diff --git a/master/.buildinfo b/master/.buildinfo index 25d682b56..885ce1a12 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 723852b918cd46346e6ce9809699fb6f +config: 639e4c2905fdee1817826b3b5880f31d tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 392fa7388..f6a95738c 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index e1314192c..138c9ce2c 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index dc1e16507..b8737fb3e 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index fb58740ac..1012eff69 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 76555c8e1..809530d57 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 5b5a9088f..0d0f7f4c4 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 404bf08e3..932794a6d 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 8a49e1195..5b78a1c31 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index c6a7b6779..2251ed559 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 9cd56cf90..eccf5b7e9 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a229400c2..c9c602f3c 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 734d173c3..930f3a226 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 8c033f94f..b32aceccb 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree index e593f8d89..c120f945e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree and b/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree index e8001b40a..a08e1e309 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 2d965ca7e..19b54d55b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 9f66cf5ce..881f738d0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 32ba51d9a..a606b9073 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 793cc7006..ece652290 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 19f7d08ba..f4a9eae92 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index c58d66451..652ae51f5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 66dc5b741..9dae31e3b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 5adea46a8..f099dcef8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b84f36b67..2c43680c4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 8a8659b69..acf5e930d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 024777352..f04e1e1d7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 5544cf6ef..93f263c9d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index f7ae76885..338f89769 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index b1e137ce5..8f9b05fa8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 53cfa4c75..0fb1bea83 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 6e5974ad0..7c87606c8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index a0e52e55f..074709da2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index dda71744d..a3e8be9d1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index f50a1c658..909028a1d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 6ce3c7115..ac6077dfd 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 1f8e9054d..f7d951c27 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index d12d1e29d..c53866d87 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index eca02a9f9..0833bcad5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index f415a0eea..fc540b640 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 14b50b1f0..3e15e3898 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 3bfb499f7..e6122dc89 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 8307383b5..837f84ff3 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 589471c31..62b182d15 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 5eba95104..52a1545b2 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index f2897356a..83541b0e5 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 37797b440..dc5a88bf9 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index f3cb862b5..491b01343 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index c24bae853..bc4ddc49c 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 23271a22a..c1fe4f190 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index a6bf3a212..17ccba0e4 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index a69e149f2..03bf9d788 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index deec5a08d..e6b3a415b 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index e08e5da57..7f893bbcd 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 1764b6e2c..337f64aaa 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 82dc1e40e..aaa41a61a 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 1f1cdb11e..0ca5f4b4f 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 449719b22..94d9657d1 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index a24bf1a40..9fae2d991 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index f7e170606..aaca22686 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6fb8d6d3f..b6876da62 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 6f9bb9cda..86c516383 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index bd8c92362..4064a1ec0 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index bff549041..bc637d39f 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 131bf8445..54b03d32e 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 1e1e5ddf0..fd10612d8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 3ee160d04..e4d746c17 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 63c141b7d..7315480ef 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index f0adeb28c..31cbf9851 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 106910f8e..dafb0be13 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index c9b791e47..9e9b65f1c 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 177a84445..a91a8175a 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 12d2c8081..a04093a4d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 4265e3762..c793c468e 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 602016481..5b0fb1e32 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index d38f3dea0..4424ca6d2 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index ec885c63e..928c64d9d 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 1317b4395..37eed125f 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 213455cea..04523ff42 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 3877284a6..0cb108fc3 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index e9a861761..72c26b129 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 654a9ad86..b2d62f47d 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a482c17aa..45039d036 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index e17eb33da..2f53ab133 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 7ca190b7f..fed72cafa 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 394657f4b..4e8a40761 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 20914b2b7..6f30f378d 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 3cb65a135..96617f3dc 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 3b97c250d..6cb8c3f72 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index b648c52ba..388c995f2 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:46.905901Z", - "iopub.status.busy": "2024-09-26T16:57:46.905412Z", - "iopub.status.idle": "2024-09-26T16:57:48.220424Z", - "shell.execute_reply": "2024-09-26T16:57:48.219845Z" + "iopub.execute_input": "2024-09-27T13:44:12.200916Z", + "iopub.status.busy": "2024-09-27T13:44:12.200561Z", + "iopub.status.idle": "2024-09-27T13:44:13.479668Z", + "shell.execute_reply": "2024-09-27T13:44:13.479088Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.222820Z", - "iopub.status.busy": "2024-09-26T16:57:48.222253Z", - "iopub.status.idle": "2024-09-26T16:57:48.241708Z", - "shell.execute_reply": "2024-09-26T16:57:48.241070Z" + "iopub.execute_input": "2024-09-27T13:44:13.482034Z", + "iopub.status.busy": "2024-09-27T13:44:13.481452Z", + "iopub.status.idle": "2024-09-27T13:44:13.500047Z", + "shell.execute_reply": "2024-09-27T13:44:13.499596Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.243929Z", - "iopub.status.busy": "2024-09-26T16:57:48.243487Z", - "iopub.status.idle": "2024-09-26T16:57:48.451471Z", - "shell.execute_reply": "2024-09-26T16:57:48.450893Z" + "iopub.execute_input": "2024-09-27T13:44:13.502039Z", + "iopub.status.busy": "2024-09-27T13:44:13.501593Z", + "iopub.status.idle": "2024-09-27T13:44:13.696938Z", + "shell.execute_reply": "2024-09-27T13:44:13.696313Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.483707Z", - "iopub.status.busy": "2024-09-26T16:57:48.483195Z", - "iopub.status.idle": "2024-09-26T16:57:48.487154Z", - "shell.execute_reply": "2024-09-26T16:57:48.486583Z" + "iopub.execute_input": "2024-09-27T13:44:13.729165Z", + "iopub.status.busy": "2024-09-27T13:44:13.728951Z", + "iopub.status.idle": "2024-09-27T13:44:13.732830Z", + "shell.execute_reply": "2024-09-27T13:44:13.732365Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.488961Z", - "iopub.status.busy": "2024-09-26T16:57:48.488621Z", - "iopub.status.idle": "2024-09-26T16:57:48.496919Z", - "shell.execute_reply": "2024-09-26T16:57:48.496323Z" + "iopub.execute_input": "2024-09-27T13:44:13.734478Z", + "iopub.status.busy": "2024-09-27T13:44:13.734300Z", + "iopub.status.idle": "2024-09-27T13:44:13.742648Z", + "shell.execute_reply": "2024-09-27T13:44:13.742221Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.498974Z", - "iopub.status.busy": "2024-09-26T16:57:48.498629Z", - "iopub.status.idle": "2024-09-26T16:57:48.500983Z", - "shell.execute_reply": "2024-09-26T16:57:48.500538Z" + "iopub.execute_input": "2024-09-27T13:44:13.744355Z", + "iopub.status.busy": "2024-09-27T13:44:13.744172Z", + "iopub.status.idle": "2024-09-27T13:44:13.746680Z", + "shell.execute_reply": "2024-09-27T13:44:13.746217Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.502678Z", - "iopub.status.busy": "2024-09-26T16:57:48.502341Z", - "iopub.status.idle": "2024-09-26T16:57:49.032323Z", - "shell.execute_reply": "2024-09-26T16:57:49.031807Z" + "iopub.execute_input": "2024-09-27T13:44:13.748214Z", + "iopub.status.busy": "2024-09-27T13:44:13.748042Z", + "iopub.status.idle": "2024-09-27T13:44:14.270554Z", + "shell.execute_reply": "2024-09-27T13:44:14.269884Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:49.034548Z", - "iopub.status.busy": "2024-09-26T16:57:49.034196Z", - "iopub.status.idle": "2024-09-26T16:57:50.968947Z", - "shell.execute_reply": "2024-09-26T16:57:50.968319Z" + "iopub.execute_input": "2024-09-27T13:44:14.272696Z", + "iopub.status.busy": "2024-09-27T13:44:14.272497Z", + "iopub.status.idle": "2024-09-27T13:44:16.167242Z", + "shell.execute_reply": "2024-09-27T13:44:16.166648Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.971511Z", - "iopub.status.busy": "2024-09-26T16:57:50.970708Z", - "iopub.status.idle": "2024-09-26T16:57:50.981203Z", - "shell.execute_reply": "2024-09-26T16:57:50.980707Z" + "iopub.execute_input": "2024-09-27T13:44:16.169775Z", + "iopub.status.busy": "2024-09-27T13:44:16.169000Z", + "iopub.status.idle": "2024-09-27T13:44:16.179484Z", + "shell.execute_reply": "2024-09-27T13:44:16.179037Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.983160Z", - "iopub.status.busy": "2024-09-26T16:57:50.982812Z", - "iopub.status.idle": "2024-09-26T16:57:50.986985Z", - "shell.execute_reply": "2024-09-26T16:57:50.986552Z" + "iopub.execute_input": "2024-09-27T13:44:16.181448Z", + "iopub.status.busy": "2024-09-27T13:44:16.181041Z", + "iopub.status.idle": "2024-09-27T13:44:16.185086Z", + "shell.execute_reply": "2024-09-27T13:44:16.184632Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.988771Z", - "iopub.status.busy": "2024-09-26T16:57:50.988449Z", - "iopub.status.idle": "2024-09-26T16:57:50.996238Z", - "shell.execute_reply": "2024-09-26T16:57:50.995660Z" + "iopub.execute_input": "2024-09-27T13:44:16.186814Z", + "iopub.status.busy": "2024-09-27T13:44:16.186483Z", + "iopub.status.idle": "2024-09-27T13:44:16.194898Z", + "shell.execute_reply": "2024-09-27T13:44:16.194442Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.998409Z", - "iopub.status.busy": "2024-09-26T16:57:50.997938Z", - "iopub.status.idle": "2024-09-26T16:57:51.112743Z", - "shell.execute_reply": "2024-09-26T16:57:51.112140Z" + "iopub.execute_input": "2024-09-27T13:44:16.196580Z", + "iopub.status.busy": "2024-09-27T13:44:16.196252Z", + "iopub.status.idle": "2024-09-27T13:44:16.309588Z", + "shell.execute_reply": "2024-09-27T13:44:16.309001Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.114671Z", - "iopub.status.busy": "2024-09-26T16:57:51.114330Z", - "iopub.status.idle": "2024-09-26T16:57:51.117374Z", - "shell.execute_reply": "2024-09-26T16:57:51.116803Z" + "iopub.execute_input": "2024-09-27T13:44:16.311378Z", + "iopub.status.busy": "2024-09-27T13:44:16.311198Z", + "iopub.status.idle": "2024-09-27T13:44:16.314110Z", + "shell.execute_reply": "2024-09-27T13:44:16.313548Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.119122Z", - "iopub.status.busy": "2024-09-26T16:57:51.118777Z", - "iopub.status.idle": "2024-09-26T16:57:53.250696Z", - "shell.execute_reply": "2024-09-26T16:57:53.249828Z" + "iopub.execute_input": "2024-09-27T13:44:16.315717Z", + "iopub.status.busy": "2024-09-27T13:44:16.315450Z", + "iopub.status.idle": "2024-09-27T13:44:18.461870Z", + "shell.execute_reply": "2024-09-27T13:44:18.461184Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.253432Z", - "iopub.status.busy": "2024-09-26T16:57:53.252773Z", - "iopub.status.idle": "2024-09-26T16:57:53.264456Z", - "shell.execute_reply": "2024-09-26T16:57:53.263964Z" + "iopub.execute_input": "2024-09-27T13:44:18.464456Z", + "iopub.status.busy": "2024-09-27T13:44:18.463827Z", + "iopub.status.idle": "2024-09-27T13:44:18.475330Z", + "shell.execute_reply": "2024-09-27T13:44:18.474881Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.266337Z", - "iopub.status.busy": "2024-09-26T16:57:53.265982Z", - "iopub.status.idle": "2024-09-26T16:57:53.320394Z", - "shell.execute_reply": "2024-09-26T16:57:53.319936Z" + "iopub.execute_input": "2024-09-27T13:44:18.476970Z", + "iopub.status.busy": "2024-09-27T13:44:18.476794Z", + "iopub.status.idle": "2024-09-27T13:44:18.534040Z", + "shell.execute_reply": "2024-09-27T13:44:18.533545Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 1b9d62b84..ee987f2db 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:56.582392Z", - "iopub.status.busy": "2024-09-26T16:57:56.581922Z", - "iopub.status.idle": "2024-09-26T16:57:59.568352Z", - "shell.execute_reply": "2024-09-26T16:57:59.567688Z" + "iopub.execute_input": "2024-09-27T13:44:21.818795Z", + "iopub.status.busy": "2024-09-27T13:44:21.818359Z", + "iopub.status.idle": "2024-09-27T13:44:25.172344Z", + "shell.execute_reply": "2024-09-27T13:44:25.171708Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.570666Z", - "iopub.status.busy": "2024-09-26T16:57:59.570348Z", - "iopub.status.idle": "2024-09-26T16:57:59.573999Z", - "shell.execute_reply": "2024-09-26T16:57:59.573434Z" + "iopub.execute_input": "2024-09-27T13:44:25.174634Z", + "iopub.status.busy": "2024-09-27T13:44:25.174327Z", + "iopub.status.idle": "2024-09-27T13:44:25.177811Z", + "shell.execute_reply": "2024-09-27T13:44:25.177332Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.575790Z", - "iopub.status.busy": "2024-09-26T16:57:59.575346Z", - "iopub.status.idle": "2024-09-26T16:57:59.578505Z", - "shell.execute_reply": "2024-09-26T16:57:59.578059Z" + "iopub.execute_input": "2024-09-27T13:44:25.179604Z", + "iopub.status.busy": "2024-09-27T13:44:25.179228Z", + "iopub.status.idle": "2024-09-27T13:44:25.182428Z", + "shell.execute_reply": "2024-09-27T13:44:25.181941Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.580278Z", - "iopub.status.busy": "2024-09-26T16:57:59.579942Z", - "iopub.status.idle": "2024-09-26T16:57:59.637557Z", - "shell.execute_reply": "2024-09-26T16:57:59.636941Z" + "iopub.execute_input": "2024-09-27T13:44:25.183984Z", + "iopub.status.busy": "2024-09-27T13:44:25.183812Z", + "iopub.status.idle": "2024-09-27T13:44:25.249858Z", + "shell.execute_reply": "2024-09-27T13:44:25.249370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.639548Z", - "iopub.status.busy": "2024-09-26T16:57:59.639173Z", - "iopub.status.idle": "2024-09-26T16:57:59.643067Z", - "shell.execute_reply": "2024-09-26T16:57:59.642599Z" + "iopub.execute_input": "2024-09-27T13:44:25.251675Z", + "iopub.status.busy": "2024-09-27T13:44:25.251321Z", + "iopub.status.idle": "2024-09-27T13:44:25.254967Z", + "shell.execute_reply": "2024-09-27T13:44:25.254497Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.644820Z", - "iopub.status.busy": "2024-09-26T16:57:59.644426Z", - "iopub.status.idle": "2024-09-26T16:57:59.648173Z", - "shell.execute_reply": "2024-09-26T16:57:59.647692Z" + "iopub.execute_input": "2024-09-27T13:44:25.256494Z", + "iopub.status.busy": "2024-09-27T13:44:25.256317Z", + "iopub.status.idle": "2024-09-27T13:44:25.259546Z", + "shell.execute_reply": "2024-09-27T13:44:25.259112Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.649862Z", - "iopub.status.busy": "2024-09-26T16:57:59.649584Z", - "iopub.status.idle": "2024-09-26T16:57:59.652681Z", - "shell.execute_reply": "2024-09-26T16:57:59.652224Z" + "iopub.execute_input": "2024-09-27T13:44:25.261161Z", + "iopub.status.busy": "2024-09-27T13:44:25.260831Z", + "iopub.status.idle": "2024-09-27T13:44:25.264077Z", + "shell.execute_reply": "2024-09-27T13:44:25.263614Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.654524Z", - "iopub.status.busy": "2024-09-26T16:57:59.654184Z", - "iopub.status.idle": "2024-09-26T16:57:59.657522Z", - "shell.execute_reply": "2024-09-26T16:57:59.657025Z" + "iopub.execute_input": "2024-09-27T13:44:25.265683Z", + "iopub.status.busy": "2024-09-27T13:44:25.265493Z", + "iopub.status.idle": "2024-09-27T13:44:25.268752Z", + "shell.execute_reply": "2024-09-27T13:44:25.268295Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.659231Z", - "iopub.status.busy": "2024-09-26T16:57:59.658903Z", - "iopub.status.idle": "2024-09-26T16:58:04.690826Z", - "shell.execute_reply": "2024-09-26T16:58:04.690184Z" + "iopub.execute_input": "2024-09-27T13:44:25.270462Z", + "iopub.status.busy": "2024-09-27T13:44:25.270157Z", + "iopub.status.idle": "2024-09-27T13:44:29.935939Z", + "shell.execute_reply": "2024-09-27T13:44:29.935366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c454eb6f366f411e9e5a792ee1c9e53e", + "model_id": "0b869b8329164886999ca781a3f1f88f", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55fc53367ab44c9d8da2fe8bbced532e", + "model_id": "2f7c87a3feeb43f391ce3706d650c567", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07e2bdd218e347478ce3ef4840fd25cd", + "model_id": "09adcc4cd1544f1ebd40819b4bc61c29", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94557935a2374333b2239085d88eec9a", + "model_id": "4d443bcc5d6f44bb9f778f33e726a41e", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c670a9f65c784a998597204abdd99c6c", + "model_id": "81db904263be418b972cdc74693c1347", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4bb31413f5b49d5a94609831a4b36f7", + "model_id": "857f6827f751492d8e4455d6dcc779a2", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9cbb0d355e3b4631ab5bde4863e208c9", + "model_id": "dd92079e014444fb8d53b9ecd43d4155", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.693169Z", - "iopub.status.busy": "2024-09-26T16:58:04.692979Z", - "iopub.status.idle": "2024-09-26T16:58:04.696816Z", - "shell.execute_reply": "2024-09-26T16:58:04.696217Z" + "iopub.execute_input": "2024-09-27T13:44:29.938477Z", + "iopub.status.busy": "2024-09-27T13:44:29.938022Z", + "iopub.status.idle": "2024-09-27T13:44:29.941082Z", + "shell.execute_reply": "2024-09-27T13:44:29.940499Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.698945Z", - "iopub.status.busy": "2024-09-26T16:58:04.698555Z", - "iopub.status.idle": "2024-09-26T16:58:04.701698Z", - "shell.execute_reply": "2024-09-26T16:58:04.701079Z" + "iopub.execute_input": "2024-09-27T13:44:29.942910Z", + "iopub.status.busy": "2024-09-27T13:44:29.942537Z", + "iopub.status.idle": "2024-09-27T13:44:29.945282Z", + "shell.execute_reply": "2024-09-27T13:44:29.944823Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.703349Z", - "iopub.status.busy": "2024-09-26T16:58:04.703169Z", - "iopub.status.idle": "2024-09-26T16:58:07.638950Z", - "shell.execute_reply": "2024-09-26T16:58:07.638268Z" + "iopub.execute_input": "2024-09-27T13:44:29.947025Z", + "iopub.status.busy": "2024-09-27T13:44:29.946610Z", + "iopub.status.idle": "2024-09-27T13:44:32.703158Z", + "shell.execute_reply": "2024-09-27T13:44:32.702446Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.641750Z", - "iopub.status.busy": "2024-09-26T16:58:07.641028Z", - "iopub.status.idle": "2024-09-26T16:58:07.649310Z", - "shell.execute_reply": "2024-09-26T16:58:07.648709Z" + "iopub.execute_input": "2024-09-27T13:44:32.705934Z", + "iopub.status.busy": "2024-09-27T13:44:32.705115Z", + "iopub.status.idle": "2024-09-27T13:44:32.713403Z", + "shell.execute_reply": "2024-09-27T13:44:32.712933Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.651234Z", - "iopub.status.busy": "2024-09-26T16:58:07.650776Z", - "iopub.status.idle": "2024-09-26T16:58:07.654975Z", - "shell.execute_reply": "2024-09-26T16:58:07.654450Z" + "iopub.execute_input": "2024-09-27T13:44:32.715431Z", + "iopub.status.busy": "2024-09-27T13:44:32.715087Z", + "iopub.status.idle": "2024-09-27T13:44:32.719832Z", + "shell.execute_reply": "2024-09-27T13:44:32.719339Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.656848Z", - "iopub.status.busy": "2024-09-26T16:58:07.656512Z", - "iopub.status.idle": "2024-09-26T16:58:07.659918Z", - "shell.execute_reply": "2024-09-26T16:58:07.659369Z" + "iopub.execute_input": "2024-09-27T13:44:32.721313Z", + "iopub.status.busy": "2024-09-27T13:44:32.721134Z", + "iopub.status.idle": "2024-09-27T13:44:32.724562Z", + "shell.execute_reply": "2024-09-27T13:44:32.724100Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.662038Z", - "iopub.status.busy": "2024-09-26T16:58:07.661635Z", - "iopub.status.idle": "2024-09-26T16:58:07.664815Z", - "shell.execute_reply": "2024-09-26T16:58:07.664344Z" + "iopub.execute_input": "2024-09-27T13:44:32.726129Z", + "iopub.status.busy": "2024-09-27T13:44:32.725939Z", + "iopub.status.idle": "2024-09-27T13:44:32.728884Z", + "shell.execute_reply": "2024-09-27T13:44:32.728424Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.666617Z", - "iopub.status.busy": "2024-09-26T16:58:07.666279Z", - "iopub.status.idle": "2024-09-26T16:58:07.673548Z", - "shell.execute_reply": "2024-09-26T16:58:07.672928Z" + "iopub.execute_input": "2024-09-27T13:44:32.730636Z", + "iopub.status.busy": "2024-09-27T13:44:32.730297Z", + "iopub.status.idle": "2024-09-27T13:44:32.737194Z", + "shell.execute_reply": "2024-09-27T13:44:32.736719Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.675394Z", - "iopub.status.busy": "2024-09-26T16:58:07.675051Z", - "iopub.status.idle": "2024-09-26T16:58:07.909209Z", - "shell.execute_reply": "2024-09-26T16:58:07.908613Z" + "iopub.execute_input": "2024-09-27T13:44:32.739037Z", + "iopub.status.busy": "2024-09-27T13:44:32.738695Z", + "iopub.status.idle": "2024-09-27T13:44:32.967915Z", + "shell.execute_reply": "2024-09-27T13:44:32.967330Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.912237Z", - "iopub.status.busy": "2024-09-26T16:58:07.911438Z", - "iopub.status.idle": "2024-09-26T16:58:08.105044Z", - "shell.execute_reply": "2024-09-26T16:58:08.104481Z" + "iopub.execute_input": "2024-09-27T13:44:32.970125Z", + "iopub.status.busy": "2024-09-27T13:44:32.969750Z", + "iopub.status.idle": "2024-09-27T13:44:33.182474Z", + "shell.execute_reply": "2024-09-27T13:44:33.181896Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:08.108440Z", - "iopub.status.busy": "2024-09-26T16:58:08.107647Z", - "iopub.status.idle": "2024-09-26T16:58:08.112497Z", - "shell.execute_reply": "2024-09-26T16:58:08.111965Z" + "iopub.execute_input": "2024-09-27T13:44:33.184797Z", + "iopub.status.busy": "2024-09-27T13:44:33.184365Z", + "iopub.status.idle": "2024-09-27T13:44:33.188436Z", + "shell.execute_reply": "2024-09-27T13:44:33.187921Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03a9fcdeeb9f4795928321d22c20b1f7": { + "0071d1f0936c4bccbd1edaa5a6ae1140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,25 @@ "text_color": null } }, - "03b1560a105349118e85e5322a8057be": { + "01540b61781c4eb58c18e156802a58d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "07d077e0c6b44e658f800f4771886c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1153,38 +1171,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58744c76ca2d4b4bb16b3ba153883f90", + "layout": "IPY_MODEL_a7e8d478c1164e08b3fd282538dc8416", "placeholder": "​", - "style": "IPY_MODEL_71273fc53eab44809f296c757a78d589", + "style": "IPY_MODEL_30c76f3386e144e1a905593cb8a7b12e", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": ".gitattributes: 100%" } }, - "0520794e1ebd4f6c921dfb71f4cffad6": { + "09adcc4cd1544f1ebd40819b4bc61c29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175e8d16291a4560868859b225cdac46", - "placeholder": "​", - "style": "IPY_MODEL_0854de3c0f4c455889479ae81081bfd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4e4680d87b8463aa7d08f5c6d456285", + "IPY_MODEL_dbef822c740d42df9d83e77b0148c4f4", + "IPY_MODEL_901dbc7b9c464aec8a3cac4e2e14e625" + ], + "layout": "IPY_MODEL_bad51eb444f94a938e31c59e3113684b", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" + "tooltip": null } }, - "0544fbd69b124534b049440d1f3e0d41": { + "0ad90065d8c740b1b5f909e1a0f97c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,25 +1256,7 @@ "width": null } }, - "05c30b39421044298e1e8ac7e138767d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e2bdd218e347478ce3ef4840fd25cd": { + "0b869b8329164886999ca781a3f1f88f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1270,70 +1271,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_768d4093bcd8494385059cb2bfb032bb", - "IPY_MODEL_0f51660866534becbe9d4f34c4c432f3", - "IPY_MODEL_c56505f3a8884fce9a47bbe99c1b9422" + "IPY_MODEL_07d077e0c6b44e658f800f4771886c72", + "IPY_MODEL_5f9b91f66f694d5eb6207514df3f361b", + "IPY_MODEL_801dfb197b9a4fffb3406e9b3339e8a6" ], - "layout": "IPY_MODEL_0c9fa872de1d46889ced023c38691b80", + "layout": "IPY_MODEL_74914279b76946f9b81bbd35eb876eb3", "tabbable": null, "tooltip": null } }, - "0854de3c0f4c455889479ae81081bfd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "08a01d42535f45c1afd47cdd82b5c40e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09070af955a14e1c8557d27f12ad54b3": { + "0bf168d57d974301a816bd335166c3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0c9fa872de1d46889ced023c38691b80": { + "0e1a742f353b4ae592d5e9d4c904dea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1349,25 @@ "width": null } }, - "0f51660866534becbe9d4f34c4c432f3": { + "100942b5144f4805a0308187f29c80ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "103601f7b0dd496689126efcf81dcfd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1402,70 +1383,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf9d5b94bbd24770874e0cc5af1a1615", - "max": 665.0, + "layout": "IPY_MODEL_8b68d00ec9e74aa99b854e1e6e50035f", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a0120faf64f6497691116777e44f77aa", + "style": "IPY_MODEL_839cd742a34841029c4a4e34d5a903fe", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 54245363.0 } }, - "0fed13bb7b7a48d08e8db8513746e242": { - "model_module": "@jupyter-widgets/base", + "13c263d5f8be43648b83c74ed95579a2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80896446ef2545c9bbbc50f05e195a0a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66da8b50d05043dba9d9652587054967", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "16d0ccf5f28d488e93908803a2b4c76d": { + "15162f4480c04b0aa1ed945e710c6f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1472,7 @@ "width": null } }, - "175e8d16291a4560868859b225cdac46": { + "15da45f559dc4baebc98b369b1b1bac9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,80 +1525,7 @@ "width": null } }, - "19015823d41c439e9c231621c87bcc79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a376e53928b43568a37bf5c1034a061", - "placeholder": "​", - "style": "IPY_MODEL_03a9fcdeeb9f4795928321d22c20b1f7", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "1e7e4021c02b427c840f1dde6a12c6b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1ecfcaca36e849409b94d9e2b3a6d2df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22a5fe5ff39e4ca2978a0d5638deed64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "264cad247c01411dbbec2aa09c72f96a": { + "165de584f55f4cc4a61989a56f9b49c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,7 +1578,7 @@ "width": null } }, - "2a376e53928b43568a37bf5c1034a061": { + "2062b55baccc4e66b21d4eaf7516bfb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1750,7 +1631,7 @@ "width": null } }, - "2dc0ab7b03f9425ebd4489c94893df8e": { + "2d58ff6fd7d14ca59a65d5f6fbfa0638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,76 +1684,49 @@ "width": null } }, - "31ac4e398f274fa2884c943b6c5bdf67": { - "model_module": "@jupyter-widgets/base", + "2f7c87a3feeb43f391ce3706d650c567": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c54f7221432415ba2afba64455af817", + "IPY_MODEL_13c263d5f8be43648b83c74ed95579a2", + "IPY_MODEL_b9e3785791cb4f3f85a367cbdffbc2ce" + ], + "layout": "IPY_MODEL_0ad90065d8c740b1b5f909e1a0f97c65", + "tabbable": null, + "tooltip": null } }, - "39ee56051f0c4ee8b154fc79d637ae7f": { + "30c76f3386e144e1a905593cb8a7b12e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a682b5847a0438eb5702f512f795f1c": { + "3305b2d61b3f4915bbc3a70282874455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,15 +1741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d9abfaf1d24260b3f87b1ea0c4209a", + "layout": "IPY_MODEL_91544e5b16174f2e909f6bb9aadf6a74", "placeholder": "​", - "style": "IPY_MODEL_09070af955a14e1c8557d27f12ad54b3", + "style": "IPY_MODEL_48b5e652296a41afabe845a77e1a40c6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 117MB/s]" + "value": " 232k/232k [00:00<00:00, 31.8MB/s]" } }, - "42172bed218f48b48601266fd4b31f94": { + "3731f8d339c84d94a28f11beefec8fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1913,7 +1767,7 @@ "text_color": null } }, - "45f797f62ab84a74bc35ca4a2b3595cc": { + "3e2db40e57e84f2b90bc19d497f69a00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1820,48 @@ "width": null } }, - "55fc53367ab44c9d8da2fe8bbced532e": { + "468ecd46323f48c58c97d2c4190cdfa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7ef1ed37e7949049da1bc6875f2930d", + "placeholder": "​", + "style": "IPY_MODEL_d6c315a338314fa6b05bdb0eb28b15f1", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.08kB/s]" + } + }, + "48b5e652296a41afabe845a77e1a40c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d443bcc5d6f44bb9f778f33e726a41e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1981,16 +1876,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03b1560a105349118e85e5322a8057be", - "IPY_MODEL_c3093ff50e5d4a039d2e953cfd360463", - "IPY_MODEL_0520794e1ebd4f6c921dfb71f4cffad6" + "IPY_MODEL_5af95243387d4a879df020d4e1cb9e2a", + "IPY_MODEL_103601f7b0dd496689126efcf81dcfd7", + "IPY_MODEL_ef4c1ce3b993449bb0aaf04a55c873f3" ], - "layout": "IPY_MODEL_0fed13bb7b7a48d08e8db8513746e242", + "layout": "IPY_MODEL_15162f4480c04b0aa1ed945e710c6f47", "tabbable": null, "tooltip": null } }, - "583111a984204d99b91ecb3dfb37bf0e": { + "4dfef38574554577ab70c1090376620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,7 +1938,108 @@ "width": null } }, - "58744c76ca2d4b4bb16b3ba153883f90": { + "506c7f29cf3d491e9d8df294ae722e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8c2df192a274240a738bf66fe3a221b", + "placeholder": "​", + "style": "IPY_MODEL_b58fdee4702849c092df49b1636d2bad", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 5.61MB/s]" + } + }, + "51d4961d8f8541eb88e2da893fa47eed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56b546e9a9534adb835c7ed1d9aa4667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af95243387d4a879df020d4e1cb9e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_660acb2278724be28796fcec6f69d7bf", + "placeholder": "​", + "style": "IPY_MODEL_92f6f017f752469aac3c5c095c42bb92", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "5c54f7221432415ba2afba64455af817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2062b55baccc4e66b21d4eaf7516bfb2", + "placeholder": "​", + "style": "IPY_MODEL_a62d8b73dd434befa5c8f4700fdebb3a", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "5e1fdc7754424b10af668c3784d1d79b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,7 +2092,7 @@ "width": null } }, - "589d98252cef4f85bf193ba74b4f11d4": { + "5f9b91f66f694d5eb6207514df3f361b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2112,17 +2108,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae489b923a8340a3ba0481c4d1ea261d", - "max": 48.0, + "layout": "IPY_MODEL_2d58ff6fd7d14ca59a65d5f6fbfa0638", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_39ee56051f0c4ee8b154fc79d637ae7f", + "style": "IPY_MODEL_51d4961d8f8541eb88e2da893fa47eed", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 391.0 + } + }, + "62a0b42d5f6c4da2ab47c1a7942d3337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5955dd04859341989c951890a4df5fa5": { + "660acb2278724be28796fcec6f69d7bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,114 +2189,168 @@ "width": null } }, - "5a8d7753d65946d9bba9b5af5477e2f0": { + "66da8b50d05043dba9d9652587054967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dc0ab7b03f9425ebd4489c94893df8e", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6501307f5ce34203ab7fdf2215a08557", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5e53f21879bb44d39a75f785746eb86f": { + "6c15800b0d624e8d81d8abfc85f9254f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d0ccf5f28d488e93908803a2b4c76d", - "placeholder": "​", - "style": "IPY_MODEL_e55810572ac94069938f8aa1d5c89733", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f7b4af5f8fb4207a5fc1453ead1657d": { - "model_module": "@jupyter-widgets/controls", + "70de1cac82cd4800a25b8f67e952ca42": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45f797f62ab84a74bc35ca4a2b3595cc", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22a5fe5ff39e4ca2978a0d5638deed64", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6501307f5ce34203ab7fdf2215a08557": { - "model_module": "@jupyter-widgets/controls", + "74914279b76946f9b81bbd35eb876eb3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "674c5467100e43c3a14efcbbaa694b2f": { + "801dfb197b9a4fffb3406e9b3339e8a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dfef38574554577ab70c1090376620e", + "placeholder": "​", + "style": "IPY_MODEL_b9ab52a5d21a46f397d61d32477dd414", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.9kB/s]" } }, - "67c1114ef93e46e4875c1a36196581fe": { + "80896446ef2545c9bbbc50f05e195a0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2335,7 +2403,31 @@ "width": null } }, - "68665ef2c2d344649a6bb5bef2cd0cf1": { + "81db904263be418b972cdc74693c1347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9202292df4544bb09b34656d6dd33226", + "IPY_MODEL_af6e581b18b24606b3bfcf4f16217c63", + "IPY_MODEL_506c7f29cf3d491e9d8df294ae722e21" + ], + "layout": "IPY_MODEL_b7c7600372e74de589a5cfb229cb8728", + "tabbable": null, + "tooltip": null + } + }, + "839cd742a34841029c4a4e34d5a903fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2351,7 +2443,31 @@ "description_width": "" } }, - "6bffd8a3cc944217923e11e74caa87ed": { + "857f6827f751492d8e4455d6dcc779a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5f1210c6850475f951124e6e276868f", + "IPY_MODEL_b45a54addc1642888759cbcda460b064", + "IPY_MODEL_468ecd46323f48c58c97d2c4190cdfa6" + ], + "layout": "IPY_MODEL_15da45f559dc4baebc98b369b1b1bac9", + "tabbable": null, + "tooltip": null + } + }, + "867d9702d3e54bc588e06b3916ce2240": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,71 +2520,7 @@ "width": null } }, - "6ccf6a21dc3945fbb2d43252f575ef5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5955dd04859341989c951890a4df5fa5", - "placeholder": "​", - "style": "IPY_MODEL_951eb939a72f45bd92ba8792847aa1eb", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "71273fc53eab44809f296c757a78d589": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73f23d2d6373465e9dbad61f9ad06ef4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6fd9b1124fc4d558957370f8075ca1f", - "placeholder": "​", - "style": "IPY_MODEL_78da90f9dba54434957f9d14c8d668ed", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "74470f7ecc834ba8b2c48bdabc27a04d": { + "8b68d00ec9e74aa99b854e1e6e50035f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,7 +2573,7 @@ "width": null } }, - "768d4093bcd8494385059cb2bfb032bb": { + "901dbc7b9c464aec8a3cac4e2e14e625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2536,15 +2588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4d73ac4b9df4def8a36beec9df58011", + "layout": "IPY_MODEL_ec91ee5e87014770a996a744ed36e8f7", "placeholder": "​", - "style": "IPY_MODEL_fb9887fc25ab4f2394962edb6a9502f5", + "style": "IPY_MODEL_01540b61781c4eb58c18e156802a58d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "76eba979f94c468e8d98b7112a0724a5": { + "91544e5b16174f2e909f6bb9aadf6a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2649,30 @@ "width": null } }, - "78da90f9dba54434957f9d14c8d668ed": { + "9202292df4544bb09b34656d6dd33226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12fb1a366134caf8620d9c169f63fb1", + "placeholder": "​", + "style": "IPY_MODEL_62a0b42d5f6c4da2ab47c1a7942d3337", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "92f6f017f752469aac3c5c095c42bb92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2615,7 +2690,7 @@ "text_color": null } }, - "79795d7634484b35a621edac0423512e": { + "9883831e5e574351a71cbc22708f91c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2668,7 +2743,25 @@ "width": null } }, - "7c1143c17f2040eaa6e34bdebb77865d": { + "a62d8b73dd434befa5c8f4700fdebb3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7e8d478c1164e08b3fd282538dc8416": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2814,7 @@ "width": null } }, - "86a1f95ab6d54233a5b9ed9a5716805f": { + "a817cdafff274fccbeaceccbaef0ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2739,112 +2832,215 @@ "text_color": null } }, - "94557935a2374333b2239085d88eec9a": { + "aa4c151e344c4e0abf44676bbc9d2d45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6ccf6a21dc3945fbb2d43252f575ef5a", - "IPY_MODEL_5f7b4af5f8fb4207a5fc1453ead1657d", - "IPY_MODEL_3a682b5847a0438eb5702f512f795f1c" - ], - "layout": "IPY_MODEL_67c1114ef93e46e4875c1a36196581fe", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "951eb939a72f45bd92ba8792847aa1eb": { + "af6e581b18b24606b3bfcf4f16217c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2db40e57e84f2b90bc19d497f69a00", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9bde3a464254c5da9b0c1fbe9a12c90", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "9a1b4b67f4494b1a8782e13d9f96e298": { + "b0459879b52642d29b2816724da7b8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c1143c17f2040eaa6e34bdebb77865d", - "placeholder": "​", - "style": "IPY_MODEL_08a01d42535f45c1afd47cdd82b5c40e", + "layout": "IPY_MODEL_5e1fdc7754424b10af668c3784d1d79b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bf168d57d974301a816bd335166c3e4", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.81MB/s]" + "value": 231508.0 } }, - "9cbb0d355e3b4631ab5bde4863e208c9": { + "b45a54addc1642888759cbcda460b064": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73f23d2d6373465e9dbad61f9ad06ef4", - "IPY_MODEL_e6d0b0f32de440cea180d66631646e9c", - "IPY_MODEL_5e53f21879bb44d39a75f785746eb86f" - ], - "layout": "IPY_MODEL_264cad247c01411dbbec2aa09c72f96a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9883831e5e574351a71cbc22708f91c9", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c15800b0d624e8d81d8abfc85f9254f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "b58fdee4702849c092df49b1636d2bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7c7600372e74de589a5cfb229cb8728": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ab52a5d21a46f397d61d32477dd414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0120faf64f6497691116777e44f77aa": { + "b9e3785791cb4f3f85a367cbdffbc2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb6d77b735c24be98e3a75116bd9d3d1", + "placeholder": "​", + "style": "IPY_MODEL_3731f8d339c84d94a28f11beefec8fc8", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" } }, - "ae489b923a8340a3ba0481c4d1ea261d": { + "bad51eb444f94a938e31c59e3113684b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +3093,7 @@ "width": null } }, - "b0d9abfaf1d24260b3f87b1ea0c4209a": { + "c12fb1a366134caf8620d9c169f63fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +3146,7 @@ "width": null } }, - "b4fa9e58d31840ddb31dbe586ab1d95e": { + "c4e4680d87b8463aa7d08f5c6d456285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2965,33 +3161,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74470f7ecc834ba8b2c48bdabc27a04d", + "layout": "IPY_MODEL_70de1cac82cd4800a25b8f67e952ca42", "placeholder": "​", - "style": "IPY_MODEL_42172bed218f48b48601266fd4b31f94", + "style": "IPY_MODEL_0071d1f0936c4bccbd1edaa5a6ae1140", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b533e592f3a247a29f1370a2808a81e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "config.json: 100%" } }, - "bb320defcbac47aeb8b230aae7ef2e42": { + "c5f1210c6850475f951124e6e276868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3006,15 +3184,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0544fbd69b124534b049440d1f3e0d41", + "layout": "IPY_MODEL_165de584f55f4cc4a61989a56f9b49c5", "placeholder": "​", - "style": "IPY_MODEL_1ecfcaca36e849409b94d9e2b3a6d2df", + "style": "IPY_MODEL_100942b5144f4805a0308187f29c80ec", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 6.88kB/s]" + "value": "tokenizer_config.json: 100%" + } + }, + "d6c315a338314fa6b05bdb0eb28b15f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf9d5b94bbd24770874e0cc5af1a1615": { + "dab9adcd9e7c4d6cadb92cc8fbfee50a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,7 +3263,7 @@ "width": null } }, - "c3093ff50e5d4a039d2e953cfd360463": { + "dbef822c740d42df9d83e77b0148c4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3083,64 +3279,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce20eedd96024e7cb76caa10382b98f3", - "max": 2211.0, + "layout": "IPY_MODEL_0e1a742f353b4ae592d5e9d4c904dea7", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_68665ef2c2d344649a6bb5bef2cd0cf1", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "c454eb6f366f411e9e5a792ee1c9e53e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19015823d41c439e9c231621c87bcc79", - "IPY_MODEL_cbdee891ff404e1c89551209815fe333", - "IPY_MODEL_d47720ed569042059b470abcac870e91" - ], - "layout": "IPY_MODEL_e506b0552dce44f58fe55b55001595e6", - "tabbable": null, - "tooltip": null - } - }, - "c56505f3a8884fce9a47bbe99c1b9422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e836e2ba2e3f4854ac42659a1eeeeade", - "placeholder": "​", - "style": "IPY_MODEL_86a1f95ab6d54233a5b9ed9a5716805f", + "style": "IPY_MODEL_56b546e9a9534adb835c7ed1d9aa4667", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" + "value": 665.0 } }, - "c670a9f65c784a998597204abdd99c6c": { + "dd92079e014444fb8d53b9ecd43d4155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3155,42 +3304,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b4fa9e58d31840ddb31dbe586ab1d95e", - "IPY_MODEL_5a8d7753d65946d9bba9b5af5477e2f0", - "IPY_MODEL_9a1b4b67f4494b1a8782e13d9f96e298" + "IPY_MODEL_f9aa0a5acc2d4c988ab5f6b876ade570", + "IPY_MODEL_b0459879b52642d29b2816724da7b8f2", + "IPY_MODEL_3305b2d61b3f4915bbc3a70282874455" ], - "layout": "IPY_MODEL_31ac4e398f274fa2884c943b6c5bdf67", + "layout": "IPY_MODEL_dab9adcd9e7c4d6cadb92cc8fbfee50a", "tabbable": null, "tooltip": null } }, - "cbdee891ff404e1c89551209815fe333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76eba979f94c468e8d98b7112a0724a5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7e4021c02b427c840f1dde6a12c6b7", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "cd63150bb3a1425c9689cc541dcbf29a": { + "e8c2df192a274240a738bf66fe3a221b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,7 +3366,7 @@ "width": null } }, - "ce20eedd96024e7cb76caa10382b98f3": { + "ec91ee5e87014770a996a744ed36e8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3296,54 +3419,7 @@ "width": null } }, - "d47720ed569042059b470abcac870e91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd63150bb3a1425c9689cc541dcbf29a", - "placeholder": "​", - "style": "IPY_MODEL_05c30b39421044298e1e8ac7e138767d", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 54.7kB/s]" - } - }, - "e4bb31413f5b49d5a94609831a4b36f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e81be626ddb14f05bda0812ebd9f1e69", - "IPY_MODEL_589d98252cef4f85bf193ba74b4f11d4", - "IPY_MODEL_bb320defcbac47aeb8b230aae7ef2e42" - ], - "layout": "IPY_MODEL_6bffd8a3cc944217923e11e74caa87ed", - "tabbable": null, - "tooltip": null - } - }, - "e506b0552dce44f58fe55b55001595e6": { + "ed4314e49f3e423ab3e2f4721f4b9212": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,51 +3472,30 @@ "width": null } }, - "e55810572ac94069938f8aa1d5c89733": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e6d0b0f32de440cea180d66631646e9c": { + "ef4c1ce3b993449bb0aaf04a55c873f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_583111a984204d99b91ecb3dfb37bf0e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_674c5467100e43c3a14efcbbaa694b2f", + "layout": "IPY_MODEL_867d9702d3e54bc588e06b3916ce2240", + "placeholder": "​", + "style": "IPY_MODEL_a817cdafff274fccbeaceccbaef0ae77", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 54.2M/54.2M [00:00<00:00, 194MB/s]" } }, - "e6fd9b1124fc4d558957370f8075ca1f": { + "f7ef1ed37e7949049da1bc6875f2930d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3548,7 @@ "width": null } }, - "e81be626ddb14f05bda0812ebd9f1e69": { + "f9aa0a5acc2d4c988ab5f6b876ade570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3508,68 +3563,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79795d7634484b35a621edac0423512e", + "layout": "IPY_MODEL_ed4314e49f3e423ab3e2f4721f4b9212", "placeholder": "​", - "style": "IPY_MODEL_b533e592f3a247a29f1370a2808a81e3", + "style": "IPY_MODEL_aa4c151e344c4e0abf44676bbc9d2d45", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "vocab.txt: 100%" } }, - "e836e2ba2e3f4854ac42659a1eeeeade": { - "model_module": "@jupyter-widgets/base", + "f9bde3a464254c5da9b0c1fbe9a12c90": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4d73ac4b9df4def8a36beec9df58011": { + "fb6d77b735c24be98e3a75116bd9d3d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "fb9887fc25ab4f2394962edb6a9502f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index a5325d72b..4d8b78fd5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:11.666172Z", - "iopub.status.busy": "2024-09-26T16:58:11.665997Z", - "iopub.status.idle": "2024-09-26T16:58:17.115098Z", - "shell.execute_reply": "2024-09-26T16:58:17.114580Z" + "iopub.execute_input": "2024-09-27T13:44:36.603453Z", + "iopub.status.busy": "2024-09-27T13:44:36.603070Z", + "iopub.status.idle": "2024-09-27T13:44:42.107486Z", + "shell.execute_reply": "2024-09-27T13:44:42.106821Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.117549Z", - "iopub.status.busy": "2024-09-26T16:58:17.116881Z", - "iopub.status.idle": "2024-09-26T16:58:17.120196Z", - "shell.execute_reply": "2024-09-26T16:58:17.119731Z" + "iopub.execute_input": "2024-09-27T13:44:42.109797Z", + "iopub.status.busy": "2024-09-27T13:44:42.109442Z", + "iopub.status.idle": "2024-09-27T13:44:42.112852Z", + "shell.execute_reply": "2024-09-27T13:44:42.112294Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.121809Z", - "iopub.status.busy": "2024-09-26T16:58:17.121619Z", - "iopub.status.idle": "2024-09-26T16:58:17.126367Z", - "shell.execute_reply": "2024-09-26T16:58:17.125801Z" + "iopub.execute_input": "2024-09-27T13:44:42.114568Z", + "iopub.status.busy": "2024-09-27T13:44:42.114269Z", + "iopub.status.idle": "2024-09-27T13:44:42.119040Z", + "shell.execute_reply": "2024-09-27T13:44:42.118475Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.128273Z", - "iopub.status.busy": "2024-09-26T16:58:17.127955Z", - "iopub.status.idle": "2024-09-26T16:58:18.305634Z", - "shell.execute_reply": "2024-09-26T16:58:18.304924Z" + "iopub.execute_input": "2024-09-27T13:44:42.120949Z", + "iopub.status.busy": "2024-09-27T13:44:42.120568Z", + "iopub.status.idle": "2024-09-27T13:44:43.941703Z", + "shell.execute_reply": "2024-09-27T13:44:43.940859Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.307831Z", - "iopub.status.busy": "2024-09-26T16:58:18.307625Z", - "iopub.status.idle": "2024-09-26T16:58:18.318649Z", - "shell.execute_reply": "2024-09-26T16:58:18.318056Z" + "iopub.execute_input": "2024-09-27T13:44:43.943941Z", + "iopub.status.busy": "2024-09-27T13:44:43.943720Z", + "iopub.status.idle": "2024-09-27T13:44:43.955413Z", + "shell.execute_reply": "2024-09-27T13:44:43.954952Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.320584Z", - "iopub.status.busy": "2024-09-26T16:58:18.320195Z", - "iopub.status.idle": "2024-09-26T16:58:18.325935Z", - "shell.execute_reply": "2024-09-26T16:58:18.325369Z" + "iopub.execute_input": "2024-09-27T13:44:43.957114Z", + "iopub.status.busy": "2024-09-27T13:44:43.956812Z", + "iopub.status.idle": "2024-09-27T13:44:43.962413Z", + "shell.execute_reply": "2024-09-27T13:44:43.961847Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.327582Z", - "iopub.status.busy": "2024-09-26T16:58:18.327252Z", - "iopub.status.idle": "2024-09-26T16:58:18.797178Z", - "shell.execute_reply": "2024-09-26T16:58:18.796545Z" + "iopub.execute_input": "2024-09-27T13:44:43.964221Z", + "iopub.status.busy": "2024-09-27T13:44:43.963888Z", + "iopub.status.idle": "2024-09-27T13:44:44.422014Z", + "shell.execute_reply": "2024-09-27T13:44:44.421486Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.799295Z", - "iopub.status.busy": "2024-09-26T16:58:18.798812Z", - "iopub.status.idle": "2024-09-26T16:58:19.937622Z", - "shell.execute_reply": "2024-09-26T16:58:19.936983Z" + "iopub.execute_input": "2024-09-27T13:44:44.423808Z", + "iopub.status.busy": "2024-09-27T13:44:44.423482Z", + "iopub.status.idle": "2024-09-27T13:44:45.385758Z", + "shell.execute_reply": "2024-09-27T13:44:45.385212Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.939805Z", - "iopub.status.busy": "2024-09-26T16:58:19.939457Z", - "iopub.status.idle": "2024-09-26T16:58:19.957921Z", - "shell.execute_reply": "2024-09-26T16:58:19.957472Z" + "iopub.execute_input": "2024-09-27T13:44:45.387774Z", + "iopub.status.busy": "2024-09-27T13:44:45.387444Z", + "iopub.status.idle": "2024-09-27T13:44:45.405880Z", + "shell.execute_reply": "2024-09-27T13:44:45.405337Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.959708Z", - "iopub.status.busy": "2024-09-26T16:58:19.959373Z", - "iopub.status.idle": "2024-09-26T16:58:19.962455Z", - "shell.execute_reply": "2024-09-26T16:58:19.962003Z" + "iopub.execute_input": "2024-09-27T13:44:45.407707Z", + "iopub.status.busy": "2024-09-27T13:44:45.407368Z", + "iopub.status.idle": "2024-09-27T13:44:45.410436Z", + "shell.execute_reply": "2024-09-27T13:44:45.409969Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.964013Z", - "iopub.status.busy": "2024-09-26T16:58:19.963713Z", - "iopub.status.idle": "2024-09-26T16:58:34.705096Z", - "shell.execute_reply": "2024-09-26T16:58:34.704532Z" + "iopub.execute_input": "2024-09-27T13:44:45.412058Z", + "iopub.status.busy": "2024-09-27T13:44:45.411732Z", + "iopub.status.idle": "2024-09-27T13:44:59.801008Z", + "shell.execute_reply": "2024-09-27T13:44:59.800349Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.707498Z", - "iopub.status.busy": "2024-09-26T16:58:34.707096Z", - "iopub.status.idle": "2024-09-26T16:58:34.711017Z", - "shell.execute_reply": "2024-09-26T16:58:34.710531Z" + "iopub.execute_input": "2024-09-27T13:44:59.803402Z", + "iopub.status.busy": "2024-09-27T13:44:59.803141Z", + "iopub.status.idle": "2024-09-27T13:44:59.807543Z", + "shell.execute_reply": "2024-09-27T13:44:59.807041Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.712913Z", - "iopub.status.busy": "2024-09-26T16:58:34.712565Z", - "iopub.status.idle": "2024-09-26T16:58:35.450910Z", - "shell.execute_reply": "2024-09-26T16:58:35.450314Z" + "iopub.execute_input": "2024-09-27T13:44:59.809665Z", + "iopub.status.busy": "2024-09-27T13:44:59.809247Z", + "iopub.status.idle": "2024-09-27T13:45:00.567639Z", + "shell.execute_reply": "2024-09-27T13:45:00.566984Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.453164Z", - "iopub.status.busy": "2024-09-26T16:58:35.452805Z", - "iopub.status.idle": "2024-09-26T16:58:35.457809Z", - "shell.execute_reply": "2024-09-26T16:58:35.457267Z" + "iopub.execute_input": "2024-09-27T13:45:00.570314Z", + "iopub.status.busy": "2024-09-27T13:45:00.569847Z", + "iopub.status.idle": "2024-09-27T13:45:00.575162Z", + "shell.execute_reply": "2024-09-27T13:45:00.574623Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.459721Z", - "iopub.status.busy": "2024-09-26T16:58:35.459376Z", - "iopub.status.idle": "2024-09-26T16:58:35.584541Z", - "shell.execute_reply": "2024-09-26T16:58:35.583868Z" + "iopub.execute_input": "2024-09-27T13:45:00.577328Z", + "iopub.status.busy": "2024-09-27T13:45:00.576927Z", + "iopub.status.idle": "2024-09-27T13:45:00.691103Z", + "shell.execute_reply": "2024-09-27T13:45:00.690409Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.586408Z", - "iopub.status.busy": "2024-09-26T16:58:35.586206Z", - "iopub.status.idle": "2024-09-26T16:58:35.599540Z", - "shell.execute_reply": "2024-09-26T16:58:35.599063Z" + "iopub.execute_input": "2024-09-27T13:45:00.693335Z", + "iopub.status.busy": "2024-09-27T13:45:00.692963Z", + "iopub.status.idle": "2024-09-27T13:45:00.706085Z", + "shell.execute_reply": "2024-09-27T13:45:00.705457Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.601125Z", - "iopub.status.busy": "2024-09-26T16:58:35.600946Z", - "iopub.status.idle": "2024-09-26T16:58:35.608862Z", - "shell.execute_reply": "2024-09-26T16:58:35.608287Z" + "iopub.execute_input": "2024-09-27T13:45:00.708127Z", + "iopub.status.busy": "2024-09-27T13:45:00.707715Z", + "iopub.status.idle": "2024-09-27T13:45:00.716060Z", + "shell.execute_reply": "2024-09-27T13:45:00.715507Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.610542Z", - "iopub.status.busy": "2024-09-26T16:58:35.610361Z", - "iopub.status.idle": "2024-09-26T16:58:35.614478Z", - "shell.execute_reply": "2024-09-26T16:58:35.614026Z" + "iopub.execute_input": "2024-09-27T13:45:00.717915Z", + "iopub.status.busy": "2024-09-27T13:45:00.717603Z", + "iopub.status.idle": "2024-09-27T13:45:00.722261Z", + "shell.execute_reply": "2024-09-27T13:45:00.721747Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.616016Z", - "iopub.status.busy": "2024-09-26T16:58:35.615841Z", - "iopub.status.idle": "2024-09-26T16:58:35.621639Z", - "shell.execute_reply": "2024-09-26T16:58:35.621174Z" + "iopub.execute_input": "2024-09-27T13:45:00.724102Z", + "iopub.status.busy": "2024-09-27T13:45:00.723755Z", + "iopub.status.idle": "2024-09-27T13:45:00.729426Z", + "shell.execute_reply": "2024-09-27T13:45:00.728942Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.623234Z", - "iopub.status.busy": "2024-09-26T16:58:35.623053Z", - "iopub.status.idle": "2024-09-26T16:58:35.739774Z", - "shell.execute_reply": "2024-09-26T16:58:35.739189Z" + "iopub.execute_input": "2024-09-27T13:45:00.731141Z", + "iopub.status.busy": "2024-09-27T13:45:00.730829Z", + "iopub.status.idle": "2024-09-27T13:45:00.853648Z", + "shell.execute_reply": "2024-09-27T13:45:00.853124Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.741627Z", - "iopub.status.busy": "2024-09-26T16:58:35.741282Z", - "iopub.status.idle": "2024-09-26T16:58:35.848790Z", - "shell.execute_reply": "2024-09-26T16:58:35.848301Z" + "iopub.execute_input": "2024-09-27T13:45:00.855705Z", + "iopub.status.busy": "2024-09-27T13:45:00.855318Z", + "iopub.status.idle": "2024-09-27T13:45:00.964042Z", + "shell.execute_reply": "2024-09-27T13:45:00.963452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.850804Z", - "iopub.status.busy": "2024-09-26T16:58:35.850284Z", - "iopub.status.idle": "2024-09-26T16:58:35.953589Z", - "shell.execute_reply": "2024-09-26T16:58:35.953058Z" + "iopub.execute_input": "2024-09-27T13:45:00.965938Z", + "iopub.status.busy": "2024-09-27T13:45:00.965576Z", + "iopub.status.idle": "2024-09-27T13:45:01.070709Z", + "shell.execute_reply": "2024-09-27T13:45:01.070224Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.955515Z", - "iopub.status.busy": "2024-09-26T16:58:35.955161Z", - "iopub.status.idle": "2024-09-26T16:58:36.069054Z", - "shell.execute_reply": "2024-09-26T16:58:36.068561Z" + "iopub.execute_input": "2024-09-27T13:45:01.072505Z", + "iopub.status.busy": "2024-09-27T13:45:01.072108Z", + "iopub.status.idle": "2024-09-27T13:45:01.175748Z", + "shell.execute_reply": "2024-09-27T13:45:01.175154Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:36.070954Z", - "iopub.status.busy": "2024-09-26T16:58:36.070626Z", - "iopub.status.idle": "2024-09-26T16:58:36.073888Z", - "shell.execute_reply": "2024-09-26T16:58:36.073420Z" + "iopub.execute_input": "2024-09-27T13:45:01.177710Z", + "iopub.status.busy": "2024-09-27T13:45:01.177244Z", + "iopub.status.idle": "2024-09-27T13:45:01.180494Z", + "shell.execute_reply": "2024-09-27T13:45:01.180049Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01dd619d956847aa997ffce9331c6f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "04b2119cb5c24b1282f4651b60c081db": { + "018d3e0de5994deeaf61abcc22f7e853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1425,39 +1407,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", + "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "​", - "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", + "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 3.40MB/s]" } }, - "069285b7fcae4a49aa4d8b2a0ec5e1f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", - "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", - "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3" - ], - "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", - "tabbable": null, - "tooltip": null - } - }, - "0d9c93e26d3641af937b86cb28f1043c": { + "03f302b33f0f499db69c7ab14a1ca2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,7 +1468,25 @@ "width": null } }, - "119d581cffd34949a8d48c293a69272b": { + "10c368927baf4420969cb6ae68c4e717": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11915e48f4504281b814613868eca199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1525,31 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", + "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "​", - "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", + "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 827kB/s]" - } - }, - "1207321f92434ac49c2b3961aa955300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 230MB/s]" } }, - "1689568cadba4428a3c16e73aec93064": { + "151e8ca846e44a6e9194a75128fb307e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1567,49 +1527,7 @@ "text_color": null } }, - "1a937547234f4e3e8c99c9942633b902": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1bb31cd8192b40ce90db2d1561f184d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "2105f964155648f587a79823e2dc52df": { + "168def778e954cfab29445ed86ae3d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1624,15 +1542,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", + "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "​", - "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", + "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "22f37e2ccb594a9b9e6d3ed7ba64429d": { + "1c30d7917105425b986c353f9fee84f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1648,7 +1566,7 @@ "description_width": "" } }, - "24bd633b981f4071bfa481b55e491ae3": { + "2a672c9d548d45dd9723f972d19f5cd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1619,7 @@ "width": null } }, - "2611ff525a1f41f0b9d0440d5259df6d": { + "2c41fc16193949dabc14c8dea52ea0ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,74 +1672,7 @@ "width": null } }, - "27c15cee7b864a8bbb79e8a88cb39b17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "2ef3f35a45534012b74dce3efb231dc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", - "placeholder": "​", - "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 448kB/s]" - } - }, - "3061b1986853449599f2d06f2326b1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "348223f05553429fad2b7618c7dbd29c": { + "2ddcca527ea545e2918701a00e64a4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,80 +1725,7 @@ "width": null } }, - "3521b72379974fbfaa344ab8e0fc15a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "37f7257044bd41dc9f107740b3e64070": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", - "placeholder": "​", - "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "3ab74bd10a8b4e988d838d02d6a7f8f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", - "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", - "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1" - ], - "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", - "tabbable": null, - "tooltip": null - } - }, - "3e8e9bbc1d5144968fadad5594c865a3": { + "4053bae3cf9f4d7c99f6bd1bf8fec47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1778,25 @@ "width": null } }, - "4aa4c543e9214f93af3a4075231e3d53": { + "40c77a336db74f489321f1f6b9e81cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "47ad7ceb8f4d4fce9cebe4190fd489d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2053,120 +1849,126 @@ "width": null } }, - "4c0c0f4c36114fdf9aeb5e0e2108452e": { + "4a182bf1825140f88b758ae22e5f180c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", - "placeholder": "​", - "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", + "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 128619.0 } }, - "4c0d8e35a50f4d4eb5c8b76fe80c92a7": { + "50977494445c4346b297684613074520": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "4fe513d681ba466d900d11c396115fa5": { + "571870242b4f43aa8e6e1bdd1628ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", - "placeholder": "​", - "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", + "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 56.0MB/s]" + "value": 16887676.0 } }, - "55987e4ef9f44c18a42f73fe72df11ac": { + "5863021a6f354713830e74ab4fcfa0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", - "placeholder": "​", - "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.68MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5614924105cd4430824c54f8fbd620e2": { + "5a43ca99790144e9a5702ff9b3b2cd34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", + "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", + "placeholder": "​", + "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "label_encoder.txt: 100%" } }, - "58a8dcd03ec24652964baa102fc44bba": { + "5be1b1a4405046d392c0d881cefd9325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2021,7 @@ "width": null } }, - "5dcab6e3e9b74150a77ee8695ec6f12c": { + "5e9038000b834a668c338ea02511ac69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,60 +2074,25 @@ "width": null } }, - "5f4f61eaf6bf46b098b8abb00a3d84bf": { - "model_module": "@jupyter-widgets/base", + "612eaf97f5134a35b05234006254d4f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "61dfbe2e6b0f4758ae16a0d955f1c152": { + "668f7d7744d84739b5a00b9fa075e89a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2341,83 +2108,116 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", - "max": 16887676.0, + "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", + "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "61e09812f1bc40019dcf1e4e5110b6eb": { + "68af8a48d81e4721b4da3d3dc6a8ef57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", + "placeholder": "​", + "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "64a71dc2611f471ea0d375c4aa5cc6a5": { + "6c3b53f037b3487a80cffb640af03495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", - "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", - "IPY_MODEL_119d581cffd34949a8d48c293a69272b" - ], - "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", + "placeholder": "​", + "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "691c3e35f66d4a8d9767d80f6b85f07d": { - "model_module": "@jupyter-widgets/controls", + "762ccb3a102448568ee60cc41b44dc7a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37f7257044bd41dc9f107740b3e64070", - "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", - "IPY_MODEL_4fe513d681ba466d900d11c396115fa5" - ], - "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b3edac5eedd4e929d87d30168008e9e": { + "76c50230cb5a4154b63c7afd956c5656": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,7 +2270,89 @@ "width": null } }, - "77d1a086e62d42df9d823e2016fd7a8b": { + "782c8b9cb2704b4694519195d9c535d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818535aa611c461389a532d95e7c1934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_168def778e954cfab29445ed86ae3d09", + "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", + "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf" + ], + "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", + "tabbable": null, + "tooltip": null + } + }, + "8432060f5fed40438f092ea7936c46c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c3b53f037b3487a80cffb640af03495", + "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", + "IPY_MODEL_c80c47b2a3c54cf787e88de611551989" + ], + "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", + "tabbable": null, + "tooltip": null + } + }, + "936f5441144546599078322a02ea1264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "949f7d6cad114c68aa53aebedd9ca92e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2486,7 +2368,7 @@ "description_width": "" } }, - "80b84f6784d245229070cb0b2c51ed60": { + "9649f71e84fd4f539505e104fdc2b949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2539,25 +2421,31 @@ "width": null } }, - "8431f88fd57741c591d760cf54e05437": { + "992b4d56eba94771a314a42397dfaa94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", + "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", + "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c" + ], + "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", + "tabbable": null, + "tooltip": null } }, - "8a11de9efd4c4eb1bcdb5e0572a7a6cf": { + "9f67f2e8fc6e47b182ba7f1089a4c5b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2573,7 +2461,7 @@ "description_width": "" } }, - "8ead2917d2cb47caa5737a8fe7543902": { + "a33fbac541a5428c8a0d561d886f279f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2591,7 +2479,7 @@ "text_color": null } }, - "a8f57adf102641838fd50c8bbaf3c77e": { + "a62e67926fe849f384b2c354aa669eb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,31 +2532,7 @@ "width": null } }, - "ad0fb9aac7a14f05a1580ff6488782c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2105f964155648f587a79823e2dc52df", - "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", - "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac" - ], - "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", - "tabbable": null, - "tooltip": null - } - }, - "af1897d6c781491a840fec89717380dc": { + "ac04b000aacb4879bf4e95114361c74e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2585,56 @@ "width": null } }, - "bd8ed9c113d64a59aed51794c9f93adb": { + "accf3e2b636443809c5c8d0b8a6ff5bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", + "placeholder": "​", + "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 123MB/s]" + } + }, + "ad8e8630e0ef4330a5851661d05cca2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "b74268b143c3457ea3926c8c5144f8b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,7 +2687,7 @@ "width": null } }, - "c46a370402f2481bb9924ac5e9f67307": { + "b8ae14d02947401f8ef065665ec71125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2792,30 +2705,25 @@ "text_color": null } }, - "ced3b9d2c3be456b90083e8f9057f668": { + "bf5b5193a91d476588d2b32f118e2805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", - "placeholder": "​", - "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0a44fb871b448adbba43c44b4502169": { + "c486a759402940f1a631675c983d06ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,25 +2776,30 @@ "width": null } }, - "d3c6eb59d32548d28aaf3137df63dd43": { + "c80c47b2a3c54cf787e88de611551989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", + "placeholder": "​", + "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 753kB/s]" } }, - "d72d99b3b0104e81845d798e3082b95c": { + "c89a331526a94333842b49ad04c7fec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2939,30 +2852,49 @@ "width": null } }, - "d9acb79e5c9248618d2fe0e135c9aae1": { + "c97a8b48d85148af82daab8dd0193369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", - "placeholder": "​", - "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", + "IPY_MODEL_50977494445c4346b297684613074520", + "IPY_MODEL_11915e48f4504281b814613868eca199" + ], + "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + "tooltip": null + } + }, + "d61231cf2b94494a8c4901a0f9cfc33b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e67238f3e71a4da182cad9cfc8a90dbe": { + "d7774cb8b5a24b4fb76f4da281a186e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3015,7 +2947,7 @@ "width": null } }, - "ec1a41355e7f4d23b1bd5a452a1839f7": { + "d91d31ef52e240b3a7fbfbdfe4c6ec01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3068,25 +3000,47 @@ "width": null } }, - "f56a5502560a40e5a983b3bdcefc7a73": { + "df407e638a9648569ea77312b39b3124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", + "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", + "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853" + ], + "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", + "tabbable": null, + "tooltip": null + } + }, + "e0af8aaa092d489583a475dc5f415438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f95194d703394d719ae03aad8cc8c815": { + "e2d39e561781403d9baca72c88e6f3c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3093,30 @@ "width": null } }, - "ffde30c67f7742f88a8ff28a1b3a78a7": { + "e6d30e9cda9f43ccac9318d15445f701": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", + "placeholder": "​", + "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "e7d4217753f2470494b46b000eb13525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3168,29 @@ "visibility": null, "width": null } + }, + "f4be297a9bba4232b2b5d09f2781b53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", + "placeholder": "​", + "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 444kB/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index ffc430e68..f96269130 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:39.586217Z", - "iopub.status.busy": "2024-09-26T16:58:39.585770Z", - "iopub.status.idle": "2024-09-26T16:58:40.868805Z", - "shell.execute_reply": "2024-09-26T16:58:40.868290Z" + "iopub.execute_input": "2024-09-27T13:45:05.545064Z", + "iopub.status.busy": "2024-09-27T13:45:05.544883Z", + "iopub.status.idle": "2024-09-27T13:45:06.777330Z", + "shell.execute_reply": "2024-09-27T13:45:06.776775Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.871104Z", - "iopub.status.busy": "2024-09-26T16:58:40.870653Z", - "iopub.status.idle": "2024-09-26T16:58:40.873864Z", - "shell.execute_reply": "2024-09-26T16:58:40.873292Z" + "iopub.execute_input": "2024-09-27T13:45:06.779593Z", + "iopub.status.busy": "2024-09-27T13:45:06.779069Z", + "iopub.status.idle": "2024-09-27T13:45:06.782274Z", + "shell.execute_reply": "2024-09-27T13:45:06.781769Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.875643Z", - "iopub.status.busy": "2024-09-26T16:58:40.875341Z", - "iopub.status.idle": "2024-09-26T16:58:40.884143Z", - "shell.execute_reply": "2024-09-26T16:58:40.883552Z" + "iopub.execute_input": "2024-09-27T13:45:06.784051Z", + "iopub.status.busy": "2024-09-27T13:45:06.783747Z", + "iopub.status.idle": "2024-09-27T13:45:06.792444Z", + "shell.execute_reply": "2024-09-27T13:45:06.791879Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.885948Z", - "iopub.status.busy": "2024-09-26T16:58:40.885595Z", - "iopub.status.idle": "2024-09-26T16:58:40.890353Z", - "shell.execute_reply": "2024-09-26T16:58:40.889899Z" + "iopub.execute_input": "2024-09-27T13:45:06.794094Z", + "iopub.status.busy": "2024-09-27T13:45:06.793909Z", + "iopub.status.idle": "2024-09-27T13:45:06.798914Z", + "shell.execute_reply": "2024-09-27T13:45:06.798484Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.892204Z", - "iopub.status.busy": "2024-09-26T16:58:40.891849Z", - "iopub.status.idle": "2024-09-26T16:58:41.080702Z", - "shell.execute_reply": "2024-09-26T16:58:41.080055Z" + "iopub.execute_input": "2024-09-27T13:45:06.800723Z", + "iopub.status.busy": "2024-09-27T13:45:06.800392Z", + "iopub.status.idle": "2024-09-27T13:45:06.986289Z", + "shell.execute_reply": "2024-09-27T13:45:06.985622Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.083033Z", - "iopub.status.busy": "2024-09-26T16:58:41.082578Z", - "iopub.status.idle": "2024-09-26T16:58:41.413208Z", - "shell.execute_reply": "2024-09-26T16:58:41.412618Z" + "iopub.execute_input": "2024-09-27T13:45:06.988338Z", + "iopub.status.busy": "2024-09-27T13:45:06.988040Z", + "iopub.status.idle": "2024-09-27T13:45:07.366255Z", + "shell.execute_reply": "2024-09-27T13:45:07.365671Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.415261Z", - "iopub.status.busy": "2024-09-26T16:58:41.414880Z", - "iopub.status.idle": "2024-09-26T16:58:41.439241Z", - "shell.execute_reply": "2024-09-26T16:58:41.438758Z" + "iopub.execute_input": "2024-09-27T13:45:07.368186Z", + "iopub.status.busy": "2024-09-27T13:45:07.367830Z", + "iopub.status.idle": "2024-09-27T13:45:07.391565Z", + "shell.execute_reply": "2024-09-27T13:45:07.391095Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.441206Z", - "iopub.status.busy": "2024-09-26T16:58:41.440852Z", - "iopub.status.idle": "2024-09-26T16:58:41.530137Z", - "shell.execute_reply": "2024-09-26T16:58:41.529646Z" + "iopub.execute_input": "2024-09-27T13:45:07.393457Z", + "iopub.status.busy": "2024-09-27T13:45:07.393097Z", + "iopub.status.idle": "2024-09-27T13:45:07.479260Z", + "shell.execute_reply": "2024-09-27T13:45:07.478768Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.532252Z", - "iopub.status.busy": "2024-09-26T16:58:41.531887Z", - "iopub.status.idle": "2024-09-26T16:58:43.523076Z", - "shell.execute_reply": "2024-09-26T16:58:43.522490Z" + "iopub.execute_input": "2024-09-27T13:45:07.481318Z", + "iopub.status.busy": "2024-09-27T13:45:07.480967Z", + "iopub.status.idle": "2024-09-27T13:45:09.458434Z", + "shell.execute_reply": "2024-09-27T13:45:09.457792Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.525189Z", - "iopub.status.busy": "2024-09-26T16:58:43.524668Z", - "iopub.status.idle": "2024-09-26T16:58:43.546082Z", - "shell.execute_reply": "2024-09-26T16:58:43.545611Z" + "iopub.execute_input": "2024-09-27T13:45:09.460455Z", + "iopub.status.busy": "2024-09-27T13:45:09.460050Z", + "iopub.status.idle": "2024-09-27T13:45:09.481260Z", + "shell.execute_reply": "2024-09-27T13:45:09.480768Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.547971Z", - "iopub.status.busy": "2024-09-26T16:58:43.547533Z", - "iopub.status.idle": "2024-09-26T16:58:43.565545Z", - "shell.execute_reply": "2024-09-26T16:58:43.564959Z" + "iopub.execute_input": "2024-09-27T13:45:09.483053Z", + "iopub.status.busy": "2024-09-27T13:45:09.482738Z", + "iopub.status.idle": "2024-09-27T13:45:09.500620Z", + "shell.execute_reply": "2024-09-27T13:45:09.500057Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.567356Z", - "iopub.status.busy": "2024-09-26T16:58:43.566943Z", - "iopub.status.idle": "2024-09-26T16:58:43.580877Z", - "shell.execute_reply": "2024-09-26T16:58:43.580421Z" + "iopub.execute_input": "2024-09-27T13:45:09.502444Z", + "iopub.status.busy": "2024-09-27T13:45:09.502128Z", + "iopub.status.idle": "2024-09-27T13:45:09.516645Z", + "shell.execute_reply": "2024-09-27T13:45:09.516087Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.582509Z", - "iopub.status.busy": "2024-09-26T16:58:43.582336Z", - "iopub.status.idle": "2024-09-26T16:58:43.602652Z", - "shell.execute_reply": "2024-09-26T16:58:43.602186Z" + "iopub.execute_input": "2024-09-27T13:45:09.518510Z", + "iopub.status.busy": "2024-09-27T13:45:09.518107Z", + "iopub.status.idle": "2024-09-27T13:45:09.537902Z", + "shell.execute_reply": "2024-09-27T13:45:09.537447Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f129293f2b7f4d01baa85a24c751e661", + "model_id": "50cf0d4e3a5e40da9095dbb72f93a5f0", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.604349Z", - "iopub.status.busy": "2024-09-26T16:58:43.604011Z", - "iopub.status.idle": "2024-09-26T16:58:43.618854Z", - "shell.execute_reply": "2024-09-26T16:58:43.618317Z" + "iopub.execute_input": "2024-09-27T13:45:09.539519Z", + "iopub.status.busy": "2024-09-27T13:45:09.539343Z", + "iopub.status.idle": "2024-09-27T13:45:09.554415Z", + "shell.execute_reply": "2024-09-27T13:45:09.553921Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.620668Z", - "iopub.status.busy": "2024-09-26T16:58:43.620349Z", - "iopub.status.idle": "2024-09-26T16:58:43.626243Z", - "shell.execute_reply": "2024-09-26T16:58:43.625776Z" + "iopub.execute_input": "2024-09-27T13:45:09.555991Z", + "iopub.status.busy": "2024-09-27T13:45:09.555819Z", + "iopub.status.idle": "2024-09-27T13:45:09.561554Z", + "shell.execute_reply": "2024-09-27T13:45:09.561107Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.628003Z", - "iopub.status.busy": "2024-09-26T16:58:43.627682Z", - "iopub.status.idle": "2024-09-26T16:58:43.646139Z", - "shell.execute_reply": "2024-09-26T16:58:43.645652Z" + "iopub.execute_input": "2024-09-27T13:45:09.563243Z", + "iopub.status.busy": "2024-09-27T13:45:09.562908Z", + "iopub.status.idle": "2024-09-27T13:45:09.580496Z", + "shell.execute_reply": "2024-09-27T13:45:09.580033Z" } }, "outputs": [ @@ -1447,56 +1447,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "493d4fe5a17b4542a5cba6b8200f4ae7": { + "13e0a4b1bcb64960ae4953c3ec5c1636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", - "placeholder": "​", - "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "5a7327b11df54676b5fb98e19a96e526": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "818e28bbe3084ddcaa93c64bdb1f508c": { + "496f194feb564a1daa738de061db6b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1516,98 @@ "width": null } }, - "95805e5fdb02411cbbf6cfaf4ec7c3f2": { + "4d927327f69d4cdfb32e031a5ee96d57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "50cf0d4e3a5e40da9095dbb72f93a5f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", + "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", + "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e" + ], + "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", + "tabbable": null, + "tooltip": null + } + }, + "5eafd2215f0341cd91a935914978c169": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "990cfc063988462d9c5a3959cb8810e8": { + "74154c49b3f64aa4a35fca171dbe795e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", + "placeholder": "​", + "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12681.19 examples/s]" + } + }, + "9bafe95cde0d418990b519ee1c938809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,43 +1660,30 @@ "width": null } }, - "a0d26fa2294748cdae66f37cac146d99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64dad38377142beab7236d5c03dd452": { + "a5d0a705e9874a42a56adc5b9dab4d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", + "placeholder": "​", + "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "b90f5b04ff9c4839ab6282c6ada4d10e": { + "cbaab24fee4e48e29c8c9a265a769a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1707,30 +1736,7 @@ "width": null } }, - "c62f251c21d64f54a595d6aed66e7783": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", - "placeholder": "​", - "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12335.91 examples/s]" - } - }, - "d590738a78bc4dc5b75006050b4cfd20": { + "e450d708e2ef4d12b0412b094270b7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,28 +1789,22 @@ "width": null } }, - "f129293f2b7f4d01baa85a24c751e661": { + "e7203aad39f349f5a2ab732b1748e935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", - "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", - "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783" - ], - "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 54e829ffc..ce77562ed 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:46.520582Z", - "iopub.status.busy": "2024-09-26T16:58:46.520135Z", - "iopub.status.idle": "2024-09-26T16:58:47.747238Z", - "shell.execute_reply": "2024-09-26T16:58:47.746611Z" + "iopub.execute_input": "2024-09-27T13:45:12.449349Z", + "iopub.status.busy": "2024-09-27T13:45:12.449169Z", + "iopub.status.idle": "2024-09-27T13:45:13.685579Z", + "shell.execute_reply": "2024-09-27T13:45:13.684973Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.749716Z", - "iopub.status.busy": "2024-09-26T16:58:47.749089Z", - "iopub.status.idle": "2024-09-26T16:58:47.752228Z", - "shell.execute_reply": "2024-09-26T16:58:47.751798Z" + "iopub.execute_input": "2024-09-27T13:45:13.687686Z", + "iopub.status.busy": "2024-09-27T13:45:13.687268Z", + "iopub.status.idle": "2024-09-27T13:45:13.690359Z", + "shell.execute_reply": "2024-09-27T13:45:13.689877Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.754183Z", - "iopub.status.busy": "2024-09-26T16:58:47.753797Z", - "iopub.status.idle": "2024-09-26T16:58:47.762845Z", - "shell.execute_reply": "2024-09-26T16:58:47.762414Z" + "iopub.execute_input": "2024-09-27T13:45:13.692049Z", + "iopub.status.busy": "2024-09-27T13:45:13.691875Z", + "iopub.status.idle": "2024-09-27T13:45:13.700878Z", + "shell.execute_reply": "2024-09-27T13:45:13.700441Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.764312Z", - "iopub.status.busy": "2024-09-26T16:58:47.764139Z", - "iopub.status.idle": "2024-09-26T16:58:47.768778Z", - "shell.execute_reply": "2024-09-26T16:58:47.768359Z" + "iopub.execute_input": "2024-09-27T13:45:13.702335Z", + "iopub.status.busy": "2024-09-27T13:45:13.702155Z", + "iopub.status.idle": "2024-09-27T13:45:13.707197Z", + "shell.execute_reply": "2024-09-27T13:45:13.706613Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.770422Z", - "iopub.status.busy": "2024-09-26T16:58:47.770241Z", - "iopub.status.idle": "2024-09-26T16:58:47.953927Z", - "shell.execute_reply": "2024-09-26T16:58:47.953369Z" + "iopub.execute_input": "2024-09-27T13:45:13.709224Z", + "iopub.status.busy": "2024-09-27T13:45:13.708778Z", + "iopub.status.idle": "2024-09-27T13:45:13.895158Z", + "shell.execute_reply": "2024-09-27T13:45:13.894579Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.955878Z", - "iopub.status.busy": "2024-09-26T16:58:47.955545Z", - "iopub.status.idle": "2024-09-26T16:58:48.331139Z", - "shell.execute_reply": "2024-09-26T16:58:48.330595Z" + "iopub.execute_input": "2024-09-27T13:45:13.897147Z", + "iopub.status.busy": "2024-09-27T13:45:13.896877Z", + "iopub.status.idle": "2024-09-27T13:45:14.233059Z", + "shell.execute_reply": "2024-09-27T13:45:14.232489Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.333057Z", - "iopub.status.busy": "2024-09-26T16:58:48.332771Z", - "iopub.status.idle": "2024-09-26T16:58:48.335783Z", - "shell.execute_reply": "2024-09-26T16:58:48.335363Z" + "iopub.execute_input": "2024-09-27T13:45:14.235157Z", + "iopub.status.busy": "2024-09-27T13:45:14.234707Z", + "iopub.status.idle": "2024-09-27T13:45:14.237635Z", + "shell.execute_reply": "2024-09-27T13:45:14.237187Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.337521Z", - "iopub.status.busy": "2024-09-26T16:58:48.337167Z", - "iopub.status.idle": "2024-09-26T16:58:48.371595Z", - "shell.execute_reply": "2024-09-26T16:58:48.371120Z" + "iopub.execute_input": "2024-09-27T13:45:14.239301Z", + "iopub.status.busy": "2024-09-27T13:45:14.239117Z", + "iopub.status.idle": "2024-09-27T13:45:14.273678Z", + "shell.execute_reply": "2024-09-27T13:45:14.273114Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.373233Z", - "iopub.status.busy": "2024-09-26T16:58:48.372923Z", - "iopub.status.idle": "2024-09-26T16:58:50.400212Z", - "shell.execute_reply": "2024-09-26T16:58:50.399604Z" + "iopub.execute_input": "2024-09-27T13:45:14.275640Z", + "iopub.status.busy": "2024-09-27T13:45:14.275229Z", + "iopub.status.idle": "2024-09-27T13:45:16.344723Z", + "shell.execute_reply": "2024-09-27T13:45:16.344059Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.402429Z", - "iopub.status.busy": "2024-09-26T16:58:50.401916Z", - "iopub.status.idle": "2024-09-26T16:58:50.420509Z", - "shell.execute_reply": "2024-09-26T16:58:50.420015Z" + "iopub.execute_input": "2024-09-27T13:45:16.347002Z", + "iopub.status.busy": "2024-09-27T13:45:16.346480Z", + "iopub.status.idle": "2024-09-27T13:45:16.365149Z", + "shell.execute_reply": "2024-09-27T13:45:16.364694Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.422399Z", - "iopub.status.busy": "2024-09-26T16:58:50.421975Z", - "iopub.status.idle": "2024-09-26T16:58:50.428339Z", - "shell.execute_reply": "2024-09-26T16:58:50.427906Z" + "iopub.execute_input": "2024-09-27T13:45:16.366944Z", + "iopub.status.busy": "2024-09-27T13:45:16.366625Z", + "iopub.status.idle": "2024-09-27T13:45:16.373078Z", + "shell.execute_reply": "2024-09-27T13:45:16.372627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.430067Z", - "iopub.status.busy": "2024-09-26T16:58:50.429730Z", - "iopub.status.idle": "2024-09-26T16:58:50.435287Z", - "shell.execute_reply": "2024-09-26T16:58:50.434843Z" + "iopub.execute_input": "2024-09-27T13:45:16.374800Z", + "iopub.status.busy": "2024-09-27T13:45:16.374466Z", + "iopub.status.idle": "2024-09-27T13:45:16.380038Z", + "shell.execute_reply": "2024-09-27T13:45:16.379595Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.436910Z", - "iopub.status.busy": "2024-09-26T16:58:50.436575Z", - "iopub.status.idle": "2024-09-26T16:58:50.446601Z", - "shell.execute_reply": "2024-09-26T16:58:50.446159Z" + "iopub.execute_input": "2024-09-27T13:45:16.381766Z", + "iopub.status.busy": "2024-09-27T13:45:16.381371Z", + "iopub.status.idle": "2024-09-27T13:45:16.391456Z", + "shell.execute_reply": "2024-09-27T13:45:16.390908Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.448308Z", - "iopub.status.busy": "2024-09-26T16:58:50.447987Z", - "iopub.status.idle": "2024-09-26T16:58:50.456869Z", - "shell.execute_reply": "2024-09-26T16:58:50.456315Z" + "iopub.execute_input": "2024-09-27T13:45:16.393310Z", + "iopub.status.busy": "2024-09-27T13:45:16.392915Z", + "iopub.status.idle": "2024-09-27T13:45:16.401735Z", + "shell.execute_reply": "2024-09-27T13:45:16.401281Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.458607Z", - "iopub.status.busy": "2024-09-26T16:58:50.458282Z", - "iopub.status.idle": "2024-09-26T16:58:50.465100Z", - "shell.execute_reply": "2024-09-26T16:58:50.464548Z" + "iopub.execute_input": "2024-09-27T13:45:16.403279Z", + "iopub.status.busy": "2024-09-27T13:45:16.403108Z", + "iopub.status.idle": "2024-09-27T13:45:16.409811Z", + "shell.execute_reply": "2024-09-27T13:45:16.409374Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.466816Z", - "iopub.status.busy": "2024-09-26T16:58:50.466493Z", - "iopub.status.idle": "2024-09-26T16:58:50.475579Z", - "shell.execute_reply": "2024-09-26T16:58:50.475136Z" + "iopub.execute_input": "2024-09-27T13:45:16.411631Z", + "iopub.status.busy": "2024-09-27T13:45:16.411232Z", + "iopub.status.idle": "2024-09-27T13:45:16.420514Z", + "shell.execute_reply": "2024-09-27T13:45:16.419938Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.477133Z", - "iopub.status.busy": "2024-09-26T16:58:50.476962Z", - "iopub.status.idle": "2024-09-26T16:58:50.493434Z", - "shell.execute_reply": "2024-09-26T16:58:50.492823Z" + "iopub.execute_input": "2024-09-27T13:45:16.422097Z", + "iopub.status.busy": "2024-09-27T13:45:16.421922Z", + "iopub.status.idle": "2024-09-27T13:45:16.439717Z", + "shell.execute_reply": "2024-09-27T13:45:16.439288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 728d586b2..3f66f37a1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:53.411773Z", - "iopub.status.busy": "2024-09-26T16:58:53.411606Z", - "iopub.status.idle": "2024-09-26T16:58:56.467577Z", - "shell.execute_reply": "2024-09-26T16:58:56.467015Z" + "iopub.execute_input": "2024-09-27T13:45:19.192307Z", + "iopub.status.busy": "2024-09-27T13:45:19.192117Z", + "iopub.status.idle": "2024-09-27T13:45:22.256949Z", + "shell.execute_reply": "2024-09-27T13:45:22.256396Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.469779Z", - "iopub.status.busy": "2024-09-26T16:58:56.469465Z", - "iopub.status.idle": "2024-09-26T16:58:56.473173Z", - "shell.execute_reply": "2024-09-26T16:58:56.472707Z" + "iopub.execute_input": "2024-09-27T13:45:22.259042Z", + "iopub.status.busy": "2024-09-27T13:45:22.258751Z", + "iopub.status.idle": "2024-09-27T13:45:22.262361Z", + "shell.execute_reply": "2024-09-27T13:45:22.261892Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.475000Z", - "iopub.status.busy": "2024-09-26T16:58:56.474674Z", - "iopub.status.idle": "2024-09-26T16:58:59.847498Z", - "shell.execute_reply": "2024-09-26T16:58:59.847018Z" + "iopub.execute_input": "2024-09-27T13:45:22.264021Z", + "iopub.status.busy": "2024-09-27T13:45:22.263690Z", + "iopub.status.idle": "2024-09-27T13:45:25.535718Z", + "shell.execute_reply": "2024-09-27T13:45:25.535139Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed3e7469df2c4560897c195c6e1c0003", + "model_id": "e9fb2e15855a495eb8393c8b1c470abe", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2c29b6ce7974f23abf1753e738849b6", + "model_id": "62d0e0c88f1a4c2abca87123937bd572", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d87537574d1b46388a5f4de507d1aedd", + "model_id": "fca7e86a7eb34f15a6e35dfad2b37d04", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "258343123ee64d078d587fad6e7e195f", + "model_id": "aea869f9cc8d44cf80997dc63f1b0a73", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "219ae75bd53e46b39c1ca8d09542d8c6", + "model_id": "907485478951427389e624de9ba0865d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.849333Z", - "iopub.status.busy": "2024-09-26T16:58:59.848963Z", - "iopub.status.idle": "2024-09-26T16:58:59.852849Z", - "shell.execute_reply": "2024-09-26T16:58:59.852310Z" + "iopub.execute_input": "2024-09-27T13:45:25.537751Z", + "iopub.status.busy": "2024-09-27T13:45:25.537387Z", + "iopub.status.idle": "2024-09-27T13:45:25.541431Z", + "shell.execute_reply": "2024-09-27T13:45:25.540977Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.854463Z", - "iopub.status.busy": "2024-09-26T16:58:59.854166Z", - "iopub.status.idle": "2024-09-26T16:59:11.144483Z", - "shell.execute_reply": "2024-09-26T16:59:11.143910Z" + "iopub.execute_input": "2024-09-27T13:45:25.543067Z", + "iopub.status.busy": "2024-09-27T13:45:25.542758Z", + "iopub.status.idle": "2024-09-27T13:45:36.948754Z", + "shell.execute_reply": "2024-09-27T13:45:36.948076Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30f170149e6d448aaa4ebe763786395b", + "model_id": "b9cec9f2501a478298bdf046984e17af", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:11.146451Z", - "iopub.status.busy": "2024-09-26T16:59:11.146216Z", - "iopub.status.idle": "2024-09-26T16:59:29.523070Z", - "shell.execute_reply": "2024-09-26T16:59:29.522532Z" + "iopub.execute_input": "2024-09-27T13:45:36.951145Z", + "iopub.status.busy": "2024-09-27T13:45:36.950781Z", + "iopub.status.idle": "2024-09-27T13:45:55.344083Z", + "shell.execute_reply": "2024-09-27T13:45:55.343530Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.525358Z", - "iopub.status.busy": "2024-09-26T16:59:29.524954Z", - "iopub.status.idle": "2024-09-26T16:59:29.530885Z", - "shell.execute_reply": "2024-09-26T16:59:29.530434Z" + "iopub.execute_input": "2024-09-27T13:45:55.346499Z", + "iopub.status.busy": "2024-09-27T13:45:55.346039Z", + "iopub.status.idle": "2024-09-27T13:45:55.351081Z", + "shell.execute_reply": "2024-09-27T13:45:55.350506Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.532500Z", - "iopub.status.busy": "2024-09-26T16:59:29.532161Z", - "iopub.status.idle": "2024-09-26T16:59:29.536179Z", - "shell.execute_reply": "2024-09-26T16:59:29.535767Z" + "iopub.execute_input": "2024-09-27T13:45:55.352921Z", + "iopub.status.busy": "2024-09-27T13:45:55.352512Z", + "iopub.status.idle": "2024-09-27T13:45:55.356736Z", + "shell.execute_reply": "2024-09-27T13:45:55.356311Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.538000Z", - "iopub.status.busy": "2024-09-26T16:59:29.537676Z", - "iopub.status.idle": "2024-09-26T16:59:29.546498Z", - "shell.execute_reply": "2024-09-26T16:59:29.546051Z" + "iopub.execute_input": "2024-09-27T13:45:55.358366Z", + "iopub.status.busy": "2024-09-27T13:45:55.358194Z", + "iopub.status.idle": "2024-09-27T13:45:55.367089Z", + "shell.execute_reply": "2024-09-27T13:45:55.366635Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.548140Z", - "iopub.status.busy": "2024-09-26T16:59:29.547810Z", - "iopub.status.idle": "2024-09-26T16:59:29.576281Z", - "shell.execute_reply": "2024-09-26T16:59:29.575747Z" + "iopub.execute_input": "2024-09-27T13:45:55.368819Z", + "iopub.status.busy": "2024-09-27T13:45:55.368623Z", + "iopub.status.idle": "2024-09-27T13:45:55.407222Z", + "shell.execute_reply": "2024-09-27T13:45:55.406716Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.578551Z", - "iopub.status.busy": "2024-09-26T16:59:29.578155Z", - "iopub.status.idle": "2024-09-26T17:00:03.433901Z", - "shell.execute_reply": "2024-09-26T17:00:03.433237Z" + "iopub.execute_input": "2024-09-27T13:45:55.409382Z", + "iopub.status.busy": "2024-09-27T13:45:55.408920Z", + "iopub.status.idle": "2024-09-27T13:46:29.730340Z", + "shell.execute_reply": "2024-09-27T13:46:29.729712Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.020\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.049\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.710\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.896\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa4f2e95243f4fa7a40ad4fcfe57c6c0", + "model_id": "44364892919440e29a4daa044be042e7", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "731f00f919044a8a88cc076b579e46dc", + "model_id": "48dc2c5f935d4a06a9268360f445144f", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.163\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.662\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.758\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9f651479fb634fe188bcbb02162bfd50", + "model_id": "8587b883949a4e399dabc4f91c49eb97", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "262103e39f614b7ba8346cb40a06a364", + "model_id": "c217771fa5814aabb7107510b1d6e6a8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.968\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.120\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.706\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.781\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe416b8103714c939d38072d169f1695", + "model_id": "c9feed1c5a194d669dfaa347748b2250", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de925572cfb54cafa807449424d39b7e", + "model_id": "c88a0a54a7d8495c90e0ceefd16c73ea", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.436161Z", - "iopub.status.busy": "2024-09-26T17:00:03.435771Z", - "iopub.status.idle": "2024-09-26T17:00:03.452443Z", - "shell.execute_reply": "2024-09-26T17:00:03.452024Z" + "iopub.execute_input": "2024-09-27T13:46:29.732349Z", + "iopub.status.busy": "2024-09-27T13:46:29.732107Z", + "iopub.status.idle": "2024-09-27T13:46:29.748596Z", + "shell.execute_reply": "2024-09-27T13:46:29.748051Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.454156Z", - "iopub.status.busy": "2024-09-26T17:00:03.453981Z", - "iopub.status.idle": "2024-09-26T17:00:03.923150Z", - "shell.execute_reply": "2024-09-26T17:00:03.922671Z" + "iopub.execute_input": "2024-09-27T13:46:29.750480Z", + "iopub.status.busy": "2024-09-27T13:46:29.750177Z", + "iopub.status.idle": "2024-09-27T13:46:30.218781Z", + "shell.execute_reply": "2024-09-27T13:46:30.218120Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.925208Z", - "iopub.status.busy": "2024-09-26T17:00:03.924815Z", - "iopub.status.idle": "2024-09-26T17:01:55.216532Z", - "shell.execute_reply": "2024-09-26T17:01:55.215848Z" + "iopub.execute_input": "2024-09-27T13:46:30.220918Z", + "iopub.status.busy": "2024-09-27T13:46:30.220731Z", + "iopub.status.idle": "2024-09-27T13:48:21.510252Z", + "shell.execute_reply": "2024-09-27T13:48:21.509624Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20ae57fa05ee4e83901a856b849b3891", + "model_id": "9b584fe98d9c4efaa2b4e34b431444f0", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.218688Z", - "iopub.status.busy": "2024-09-26T17:01:55.218316Z", - "iopub.status.idle": "2024-09-26T17:01:55.686428Z", - "shell.execute_reply": "2024-09-26T17:01:55.685792Z" + "iopub.execute_input": "2024-09-27T13:48:21.512469Z", + "iopub.status.busy": "2024-09-27T13:48:21.511882Z", + "iopub.status.idle": "2024-09-27T13:48:21.969651Z", + "shell.execute_reply": "2024-09-27T13:48:21.969088Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.688736Z", - "iopub.status.busy": "2024-09-26T17:01:55.688529Z", - "iopub.status.idle": "2024-09-26T17:01:55.750648Z", - "shell.execute_reply": "2024-09-26T17:01:55.750042Z" + "iopub.execute_input": "2024-09-27T13:48:21.971962Z", + "iopub.status.busy": "2024-09-27T13:48:21.971637Z", + "iopub.status.idle": "2024-09-27T13:48:22.033131Z", + "shell.execute_reply": "2024-09-27T13:48:22.032635Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.752599Z", - "iopub.status.busy": "2024-09-26T17:01:55.752266Z", - "iopub.status.idle": "2024-09-26T17:01:55.761230Z", - "shell.execute_reply": "2024-09-26T17:01:55.760653Z" + "iopub.execute_input": "2024-09-27T13:48:22.035050Z", + "iopub.status.busy": "2024-09-27T13:48:22.034706Z", + "iopub.status.idle": "2024-09-27T13:48:22.043297Z", + "shell.execute_reply": "2024-09-27T13:48:22.042841Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.762949Z", - "iopub.status.busy": "2024-09-26T17:01:55.762675Z", - "iopub.status.idle": "2024-09-26T17:01:55.767458Z", - "shell.execute_reply": "2024-09-26T17:01:55.766879Z" + "iopub.execute_input": "2024-09-27T13:48:22.045108Z", + "iopub.status.busy": "2024-09-27T13:48:22.044706Z", + "iopub.status.idle": "2024-09-27T13:48:22.049614Z", + "shell.execute_reply": "2024-09-27T13:48:22.049150Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.769237Z", - "iopub.status.busy": "2024-09-26T17:01:55.768788Z", - "iopub.status.idle": "2024-09-26T17:01:56.270226Z", - "shell.execute_reply": "2024-09-26T17:01:56.269609Z" + "iopub.execute_input": "2024-09-27T13:48:22.051112Z", + "iopub.status.busy": "2024-09-27T13:48:22.050938Z", + "iopub.status.idle": "2024-09-27T13:48:22.550532Z", + "shell.execute_reply": "2024-09-27T13:48:22.549905Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.272148Z", - "iopub.status.busy": "2024-09-26T17:01:56.271744Z", - "iopub.status.idle": "2024-09-26T17:01:56.280250Z", - "shell.execute_reply": "2024-09-26T17:01:56.279691Z" + "iopub.execute_input": "2024-09-27T13:48:22.552263Z", + "iopub.status.busy": "2024-09-27T13:48:22.552084Z", + "iopub.status.idle": "2024-09-27T13:48:22.560446Z", + "shell.execute_reply": "2024-09-27T13:48:22.560005Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.282121Z", - "iopub.status.busy": "2024-09-26T17:01:56.281789Z", - "iopub.status.idle": "2024-09-26T17:01:56.289090Z", - "shell.execute_reply": "2024-09-26T17:01:56.288525Z" + "iopub.execute_input": "2024-09-27T13:48:22.562109Z", + "iopub.status.busy": "2024-09-27T13:48:22.561922Z", + "iopub.status.idle": "2024-09-27T13:48:22.568965Z", + "shell.execute_reply": "2024-09-27T13:48:22.568523Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.291094Z", - "iopub.status.busy": "2024-09-26T17:01:56.290554Z", - "iopub.status.idle": "2024-09-26T17:01:56.760975Z", - "shell.execute_reply": "2024-09-26T17:01:56.760351Z" + "iopub.execute_input": "2024-09-27T13:48:22.570574Z", + "iopub.status.busy": "2024-09-27T13:48:22.570400Z", + "iopub.status.idle": "2024-09-27T13:48:23.038305Z", + "shell.execute_reply": "2024-09-27T13:48:23.037704Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.762860Z", - "iopub.status.busy": "2024-09-26T17:01:56.762505Z", - "iopub.status.idle": "2024-09-26T17:01:56.777586Z", - "shell.execute_reply": "2024-09-26T17:01:56.777116Z" + "iopub.execute_input": "2024-09-27T13:48:23.040310Z", + "iopub.status.busy": "2024-09-27T13:48:23.039947Z", + "iopub.status.idle": "2024-09-27T13:48:23.055305Z", + "shell.execute_reply": "2024-09-27T13:48:23.054831Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.779480Z", - "iopub.status.busy": "2024-09-26T17:01:56.779138Z", - "iopub.status.idle": "2024-09-26T17:01:56.784613Z", - "shell.execute_reply": "2024-09-26T17:01:56.784161Z" + "iopub.execute_input": "2024-09-27T13:48:23.057245Z", + "iopub.status.busy": "2024-09-27T13:48:23.056900Z", + "iopub.status.idle": "2024-09-27T13:48:23.062573Z", + "shell.execute_reply": "2024-09-27T13:48:23.062007Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.786223Z", - "iopub.status.busy": "2024-09-26T17:01:56.785890Z", - "iopub.status.idle": "2024-09-26T17:01:57.544005Z", - "shell.execute_reply": "2024-09-26T17:01:57.543433Z" + "iopub.execute_input": "2024-09-27T13:48:23.064087Z", + "iopub.status.busy": "2024-09-27T13:48:23.063915Z", + "iopub.status.idle": "2024-09-27T13:48:23.767378Z", + "shell.execute_reply": "2024-09-27T13:48:23.766755Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.546041Z", - "iopub.status.busy": "2024-09-26T17:01:57.545838Z", - "iopub.status.idle": "2024-09-26T17:01:57.556107Z", - "shell.execute_reply": "2024-09-26T17:01:57.555567Z" + "iopub.execute_input": "2024-09-27T13:48:23.769501Z", + "iopub.status.busy": "2024-09-27T13:48:23.769322Z", + "iopub.status.idle": "2024-09-27T13:48:23.778619Z", + "shell.execute_reply": "2024-09-27T13:48:23.778012Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.558206Z", - "iopub.status.busy": "2024-09-26T17:01:57.558007Z", - "iopub.status.idle": "2024-09-26T17:01:57.564674Z", - "shell.execute_reply": "2024-09-26T17:01:57.564129Z" + "iopub.execute_input": "2024-09-27T13:48:23.780575Z", + "iopub.status.busy": "2024-09-27T13:48:23.780399Z", + "iopub.status.idle": "2024-09-27T13:48:23.785587Z", + "shell.execute_reply": "2024-09-27T13:48:23.785005Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.566774Z", - "iopub.status.busy": "2024-09-26T17:01:57.566367Z", - "iopub.status.idle": "2024-09-26T17:01:57.768978Z", - "shell.execute_reply": "2024-09-26T17:01:57.768415Z" + "iopub.execute_input": "2024-09-27T13:48:23.787352Z", + "iopub.status.busy": "2024-09-27T13:48:23.787182Z", + "iopub.status.idle": "2024-09-27T13:48:23.966439Z", + "shell.execute_reply": "2024-09-27T13:48:23.965775Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.771130Z", - "iopub.status.busy": "2024-09-26T17:01:57.770703Z", - "iopub.status.idle": "2024-09-26T17:01:57.778526Z", - "shell.execute_reply": "2024-09-26T17:01:57.778048Z" + "iopub.execute_input": "2024-09-27T13:48:23.968665Z", + "iopub.status.busy": "2024-09-27T13:48:23.968476Z", + "iopub.status.idle": "2024-09-27T13:48:23.977999Z", + "shell.execute_reply": "2024-09-27T13:48:23.977408Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.780134Z", - "iopub.status.busy": "2024-09-26T17:01:57.779959Z", - "iopub.status.idle": "2024-09-26T17:01:57.951031Z", - "shell.execute_reply": "2024-09-26T17:01:57.950434Z" + "iopub.execute_input": "2024-09-27T13:48:23.979913Z", + "iopub.status.busy": "2024-09-27T13:48:23.979502Z", + "iopub.status.idle": "2024-09-27T13:48:24.151812Z", + "shell.execute_reply": "2024-09-27T13:48:24.151203Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.952982Z", - "iopub.status.busy": "2024-09-26T17:01:57.952568Z", - "iopub.status.idle": "2024-09-26T17:01:57.957023Z", - "shell.execute_reply": "2024-09-26T17:01:57.956578Z" + "iopub.execute_input": "2024-09-27T13:48:24.153793Z", + "iopub.status.busy": "2024-09-27T13:48:24.153384Z", + "iopub.status.idle": "2024-09-27T13:48:24.157912Z", + "shell.execute_reply": "2024-09-27T13:48:24.157350Z" }, "nbsphinx": "hidden" }, @@ -2555,136 +2555,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02526371af764684aad4897d7046a365": { + "002c47d512744c3fb829f25bccd29856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2c0b351610b424a8cb54f4c25c0257e", - "placeholder": "​", - "style": "IPY_MODEL_ba1f4e88e2294c9a9ae17a70f35db16e", + "layout": "IPY_MODEL_d3d80ec4b9644c34aa7dec8beecea5f1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3df19d52b5fc4a0386413fdd1a5664b9", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "035f34e6a54c4b3f92421455a5670762": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "03c5fbd3c4ce4ea3984de19281b147af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 60000.0 } }, - "03f55df51f0c402d9c5708341635fe40": { + "025f175b1bc3460aa89f24cec6604d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2634,7 @@ "width": null } }, - "04922fddf2054ab9878395aa1dc5e2f3": { + "02853640143d49f7b2b53d5367f5366c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2752,15 +2649,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb652988afd24cf39d30d03f9b269bcc", + "layout": "IPY_MODEL_c879a51624034291b6cdf7b3b37731ac", "placeholder": "​", - "style": "IPY_MODEL_08a40c06549e498fa902f8ad4a556c8d", + "style": "IPY_MODEL_02ca223a4d244a87ba6bbf44a8020805", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5604.15 examples/s]" + "value": "100%" } }, - "0650dd8061c74475b7cdbeae70782dba": { + "02ca223a4d244a87ba6bbf44a8020805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2778,7 +2675,7 @@ "text_color": null } }, - "06e241b5f01342ee8d3b0aebd6334347": { + "08efa39df96a4a8a920c810498a698dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2794,30 +2691,7 @@ "description_width": "" } }, - "0770995c96e7450eb9dd81b263cd14e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d048bd8c5542b6b70d1e261b8dc718", - "placeholder": "​", - "style": "IPY_MODEL_d0536047d0804b29a6ffc9d1743720b2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "0889c9fe4bbf404ab1eff02e6fd5ffb9": { + "09c9d6cec18948cb9ab2f8fca3850384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2835,7 +2709,7 @@ "text_color": null } }, - "08a40c06549e498fa902f8ad4a556c8d": { + "0a7525dabaae4dca8e04969f7126849d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2853,30 +2727,7 @@ "text_color": null } }, - "0987ec15d6064297a9565901e22c60ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9627b06404dc417283abd3bbd64bcd8f", - "placeholder": "​", - "style": "IPY_MODEL_8263a572de4e4c51a641723f1be42eb8", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "09e50636d37d4ddc95009d6c95403302": { + "0b9d536d30c348e1b0ee4b0e6fd7f865": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2929,7 +2780,7 @@ "width": null } }, - "130a697771f84e80b9ea4c02d03ff62a": { + "0ed7f54f7cb54b18a2f8364afef47f0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2944,41 +2795,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41f6476f5f3049ca937e85253a058768", + "layout": "IPY_MODEL_4a5b873579bc440fb5e928cbcd9e8234", "placeholder": "​", - "style": "IPY_MODEL_6d26f9d99de84cd8ae50d08e423a9a63", + "style": "IPY_MODEL_922fec678412462e833e856911d44510", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1415e475761d42f1aa1007fae7458666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad687e0e218b466f8fa90ea5d77f2d8c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d2592a858d1d4bc3a7166e7814eb9d4c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "146da5ec780b4aac90aa3bbe92293e2f": { + "0f922409e00c49d9a9eeec3cde61b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,7 +2856,7 @@ "width": null } }, - "19d4d84dc95d4fb280f602be22e0c3cc": { + "12da9f31adcb4e82baab27c1b7261fe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3084,124 +2909,67 @@ "width": null } }, - "1a786c5ee7b14db9a60268ce2d3b9d35": { - "model_module": "@jupyter-widgets/controls", + "1333c86767824ba2bfdc4b6770dbafa9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cecba2ddba24988b0c32a3d2ee48be6": { - "model_module": "@jupyter-widgets/controls", + "14216ca27f61486ba99444444f1a70dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20ae57fa05ee4e83901a856b849b3891": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37e7fc65d04d40c6af6a1ae75c0546ef", - "IPY_MODEL_e027fdb1fd7e4cb8ad7d32a540884a3f", - "IPY_MODEL_5fa31c28566b44368ecfc567dacb405f" - ], - "layout": "IPY_MODEL_2754204b7400466cb5c5a6ffe197c89a", - "tabbable": null, - "tooltip": null - } - }, - "210e5f58051a429ba35833408833e675": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98625178d3c94ba6aa8694f50e9cdea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06e241b5f01342ee8d3b0aebd6334347", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "219ae75bd53e46b39c1ca8d09542d8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7647881f3689427e8af3b75d42cf0955", - "IPY_MODEL_d8c0fe97e2c044588249051a7efa85af", - "IPY_MODEL_3d99c44fdd794cda8666e6a73ca9c36b" - ], - "layout": "IPY_MODEL_36e63c9cf648431a8aef6237de973774", - "tabbable": null, - "tooltip": null - } - }, - "21dffe123dda45ca921adea1ee821ed2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3247,33 +3015,7 @@ "width": null } }, - "2215a31e00c54862aaf7ac054bbc1aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d92644c603c4714a4323cbd5c7def02", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ea2add80ce54083878a4116c9ef864c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "24fe7aabcef64c109f622061e0158fe0": { + "15e69809c93145258a4330c0e888e019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3326,31 +3068,7 @@ "width": null } }, - "258343123ee64d078d587fad6e7e195f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0987ec15d6064297a9565901e22c60ad", - "IPY_MODEL_89795a6284bd43cc835148fe363e72a4", - "IPY_MODEL_68bc22f66089416691ac84bc6e9e2f68" - ], - "layout": "IPY_MODEL_9b592443fd5c4a3fad02fe6396ff2168", - "tabbable": null, - "tooltip": null - } - }, - "2607500fa00c409ca1c6a4d2a5b954ec": { + "16090d1c79bc4d79944c3db2302e3ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,31 +3121,92 @@ "width": null } }, - "262103e39f614b7ba8346cb40a06a364": { + "184f9afe203d4b1da69ecfc142c87d3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54947a11404642838dd6ac6508a28be5", - "IPY_MODEL_1415e475761d42f1aa1007fae7458666", - "IPY_MODEL_5492f35efd7742c48dd625ba8592112f" - ], - "layout": "IPY_MODEL_c2946c68ee174245bcdd55745289e1b7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71dbb609000745ee81c749a485c20ca4", + "placeholder": "​", + "style": "IPY_MODEL_d2308e6aa2c346db8e5f494a09a900df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "1943f172c86b499fa74d2c6a950c476a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8687d2dd5a4b42bcbeb9c9ab9dcf7954", + "placeholder": "​", + "style": "IPY_MODEL_34619bf82add4c5b9cec777474318ba8", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "1b0dee58b4e24391ae1c6c3aba2e0615": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1e2228f9753b442bb900eae6d16b0696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c771392a402e4f02a8adc98797fbbcf2", + "placeholder": "​", + "style": "IPY_MODEL_bc749c7612fa4072b6e6984641f56a13", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1129.56it/s]" } }, - "2754204b7400466cb5c5a6ffe197c89a": { + "1e56f8f70dda4ab08089dd57df8705ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,7 +3259,7 @@ "width": null } }, - "2895596c7bce4e01bf33024c61fa1430": { + "1ec68b1b3e0b4beba1dbb2306c65cb25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3495,15 +3274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cd770306d9140b38f9f6769c71463c6", + "layout": "IPY_MODEL_a797bb167a3a464eab4111ffcbbaacb0", "placeholder": "​", - "style": "IPY_MODEL_61cb09df6d6b46d6b0e7e6fe2dba2b8c", + "style": "IPY_MODEL_bbbc5680d7f54c4ba83de0786a5d362d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "28d048bd8c5542b6b70d1e261b8dc718": { + "21273b24249c4cf494228a97e6e6323c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3556,7 +3335,7 @@ "width": null } }, - "28dda56b04364578939536044765661e": { + "220c8d108a9f4d709a8fe4f12c10acd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,39 +3350,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_146da5ec780b4aac90aa3bbe92293e2f", + "layout": "IPY_MODEL_f2e4496d9bd04825889b9c186e65f9b4", "placeholder": "​", - "style": "IPY_MODEL_0889c9fe4bbf404ab1eff02e6fd5ffb9", + "style": "IPY_MODEL_cfed0889f9f74e5797b43674331d24cb", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 36.6MB/s]" - } - }, - "30f170149e6d448aaa4ebe763786395b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5372f1d6c299485e8680e9d5eace8471", - "IPY_MODEL_2215a31e00c54862aaf7ac054bbc1aa9", - "IPY_MODEL_04922fddf2054ab9878395aa1dc5e2f3" - ], - "layout": "IPY_MODEL_ca12b0b5aa404384aed47c6ee217cbac", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 63.33it/s]" } }, - "3239d991ce634399b2910d27bfcb746f": { + "22a42e320abb49f8adc090a7ffb13967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3621,30 +3376,25 @@ "text_color": null } }, - "3267636d8cfe4aefb95062323b8beed3": { + "2506ec2e415149d0821f3541b2eaaf74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55e4a7231fac49038bc8cfa3f2024501", - "placeholder": "​", - "style": "IPY_MODEL_3239d991ce634399b2910d27bfcb746f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "332e863acfa84fbfa8f23f214c0afded": { + "273f714dbdd749fda418a3dbcdcdb56d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3660,91 +3410,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6b7b4edf0b54766bb2595264c412440", - "max": 40.0, + "layout": "IPY_MODEL_281cb8c9ae6b4c68a5d6d8df2286a56c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c087d94edd244d06bc339ae3eae373b3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "341ba052899a46a39f6a75bbeff09cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ee4e9762e70467191acd8fe944bb30c", - "placeholder": "​", - "style": "IPY_MODEL_ce2bdbdf7ffa4ed793d5d360fa121258", + "style": "IPY_MODEL_548655fd1e9243dc9415665c2e9b5103", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.75it/s]" + "value": 60000.0 } }, - "3580f919b155455397a655ec3658894f": { - "model_module": "@jupyter-widgets/controls", + "279461e9a239483d82ba4799fdf324d6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "369a2a2d596c42679bd5d6150343580a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a334bd3b18749a694dbba7cc4ccfd20", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1a3ba97be74a5497c8c8323f7d9e25", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "36e63c9cf648431a8aef6237de973774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3790,56 +3473,7 @@ "width": null } }, - "37e7fc65d04d40c6af6a1ae75c0546ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21dffe123dda45ca921adea1ee821ed2", - "placeholder": "​", - "style": "IPY_MODEL_90378f2557ad48428999c94049d0f188", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3841ab79c51346799f39d11f1342e840": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88c371ef2071478ea464b014ef44388b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eb2ac9db956a43c695844d19480874ce", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3af5790668ef4fd8926ccbfef46e8b36": { + "281cb8c9ae6b4c68a5d6d8df2286a56c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3892,53 +3526,7 @@ "width": null } }, - "3b2afe08176b4aabb69056cefaacb5cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2607500fa00c409ca1c6a4d2a5b954ec", - "placeholder": "​", - "style": "IPY_MODEL_61aa613e156c437d9f9fc30e135cd74d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3d99c44fdd794cda8666e6a73ca9c36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be1cbcf9b7b4432eb3fb1ff24bb8ad77", - "placeholder": "​", - "style": "IPY_MODEL_e50e3c1c825f4781a2ddf6979af74bcf", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 243618.35 examples/s]" - } - }, - "416cf1f58de24f37ba6c0b9bd9bdc5d6": { + "292a189eb66e4301bfc896b4f8dc100b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3991,7 +3579,7 @@ "width": null } }, - "41f6476f5f3049ca937e85253a058768": { + "2a50581896484c0b976aedade7f12cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4044,113 +3632,51 @@ "width": null } }, - "4b2880e86cc84b4bb20092e88ae37e13": { - "model_module": "@jupyter-widgets/base", + "3070a952e2ca45bdb899c4d4198a9fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_292a189eb66e4301bfc896b4f8dc100b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b0bc94aa2b643519d5909658b963a45", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "4c2a376b53e04076b5ec3b93703c7bcf": { - "model_module": "@jupyter-widgets/base", + "34619bf82add4c5b9cec777474318ba8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d0a92c29e944931b6a22814c9d20524": { + "3778d1f5c0104c7cb2d7bcce800be452": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4203,48 +3729,23 @@ "width": null } }, - "522cf8445e0042feaa3d882bb0c3dfca": { + "3b0bc94aa2b643519d5909658b963a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5372f1d6c299485e8680e9d5eace8471": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb87b58f2ac54a589cbef4e34fafee8d", - "placeholder": "​", - "style": "IPY_MODEL_dca2d257b6ad44eabe656a8f5f3bc7e6", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "bar_color": null, + "description_width": "" } }, - "54841d1608114ce69f63a7780325533d": { + "3b55e363cfde4908ad226f56c13f1d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4297,7 +3798,7 @@ "width": null } }, - "5492f35efd7742c48dd625ba8592112f": { + "3bde4480ffa94ce4a2f7159486381564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4312,18 +3813,118 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f330741bd3a495e945aad4a4ce4d358", + "layout": "IPY_MODEL_0b9d536d30c348e1b0ee4b0e6fd7f865", "placeholder": "​", - "style": "IPY_MODEL_c28945c3acdc445ba0cd672a325d45ce", + "style": "IPY_MODEL_51493ffa05404893af4a5dab6f77dbca", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.88it/s]" + "value": "Generating train split: 100%" } }, - "54947a11404642838dd6ac6508a28be5": { + "3c3e29691e4f4ad6840284ca3b17cfd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3df19d52b5fc4a0386413fdd1a5664b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "430a9c6146344b98802597b77c3f3be9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44364892919440e29a4daa044be042e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ec68b1b3e0b4beba1dbb2306c65cb25", + "IPY_MODEL_9066808f620341428e1ffba3d084bca4", + "IPY_MODEL_a5d814399565484a909f082c8b7e872b" + ], + "layout": "IPY_MODEL_d8ae40c5da4b4b0089c20c890333293e", + "tabbable": null, + "tooltip": null + } + }, + "44d904ba3762435b8839df2e24700f3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778d1f5c0104c7cb2d7bcce800be452", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08efa39df96a4a8a920c810498a698dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "453ac5707a4d42ea81efc5e1565c4272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4335,15 +3936,650 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e465c1cd187a40f08ae74891d98d2689", + "layout": "IPY_MODEL_8d46174213f04048904879468ae71cc2", "placeholder": "​", - "style": "IPY_MODEL_c2861ca15b3244f8be1b0c9cca4eb464", + "style": "IPY_MODEL_22a42e320abb49f8adc090a7ffb13967", "tabbable": null, "tooltip": null, "value": "100%" } }, - "553af763d43c4e7ab92d8c26794fc190": { + "4749b626cbe94fc48d4b03ff6b199529": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48dc2c5f935d4a06a9268360f445144f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ed7f54f7cb54b18a2f8364afef47f0d", + "IPY_MODEL_4ca2bb4902ef4978ae0992bba223f34f", + "IPY_MODEL_7bbd9038dc554aed81bdf10fee8af2e4" + ], + "layout": "IPY_MODEL_ef45c415b584442b90eddf019859b2fa", + "tabbable": null, + "tooltip": null + } + }, + "4a5b873579bc440fb5e928cbcd9e8234": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aa1a02c15664164a38a57b714c9f47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c346a8ee11d94046a99d5f57ca946487", + "placeholder": "​", + "style": "IPY_MODEL_09c9d6cec18948cb9ab2f8fca3850384", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 23.0MB/s]" + } + }, + "4ca2bb4902ef4978ae0992bba223f34f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15e69809c93145258a4330c0e888e019", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce1305427aef46539cd0b52d2a4d80c5", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4faac9084cd14f7d9ab6683cd9cd154b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4fdb056e1ace496abe457111412c9432": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51493ffa05404893af4a5dab6f77dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5183bf12f78c49ed8e0b391f732cea7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "548655fd1e9243dc9415665c2e9b5103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "577f31248c7e4e5395e3c6c065b26c4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cba06315d8e47efa34517225eba91f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62d0e0c88f1a4c2abca87123937bd572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffa49044d9234ebd9ec0888b452e8736", + "IPY_MODEL_6b3ea55673a641d0b9359241bc72e1ad", + "IPY_MODEL_7e7b44e1efd24e0e9970f5bdd54948e8" + ], + "layout": "IPY_MODEL_9b94d4160a064040bec6b5cea5b17e13", + "tabbable": null, + "tooltip": null + } + }, + "66783477b102444cad83795901922fd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6796911564e248d6a2edc13c06584dd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67fa9a2630bb48a3b16c5e994c294ae6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b3ea55673a641d0b9359241bc72e1ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21273b24249c4cf494228a97e6e6323c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73fc8ea97ef84eef8297d0f573949655", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "6c4fcee6e76b44cf8f0a29ebaa311f66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71dbb609000745ee81c749a485c20ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4396,7 +4632,23 @@ "width": null } }, - "55e4a7231fac49038bc8cfa3f2024501": { + "73fc8ea97ef84eef8297d0f573949655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7508894f89054a63884f667b7402cd0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4449,7 +4701,7 @@ "width": null } }, - "5be663589e854e1ca2d5091a520b9adb": { + "767e0f06b3954e37b720f3c3db178341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4464,49 +4716,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e50636d37d4ddc95009d6c95403302", + "layout": "IPY_MODEL_a4ad05f1a8d242eda71d46ff04931d4d", "placeholder": "​", - "style": "IPY_MODEL_d2fec809ded6478fa101f2ee9596becb", + "style": "IPY_MODEL_da7f1b082c844fcf930864e35764ee69", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.75it/s]" - } - }, - "5e0283188f004ba3a715af38795bbabc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ea2add80ce54083878a4116c9ef864c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 40/40 [00:00<00:00, 56.79it/s]" } }, - "5fa31c28566b44368ecfc567dacb405f": { + "776aa050d3de4b2da0c5382c76274a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4521,85 +4739,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_553af763d43c4e7ab92d8c26794fc190", + "layout": "IPY_MODEL_16090d1c79bc4d79944c3db2302e3ee4", "placeholder": "​", - "style": "IPY_MODEL_5e0283188f004ba3a715af38795bbabc", + "style": "IPY_MODEL_80bb02045bc3428cacc4a8bcfc972f07", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1166.47it/s]" - } - }, - "61aa613e156c437d9f9fc30e135cd74d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61cb09df6d6b46d6b0e7e6fe2dba2b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64f9c4a5caac4ed4a19638a0b0e449ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "67f4dfd67393497c82cdaf0ab4a36a35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "68bc22f66089416691ac84bc6e9e2f68": { + "78e7fdc2f6ad4c19826157e8a3133740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4614,31 +4762,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f55df51f0c402d9c5708341635fe40", + "layout": "IPY_MODEL_ff829270eb2a450eb4bc4925b67b9353", "placeholder": "​", - "style": "IPY_MODEL_84f1dad5ee8b48ebb18278f22a5f4af8", + "style": "IPY_MODEL_a841775f0ace49feb3f9b7bbc04db697", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 253081.92 examples/s]" + "value": " 60000/60000 [00:00<00:00, 274804.21 examples/s]" } }, - "6c1a3ba97be74a5497c8c8323f7d9e25": { + "79712b33a5e94203b162a657bcb12a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67fa9a2630bb48a3b16c5e994c294ae6", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f02980876a54dbb8324c1fb8a142491", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d26f9d99de84cd8ae50d08e423a9a63": { + "7ab9a46c76fe4397b418d39e88da20c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4656,7 +4814,7 @@ "text_color": null } }, - "6f0f807797024621adc6abb7e0c9eaa2": { + "7bbd9038dc554aed81bdf10fee8af2e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4671,15 +4829,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_416cf1f58de24f37ba6c0b9bd9bdc5d6", + "layout": "IPY_MODEL_f5c1c2b5231846bc965b4a84d97c4978", "placeholder": "​", - "style": "IPY_MODEL_1cecba2ddba24988b0c32a3d2ee48be6", + "style": "IPY_MODEL_f351d976879e4e049d1f0ab7a19a6e3f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.56it/s]" + "value": " 40/40 [00:00<00:00, 60.58it/s]" } }, - "7038f74f23cb484984b1f5b1a8467611": { + "7bd4513692a04dcdb49f383da06e9355": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,7 +4890,7 @@ "width": null } }, - "7250fcd5c60e4b2e913bf33bc3e948ec": { + "7cc4d425c4ba401c934dfbc8568af440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4785,31 +4943,7 @@ "width": null } }, - "731f00f919044a8a88cc076b579e46dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3267636d8cfe4aefb95062323b8beed3", - "IPY_MODEL_7e380dbf96504aa19f37a01d07f25c8d", - "IPY_MODEL_d7fd58aec3be4461b5345173cf2a723e" - ], - "layout": "IPY_MODEL_24fe7aabcef64c109f622061e0158fe0", - "tabbable": null, - "tooltip": null - } - }, - "744cacf45c594f1688ae383d7a5c2fec": { + "7d37a14566bc46748576dd5718acf67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4862,7 +4996,7 @@ "width": null } }, - "7647881f3689427e8af3b75d42cf0955": { + "7e7b44e1efd24e0e9970f5bdd54948e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4877,15 +5011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc6e5172aa4d481b866ee9019152d9a8", + "layout": "IPY_MODEL_e1c866811f2c45698441743106275cc8", "placeholder": "​", - "style": "IPY_MODEL_3580f919b155455397a655ec3658894f", + "style": "IPY_MODEL_4faac9084cd14f7d9ab6683cd9cd154b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 36.5MB/s]" } }, - "77f21503eda044e1927d7ecee477a275": { + "7f02980876a54dbb8324c1fb8a142491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4901,76 +5035,85 @@ "description_width": "" } }, - "78a107afdf9d4ea49f9a9125e4c4348e": { - "model_module": "@jupyter-widgets/base", + "7f448eb8f9734416890102ab074a5c56": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a049ad814974333972be807cc0a70ac": { + "7f474e068b7447a4a707fae39fc4779a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80bb02045bc3428cacc4a8bcfc972f07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8587b883949a4e399dabc4f91c49eb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932527b3058d413a8641e6ad04c14915", + "IPY_MODEL_d171ea950ab94c3fbaccb8d2373a6da6", + "IPY_MODEL_767e0f06b3954e37b720f3c3db178341" + ], + "layout": "IPY_MODEL_12da9f31adcb4e82baab27c1b7261fe7", + "tabbable": null, + "tooltip": null } }, - "7a334bd3b18749a694dbba7cc4ccfd20": { + "8687d2dd5a4b42bcbeb9c9ab9dcf7954": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +5166,30 @@ "width": null } }, - "7c73c164138a422c88af31b40796165c": { + "8a51589c96d04591a2667d780bf7ad33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_577f31248c7e4e5395e3c6c065b26c4a", + "placeholder": "​", + "style": "IPY_MODEL_6796911564e248d6a2edc13c06584dd7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6898.07 examples/s]" + } + }, + "8d46174213f04048904879468ae71cc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,23 +5242,7 @@ "width": null } }, - "7e35d053e8e846a2b5a5c3c7590496ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e380dbf96504aa19f37a01d07f25c8d": { + "9066808f620341428e1ffba3d084bca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5108,17 +5258,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b2880e86cc84b4bb20092e88ae37e13", + "layout": "IPY_MODEL_7cc4d425c4ba401c934dfbc8568af440", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_aba08fb2e9e8429791ee936b70d37d77", + "style": "IPY_MODEL_bd7992dfee39487da2fdad5caff6a94f", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7eca5077ed044501ad01b2a33813c5c0": { + "907485478951427389e624de9ba0865d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff792f1c1a83439ab079e6e7c4cf646a", + "IPY_MODEL_79712b33a5e94203b162a657bcb12a35", + "IPY_MODEL_a6ec3c12e3ed442b863c224cbc4006ec" + ], + "layout": "IPY_MODEL_025f175b1bc3460aa89f24cec6604d04", + "tabbable": null, + "tooltip": null + } + }, + "91c443f7ff764f1dba681c3c09a14ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5345,7 @@ "width": null } }, - "8263a572de4e4c51a641723f1be42eb8": { + "922fec678412462e833e856911d44510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5189,7 +5363,30 @@ "text_color": null } }, - "84f1dad5ee8b48ebb18278f22a5f4af8": { + "932527b3058d413a8641e6ad04c14915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7508894f89054a63884f667b7402cd0b", + "placeholder": "​", + "style": "IPY_MODEL_7f474e068b7447a4a707fae39fc4779a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "966bf58e5bd14b8aa8e5fb75608923bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5207,7 +5404,7 @@ "text_color": null } }, - "88c371ef2071478ea464b014ef44388b": { + "97e27482e67741c58d5adb5df19c4e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5260,103 +5457,31 @@ "width": null } }, - "89795a6284bd43cc835148fe363e72a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c2a376b53e04076b5ec3b93703c7bcf", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a478aae5cc6447a3967de33488043afa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "89c909015de74accbfb91189d3a0649c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d4d84dc95d4fb280f602be22e0c3cc", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a049ad814974333972be807cc0a70ac", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "8b19e50194a7452a8003471537d3763f": { + "9b584fe98d9c4efaa2b4e34b431444f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_744cacf45c594f1688ae383d7a5c2fec", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e35d053e8e846a2b5a5c3c7590496ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f328d6279d4641508fd95fa254664013", + "IPY_MODEL_002c47d512744c3fb829f25bccd29856", + "IPY_MODEL_1e2228f9753b442bb900eae6d16b0696" + ], + "layout": "IPY_MODEL_6c4fcee6e76b44cf8f0a29ebaa311f66", "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "8cbbe4a65db040a5a3cd69e593a07e1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "8cd770306d9140b38f9f6769c71463c6": { + "9b94d4160a064040bec6b5cea5b17e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,7 +5534,7 @@ "width": null } }, - "8dd8bbfcf5eb4f7791da688e32498197": { + "a1df0d01bf0e4cc6ac9bea2b331ada11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5425,7 +5550,7 @@ "description_width": "" } }, - "8e5afc6c10514e5f82023b27683a226e": { + "a4ad05f1a8d242eda71d46ff04931d4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5478,7 +5603,30 @@ "width": null } }, - "8ec2b90bf10c433a8459e57d425c8760": { + "a5d814399565484a909f082c8b7e872b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debfb1185b13494a9970d6a72d784b60", + "placeholder": "​", + "style": "IPY_MODEL_0a7525dabaae4dca8e04969f7126849d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.87it/s]" + } + }, + "a6ec3c12e3ed442b863c224cbc4006ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5493,15 +5641,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7eca5077ed044501ad01b2a33813c5c0", + "layout": "IPY_MODEL_c55069dce44f4f9a96ca7801f9823170", "placeholder": "​", - "style": "IPY_MODEL_522cf8445e0042feaa3d882bb0c3dfca", + "style": "IPY_MODEL_66783477b102444cad83795901922fd6", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 67.6MB/s]" + "value": " 10000/10000 [00:00<00:00, 252363.34 examples/s]" } }, - "8ee4e9762e70467191acd8fe944bb30c": { + "a797bb167a3a464eab4111ffcbbaacb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5554,7 +5702,90 @@ "width": null } }, - "8f330741bd3a495e945aad4a4ce4d358": { + "a841775f0ace49feb3f9b7bbc04db697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa0eb853a308442c86674889c9306833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aea869f9cc8d44cf80997dc63f1b0a73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bde4480ffa94ce4a2f7159486381564", + "IPY_MODEL_44d904ba3762435b8839df2e24700f3c", + "IPY_MODEL_78e7fdc2f6ad4c19826157e8a3133740" + ], + "layout": "IPY_MODEL_97e27482e67741c58d5adb5df19c4e16", + "tabbable": null, + "tooltip": null + } + }, + "af4e03b9990a4c36a589dde3f0ab1f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0d9a87e19e84400b026e8429c228a51", + "placeholder": "​", + "style": "IPY_MODEL_2506ec2e415149d0821f3541b2eaaf74", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.42it/s]" + } + }, + "b0d9a87e19e84400b026e8429c228a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5607,60 +5838,103 @@ "width": null } }, - "9002357990284f828a897347131f356e": { - "model_module": "@jupyter-widgets/base", + "b36513bdac0f46ceb83785d8a9bde09e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d37a14566bc46748576dd5718acf67c", + "placeholder": "​", + "style": "IPY_MODEL_f849bc18dadf47e89463232339c585a5", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "b896146cc7f64fd186cf2ed0dbf51c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5183bf12f78c49ed8e0b391f732cea7e", + "placeholder": "​", + "style": "IPY_MODEL_7ab9a46c76fe4397b418d39e88da20c3", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 579.16it/s]" + } + }, + "b9cec9f2501a478298bdf046984e17af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc5f5ae55db2472581e2857a66600c42", + "IPY_MODEL_273f714dbdd749fda418a3dbcdcdb56d", + "IPY_MODEL_8a51589c96d04591a2667d780bf7ad33" + ], + "layout": "IPY_MODEL_7bd4513692a04dcdb49f383da06e9355", + "tabbable": null, + "tooltip": null + } + }, + "bb4c35815c7449a8aed853a01aa86fa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc87aab28a8c4d119db816e03e6122d3", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b0dee58b4e24391ae1c6c3aba2e0615", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "90378f2557ad48428999c94049d0f188": { + "bbbc5680d7f54c4ba83de0786a5d362d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5678,30 +5952,25 @@ "text_color": null } }, - "903b0619b70a440ca79228d1c65fc405": { + "bc749c7612fa4072b6e6984641f56a13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54841d1608114ce69f63a7780325533d", - "placeholder": "​", - "style": "IPY_MODEL_67f4dfd67393497c82cdaf0ab4a36a35", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91feb6a6496446f48de62109e80a5436": { + "bc87aab28a8c4d119db816e03e6122d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5754,7 +6023,23 @@ "width": null } }, - "9627b06404dc417283abd3bbd64bcd8f": { + "bd7992dfee39487da2fdad5caff6a94f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c02b0661ef614d25a8b00a2146ff5ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5807,7 +6092,31 @@ "width": null } }, - "98625178d3c94ba6aa8694f50e9cdea9": { + "c217771fa5814aabb7107510b1d6e6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_453ac5707a4d42ea81efc5e1565c4272", + "IPY_MODEL_d7550fd273714d05a635895342a929bb", + "IPY_MODEL_220c8d108a9f4d709a8fe4f12c10acd2" + ], + "layout": "IPY_MODEL_1e56f8f70dda4ab08089dd57df8705ff", + "tabbable": null, + "tooltip": null + } + }, + "c346a8ee11d94046a99d5f57ca946487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5860,7 +6169,7 @@ "width": null } }, - "9b592443fd5c4a3fad02fe6396ff2168": { + "c55069dce44f4f9a96ca7801f9823170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,7 +6222,7 @@ "width": null } }, - "9d92644c603c4714a4323cbd5c7def02": { + "c771392a402e4f02a8adc98797fbbcf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,108 +6260,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ecf5c7750b847d4bf2c0d59f10434a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da49b42ce92046c998e9eb384ee0c39e", - "placeholder": "​", - "style": "IPY_MODEL_f1becfe00eb44b9bb936e4528ea9e942", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.14it/s]" - } - }, - "9f651479fb634fe188bcbb02162bfd50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9875d5f680740d58b957c92f84083c3", - "IPY_MODEL_aa9a51c33c8f4854aa529f9859b40b9f", - "IPY_MODEL_9ecf5c7750b847d4bf2c0d59f10434a2" - ], - "layout": "IPY_MODEL_8e5afc6c10514e5f82023b27683a226e", - "tabbable": null, - "tooltip": null - } - }, - "a478aae5cc6447a3967de33488043afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a5f665c94e1e4e7cb9bda8382e1e00cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d0a92c29e944931b6a22814c9d20524", - "placeholder": "​", - "style": "IPY_MODEL_b5a1be7d14b44a2b90d6c5e8c0ecbe95", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 620.23it/s]" + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8c9eaa0ec7a40f5b91b6c381bf54765": { + "c879a51624034291b6cdf7b3b37731ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6105,7 +6328,7 @@ "width": null } }, - "aa4f2e95243f4fa7a40ad4fcfe57c6c0": { + "c88a0a54a7d8495c90e0ceefd16c73ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6120,42 +6343,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_130a697771f84e80b9ea4c02d03ff62a", - "IPY_MODEL_3841ab79c51346799f39d11f1342e840", - "IPY_MODEL_5be663589e854e1ca2d5091a520b9adb" + "IPY_MODEL_02853640143d49f7b2b53d5367f5366c", + "IPY_MODEL_e16b0d4eaf784c8c99039a50e0c30aba", + "IPY_MODEL_af4e03b9990a4c36a589dde3f0ab1f57" ], - "layout": "IPY_MODEL_03c5fbd3c4ce4ea3984de19281b147af", + "layout": "IPY_MODEL_e3c308c6e2834aca9d4c0ee48a779a51", "tabbable": null, "tooltip": null } }, - "aa9a51c33c8f4854aa529f9859b40b9f": { + "c88f01ca4b5546fc8a07b2d1c845732e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9feed1c5a194d669dfaa347748b2250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_035f34e6a54c4b3f92421455a5670762", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_77f21503eda044e1927d7ecee477a275", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_184f9afe203d4b1da69ecfc142c87d3a", + "IPY_MODEL_f9ecde13ff2f4aa6b46a617709da636b", + "IPY_MODEL_e9de42840a6f4ef5ad2bd529eebdb5af" + ], + "layout": "IPY_MODEL_0f922409e00c49d9a9eeec3cde61b32b", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "aba08fb2e9e8429791ee936b70d37d77": { + "ca07382e91084da7af02c7ff7e300311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6171,60 +6410,23 @@ "description_width": "" } }, - "ad687e0e218b466f8fa90ea5d77f2d8c": { - "model_module": "@jupyter-widgets/base", + "ce1305427aef46539cd0b52d2a4d80c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b5a1be7d14b44a2b90d6c5e8c0ecbe95": { + "cfed0889f9f74e5797b43674331d24cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6242,60 +6444,33 @@ "text_color": null } }, - "b9cee27e7db1451a9caff091181782e1": { - "model_module": "@jupyter-widgets/base", + "d171ea950ab94c3fbaccb8d2373a6da6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14216ca27f61486ba99444444f1a70dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1df0d01bf0e4cc6ac9bea2b331ada11", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ba1f4e88e2294c9a9ae17a70f35db16e": { + "d2308e6aa2c346db8e5f494a09a900df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6313,7 +6488,7 @@ "text_color": null } }, - "be1cbcf9b7b4432eb3fb1ff24bb8ad77": { + "d3d80ec4b9644c34aa7dec8beecea5f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6366,23 +6541,57 @@ "width": null } }, - "c087d94edd244d06bc339ae3eae373b3": { + "d601f361fa2b4a219d2e10c6491a7d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1943f172c86b499fa74d2c6a950c476a", + "IPY_MODEL_3070a952e2ca45bdb899c4d4198a9fff", + "IPY_MODEL_b896146cc7f64fd186cf2ed0dbf51c0c" + ], + "layout": "IPY_MODEL_1333c86767824ba2bfdc4b6770dbafa9", + "tabbable": null, + "tooltip": null + } + }, + "d7550fd273714d05a635895342a929bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93c51ff0a3040cab6611c1a43b2e805", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca07382e91084da7af02c7ff7e300311", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "c11ba1f9642647e6b19c9534b3391681": { + "d8ae40c5da4b4b0089c20c890333293e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6435,25 +6644,23 @@ "width": null } }, - "c2861ca15b3244f8be1b0c9cca4eb464": { + "d9a6b702bb5e4e309f95c88d6c690b39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c28945c3acdc445ba0cd672a325d45ce": { + "da7f1b082c844fcf930864e35764ee69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6471,7 +6678,30 @@ "text_color": null } }, - "c2946c68ee174245bcdd55745289e1b7": { + "dc5f5ae55db2472581e2857a66600c42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279461e9a239483d82ba4799fdf324d6", + "placeholder": "​", + "style": "IPY_MODEL_ec3747524c714804b0de0a16bfad570c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "debfb1185b13494a9970d6a72d784b60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6524,7 +6754,59 @@ "width": null } }, - "c8e7c01446584517b3c53cd3261e5d45": { + "e03fa8b0f49f49f1baa465b1ca0883d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4749b626cbe94fc48d4b03ff6b199529", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9a6b702bb5e4e309f95c88d6c690b39", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "e16b0d4eaf784c8c99039a50e0c30aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cba06315d8e47efa34517225eba91f1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f05df81817754b7b87f99efbdce1f223", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e1c866811f2c45698441743106275cc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6577,7 +6859,7 @@ "width": null } }, - "ca12b0b5aa404384aed47c6ee217cbac": { + "e3c308c6e2834aca9d4c0ee48a779a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6630,116 +6912,7 @@ "width": null } }, - "ce2bdbdf7ffa4ed793d5d360fa121258": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0536047d0804b29a6ffc9d1743720b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0cd44c2bac844dd9f2edbdea4c9aa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3d8772d91d74a74bbfc3c241eb0ce09", - "placeholder": "​", - "style": "IPY_MODEL_8cbbe4a65db040a5a3cd69e593a07e1a", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.17MB/s]" - } - }, - "d2592a858d1d4bc3a7166e7814eb9d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d2fec809ded6478fa101f2ee9596becb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d398fec274b44e2b907f4c5cae300b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6b7b4edf0b54766bb2595264c412440": { + "e93c51ff0a3040cab6611c1a43b2e805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6792,152 +6965,7 @@ "width": null } }, - "d7fd58aec3be4461b5345173cf2a723e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9002357990284f828a897347131f356e", - "placeholder": "​", - "style": "IPY_MODEL_1a786c5ee7b14db9a60268ce2d3b9d35", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.17it/s]" - } - }, - "d87537574d1b46388a5f4de507d1aedd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0770995c96e7450eb9dd81b263cd14e1", - "IPY_MODEL_89c909015de74accbfb91189d3a0649c", - "IPY_MODEL_28dda56b04364578939536044765661e" - ], - "layout": "IPY_MODEL_b9cee27e7db1451a9caff091181782e1", - "tabbable": null, - "tooltip": null - } - }, - "d8c0fe97e2c044588249051a7efa85af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91feb6a6496446f48de62109e80a5436", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64f9c4a5caac4ed4a19638a0b0e449ae", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "d9875d5f680740d58b957c92f84083c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c73c164138a422c88af31b40796165c", - "placeholder": "​", - "style": "IPY_MODEL_0650dd8061c74475b7cdbeae70782dba", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d992a44e172d47668b49fe9830d4ea41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a107afdf9d4ea49f9a9125e4c4348e", - "placeholder": "​", - "style": "IPY_MODEL_ebd09a0dfc4e41d8b37610226c9e7be8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "da461b681769492d812461f46d6775ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8c9eaa0ec7a40f5b91b6c381bf54765", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8dd8bbfcf5eb4f7791da688e32498197", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "da49b42ce92046c998e9eb384ee0c39e": { + "e9980f6d6bf842ce92b80dcf43f39e4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,25 +7018,30 @@ "width": null } }, - "dca2d257b6ad44eabe656a8f5f3bc7e6": { + "e9de42840a6f4ef5ad2bd529eebdb5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9837661e474434ba02cde38ddef5148", + "placeholder": "​", + "style": "IPY_MODEL_430a9c6146344b98802597b77c3f3be9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.40it/s]" } }, - "de925572cfb54cafa807449424d39b7e": { + "e9fb2e15855a495eb8393c8b1c470abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7023,42 +7056,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903b0619b70a440ca79228d1c65fc405", - "IPY_MODEL_332e863acfa84fbfa8f23f214c0afded", - "IPY_MODEL_6f0f807797024621adc6abb7e0c9eaa2" + "IPY_MODEL_ed5aaff857784513a498c55586a92986", + "IPY_MODEL_bb4c35815c7449a8aed853a01aa86fa4", + "IPY_MODEL_b36513bdac0f46ceb83785d8a9bde09e" ], - "layout": "IPY_MODEL_3af5790668ef4fd8926ccbfef46e8b36", + "layout": "IPY_MODEL_91c443f7ff764f1dba681c3c09a14ff1", "tabbable": null, "tooltip": null } }, - "e027fdb1fd7e4cb8ad7d32a540884a3f": { + "ec3747524c714804b0de0a16bfad570c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed5aaff857784513a498c55586a92986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efaaf8ce120240269b0246dccf24c672", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d398fec274b44e2b907f4c5cae300b81", + "layout": "IPY_MODEL_3b55e363cfde4908ad226f56c13f1d9e", + "placeholder": "​", + "style": "IPY_MODEL_966bf58e5bd14b8aa8e5fb75608923bb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading readme: 100%" } }, - "e2c0b351610b424a8cb54f4c25c0257e": { + "ef45c415b584442b90eddf019859b2fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,60 +7159,23 @@ "width": null } }, - "e3d8772d91d74a74bbfc3c241eb0ce09": { - "model_module": "@jupyter-widgets/base", + "f05df81817754b7b87f99efbdce1f223": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e465c1cd187a40f08ae74891d98d2689": { + "f2e4496d9bd04825889b9c186e65f9b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,41 +7228,30 @@ "width": null } }, - "e50e3c1c825f4781a2ddf6979af74bcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2ac9db956a43c695844d19480874ce": { + "f328d6279d4641508fd95fa254664013": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fdb056e1ace496abe457111412c9432", + "placeholder": "​", + "style": "IPY_MODEL_aa0eb853a308442c86674889c9306833", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ebd09a0dfc4e41d8b37610226c9e7be8": { + "f351d976879e4e049d1f0ab7a19a6e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7269,55 +7269,7 @@ "text_color": null } }, - "ed3dd5752c5341fca2216803c8c4b46d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d992a44e172d47668b49fe9830d4ea41", - "IPY_MODEL_8b19e50194a7452a8003471537d3763f", - "IPY_MODEL_a5f665c94e1e4e7cb9bda8382e1e00cc" - ], - "layout": "IPY_MODEL_7038f74f23cb484984b1f5b1a8467611", - "tabbable": null, - "tooltip": null - } - }, - "ed3e7469df2c4560897c195c6e1c0003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02526371af764684aad4897d7046a365", - "IPY_MODEL_369a2a2d596c42679bd5d6150343580a", - "IPY_MODEL_d0cd44c2bac844dd9f2edbdea4c9aa01" - ], - "layout": "IPY_MODEL_c8e7c01446584517b3c53cd3261e5d45", - "tabbable": null, - "tooltip": null - } - }, - "efaaf8ce120240269b0246dccf24c672": { + "f5c1c2b5231846bc965b4a84d97c4978": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,7 +7322,7 @@ "width": null } }, - "f1becfe00eb44b9bb936e4528ea9e942": { + "f849bc18dadf47e89463232339c585a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7388,31 +7340,7 @@ "text_color": null } }, - "f2c29b6ce7974f23abf1753e738849b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b2afe08176b4aabb69056cefaacb5cd", - "IPY_MODEL_210e5f58051a429ba35833408833e675", - "IPY_MODEL_8ec2b90bf10c433a8459e57d425c8760" - ], - "layout": "IPY_MODEL_c11ba1f9642647e6b19c9534b3391681", - "tabbable": null, - "tooltip": null - } - }, - "fb652988afd24cf39d30d03f9b269bcc": { + "f8c948dfdc854e989e91dc328f4b69c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7393,7 @@ "width": null } }, - "fb87b58f2ac54a589cbef4e34fafee8d": { + "f9837661e474434ba02cde38ddef5148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,7 +7446,80 @@ "width": null } }, - "fc6e5172aa4d481b866ee9019152d9a8": { + "f9ecde13ff2f4aa6b46a617709da636b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a50581896484c0b976aedade7f12cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3e29691e4f4ad6840284ca3b17cfd9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fca7e86a7eb34f15a6e35dfad2b37d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_776aa050d3de4b2da0c5382c76274a23", + "IPY_MODEL_e03fa8b0f49f49f1baa465b1ca0883d5", + "IPY_MODEL_4aa1a02c15664164a38a57b714c9f47c" + ], + "layout": "IPY_MODEL_c02b0661ef614d25a8b00a2146ff5ca5", + "tabbable": null, + "tooltip": null + } + }, + "ff792f1c1a83439ab079e6e7c4cf646a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e9980f6d6bf842ce92b80dcf43f39e4d", + "placeholder": "​", + "style": "IPY_MODEL_c88f01ca4b5546fc8a07b2d1c845732e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff829270eb2a450eb4bc4925b67b9353": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,28 +7572,27 @@ "width": null } }, - "fe416b8103714c939d38072d169f1695": { + "ffa49044d9234ebd9ec0888b452e8736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2895596c7bce4e01bf33024c61fa1430", - "IPY_MODEL_da461b681769492d812461f46d6775ee", - "IPY_MODEL_341ba052899a46a39f6a75bbeff09cc3" - ], - "layout": "IPY_MODEL_7250fcd5c60e4b2e913bf33bc3e948ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8c948dfdc854e989e91dc328f4b69c7", + "placeholder": "​", + "style": "IPY_MODEL_7f448eb8f9734416890102ab074a5c56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 