-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_buildindex.py
197 lines (157 loc) · 8.05 KB
/
hf_buildindex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python3
import torch
from transformers import AutoTokenizer, AutoModel
import numpy as np
import random
from transformer_infrastructure.hf_utils import build_index_flat, build_index_voronoi
from transformer_infrastructure.run_tests import run_tests
from transformer_infrastructure.hf_embed import parse_fasta_for_embed, get_embeddings
import copy
from Bio import SeqIO
from Bio.Align import MultipleSeqAlignment
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from sklearn.preprocessing import normalize
import faiss
import pickle
import argparse
import os
import sys
import igraph
from pandas.core.common import flatten
import pandas as pd
from collections import Counter
import matplotlib.pyplot as plt
import logging
from sklearn.metrics.pairwise import cosine_similarity
from transformer_infrastructure.hf_utils import build_index_flat
#def get_index(np_embeddings, index = None):
# print(np_embeddings)
# if not index:
# print("Create index")
# d = np_embeddings.shape[1]
# index = faiss.index_factory(d, "Flat", faiss.METRIC_INNER_PRODUCT)
#
# faiss.normalize_L2(np_embeddings)
# index.add(np_embeddings)
# return(index)
def get_index_args():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--in", dest = "fasta_paths", nargs = "+", type = str, required = True,
help="Path to fastas (list)")
parser.add_argument("-e", "--emb", dest = "embedding_path", type = str, required = False,
help="Path to embeddings")
parser.add_argument("-ml", "--minlength", dest = "minlength", type = int, required = False,
help="Minimum length of sequences to add to the index")
parser.add_argument("-b", "--base_outfile", dest = "base_outfile", type = str, required = True,
help="Path to outfile basename to store index(es) and id mapping, b.mean.faissindex, b.sigma.faissindex, b.faissindex.idmapping")
parser.add_argument("-ss", "--strategy", dest = "strat", type = str, required = False, default = "meansig", choices = ['mean','meansig'],
help="Save index of mean, or two indexes, one mean, one sigma")
parser.add_argument("-l", "--layers", dest = "layers", nargs="+", type = int,
help="Which layers (of 30 in protbert) to select")
parser.add_argument("-hd", "--heads", dest = "heads", type = str,
help="File will one head identifier per line, format layer1_head3")
parser.add_argument("-m", "--model", dest = "model_name", type = str, required = True,
help="Model name or path to local model")
parser.add_argument("-p", "--pca_plot", dest = "pca_plot", action = "store_true", required = False,
help="If flagged, output 2D pca plot of amino acid clusters")
parser.add_argument("-l2", "--headnorm", dest = "headnorm", action = "store_true", required = False,
help="Take L2 normalization of each head")
parser.add_argument("-ap", "--append", dest = "append", action = "store_true", required = False,
help="Append to existing index instead of starting a new one")
parser.add_argument("-t", "--truncate", dest = "truncate", type = int, required = False, default = 12000,
help="Default 12000. (23000 is too long)")
parser.add_argument("-s", "--scoretype", dest = "scoretype", type = str, required = False, default = "euclidean", choices = ["cosinesim", "euclidean"],
help="How to calculate initial sequence similarity score")
args = parser.parse_args()
return(args)
def add_to_index(embedding_dict, mean_index, mean_outfile, sigma_index, sigma_outfile, strat = "meansig", scoretype = "euclidean"):
mean_embeddings = np.array(embedding_dict['sequence_embeddings']).astype(np.float32)
if scoretype == "euclidean":
mean_index = build_index_flat(mean_embeddings, index = mean_index, scoretype = scoretype, normalize_l2 = False, return_norm = False)
else:
mean_index, norm = build_index_flat(mean_embeddings, index = mean_index, scoretype = scoretype, normalize_l2 = True, return_norm = True)
faiss.write_index(mean_index, mean_outfile)
if strat == "meansig":
sigma_embeddings = np.array(embedding_dict['sequence_embeddings_sigma']).astype(np.float32)
sigma_index = build_index_flat(sigma_embeddings, index = sigma_index, scoretype = "euclidean", normalize_l2 = False, return_norm = False)
faiss.write_index(sigma_index, sigma_outfile)
return(mean_index, sigma_index)
if __name__ == '__main__':
args = get_index_args()
append = args.append
fasta_paths = args.fasta_paths
embedding_path = args.embedding_path
base_outfile = args.base_outfile
layers = args.layers
heads = args.heads
model_name = args.model_name
pca_plot = args.pca_plot
headnorm = args.headnorm
truncate = args.truncate
strat = args.strat
minlength = args.minlength
scoretype = args.scoretype
# Keep to demonstrate effect of clustering or not
faiss.omp_set_num_threads(10)
if heads is not None:
with open(heads, "r") as f:
headnames = f.readlines()
print(headnames)
headnames = [x.replace("\n", "") for x in headnames]
print(headnames)
else:
headnames = None
logging.info("Check for torch")
logging.info(torch.cuda.is_available())
padding = 0
logging.info("model: {}".format(model_name))
logging.info("fastas: {}".format(fasta_paths))
logging.info("padding: {}".format(padding))
mean_index = None
sigma_index = None
count = 0
index_key_outfile = "{}.faissindex.idmapping".format(base_outfile)
mean_outfile = "{}.mean.faissindex".format(base_outfile)
sigma_outfile = "{}.sigma.faissindex".format(base_outfile)
if os.path.exists(index_key_outfile):
if append == False:
os.remove(index_key_outfile)
os.remove(mean_outfile)
os.remove(sigma_outfile)
with open(index_key_outfile, "a") as ok:
if append == False:
count = 0
else:
# continue with the last idx + 1
with open(index_key_outfile, "r") as i:
count = int(i.readlines()[-1].split(",")[1]) + 1
for fasta_path in fasta_paths:
if minlength:
seq_names, seqs, seqs_spaced = parse_fasta_for_embed(fasta_path, truncate = truncate, padding = padding, minlength=minlength)
else:
seq_names, seqs, seqs_spaced = parse_fasta_for_embed(fasta_path, truncate = truncate, padding = padding)
print("Sequences loaded")
#avoid loading too many sequences into memory
for i in range(0, len(seq_names), 1000):
chunk_seq_names = seq_names[i:i + 1000]
chunk_seqs_spaced = seqs_spaced[i:i + 1000]
chunk_seqs = seqs[i:i + 1000]
seqlens = [len(x) for x in chunk_seqs]
print(seqlens)
embedding_dict = get_embeddings(chunk_seqs_spaced,
model_name,
seqlens = seqlens,
get_sequence_embeddings = True,
get_aa_embeddings = False,
layers = layers,
padding = padding,
heads = headnames,
strat = strat)
mean_index, sigma_index = add_to_index(embedding_dict, mean_index, mean_outfile, sigma_index, sigma_outfile, strat = strat, scoretype = scoretype)
# print("{} added to index".format(fasta_path))
# Write mapping of sequence name o
for seq_name in chunk_seq_names:
key_string = "{},{}\n".format(seq_name, count)
ok.write(key_string)
count = count + 1