0 / infinity.
*
* Anything greater than 1.0 leads to numeric instabilities
* for our simplistic method. For example, the following:
*
* 1.0
*
* 1.0 0.0 1.0
*
* 1.0
*
* the center point goes above its surroundings on the next time step (2.0)
* for a conduction coefficient of 2.0.
*
* Negative values make temperatures unbounded and breaks energy conservation.
*
* But you obviously will try out "bad" values in the simulation to see what happens.
* The behaviour of this value around 1.99, 2.0, 2.01, 3.0 is specially interesting.
*
* At 0.0, the system does not evolve. Your mouse heat source becomes a permanent pen.
* The close to one, the faster your writting dissipates.
* */
conduction_coeff = 1.0;
if (argc > 5) {
conduction_coeff = strtod(argv[5], NULL);
}
which_boundary = 0;
if (argc > 6) {
which_boundary = strtol(argv[6], NULL, 10);
}
/* Ideally set to make simulation be 60 FPS. */
steps_per_frame = 1;
if (argc > 7) {
steps_per_frame = strtol(argv[7], NULL, 10);
}
window_x = 0;
if (argc > 8) {
window_x = strtol(argv[8], NULL, 10);
}
square_x = width / 2;
square_y = height / 2;
square_width = width / 20;
square_height = height / 20;
window_grid_ratio_x = width / (double)window_width;
window_grid_ratio_y = height / (double)window_height;
/* Window. */
glfwInit();
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
window = glfwCreateWindow(window_width, window_height, __FILE__, NULL, NULL);
glfwSetWindowPos(window, window_x, 0);
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
glewInit();
/* Shader. */
program = common_get_shader_program(vertex_shader_source, fragment_shader_source);
coord2d_location = glGetAttribLocation(program, "coord2d");
vertexUv_location = glGetAttribLocation(program, "vertexUv");
textureSampler_location = glGetUniformLocation(program, "textureSampler");
if (!cpu) {
/* Compute shader. */
int work_group_width_len = snprintf(NULL, 0, "%d", work_group_width);
size_t compute_shader_source_len = sizeof(compute_shader_source_template) + 2 * work_group_width_len;
compute_shader_source = malloc(compute_shader_source_len);
snprintf(
compute_shader_source,
compute_shader_source_len,
compute_shader_source_template,
work_group_width,
work_group_width
);
compute_program = common_get_compute_program(compute_shader_source);
free(compute_shader_source);
width_location = glGetUniformLocation(compute_program, "width");
}
/* vbo */
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices_xy_uv), vertices_xy_uv, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
/* ebo */
glGenBuffers(1, &ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
/* vao */
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glVertexAttribPointer(coord2d_location, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(vertices_xy_uv[0]), (GLvoid*)0);
glEnableVertexAttribArray(coord2d_location);
glVertexAttribPointer(vertexUv_location, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(vertices_xy_uv[0]), (GLvoid*)(2 * sizeof(vertices_xy_uv[0])));
glEnableVertexAttribArray(vertexUv_location);
glBindVertexArray(0);
/* ssbo */
srand(time(NULL));
n_temperatures = width * height;
temperatures = malloc(n_temperatures * sizeof(temperatures[0]));
/* Initial condition. TODO: make continuous with boundary conditions. */
for (size_t i = 1; i < height - 1; ++i) {
for (size_t j = 1; j < width - 1; ++j) {
temperatures[i * width + j] = 0.0;
}
}
if (cpu) {
temperatures2 = malloc(n_temperatures * sizeof(temperatures[0]));
/* Boundary must also be initialized for this buffer,
* since the boundary is never touched after the beginning. */
init_boundary(temperatures2, width, height, which_boundary, step);
} else {
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, n_temperatures * sizeof(temperatures[0]), temperatures, GL_DYNAMIC_COPY);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);
free(temperatures);
}
/* Texture. */
glGenTextures(1, &texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (!cpu) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, width, height, 0, GL_RED, GL_FLOAT, NULL);
/* Bind to image unit so can write to specific pixels from the compute shader. */
glBindImageTexture(0, texture, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_R32F);
}
/* Constant state. */
glViewport(0, 0, window_width, window_height);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
/* Main loop. */
common_fps_init();
while (!glfwWindowShouldClose(window)) {
if (cpu) {
for (
unsigned int steps_this_frame = 0;
steps_this_frame < steps_per_frame;
++steps_this_frame
) {
glfwPollEvents();
glfwGetCursorPos(window, &cursor_pos_x, &cursor_pos_y);
glfwSetMouseButtonCallback(window, mouse_button_callback);
square_x = width - (cursor_pos_x * window_grid_ratio_y);
square_y = cursor_pos_y * window_grid_ratio_y;
moving_boundary_set_square(
temperatures,
width,
height,
square_x,
square_y,
square_width,
square_height,
moving_boundary_value
);
init_boundary(temperatures, width, height, which_boundary, step);
for (unsigned int i = 1; i < height - 1; ++i) {
for (unsigned int j = 1; j < width - 1; ++j) {
size_t idx = i * width + j;
temperatures2[idx] =
(1.0 - conduction_coeff) * temperatures2[idx] +
conduction_coeff * (
temperatures[idx - 1] +
temperatures[idx + 1] +
temperatures[idx - width] +
temperatures[idx + width]
) / 4.0;
}
}
/* Swap old and new. */
temperature_buf = temperatures;
temperatures = temperatures2;
temperatures2 = temperature_buf;
step++;
}
glTexImage2D(
GL_TEXTURE_2D, 0, GL_RED, width, height,
0, GL_RED, GL_FLOAT, temperatures2
);
} else {
/* Compute. */
glUseProgram(compute_program);
glUniform1ui(width_location, width);
glDispatchCompute((GLuint)width / work_group_width, (GLuint)height / work_group_width, 1);
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
}
/* Draw. */
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(program);
glUniform1i(textureSampler_location, 0);
glBindVertexArray(vao);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
glfwSwapBuffers(window);
glfwPollEvents();
common_fps_print();
}
/* Cleanup. */
glDeleteBuffers(1, &ebo);
if (cpu) {
free(temperatures);
free(temperatures2);
} else {
glDeleteBuffers(1, &ssbo);
}
glDeleteBuffers(1, &vbo);
glDeleteVertexArrays(1, &vao);
glDeleteTextures(1, &texture);
glDeleteProgram(program);
glDeleteProgram(compute_program);
glfwTerminate();
return EXIT_SUCCESS;
}