169e30683..61c139cf0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:01.656948Z", - "iopub.status.busy": "2024-09-26T17:02:01.656539Z", - "iopub.status.idle": "2024-09-26T17:02:02.850939Z", - "shell.execute_reply": "2024-09-26T17:02:02.850256Z" + "iopub.execute_input": "2024-09-27T13:48:28.690694Z", + "iopub.status.busy": "2024-09-27T13:48:28.690508Z", + "iopub.status.idle": "2024-09-27T13:48:29.909631Z", + "shell.execute_reply": "2024-09-27T13:48:29.909082Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.853271Z", - "iopub.status.busy": "2024-09-26T17:02:02.852947Z", - "iopub.status.idle": "2024-09-26T17:02:02.875172Z", - "shell.execute_reply": "2024-09-26T17:02:02.874705Z" + "iopub.execute_input": "2024-09-27T13:48:29.911776Z", + "iopub.status.busy": "2024-09-27T13:48:29.911485Z", + "iopub.status.idle": "2024-09-27T13:48:29.929829Z", + "shell.execute_reply": "2024-09-27T13:48:29.929260Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.877142Z", - "iopub.status.busy": "2024-09-26T17:02:02.876721Z", - "iopub.status.idle": "2024-09-26T17:02:02.901260Z", - "shell.execute_reply": "2024-09-26T17:02:02.900803Z" + "iopub.execute_input": "2024-09-27T13:48:29.931726Z", + "iopub.status.busy": "2024-09-27T13:48:29.931354Z", + "iopub.status.idle": "2024-09-27T13:48:29.955883Z", + "shell.execute_reply": "2024-09-27T13:48:29.955429Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.903032Z", - "iopub.status.busy": "2024-09-26T17:02:02.902670Z", - "iopub.status.idle": "2024-09-26T17:02:02.906081Z", - "shell.execute_reply": "2024-09-26T17:02:02.905633Z" + "iopub.execute_input": "2024-09-27T13:48:29.957546Z", + "iopub.status.busy": "2024-09-27T13:48:29.957198Z", + "iopub.status.idle": "2024-09-27T13:48:29.960644Z", + "shell.execute_reply": "2024-09-27T13:48:29.960187Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.907891Z", - "iopub.status.busy": "2024-09-26T17:02:02.907547Z", - "iopub.status.idle": "2024-09-26T17:02:02.915059Z", - "shell.execute_reply": "2024-09-26T17:02:02.914598Z" + "iopub.execute_input": "2024-09-27T13:48:29.962526Z", + "iopub.status.busy": "2024-09-27T13:48:29.962099Z", + "iopub.status.idle": "2024-09-27T13:48:29.970289Z", + "shell.execute_reply": "2024-09-27T13:48:29.969831Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.916797Z", - "iopub.status.busy": "2024-09-26T17:02:02.916457Z", - "iopub.status.idle": "2024-09-26T17:02:02.918910Z", - "shell.execute_reply": "2024-09-26T17:02:02.918455Z" + "iopub.execute_input": "2024-09-27T13:48:29.972004Z", + "iopub.status.busy": "2024-09-27T13:48:29.971668Z", + "iopub.status.idle": "2024-09-27T13:48:29.974120Z", + "shell.execute_reply": "2024-09-27T13:48:29.973664Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.920658Z", - "iopub.status.busy": "2024-09-26T17:02:02.920329Z", - "iopub.status.idle": "2024-09-26T17:02:05.951867Z", - "shell.execute_reply": "2024-09-26T17:02:05.951334Z" + "iopub.execute_input": "2024-09-27T13:48:29.975796Z", + "iopub.status.busy": "2024-09-27T13:48:29.975523Z", + "iopub.status.idle": "2024-09-27T13:48:33.022239Z", + "shell.execute_reply": "2024-09-27T13:48:33.021576Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.953863Z", - "iopub.status.busy": "2024-09-26T17:02:05.953664Z", - "iopub.status.idle": "2024-09-26T17:02:05.962841Z", - "shell.execute_reply": "2024-09-26T17:02:05.962408Z" + "iopub.execute_input": "2024-09-27T13:48:33.024546Z", + "iopub.status.busy": "2024-09-27T13:48:33.024174Z", + "iopub.status.idle": "2024-09-27T13:48:33.033530Z", + "shell.execute_reply": "2024-09-27T13:48:33.033087Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.964552Z", - "iopub.status.busy": "2024-09-26T17:02:05.964224Z", - "iopub.status.idle": "2024-09-26T17:02:07.908703Z", - "shell.execute_reply": "2024-09-26T17:02:07.908090Z" + "iopub.execute_input": "2024-09-27T13:48:33.035207Z", + "iopub.status.busy": "2024-09-27T13:48:33.035031Z", + "iopub.status.idle": "2024-09-27T13:48:35.057425Z", + "shell.execute_reply": "2024-09-27T13:48:35.056829Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.910953Z", - "iopub.status.busy": "2024-09-26T17:02:07.910373Z", - "iopub.status.idle": "2024-09-26T17:02:07.928712Z", - "shell.execute_reply": "2024-09-26T17:02:07.928235Z" + "iopub.execute_input": "2024-09-27T13:48:35.059795Z", + "iopub.status.busy": "2024-09-27T13:48:35.059229Z", + "iopub.status.idle": "2024-09-27T13:48:35.078592Z", + "shell.execute_reply": "2024-09-27T13:48:35.078085Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.930415Z", - "iopub.status.busy": "2024-09-26T17:02:07.930091Z", - "iopub.status.idle": "2024-09-26T17:02:07.937827Z", - "shell.execute_reply": "2024-09-26T17:02:07.937268Z" + "iopub.execute_input": "2024-09-27T13:48:35.080517Z", + "iopub.status.busy": "2024-09-27T13:48:35.080147Z", + "iopub.status.idle": "2024-09-27T13:48:35.088054Z", + "shell.execute_reply": "2024-09-27T13:48:35.087581Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.939627Z", - "iopub.status.busy": "2024-09-26T17:02:07.939288Z", - "iopub.status.idle": "2024-09-26T17:02:07.948313Z", - "shell.execute_reply": "2024-09-26T17:02:07.947729Z" + "iopub.execute_input": "2024-09-27T13:48:35.089935Z", + "iopub.status.busy": "2024-09-27T13:48:35.089521Z", + "iopub.status.idle": "2024-09-27T13:48:35.098940Z", + "shell.execute_reply": "2024-09-27T13:48:35.098374Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.950161Z", - "iopub.status.busy": "2024-09-26T17:02:07.949841Z", - "iopub.status.idle": "2024-09-26T17:02:07.957648Z", - "shell.execute_reply": "2024-09-26T17:02:07.957041Z" + "iopub.execute_input": "2024-09-27T13:48:35.100861Z", + "iopub.status.busy": "2024-09-27T13:48:35.100449Z", + "iopub.status.idle": "2024-09-27T13:48:35.108869Z", + "shell.execute_reply": "2024-09-27T13:48:35.108267Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.959493Z", - "iopub.status.busy": "2024-09-26T17:02:07.959139Z", - "iopub.status.idle": "2024-09-26T17:02:07.969567Z", - "shell.execute_reply": "2024-09-26T17:02:07.968948Z" + "iopub.execute_input": "2024-09-27T13:48:35.110735Z", + "iopub.status.busy": "2024-09-27T13:48:35.110393Z", + "iopub.status.idle": "2024-09-27T13:48:35.119177Z", + "shell.execute_reply": "2024-09-27T13:48:35.118615Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.971246Z", - "iopub.status.busy": "2024-09-26T17:02:07.971075Z", - "iopub.status.idle": "2024-09-26T17:02:07.978570Z", - "shell.execute_reply": "2024-09-26T17:02:07.978076Z" + "iopub.execute_input": "2024-09-27T13:48:35.120900Z", + "iopub.status.busy": "2024-09-27T13:48:35.120578Z", + "iopub.status.idle": "2024-09-27T13:48:35.128239Z", + "shell.execute_reply": "2024-09-27T13:48:35.127660Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.980461Z", - "iopub.status.busy": "2024-09-26T17:02:07.980085Z", - "iopub.status.idle": "2024-09-26T17:02:07.988648Z", - "shell.execute_reply": "2024-09-26T17:02:07.988195Z" + "iopub.execute_input": "2024-09-27T13:48:35.130045Z", + "iopub.status.busy": "2024-09-27T13:48:35.129690Z", + "iopub.status.idle": "2024-09-27T13:48:35.137653Z", + "shell.execute_reply": "2024-09-27T13:48:35.137215Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.990420Z", - "iopub.status.busy": "2024-09-26T17:02:07.990085Z", - "iopub.status.idle": "2024-09-26T17:02:07.998038Z", - "shell.execute_reply": "2024-09-26T17:02:07.997573Z" + "iopub.execute_input": "2024-09-27T13:48:35.139474Z", + "iopub.status.busy": "2024-09-27T13:48:35.139126Z", + "iopub.status.idle": "2024-09-27T13:48:35.147699Z", + "shell.execute_reply": "2024-09-27T13:48:35.147238Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 343f76c9a..b10d7534a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:10.815001Z", - "iopub.status.busy": "2024-09-26T17:02:10.814842Z", - "iopub.status.idle": "2024-09-26T17:02:13.720806Z", - "shell.execute_reply": "2024-09-26T17:02:13.720189Z" + "iopub.execute_input": "2024-09-27T13:48:38.123019Z", + "iopub.status.busy": "2024-09-27T13:48:38.122617Z", + "iopub.status.idle": "2024-09-27T13:48:41.156902Z", + "shell.execute_reply": "2024-09-27T13:48:41.156293Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.723175Z", - "iopub.status.busy": "2024-09-26T17:02:13.722674Z", - "iopub.status.idle": "2024-09-26T17:02:13.725899Z", - "shell.execute_reply": "2024-09-26T17:02:13.725444Z" + "iopub.execute_input": "2024-09-27T13:48:41.159363Z", + "iopub.status.busy": "2024-09-27T13:48:41.158760Z", + "iopub.status.idle": "2024-09-27T13:48:41.162218Z", + "shell.execute_reply": "2024-09-27T13:48:41.161666Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.727650Z", - "iopub.status.busy": "2024-09-26T17:02:13.727301Z", - "iopub.status.idle": "2024-09-26T17:02:13.730292Z", - "shell.execute_reply": "2024-09-26T17:02:13.729849Z" + "iopub.execute_input": "2024-09-27T13:48:41.164034Z", + "iopub.status.busy": "2024-09-27T13:48:41.163676Z", + "iopub.status.idle": "2024-09-27T13:48:41.166941Z", + "shell.execute_reply": "2024-09-27T13:48:41.166439Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.731901Z", - "iopub.status.busy": "2024-09-26T17:02:13.731621Z", - "iopub.status.idle": "2024-09-26T17:02:13.756874Z", - "shell.execute_reply": "2024-09-26T17:02:13.756312Z" + "iopub.execute_input": "2024-09-27T13:48:41.168602Z", + "iopub.status.busy": "2024-09-27T13:48:41.168322Z", + "iopub.status.idle": "2024-09-27T13:48:41.194210Z", + "shell.execute_reply": "2024-09-27T13:48:41.193635Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.758691Z", - "iopub.status.busy": "2024-09-26T17:02:13.758260Z", - "iopub.status.idle": "2024-09-26T17:02:13.761816Z", - "shell.execute_reply": "2024-09-26T17:02:13.761257Z" + "iopub.execute_input": "2024-09-27T13:48:41.196238Z", + "iopub.status.busy": "2024-09-27T13:48:41.195805Z", + "iopub.status.idle": "2024-09-27T13:48:41.199937Z", + "shell.execute_reply": "2024-09-27T13:48:41.199359Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.763566Z", - "iopub.status.busy": "2024-09-26T17:02:13.763110Z", - "iopub.status.idle": "2024-09-26T17:02:13.766236Z", - "shell.execute_reply": "2024-09-26T17:02:13.765787Z" + "iopub.execute_input": "2024-09-27T13:48:41.201902Z", + "iopub.status.busy": "2024-09-27T13:48:41.201575Z", + "iopub.status.idle": "2024-09-27T13:48:41.204610Z", + "shell.execute_reply": "2024-09-27T13:48:41.204162Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.767931Z", - "iopub.status.busy": "2024-09-26T17:02:13.767610Z", - "iopub.status.idle": "2024-09-26T17:02:17.637562Z", - "shell.execute_reply": "2024-09-26T17:02:17.636903Z" + "iopub.execute_input": "2024-09-27T13:48:41.206413Z", + "iopub.status.busy": "2024-09-27T13:48:41.206079Z", + "iopub.status.idle": "2024-09-27T13:48:45.163696Z", + "shell.execute_reply": "2024-09-27T13:48:45.163141Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:17.639989Z", - "iopub.status.busy": "2024-09-26T17:02:17.639568Z", - "iopub.status.idle": "2024-09-26T17:02:18.534074Z", - "shell.execute_reply": "2024-09-26T17:02:18.533483Z" + "iopub.execute_input": "2024-09-27T13:48:45.165987Z", + "iopub.status.busy": "2024-09-27T13:48:45.165561Z", + "iopub.status.idle": "2024-09-27T13:48:46.068707Z", + "shell.execute_reply": "2024-09-27T13:48:46.068104Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.536535Z", - "iopub.status.busy": "2024-09-26T17:02:18.536141Z", - "iopub.status.idle": "2024-09-26T17:02:18.539097Z", - "shell.execute_reply": "2024-09-26T17:02:18.538594Z" + "iopub.execute_input": "2024-09-27T13:48:46.071667Z", + "iopub.status.busy": "2024-09-27T13:48:46.070894Z", + "iopub.status.idle": "2024-09-27T13:48:46.074612Z", + "shell.execute_reply": "2024-09-27T13:48:46.074101Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.541035Z", - "iopub.status.busy": "2024-09-26T17:02:18.540659Z", - "iopub.status.idle": "2024-09-26T17:02:20.483284Z", - "shell.execute_reply": "2024-09-26T17:02:20.482560Z" + "iopub.execute_input": "2024-09-27T13:48:46.077488Z", + "iopub.status.busy": "2024-09-27T13:48:46.076743Z", + "iopub.status.idle": "2024-09-27T13:48:48.102638Z", + "shell.execute_reply": "2024-09-27T13:48:48.101922Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.486447Z", - "iopub.status.busy": "2024-09-26T17:02:20.486003Z", - "iopub.status.idle": "2024-09-26T17:02:20.511442Z", - "shell.execute_reply": "2024-09-26T17:02:20.510928Z" + "iopub.execute_input": "2024-09-27T13:48:48.106046Z", + "iopub.status.busy": "2024-09-27T13:48:48.104814Z", + "iopub.status.idle": "2024-09-27T13:48:48.130901Z", + "shell.execute_reply": "2024-09-27T13:48:48.130366Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.514446Z", - "iopub.status.busy": "2024-09-26T17:02:20.513683Z", - "iopub.status.idle": "2024-09-26T17:02:20.524155Z", - "shell.execute_reply": "2024-09-26T17:02:20.523745Z" + "iopub.execute_input": "2024-09-27T13:48:48.133937Z", + "iopub.status.busy": "2024-09-27T13:48:48.133159Z", + "iopub.status.idle": "2024-09-27T13:48:48.143530Z", + "shell.execute_reply": "2024-09-27T13:48:48.143089Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.525970Z", - "iopub.status.busy": "2024-09-26T17:02:20.525788Z", - "iopub.status.idle": "2024-09-26T17:02:20.530473Z", - "shell.execute_reply": "2024-09-26T17:02:20.529997Z" + "iopub.execute_input": "2024-09-27T13:48:48.145142Z", + "iopub.status.busy": "2024-09-27T13:48:48.144964Z", + "iopub.status.idle": "2024-09-27T13:48:48.149332Z", + "shell.execute_reply": "2024-09-27T13:48:48.148851Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.532181Z", - "iopub.status.busy": "2024-09-26T17:02:20.531868Z", - "iopub.status.idle": "2024-09-26T17:02:20.538319Z", - "shell.execute_reply": "2024-09-26T17:02:20.537858Z" + "iopub.execute_input": "2024-09-27T13:48:48.151063Z", + "iopub.status.busy": "2024-09-27T13:48:48.150710Z", + "iopub.status.idle": "2024-09-27T13:48:48.156987Z", + "shell.execute_reply": "2024-09-27T13:48:48.156523Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.539829Z", - "iopub.status.busy": "2024-09-26T17:02:20.539657Z", - "iopub.status.idle": "2024-09-26T17:02:20.546053Z", - "shell.execute_reply": "2024-09-26T17:02:20.545618Z" + "iopub.execute_input": "2024-09-27T13:48:48.158687Z", + "iopub.status.busy": "2024-09-27T13:48:48.158353Z", + "iopub.status.idle": "2024-09-27T13:48:48.164503Z", + "shell.execute_reply": "2024-09-27T13:48:48.164070Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.547624Z", - "iopub.status.busy": "2024-09-26T17:02:20.547452Z", - "iopub.status.idle": "2024-09-26T17:02:20.553718Z", - "shell.execute_reply": "2024-09-26T17:02:20.553293Z" + "iopub.execute_input": "2024-09-27T13:48:48.166263Z", + "iopub.status.busy": "2024-09-27T13:48:48.165891Z", + "iopub.status.idle": "2024-09-27T13:48:48.171483Z", + "shell.execute_reply": "2024-09-27T13:48:48.171050Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.555248Z", - "iopub.status.busy": "2024-09-26T17:02:20.555076Z", - "iopub.status.idle": "2024-09-26T17:02:20.563590Z", - "shell.execute_reply": "2024-09-26T17:02:20.563144Z" + "iopub.execute_input": "2024-09-27T13:48:48.173156Z", + "iopub.status.busy": "2024-09-27T13:48:48.172819Z", + "iopub.status.idle": "2024-09-27T13:48:48.180987Z", + "shell.execute_reply": "2024-09-27T13:48:48.180558Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.565315Z", - "iopub.status.busy": "2024-09-26T17:02:20.564973Z", - "iopub.status.idle": "2024-09-26T17:02:20.570343Z", - "shell.execute_reply": "2024-09-26T17:02:20.569902Z" + "iopub.execute_input": "2024-09-27T13:48:48.182819Z", + "iopub.status.busy": "2024-09-27T13:48:48.182411Z", + "iopub.status.idle": "2024-09-27T13:48:48.187916Z", + "shell.execute_reply": "2024-09-27T13:48:48.187364Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.571994Z", - "iopub.status.busy": "2024-09-26T17:02:20.571657Z", - "iopub.status.idle": "2024-09-26T17:02:20.576878Z", - "shell.execute_reply": "2024-09-26T17:02:20.576423Z" + "iopub.execute_input": "2024-09-27T13:48:48.189674Z", + "iopub.status.busy": "2024-09-27T13:48:48.189285Z", + "iopub.status.idle": "2024-09-27T13:48:48.194675Z", + "shell.execute_reply": "2024-09-27T13:48:48.194131Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.578582Z", - "iopub.status.busy": "2024-09-26T17:02:20.578244Z", - "iopub.status.idle": "2024-09-26T17:02:20.581841Z", - "shell.execute_reply": "2024-09-26T17:02:20.581279Z" + "iopub.execute_input": "2024-09-27T13:48:48.196499Z", + "iopub.status.busy": "2024-09-27T13:48:48.196169Z", + "iopub.status.idle": "2024-09-27T13:48:48.199803Z", + "shell.execute_reply": "2024-09-27T13:48:48.199234Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.583557Z", - "iopub.status.busy": "2024-09-26T17:02:20.583273Z", - "iopub.status.idle": "2024-09-26T17:02:20.588436Z", - "shell.execute_reply": "2024-09-26T17:02:20.587875Z" + "iopub.execute_input": "2024-09-27T13:48:48.201595Z", + "iopub.status.busy": "2024-09-27T13:48:48.201275Z", + "iopub.status.idle": "2024-09-27T13:48:48.206336Z", + "shell.execute_reply": "2024-09-27T13:48:48.205863Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0841a1abf..a1e0d1e42 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:24.778635Z", - "iopub.status.busy": "2024-09-26T17:02:24.778451Z", - "iopub.status.idle": "2024-09-26T17:02:25.474946Z", - "shell.execute_reply": "2024-09-26T17:02:25.474332Z" + "iopub.execute_input": "2024-09-27T13:48:51.496056Z", + "iopub.status.busy": "2024-09-27T13:48:51.495876Z", + "iopub.status.idle": "2024-09-27T13:48:52.184420Z", + "shell.execute_reply": "2024-09-27T13:48:52.183872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.477084Z", - "iopub.status.busy": "2024-09-26T17:02:25.476819Z", - "iopub.status.idle": "2024-09-26T17:02:25.608315Z", - "shell.execute_reply": "2024-09-26T17:02:25.607729Z" + "iopub.execute_input": "2024-09-27T13:48:52.186744Z", + "iopub.status.busy": "2024-09-27T13:48:52.186314Z", + "iopub.status.idle": "2024-09-27T13:48:52.317662Z", + "shell.execute_reply": "2024-09-27T13:48:52.317086Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.610318Z", - "iopub.status.busy": "2024-09-26T17:02:25.609878Z", - "iopub.status.idle": "2024-09-26T17:02:25.633373Z", - "shell.execute_reply": "2024-09-26T17:02:25.632806Z" + "iopub.execute_input": "2024-09-27T13:48:52.319925Z", + "iopub.status.busy": "2024-09-27T13:48:52.319422Z", + "iopub.status.idle": "2024-09-27T13:48:52.343036Z", + "shell.execute_reply": "2024-09-27T13:48:52.342381Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.635543Z", - "iopub.status.busy": "2024-09-26T17:02:25.635055Z", - "iopub.status.idle": "2024-09-26T17:02:28.161306Z", - "shell.execute_reply": "2024-09-26T17:02:28.160724Z" + "iopub.execute_input": "2024-09-27T13:48:52.345328Z", + "iopub.status.busy": "2024-09-27T13:48:52.344798Z", + "iopub.status.idle": "2024-09-27T13:48:54.885695Z", + "shell.execute_reply": "2024-09-27T13:48:54.885077Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:28.163661Z", - "iopub.status.busy": "2024-09-26T17:02:28.163055Z", - "iopub.status.idle": "2024-09-26T17:02:36.892887Z", - "shell.execute_reply": "2024-09-26T17:02:36.892386Z" + "iopub.execute_input": "2024-09-27T13:48:54.888111Z", + "iopub.status.busy": "2024-09-27T13:48:54.887560Z", + "iopub.status.idle": "2024-09-27T13:49:03.631088Z", + "shell.execute_reply": "2024-09-27T13:49:03.630566Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:36.894869Z", - "iopub.status.busy": "2024-09-26T17:02:36.894502Z", - "iopub.status.idle": "2024-09-26T17:02:37.053891Z", - "shell.execute_reply": "2024-09-26T17:02:37.053318Z" + "iopub.execute_input": "2024-09-27T13:49:03.633038Z", + "iopub.status.busy": "2024-09-27T13:49:03.632663Z", + "iopub.status.idle": "2024-09-27T13:49:03.795547Z", + "shell.execute_reply": "2024-09-27T13:49:03.794905Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:37.055816Z", - "iopub.status.busy": "2024-09-26T17:02:37.055631Z", - "iopub.status.idle": "2024-09-26T17:02:38.527977Z", - "shell.execute_reply": "2024-09-26T17:02:38.527389Z" + "iopub.execute_input": "2024-09-27T13:49:03.797652Z", + "iopub.status.busy": "2024-09-27T13:49:03.797275Z", + "iopub.status.idle": "2024-09-27T13:49:05.326251Z", + "shell.execute_reply": "2024-09-27T13:49:05.325634Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:38.529829Z", - "iopub.status.busy": "2024-09-26T17:02:38.529535Z", - "iopub.status.idle": "2024-09-26T17:02:39.100506Z", - "shell.execute_reply": "2024-09-26T17:02:39.099974Z" + "iopub.execute_input": "2024-09-27T13:49:05.328218Z", + "iopub.status.busy": "2024-09-27T13:49:05.327762Z", + "iopub.status.idle": "2024-09-27T13:49:05.849926Z", + "shell.execute_reply": "2024-09-27T13:49:05.849331Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.102597Z", - "iopub.status.busy": "2024-09-26T17:02:39.102150Z", - "iopub.status.idle": "2024-09-26T17:02:39.116273Z", - "shell.execute_reply": "2024-09-26T17:02:39.115754Z" + "iopub.execute_input": "2024-09-27T13:49:05.852040Z", + "iopub.status.busy": "2024-09-27T13:49:05.851525Z", + "iopub.status.idle": "2024-09-27T13:49:05.866255Z", + "shell.execute_reply": "2024-09-27T13:49:05.865737Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.118338Z", - "iopub.status.busy": "2024-09-26T17:02:39.117938Z", - "iopub.status.idle": "2024-09-26T17:02:39.136893Z", - "shell.execute_reply": "2024-09-26T17:02:39.136335Z" + "iopub.execute_input": "2024-09-27T13:49:05.868138Z", + "iopub.status.busy": "2024-09-27T13:49:05.867678Z", + "iopub.status.idle": "2024-09-27T13:49:05.886264Z", + "shell.execute_reply": "2024-09-27T13:49:05.885683Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.138729Z", - "iopub.status.busy": "2024-09-26T17:02:39.138427Z", - "iopub.status.idle": "2024-09-26T17:02:39.386313Z", - "shell.execute_reply": "2024-09-26T17:02:39.385663Z" + "iopub.execute_input": "2024-09-27T13:49:05.888344Z", + "iopub.status.busy": "2024-09-27T13:49:05.887777Z", + "iopub.status.idle": "2024-09-27T13:49:06.118006Z", + "shell.execute_reply": "2024-09-27T13:49:06.117350Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.388687Z", - "iopub.status.busy": "2024-09-26T17:02:39.388276Z", - "iopub.status.idle": "2024-09-26T17:02:39.407274Z", - "shell.execute_reply": "2024-09-26T17:02:39.406806Z" + "iopub.execute_input": "2024-09-27T13:49:06.120304Z", + "iopub.status.busy": "2024-09-27T13:49:06.119967Z", + "iopub.status.idle": "2024-09-27T13:49:06.139235Z", + "shell.execute_reply": "2024-09-27T13:49:06.138785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.409088Z", - "iopub.status.busy": "2024-09-26T17:02:39.408745Z", - "iopub.status.idle": "2024-09-26T17:02:39.577750Z", - "shell.execute_reply": "2024-09-26T17:02:39.577160Z" + "iopub.execute_input": "2024-09-27T13:49:06.140987Z", + "iopub.status.busy": "2024-09-27T13:49:06.140668Z", + "iopub.status.idle": "2024-09-27T13:49:06.310511Z", + "shell.execute_reply": "2024-09-27T13:49:06.309966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.579768Z", - "iopub.status.busy": "2024-09-26T17:02:39.579483Z", - "iopub.status.idle": "2024-09-26T17:02:39.589520Z", - "shell.execute_reply": "2024-09-26T17:02:39.589043Z" + "iopub.execute_input": "2024-09-27T13:49:06.312450Z", + "iopub.status.busy": "2024-09-27T13:49:06.312126Z", + "iopub.status.idle": "2024-09-27T13:49:06.322584Z", + "shell.execute_reply": "2024-09-27T13:49:06.322028Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.591438Z", - "iopub.status.busy": "2024-09-26T17:02:39.590922Z", - "iopub.status.idle": "2024-09-26T17:02:39.600829Z", - "shell.execute_reply": "2024-09-26T17:02:39.600331Z" + "iopub.execute_input": "2024-09-27T13:49:06.324337Z", + "iopub.status.busy": "2024-09-27T13:49:06.324008Z", + "iopub.status.idle": "2024-09-27T13:49:06.333763Z", + "shell.execute_reply": "2024-09-27T13:49:06.333320Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.602860Z", - "iopub.status.busy": "2024-09-26T17:02:39.602471Z", - "iopub.status.idle": "2024-09-26T17:02:39.629873Z", - "shell.execute_reply": "2024-09-26T17:02:39.629375Z" + "iopub.execute_input": "2024-09-27T13:49:06.335525Z", + "iopub.status.busy": "2024-09-27T13:49:06.335189Z", + "iopub.status.idle": "2024-09-27T13:49:06.362958Z", + "shell.execute_reply": "2024-09-27T13:49:06.362463Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.631810Z", - "iopub.status.busy": "2024-09-26T17:02:39.631461Z", - "iopub.status.idle": "2024-09-26T17:02:39.634313Z", - "shell.execute_reply": "2024-09-26T17:02:39.633858Z" + "iopub.execute_input": "2024-09-27T13:49:06.364868Z", + "iopub.status.busy": "2024-09-27T13:49:06.364520Z", + "iopub.status.idle": "2024-09-27T13:49:06.367266Z", + "shell.execute_reply": "2024-09-27T13:49:06.366815Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.635838Z", - "iopub.status.busy": "2024-09-26T17:02:39.635659Z", - "iopub.status.idle": "2024-09-26T17:02:39.655327Z", - "shell.execute_reply": "2024-09-26T17:02:39.654863Z" + "iopub.execute_input": "2024-09-27T13:49:06.369082Z", + "iopub.status.busy": "2024-09-27T13:49:06.368636Z", + "iopub.status.idle": "2024-09-27T13:49:06.388912Z", + "shell.execute_reply": "2024-09-27T13:49:06.388311Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.657166Z", - "iopub.status.busy": "2024-09-26T17:02:39.656832Z", - "iopub.status.idle": "2024-09-26T17:02:39.661109Z", - "shell.execute_reply": "2024-09-26T17:02:39.660645Z" + "iopub.execute_input": "2024-09-27T13:49:06.390933Z", + "iopub.status.busy": "2024-09-27T13:49:06.390590Z", + "iopub.status.idle": "2024-09-27T13:49:06.395045Z", + "shell.execute_reply": "2024-09-27T13:49:06.394578Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.662859Z", - "iopub.status.busy": "2024-09-26T17:02:39.662510Z", - "iopub.status.idle": "2024-09-26T17:02:39.689643Z", - "shell.execute_reply": "2024-09-26T17:02:39.689166Z" + "iopub.execute_input": "2024-09-27T13:49:06.396786Z", + "iopub.status.busy": "2024-09-27T13:49:06.396435Z", + "iopub.status.idle": "2024-09-27T13:49:06.424718Z", + "shell.execute_reply": "2024-09-27T13:49:06.424137Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.691433Z", - "iopub.status.busy": "2024-09-26T17:02:39.691099Z", - "iopub.status.idle": "2024-09-26T17:02:40.010447Z", - "shell.execute_reply": "2024-09-26T17:02:40.009941Z" + "iopub.execute_input": "2024-09-27T13:49:06.426619Z", + "iopub.status.busy": "2024-09-27T13:49:06.426287Z", + "iopub.status.idle": "2024-09-27T13:49:06.743211Z", + "shell.execute_reply": "2024-09-27T13:49:06.742598Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.012296Z", - "iopub.status.busy": "2024-09-26T17:02:40.011936Z", - "iopub.status.idle": "2024-09-26T17:02:40.015264Z", - "shell.execute_reply": "2024-09-26T17:02:40.014692Z" + "iopub.execute_input": "2024-09-27T13:49:06.745276Z", + "iopub.status.busy": "2024-09-27T13:49:06.744881Z", + "iopub.status.idle": "2024-09-27T13:49:06.748268Z", + "shell.execute_reply": "2024-09-27T13:49:06.747713Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.016986Z", - "iopub.status.busy": "2024-09-26T17:02:40.016665Z", - "iopub.status.idle": "2024-09-26T17:02:40.029777Z", - "shell.execute_reply": "2024-09-26T17:02:40.029286Z" + "iopub.execute_input": "2024-09-27T13:49:06.750100Z", + "iopub.status.busy": "2024-09-27T13:49:06.749661Z", + "iopub.status.idle": "2024-09-27T13:49:06.762637Z", + "shell.execute_reply": "2024-09-27T13:49:06.762172Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.031319Z", - "iopub.status.busy": "2024-09-26T17:02:40.031147Z", - "iopub.status.idle": "2024-09-26T17:02:40.044461Z", - "shell.execute_reply": "2024-09-26T17:02:40.044001Z" + "iopub.execute_input": "2024-09-27T13:49:06.764357Z", + "iopub.status.busy": "2024-09-27T13:49:06.764029Z", + "iopub.status.idle": "2024-09-27T13:49:06.777313Z", + "shell.execute_reply": "2024-09