-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_classification.py
executable file
·323 lines (247 loc) · 12.4 KB
/
hf_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python
from transformer_infrastructure.hf_evaluation import get_predictions
import torch
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, BertTokenizerFast, EvalPrediction, AutoConfig
from torch.utils.data import Dataset
import os
import pandas as pd
import requests
from tqdm.auto import tqdm
import numpy as np
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
import re
import argparse
import logging
import gc
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", dest = "model_name", type = str, required = True,
help="Model directory path or name on huggingface. Ex. /path/to/model_dir Rostlab/prot_bert_bfd")
parser.add_argument("-tr", "--train", dest = "train_path", type = str, required = True,
help="Path to training set, containing columns named sequence,label (csv)")
parser.add_argument("-v", "--val", dest = "val_path", type = str, required = True,
help="Path to validation set (used during training), containing columns named sequence,label (csv)")
parser.add_argument("-te", "--test", dest = "test_path", type = str, required = True,
help="Path to withheld test set (used after training), containing columns named sequence,label (csv)")
parser.add_argument("-o", "--outdir", dest = "outdir", type = str, required = True,
help="Name of output directory")
parser.add_argument("-maxl", "--maxseqlength", dest = "max_length", type = int, required = False, default = 1024,
help="Truncate all sequences to this length (default 1024). Reduce if memory errors")
parser.add_argument("-n", "--expname", dest = "expname", type = str, required = False, default = "transformer_run",
help="Experiment name, used for logging, default = transformer_run")
parser.add_argument("-c", "--checkpoint", dest = "checkpoint", type = str, required = False,
help="Checkpoint directory to continue training")
parser.add_argument("-e", "--epochs", dest = "epochs", type = int, required = False, default = 10,
help="Number of epochs. Increasing can help if memory error")
parser.add_argument("-tbsize", "--train_batchsize", dest = "train_batchsize", type = int, required = False, default = 10,
help="Per device train batchsize. Reduce along with val batch size if memory error")
parser.add_argument("-vbsize", "--val_batchsize", dest = "val_batchsize", type = int, required = False, default = 10,
help="Per device validation batchsize. Reduce if memory error")
args = parser.parse_args()
return(args)
def load_dataset(path, max_length):
df = pd.read_csv(path)
df['seq_fixed'] = ["".join(seq.split()) for seq in df['sequence']]
df['seq_fixed'] = [re.sub(r"[UZOB]", "X", seq) for seq in df['seq_fixed']]
seqs = [ list(seq)[:max_length-2] for seq in df['seq_fixed']]
labels = list(df['label'])
ids = list(df['Entry_name'])
assert len(seqs) == len(labels) == len(ids)
return seqs, labels, ids
def encode_tags(tags, tag2id):
encoded_labels = [tag2id[tag] for tag in tags]
return encoded_labels
class SS3Dataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# calculate accuracy using sklearn's function
return {
"accuracy" : accuracy_score(labels, preds),
#"precision" : precision_score(labels, preds),
#"recall" : recall_score(labels, preds),
#"f1" : f1_score(labels, preds)
}
def model_init():
# from_config (vs. from_pretrained) is necessary for multiclass
config = AutoConfig.from_pretrained(model_name)
config.num_labels = len(unique_tags)
config.id2label = id2tag
config.label2id = tag2id
config.gradient_checkpointing = False
return AutoModelForSequenceClassification.from_config(config)
#return AutoModelForSequenceClassification.from_pretrained(model_name,
# num_labels=len(unique_tags),
# id2label=id2tag,
# label2id=tag2id,
# gradient_checkpointing=False)
def setup_trainer(epochs, train_batchsize, val_batchsize, outdir, expname):
training_args = TrainingArguments(
output_dir=outdir, # output directory
num_train_epochs=epochs, # total number of training epochs
per_device_train_batch_size=train_batchsize, # batch size per device during training
per_device_eval_batch_size=val_batchsize, # batch size for evaluation
warmup_steps=200, # number of warmup steps for learning rate scheduler
learning_rate=3e-05, # learning rate
weight_decay=0.0, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=200, # How often to print logs
do_train=True, # Perform training
do_eval=True, # Perform evaluation
evaluation_strategy="epoch", # evalute after each epoch
save_strategy="epoch",
gradient_accumulation_steps=32, # total number of steps before back propagation
#fp16=True, # Use mixed precision
#fp16_opt_level="02", # mixed precision mode
run_name=expname, # experiment name
seed=3, # Seed for experiment reproducibility
load_best_model_at_end=True,
metric_for_best_model="eval_accuracy",
greater_is_better=True,
)
return(training_args)
if __name__ == "__main__":
#max_length = 1024
#train_path = '/home/jupyter/chloro_loc/chloro_labeledsetTrain.csv'
