forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TrifingerPPO.yaml
91 lines (91 loc) · 2.24 KB
/
TrifingerPPO.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
asymmetric_obs: true
params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: false
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: true
mlp:
units: [256, 256, 128, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Trifinger,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: true
mixed_precision: false
normalize_input: true
normalize_value: true
reward_shaper:
scale_value: 0.01
normalize_advantage: true
gamma: 0.99
tau: 0.95
learning_rate: 0.0003
lr_schedule: constant
use_experimental_cv: true
schedule_type: standard
kl_threshold: 0.016
score_to_win: 500000
max_epochs: ${resolve_default:20000,${....max_iterations}}
save_best_after: 100
save_frequency: 100
print_stats: true
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: true
e_clip: 0.2
horizon_length: 8
minibatch_size: ${.num_actors}
mini_epochs: 4
critic_coef: 4
clip_value: true
seq_len: 4
bounds_loss_coef: 0.0001
central_value_config:
minibatch_size: ${..num_actors}
mini_epochs: ${..mini_epochs}
learning_rate: 0.0005
lr_schedule: linear
schedule_type: standard
kl_threshold: 0.016
clip_value: true
normalize_input: true
truncate_grads: true
network:
name: actor_critic
central_value: true
mlp:
units: [512, 512, 256, 128]
activation: elu
d2rl: false
initializer:
name: default
regularizer:
name: None
player:
deterministic: true
games_num: 1000000
print_stats: false
num_actors: ${....task.env.numEnvs}