-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathst_similarity_train_online.py
207 lines (159 loc) · 9.07 KB
/
st_similarity_train_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python
# Trying OnlineConstrative. Attract duplicate pairs, repel different pairs
#from transformer_infrastructure.hf_utils import get_sequencelabel_tags, SS3Dataset
import torch
from torch.utils.data import DataLoader
from sentence_transformers import losses, util
from sentence_transformers import LoggingHandler, SentenceTransformer, models, evaluation
from sentence_transformers.readers import InputExample
import logging
#from datetime import datetime
#import csv
import os
import pandas as pd
#from zipfile import ZipFile
import random
import argparse
import re
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", dest = "model_path", type = str, required = True,
help="Model directory path or name on huggingface. Ex. /path/to/model_dir Rostlab/prot_bert_bfd")
parser.add_argument("-tr", "--train", dest = "train_path", type = str, required = True,
help="Path to training set, containing columns named sequence1,sequence2,id1,id2,label (set label colname with --label_col) (csv)")
parser.add_argument("-d", "--dev", dest = "dev_path", type = str, required = True,
help="Path to dev/validation set (used during training), containing columns named sequence1,sequence2,id1,id2,label (set label colname with --label_col) (csv)")
parser.add_argument("-te", "--test", dest = "test_path", type = str, required = True,
help="Path to withheld test set (used after training), containing columns named sequence1,sequence2,id1,id2,label (set label colname with --label_col) (csv)")
parser.add_argument("-o", "--outdir", dest = "outdir", type = str, required = True,
help="Name of output directory")
parser.add_argument("-maxl", "--maxseqlength", dest = "max_length", type = int, required = False, default = 1024,
help="Truncate all sequences to this length (default 1024). Reduce if memory errors")
parser.add_argument("-n", "--expname", dest = "expname", type = str, required = False, default = "transformer_run",
help="Experiment name, used for logging, default = transformer_run")
parser.add_argument("-e", "--epochs", dest = "epochs", type = int, required = False, default = 10,
help="Number of epochs. Increasing can help if memory error")
parser.add_argument("-tbsize", "--train_batchsize", dest = "train_batchsize", type = int, required = False, default = 10,
help="Per device train batchsize. Reduce along with val batch size if memory error")
parser.add_argument("-vbsize", "--dev_batchsize", dest = "dev_batchsize", type = int, required = False, default = 10,
help="Per device validation batchsize. Reduce if memory error")
parser.add_argument("-l", "--label_col", dest = "label_col", type = str, required = False, default = "label",
help="Name of column in datasets to use as labl, default: label")
args = parser.parse_args()
return(args)
def load_dataset_pairs(path, max_length, label_column):
# Need to join sequences back
df = pd.read_csv(path)
print(df.head)
df['seq1_fixed'] = ["".join(seq.split()) for seq in df['sequence1']]
df['seq1_fixed'] = [re.sub(r"[UZOB]", "X", seq) for seq in df['seq1_fixed']]
seqs1 = [ list(seq)[:max_length-2] for seq in df['seq1_fixed']]
seqs1 = [ ' '.join(seq) for seq in seqs1]
df['seq2_fixed'] = ["".join(seq.split()) for seq in df['sequence2']]
df['seq2_fixed'] = [re.sub(r"[UZOB]", "X", seq) for seq in df['seq2_fixed']]
seqs2 = [ list(seq)[:max_length-2] for seq in df['seq2_fixed']]
seqs2 = [ ' '.join(seq) for seq in seqs2]
labels = list(df[label_column]) # ex. label
ids1 = list(df['id1'])
ids2 = list(df['id1'])
assert len(seqs1) == len(seqs2) == len(labels) == len(ids1) == len(ids2)
return seqs1, seqs2, labels, ids1, ids2
def encode_tags(tags, tag2id):
encoded_labels = [tag2id[tag] for tag in tags]
return encoded_labels
if __name__ == "__main__":
args = get_args()
model_path = args.model_path
max_length = args.max_length
train_path = args.train_path
test_path = args.test_path
dev_path = args.dev_path
label_column = args.label_col
log_format = "%(asctime)s::%(levelname)s::%(name)s::"\
"%(filename)s::%(lineno)d::%(message)s"
expname = args.expname
outdir = args.outdir
os.makedirs(outdir, exist_ok=True)
# FIX logname in other scripts
logname = outdir + "/" + expname + ".log"
print("logging at ", logname)
logging.basicConfig(filename=logname, level='DEBUG', format=log_format)
logging.info("Check for torch")
logging.info(torch.cuda.is_available())
epochs = args.epochs
train_batchsize = args.train_batchsize
dev_batchsize = args.dev_batchsize
#return seqs1, seqs2, labels, ids1, ids2
train_seqs1, train_seqs2, train_labels, train_ids1, train_ids2 = load_dataset_pairs(train_path, max_length, label_column)
dev_seqs1, dev_seqs2, dev_labels, dev_ids1, dev_ids2 = load_dataset_pairs(dev_path, max_length, label_column)
test_seqs1, test_seqs2, test_labels, test_ids1, test_ids2 = load_dataset_pairs(test_path, max_length, label_column)
print(train_seqs1[0])
print(dev_seqs1[0])
logging.info("datasets loaded")
#train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=0.8),
#InputExample(texts=['Another pair', 'Unrelated sentence'], label=0.3)]
#train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
#labels_encodings = encode_tags(labels, tag2id)
train_samples = []
for i in range(len(train_seqs1)):
#if train_labels[i] == 1: # Online Constrative takes pos + neg
train_samples.append(InputExample(texts=[train_seqs1[i], train_seqs2[i]], label = train_labels[i]))
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batchsize)
print("Data loaded")
# Convert transformer to sentence transformer model
word_embedding_model = models.Transformer(model_path)
# Default pooling strategy
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
print("SentenceTransformer model created")
#As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
#Negative pairs should have a distance of at least 0.5
margin = 0.5
#train_loss = losses.MultipleNegativesRankingLoss(model)
#train_loss = losses.CosineSimilarityLoss(model)
train_loss = losses.OnlineContrastiveLoss(model=model, distance_metric=distance_metric, margin=margin)
# Set up a set of different performatnce evaluators
evaluators = []
###### Classification ######
# Given (quesiton1, question2), is this a duplicate or not?
# The evaluator will compute the embeddings for both questions and then compute
# a cosine similarity. If the similarity is above a threshold, we have a duplicate.
binary_acc_evaluator = evaluation.BinaryClassificationEvaluator(dev_seqs1, dev_seqs2, dev_labels)
evaluators.append(binary_acc_evaluator)
binary_acc_evaluator = evaluation.BinaryClassificationEvaluator(train_seqs1, train_seqs2, train_labels)
evaluators.append(binary_acc_evaluator)
logging.info("binary acc evaluator added")
dev_seq_dict = {}
dev_duplicates = []
# create dict of id:seq
#for i in range(len(dev_seqs1)):
for i in range(0,5):
dev_seq_dict[dev_ids1[i]] = dev_seqs1[i]
dev_seq_dict[dev_ids2[i]] = dev_seqs2[i]
# Create pairs list of duplicate ids
for i in range(0,5):
#for i in range(len(dev_seqs1)):
if dev_labels[i] == 1:
dev_duplicates.append([dev_ids1[i], dev_ids2[i]])
print(dev_seq_dict)
print(dev_duplicates)
# The ParaphraseMiningEvaluator computes the cosine similarity between all sentences and
# extracts a list with the pairs that have the highest similarity. Given the duplicate
# information in dev_duplicates, it then computes and F1 score how well our duplicate mining worked
# not working...
#paraphrase_mining_evaluator = evaluation.ParaphraseMiningEvaluator(dev_seq_dict, dev_duplicates, name='dev', show_progress_bar = True)
#evaluators.append(paraphrase_mining_evaluator)
logging.info("paraphrase evaluator added")
seq_evaluator = evaluation.SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1])
os.makedirs(outdir, exist_ok=True)
logging.info("Evaluate model without training")
seq_evaluator(model, epoch=0, steps=0, output_path=outdir)
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=seq_evaluator,
epochs=epochs,
warmup_steps=1000,
output_path=outdir,
save_best_model = True,
)
model.save(outdir)