#test_path = '/home/jupyter/chloro_loc/chloro_labeledsetTest.csv'
#val_path = '/home/jupyter/chloro_loc/chloro_labeledsetVal.csv'
# if args.n_gpu > 1#:
# model = torch.nn.DataParallel(model)
args = get_args()
model_name = args.model_name
max_length = args.max_length
train_path = args.train_path
test_path = args.test_path
val_path = args.val_path
log_format = "%(asctime)s::%(levelname)s::%(name)s::"\
"%(filename)s::%(lineno)d::%(message)s"
expname = args.expname
outdir = args.outdir
logname = outdir + expname + "_" + model_name.strip("/").split("/")[-1] + ".log"
print("logging at ", logname)
logging.basicConfig(filename=logname, level='DEBUG', format=log_format)
logging.info("Check for torch")
logging.info(torch.cuda.is_available())
epochs = args.epochs
checkpoint = args.checkpoint
train_batchsize = args.train_batchsize
val_batchsize = args.val_batchsize
train_seqs, train_labels, train_ids = load_dataset(train_path, max_length)
val_seqs, val_labels, val_ids = load_dataset(test_path, max_length)
test_seqs, test_labels, test_ids = load_dataset(val_path, max_length)
logging.info("datasets loaded")
seq_tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=False)
logging.info("sequences tokenizer loaded")
train_seqs_encodings = seq_tokenizer(train_seqs, is_split_into_words=True, return_offsets_mapping=True, truncation=True, padding=True)
val_seqs_encodings = seq_tokenizer(val_seqs, is_split_into_words=True, return_offsets_mapping=True, truncation=True, padding=True)
test_seqs_encodings = seq_tokenizer(test_seqs, is_split_into_words=True, return_offsets_mapping=True, truncation=True, padding=True)
logging.info("sequences tokenized")
# Consider each label as a tag for each token
unique_tags = set(train_labels)
unique_tags = sorted(list(unique_tags)) # make the order of the labels unchanged
tag2id = {tag: id for id, tag in enumerate(unique_tags)}
id2tag = {id: tag for tag, id in tag2id.items()}
logging.info("unique_tags")
logging.info(unique_tags)
logging.info("id2tag")
logging.info(id2tag)
logging.info("tag2id")
logging.info(tag2id)
train_labels_encodings = encode_tags(train_labels, tag2id)
val_labels_encodings = encode_tags(val_labels, tag2id)
test_labels_encodings = encode_tags(test_labels, tag2id)
logging.info("labels encoded")
_ = train_seqs_encodings.pop("offset_mapping")
_ = val_seqs_encodings.pop("offset_mapping")
_ = test_seqs_encodings.pop("offset_mapping")
logging.info("offset_mapping popped")
train_dataset = SS3Dataset(train_seqs_encodings, train_labels_encodings)
val_dataset = SS3Dataset(val_seqs_encodings, val_labels_encodings)
test_dataset = SS3Dataset(test_seqs_encodings, test_labels_encodings)
logging.info("SS3 datasets constructed")
training_args = setup_trainer(epochs, train_batchsize, val_batchsize, outdir, expname)
gc.collect()
trainer = Trainer(
model_init=model_init, # the instantiated Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset, # evaluation dataset
compute_metrics = compute_metrics, # evaluation metrics
)
logging.info("trainer initiated")
if args.checkpoint:
trainer.train(checkpoint)
else:
trainer.train()
logging.info("training complete")
trainer.save_model(outdir)
seq_tokenizer.save_pretrained(outdir)
logging.info("model saved")
logging.info(outdir)
get_predictions(outdir, test_path, len(tag2id), max_length, "withheldtest")
get_predictions(outdir, val_path, len(tag2id), max_length, "val")
get_predictions(outdir, train_path, len(tag2id), max_length, "train")
#test_predictions, test_label_ids, test_metrics = trainer.predict(test_dataset)
#logging.info("test metrics (withheld)")
#logging.info(test_metrics)
#outtest = outdir + "/" + expname + "_test_predictions.csv"
#np.savetxt(outtest, test_predictions, delimiter=',')
#train_predictions, train_label_ids, train_metrics = trainer.predict(train_dataset)
#logging.info("train metrics")
#logging.info(train_metrics)
#outtrain = outdir + "/" + expname + "_train_predictions.csv"
#np.savetxt(outtrain, train_predictions, delimiter=',')
#val_predictions, val_label_ids, val_metrics = trainer.predict(val_dataset)
#logging.info("val metrics (seen during training)")
#logging.info(val_metrics)
#outval = outdir + "/" + expname + "_val_predictions.csv"
#np.savetxt(outval, val_predictions, delimiter=',')
#idx = 2
#sample_ground_truth = test_dataset[idx]['labels']
#sample_predictions = np.argmax(predictions[idx])
#
#
## In[57]:
#
#
#sample_sequence = seq_tokenizer.decode(list(test_dataset[idx]['input_ids']), skip_special_tokens=True)
#
#
## In[58]:
#
#
#
#print(sample_ground_truth)
#print(sample_predictions)
#
#
## In[41]:
#
#
#print("Sequence : {} \nGround Truth is: {}\nprediction is : {}".format(#sample_sequence,
# sample_ground_truth,
# # Remove the first token on prediction becuase its CLS token
# # and only show up to the input length
# sample_predictions))
#
#
#
## **14. Save the model**
#
## **15. Check Tensorboard**
#
## In[ ]:
#
#
#get_ipython().run_line_magic('load_ext', 'tensorboard')
#get_ipython().run_line_magic('tensorboard', '--logdir logs')
#