-27T13:49:06.776869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.045959Z", - "iopub.status.busy": "2024-09-26T17:02:40.045789Z", - "iopub.status.idle": "2024-09-26T17:02:40.055654Z", - "shell.execute_reply": "2024-09-26T17:02:40.055208Z" + "iopub.execute_input": "2024-09-27T13:49:06.779116Z", + "iopub.status.busy": "2024-09-27T13:49:06.778790Z", + "iopub.status.idle": "2024-09-27T13:49:06.788739Z", + "shell.execute_reply": "2024-09-27T13:49:06.788301Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.057463Z", - "iopub.status.busy": "2024-09-26T17:02:40.057040Z", - "iopub.status.idle": "2024-09-26T17:02:40.066461Z", - "shell.execute_reply": "2024-09-26T17:02:40.066024Z" + "iopub.execute_input": "2024-09-27T13:49:06.790547Z", + "iopub.status.busy": "2024-09-27T13:49:06.790222Z", + "iopub.status.idle": "2024-09-27T13:49:06.799443Z", + "shell.execute_reply": "2024-09-27T13:49:06.798885Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.068180Z", - "iopub.status.busy": "2024-09-26T17:02:40.067865Z", - "iopub.status.idle": "2024-09-26T17:02:40.071589Z", - "shell.execute_reply": "2024-09-26T17:02:40.071132Z" + "iopub.execute_input": "2024-09-27T13:49:06.801301Z", + "iopub.status.busy": "2024-09-27T13:49:06.800918Z", + "iopub.status.idle": "2024-09-27T13:49:06.804814Z", + "shell.execute_reply": "2024-09-27T13:49:06.804343Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.073193Z", - "iopub.status.busy": "2024-09-26T17:02:40.073018Z", - "iopub.status.idle": "2024-09-26T17:02:40.124206Z", - "shell.execute_reply": "2024-09-26T17:02:40.123615Z" + "iopub.execute_input": "2024-09-27T13:49:06.806422Z", + "iopub.status.busy": "2024-09-27T13:49:06.806251Z", + "iopub.status.idle": "2024-09-27T13:49:06.857449Z", + "shell.execute_reply": "2024-09-27T13:49:06.856916Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.126151Z", - "iopub.status.busy": "2024-09-26T17:02:40.125730Z", - "iopub.status.idle": "2024-09-26T17:02:40.131441Z", - "shell.execute_reply": "2024-09-26T17:02:40.130972Z" + "iopub.execute_input": "2024-09-27T13:49:06.859420Z", + "iopub.status.busy": "2024-09-27T13:49:06.859015Z", + "iopub.status.idle": "2024-09-27T13:49:06.864670Z", + "shell.execute_reply": "2024-09-27T13:49:06.864242Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.133105Z", - "iopub.status.busy": "2024-09-26T17:02:40.132773Z", - "iopub.status.idle": "2024-09-26T17:02:40.143871Z", - "shell.execute_reply": "2024-09-26T17:02:40.143281Z" + "iopub.execute_input": "2024-09-27T13:49:06.866287Z", + "iopub.status.busy": "2024-09-27T13:49:06.866115Z", + "iopub.status.idle": "2024-09-27T13:49:06.876920Z", + "shell.execute_reply": "2024-09-27T13:49:06.876434Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.145630Z", - "iopub.status.busy": "2024-09-26T17:02:40.145214Z", - "iopub.status.idle": "2024-09-26T17:02:40.325382Z", - "shell.execute_reply": "2024-09-26T17:02:40.324770Z" + "iopub.execute_input": "2024-09-27T13:49:06.878558Z", + "iopub.status.busy": "2024-09-27T13:49:06.878380Z", + "iopub.status.idle": "2024-09-27T13:49:07.060650Z", + "shell.execute_reply": "2024-09-27T13:49:07.060030Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.327253Z", - "iopub.status.busy": "2024-09-26T17:02:40.327068Z", - "iopub.status.idle": "2024-09-26T17:02:40.334965Z", - "shell.execute_reply": "2024-09-26T17:02:40.334498Z" + "iopub.execute_input": "2024-09-27T13:49:07.062718Z", + "iopub.status.busy": "2024-09-27T13:49:07.062539Z", + "iopub.status.idle": "2024-09-27T13:49:07.070338Z", + "shell.execute_reply": "2024-09-27T13:49:07.069829Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.336727Z", - "iopub.status.busy": "2024-09-26T17:02:40.336548Z", - "iopub.status.idle": "2024-09-26T17:02:40.688647Z", - "shell.execute_reply": "2024-09-26T17:02:40.687981Z" + "iopub.execute_input": "2024-09-27T13:49:07.072127Z", + "iopub.status.busy": "2024-09-27T13:49:07.071792Z", + "iopub.status.idle": "2024-09-27T13:49:07.476374Z", + "shell.execute_reply": "2024-09-27T13:49:07.475651Z" } }, "outputs": [ @@ -3767,10 +3767,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:02:40-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-27 13:49:07-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", @@ -3785,7 +3792,7 @@ "\r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3808,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.690797Z", - "iopub.status.busy": "2024-09-26T17:02:40.690582Z", - "iopub.status.idle": "2024-09-26T17:02:42.601575Z", - "shell.execute_reply": "2024-09-26T17:02:42.601019Z" + "iopub.execute_input": "2024-09-27T13:49:07.478778Z", + "iopub.status.busy": "2024-09-27T13:49:07.478350Z", + "iopub.status.idle": "2024-09-27T13:49:09.398148Z", + "shell.execute_reply": "2024-09-27T13:49:09.397605Z" } }, "outputs": [], @@ -3850,10 +3857,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:42.603741Z", - "iopub.status.busy": "2024-09-26T17:02:42.603283Z", - "iopub.status.idle": "2024-09-26T17:02:43.250432Z", - "shell.execute_reply": "2024-09-26T17:02:43.249848Z" + "iopub.execute_input": "2024-09-27T13:49:09.400590Z", + "iopub.status.busy": "2024-09-27T13:49:09.400073Z", + "iopub.status.idle": "2024-09-27T13:49:10.030817Z", + "shell.execute_reply": "2024-09-27T13:49:10.030212Z" } }, "outputs": [ @@ -3868,7 +3875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b9834476d6492a83139db43a944e0e", + "model_id": "8e1f9b96233947f6b3a427e71e7dfaeb", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4015,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.252987Z", - "iopub.status.busy": "2024-09-26T17:02:43.252430Z", - "iopub.status.idle": "2024-09-26T17:02:43.265787Z", - "shell.execute_reply": "2024-09-26T17:02:43.265283Z" + "iopub.execute_input": "2024-09-27T13:49:10.033073Z", + "iopub.status.busy": "2024-09-27T13:49:10.032625Z", + "iopub.status.idle": "2024-09-27T13:49:10.046468Z", + "shell.execute_reply": "2024-09-27T13:49:10.045870Z" } }, "outputs": [ @@ -4130,35 +4137,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4167,28 +4174,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4196,18 +4203,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4257,10 +4264,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.267822Z", - "iopub.status.busy": "2024-09-26T17:02:43.267336Z", - "iopub.status.idle": "2024-09-26T17:02:43.416210Z", - "shell.execute_reply": "2024-09-26T17:02:43.415723Z" + "iopub.execute_input": "2024-09-27T13:49:10.049069Z", + "iopub.status.busy": "2024-09-27T13:49:10.048871Z", + "iopub.status.idle": "2024-09-27T13:49:10.200506Z", + "shell.execute_reply": "2024-09-27T13:49:10.199945Z" } }, "outputs": [ @@ -4325,10 +4332,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.417926Z", - "iopub.status.busy": "2024-09-26T17:02:43.417762Z", - "iopub.status.idle": "2024-09-26T17:02:43.921803Z", - "shell.execute_reply": "2024-09-26T17:02:43.921142Z" + "iopub.execute_input": "2024-09-27T13:49:10.202250Z", + "iopub.status.busy": "2024-09-27T13:49:10.202069Z", + "iopub.status.idle": "2024-09-27T13:49:10.721292Z", + "shell.execute_reply": "2024-09-27T13:49:10.720636Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3c15ea55fcb40aabc8074ab6ffea568", + "model_id": "26b36add52da4112a035f44e319d71b1", "version_major": 2, "version_minor": 0 }, @@ -4473,35 +4480,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4510,28 +4517,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4539,18 +4546,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4598,10 +4605,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.923933Z", - "iopub.status.busy": "2024-09-26T17:02:43.923568Z", - "iopub.status.idle": "2024-09-26T17:02:44.073210Z", - "shell.execute_reply": "2024-09-26T17:02:44.072669Z" + "iopub.execute_input": "2024-09-27T13:49:10.723313Z", + "iopub.status.busy": "2024-09-27T13:49:10.723116Z", + "iopub.status.idle": "2024-09-27T13:49:10.876739Z", + "shell.execute_reply": "2024-09-27T13:49:10.876250Z" }, "nbsphinx": "hidden" }, @@ -4653,49 +4660,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e740c2d1ad4ce5a790babbad1a7a44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d45b3340a2f45e894572fdb7227cad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b82154b9b89449ccb7991242504f019f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e740c2d1ad4ce5a790babbad1a7a44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "17637fd97d794f1484b8d827f4b7071d": { + "00f543c6d4fe4b9c87127e99d81bcb56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4713,7 +4678,7 @@ "text_color": null } }, - "3ad50386530f49c8a766d426ae0cff17": { + "15322e1f9fc841ec94366898b88e7974": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,48 +4731,31 @@ "width": null } }, - "4087b33fc2d24559b56ed69ce9b4cfcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "478f35d4014e419785fc626f1903c45b": { + "26b36add52da4112a035f44e319d71b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffb786b50a824c8d894769a9444ff34f", - "placeholder": "​", - "style": "IPY_MODEL_b2d9cc6ea5c04ef09b2141a3e151c3ad", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91c583132bd64a11ad21964364c042e5", + "IPY_MODEL_93b05aaa0ef5484fb99187905101ecf7", + "IPY_MODEL_92cb9c1d41d14d5f8a158ce007f825e3" + ], + "layout": "IPY_MODEL_afa25d583ad94d24825c08705279088b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "585be98b5f9a4ab7aa67a879906fa19a": { + "2bd019eae91047bab06ebcae4fdcc656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4825,7 +4773,7 @@ "text_color": null } }, - "625a7d4fc79f41f2a0247635be08467c": { + "2fdd00670d4b4d7f8a4fb924330db3f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4878,30 +4826,23 @@ "width": null } }, - "7c043d610e054733bf00e10d52a14072": { + "30848fed2eae4492a503a37c674a72d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1539ff4c8ef473783f55dba9ebdd6be", - "placeholder": "​", - "style": "IPY_MODEL_585be98b5f9a4ab7aa67a879906fa19a", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 707.69it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a65f2f21a79245a7b40c9fd256031840": { + "586568b828a144edbc73b4c68db32154": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,31 +4895,30 @@ "width": null } }, - "b2b9834476d6492a83139db43a944e0e": { + "5ebba9b71afa4a7fa599d36b29f98e58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d981f6091a084df4b39cd8fc9990f867", - "IPY_MODEL_0d45b3340a2f45e894572fdb7227cad6", - "IPY_MODEL_fb31467058e741cb9eae03eb807fb42c" - ], - "layout": "IPY_MODEL_b6cad30966d74ceda8da8dad5c36175a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fdd00670d4b4d7f8a4fb924330db3f3", + "placeholder": "​", + "style": "IPY_MODEL_f1f181a3a0a14127bb356925adebd4da", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 798.61it/s]" } }, - "b2d9cc6ea5c04ef09b2141a3e151c3ad": { + "87522669ac8140519e1c560f30fd9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4996,7 +4936,54 @@ "text_color": null } }, - "b6cad30966d74ceda8da8dad5c36175a": { + "8e1f9b96233947f6b3a427e71e7dfaeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eca917ff8b294f91b70d3a766dce356b", + "IPY_MODEL_e72487e7516a4e3cb1d6ae5235dd6b91", + "IPY_MODEL_5ebba9b71afa4a7fa599d36b29f98e58" + ], + "layout": "IPY_MODEL_925ca2cf3c4b4f299c37d44bb4ee4fa9", + "tabbable": null, + "tooltip": null + } + }, + "91c583132bd64a11ad21964364c042e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8bcd20c9e8d4e298260f7cedb8c6862", + "placeholder": "​", + "style": "IPY_MODEL_2bd019eae91047bab06ebcae4fdcc656", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "925ca2cf3c4b4f299c37d44bb4ee4fa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,7 +5036,7 @@ "width": null } }, - "b82154b9b89449ccb7991242504f019f": { + "9261380574e74d7b930f02999b245f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,54 +5089,72 @@ "width": null } }, - "d3c15ea55fcb40aabc8074ab6ffea568": { + "92cb9c1d41d14d5f8a158ce007f825e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_478f35d4014e419785fc626f1903c45b", - "IPY_MODEL_f8bcd49b06674d8295365b9e5701de5e", - "IPY_MODEL_7c043d610e054733bf00e10d52a14072" - ], - "layout": "IPY_MODEL_3ad50386530f49c8a766d426ae0cff17", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9261380574e74d7b930f02999b245f81", + "placeholder": "​", + "style": "IPY_MODEL_00f543c6d4fe4b9c87127e99d81bcb56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 693.55it/s]" } }, - "d981f6091a084df4b39cd8fc9990f867": { + "93b05aaa0ef5484fb99187905101ecf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_625a7d4fc79f41f2a0247635be08467c", - "placeholder": "​", - "style": "IPY_MODEL_4087b33fc2d24559b56ed69ce9b4cfcf", + "layout": "IPY_MODEL_b9ddd6efa82d4d39bae57e7099340a78", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aebc4648fbf64400a539523e1dc4ce7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "ddb2a771afd34214b4936ae6ca4b8d91": { + "aebc4648fbf64400a539523e1dc4ce7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "afa25d583ad94d24825c08705279088b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5202,23 +5207,7 @@ "width": null } }, - "e6b72ea07d9a475f8269916a0267f20e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f1539ff4c8ef473783f55dba9ebdd6be": { + "b9ddd6efa82d4d39bae57e7099340a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5271,7 +5260,7 @@ "width": null } }, - "f8bcd49b06674d8295365b9e5701de5e": { + "e72487e7516a4e3cb1d6ae5235dd6b91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5287,40 +5276,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddb2a771afd34214b4936ae6ca4b8d91", + "layout": "IPY_MODEL_586568b828a144edbc73b4c68db32154", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e6b72ea07d9a475f8269916a0267f20e", + "style": "IPY_MODEL_30848fed2eae4492a503a37c674a72d6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "fb31467058e741cb9eae03eb807fb42c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a65f2f21a79245a7b40c9fd256031840", - "placeholder": "​", - "style": "IPY_MODEL_17637fd97d794f1484b8d827f4b7071d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 718.33it/s]" - } - }, - "ffb786b50a824c8d894769a9444ff34f": { + "e8bcd20c9e8d4e298260f7cedb8c6862": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5372,6 +5338,47 @@ "visibility": null, "width": null } + }, + "eca917ff8b294f91b70d3a766dce356b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15322e1f9fc841ec94366898b88e7974", + "placeholder": "​", + "style": "IPY_MODEL_87522669ac8140519e1c560f30fd9dca", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f1f181a3a0a14127bb356925adebd4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 0f1a9673c..7a4a275e8 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:48.026780Z", - "iopub.status.busy": "2024-09-26T17:02:48.026603Z", - "iopub.status.idle": "2024-09-26T17:02:49.199322Z", - "shell.execute_reply": "2024-09-26T17:02:49.198698Z" + "iopub.execute_input": "2024-09-27T13:49:14.981020Z", + "iopub.status.busy": "2024-09-27T13:49:14.980618Z", + "iopub.status.idle": "2024-09-27T13:49:16.174240Z", + "shell.execute_reply": "2024-09-27T13:49:16.173656Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.201404Z", - "iopub.status.busy": "2024-09-26T17:02:49.201072Z", - "iopub.status.idle": "2024-09-26T17:02:49.204495Z", - "shell.execute_reply": "2024-09-26T17:02:49.203935Z" + "iopub.execute_input": "2024-09-27T13:49:16.176497Z", + "iopub.status.busy": "2024-09-27T13:49:16.176040Z", + "iopub.status.idle": "2024-09-27T13:49:16.178778Z", + "shell.execute_reply": "2024-09-27T13:49:16.178331Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.206494Z", - "iopub.status.busy": "2024-09-26T17:02:49.206146Z", - "iopub.status.idle": "2024-09-26T17:02:49.218110Z", - "shell.execute_reply": "2024-09-26T17:02:49.217517Z" + "iopub.execute_input": "2024-09-27T13:49:16.180625Z", + "iopub.status.busy": "2024-09-27T13:49:16.180310Z", + "iopub.status.idle": "2024-09-27T13:49:16.192112Z", + "shell.execute_reply": "2024-09-27T13:49:16.191578Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.219988Z", - "iopub.status.busy": "2024-09-26T17:02:49.219651Z", - "iopub.status.idle": "2024-09-26T17:02:54.126698Z", - "shell.execute_reply": "2024-09-26T17:02:54.126225Z" + "iopub.execute_input": "2024-09-27T13:49:16.193883Z", + "iopub.status.busy": "2024-09-27T13:49:16.193570Z", + "iopub.status.idle": "2024-09-27T13:49:21.858596Z", + "shell.execute_reply": "2024-09-27T13:49:21.858120Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index edab415e1..5566fbc6f 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:56.360615Z", - "iopub.status.busy": "2024-09-26T17:02:56.360206Z", - "iopub.status.idle": "2024-09-26T17:02:57.593148Z", - "shell.execute_reply": "2024-09-26T17:02:57.592592Z" + "iopub.execute_input": "2024-09-27T13:49:24.275648Z", + "iopub.status.busy": "2024-09-27T13:49:24.275473Z", + "iopub.status.idle": "2024-09-27T13:49:25.502999Z", + "shell.execute_reply": "2024-09-27T13:49:25.502358Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.595634Z", - "iopub.status.busy": "2024-09-26T17:02:57.595168Z", - "iopub.status.idle": "2024-09-26T17:02:57.598583Z", - "shell.execute_reply": "2024-09-26T17:02:57.598123Z" + "iopub.execute_input": "2024-09-27T13:49:25.505303Z", + "iopub.status.busy": "2024-09-27T13:49:25.505015Z", + "iopub.status.idle": "2024-09-27T13:49:25.508248Z", + "shell.execute_reply": "2024-09-27T13:49:25.507786Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.600444Z", - "iopub.status.busy": "2024-09-26T17:02:57.600102Z", - "iopub.status.idle": "2024-09-26T17:03:00.936555Z", - "shell.execute_reply": "2024-09-26T17:03:00.935769Z" + "iopub.execute_input": "2024-09-27T13:49:25.509903Z", + "iopub.status.busy": "2024-09-27T13:49:25.509725Z", + "iopub.status.idle": "2024-09-27T13:49:28.910277Z", + "shell.execute_reply": "2024-09-27T13:49:28.909577Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.939323Z", - "iopub.status.busy": "2024-09-26T17:03:00.938653Z", - "iopub.status.idle": "2024-09-26T17:03:00.983835Z", - "shell.execute_reply": "2024-09-26T17:03:00.983085Z" + "iopub.execute_input": "2024-09-27T13:49:28.913026Z", + "iopub.status.busy": "2024-09-27T13:49:28.912182Z", + "iopub.status.idle": "2024-09-27T13:49:28.961330Z", + "shell.execute_reply": "2024-09-27T13:49:28.960694Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.985981Z", - "iopub.status.busy": "2024-09-26T17:03:00.985722Z", - "iopub.status.idle": "2024-09-26T17:03:01.026561Z", - "shell.execute_reply": "2024-09-26T17:03:01.025789Z" + "iopub.execute_input": "2024-09-27T13:49:28.963581Z", + "iopub.status.busy": "2024-09-27T13:49:28.963253Z", + "iopub.status.idle": "2024-09-27T13:49:29.011303Z", + "shell.execute_reply": "2024-09-27T13:49:29.010628Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.028998Z", - "iopub.status.busy": "2024-09-26T17:03:01.028581Z", - "iopub.status.idle": "2024-09-26T17:03:01.031727Z", - "shell.execute_reply": "2024-09-26T17:03:01.031258Z" + "iopub.execute_input": "2024-09-27T13:49:29.013523Z", + "iopub.status.busy": "2024-09-27T13:49:29.013179Z", + "iopub.status.idle": "2024-09-27T13:49:29.016591Z", + "shell.execute_reply": "2024-09-27T13:49:29.016042Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.033482Z", - "iopub.status.busy": "2024-09-26T17:03:01.033113Z", - "iopub.status.idle": "2024-09-26T17:03:01.035872Z", - "shell.execute_reply": "2024-09-26T17:03:01.035414Z" + "iopub.execute_input": "2024-09-27T13:49:29.018358Z", + "iopub.status.busy": "2024-09-27T13:49:29.018018Z", + "iopub.status.idle": "2024-09-27T13:49:29.020804Z", + "shell.execute_reply": "2024-09-27T13:49:29.020221Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.037562Z", - "iopub.status.busy": "2024-09-26T17:03:01.037369Z", - "iopub.status.idle": "2024-09-26T17:03:01.061451Z", - "shell.execute_reply": "2024-09-26T17:03:01.060849Z" + "iopub.execute_input": "2024-09-27T13:49:29.022876Z", + "iopub.status.busy": "2024-09-27T13:49:29.022566Z", + "iopub.status.idle": "2024-09-27T13:49:29.047765Z", + "shell.execute_reply": "2024-09-27T13:49:29.047140Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7633e799bda141e28661514bf3a1704c", + "model_id": "8da4bd0f9f64487483493ffdb6f429e8", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d55f75476cc642e590dfea2b8badf09b", + "model_id": "4fc6a038626e4490a9d76f3f9359ae82", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.063656Z", - "iopub.status.busy": "2024-09-26T17:03:01.063472Z", - "iopub.status.idle": "2024-09-26T17:03:01.070092Z", - "shell.execute_reply": "2024-09-26T17:03:01.069533Z" + "iopub.execute_input": "2024-09-27T13:49:29.050320Z", + "iopub.status.busy": "2024-09-27T13:49:29.050093Z", + "iopub.status.idle": "2024-09-27T13:49:29.057387Z", + "shell.execute_reply": "2024-09-27T13:49:29.056903Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.071690Z", - "iopub.status.busy": "2024-09-26T17:03:01.071525Z", - "iopub.status.idle": "2024-09-26T17:03:01.074898Z", - "shell.execute_reply": "2024-09-26T17:03:01.074458Z" + "iopub.execute_input": "2024-09-27T13:49:29.059162Z", + "iopub.status.busy": "2024-09-27T13:49:29.058979Z", + "iopub.status.idle": "2024-09-27T13:49:29.062842Z", + "shell.execute_reply": "2024-09-27T13:49:29.062400Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.076464Z", - "iopub.status.busy": "2024-09-26T17:03:01.076289Z", - "iopub.status.idle": "2024-09-26T17:03:01.082573Z", - "shell.execute_reply": "2024-09-26T17:03:01.082136Z" + "iopub.execute_input": "2024-09-27T13:49:29.064535Z", + "iopub.status.busy": "2024-09-27T13:49:29.064203Z", + "iopub.status.idle": "2024-09-27T13:49:29.070891Z", + "shell.execute_reply": "2024-09-27T13:49:29.070295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.084058Z", - "iopub.status.busy": "2024-09-26T17:03:01.083885Z", - "iopub.status.idle": "2024-09-26T17:03:01.129493Z", - "shell.execute_reply": "2024-09-26T17:03:01.128813Z" + "iopub.execute_input": "2024-09-27T13:49:29.072733Z", + "iopub.status.busy": "2024-09-27T13:49:29.072387Z", + "iopub.status.idle": "2024-09-27T13:49:29.118212Z", + "shell.execute_reply": "2024-09-27T13:49:29.117539Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.131673Z", - "iopub.status.busy": "2024-09-26T17:03:01.131282Z", - "iopub.status.idle": "2024-09-26T17:03:01.174982Z", - "shell.execute_reply": "2024-09-26T17:03:01.174379Z" + "iopub.execute_input": "2024-09-27T13:49:29.120347Z", + "iopub.status.busy": "2024-09-27T13:49:29.119989Z", + "iopub.status.idle": "2024-09-27T13:49:29.166190Z", + "shell.execute_reply": "2024-09-27T13:49:29.165389Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.177397Z", - "iopub.status.busy": "2024-09-26T17:03:01.176899Z", - "iopub.status.idle": "2024-09-26T17:03:01.309798Z", - "shell.execute_reply": "2024-09-26T17:03:01.309219Z" + "iopub.execute_input": "2024-09-27T13:49:29.168576Z", + "iopub.status.busy": "2024-09-27T13:49:29.168187Z", + "iopub.status.idle": "2024-09-27T13:49:29.304197Z", + "shell.execute_reply": "2024-09-27T13:49:29.303502Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.312323Z", - "iopub.status.busy": "2024-09-26T17:03:01.311542Z", - "iopub.status.idle": "2024-09-26T17:03:04.449275Z", - "shell.execute_reply": "2024-09-26T17:03:04.448739Z" + "iopub.execute_input": "2024-09-27T13:49:29.306632Z", + "iopub.status.busy": "2024-09-27T13:49:29.305854Z", + "iopub.status.idle": "2024-09-27T13:49:32.396057Z", + "shell.execute_reply": "2024-09-27T13:49:32.395396Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.451450Z", - "iopub.status.busy": "2024-09-26T17:03:04.451054Z", - "iopub.status.idle": "2024-09-26T17:03:04.509327Z", - "shell.execute_reply": "2024-09-26T17:03:04.508783Z" + "iopub.execute_input": "2024-09-27T13:49:32.398059Z", + "iopub.status.busy": "2024-09-27T13:49:32.397754Z", + "iopub.status.idle": "2024-09-27T13:49:32.455992Z", + "shell.execute_reply": "2024-09-27T13:49:32.455418Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.511187Z", - "iopub.status.busy": "2024-09-26T17:03:04.510686Z", - "iopub.status.idle": "2024-09-26T17:03:04.551738Z", - "shell.execute_reply": "2024-09-26T17:03:04.551149Z" + "iopub.execute_input": "2024-09-27T13:49:32.457640Z", + "iopub.status.busy": "2024-09-27T13:49:32.457454Z", + "iopub.status.idle": "2024-09-27T13:49:32.498172Z", + "shell.execute_reply": "2024-09-27T13:49:32.497565Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "185ea250", + "id": "110863a4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "c50f3d96", + "id": "65add30a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "84fafb96", + "id": "bf7fb938", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "eed28ebf", + "id": "14dba376", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.553540Z", - "iopub.status.busy": "2024-09-26T17:03:04.553194Z", - "iopub.status.idle": "2024-09-26T17:03:04.560950Z", - "shell.execute_reply": "2024-09-26T17:03:04.560391Z" + "iopub.execute_input": "2024-09-27T13:49:32.500172Z", + "iopub.status.busy": "2024-09-27T13:49:32.499847Z", + "iopub.status.idle": "2024-09-27T13:49:32.507587Z", + "shell.execute_reply": "2024-09-27T13:49:32.507101Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "b5e76c72", + "id": "a88e3681", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "187a70e9", + "id": "044361a4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.562840Z", - "iopub.status.busy": "2024-09-26T17:03:04.562495Z", - "iopub.status.idle": "2024-09-26T17:03:04.581313Z", - "shell.execute_reply": "2024-09-26T17:03:04.580823Z" + "iopub.execute_input": "2024-09-27T13:49:32.509236Z", + "iopub.status.busy": "2024-09-27T13:49:32.509060Z", + "iopub.status.idle": "2024-09-27T13:49:32.529248Z", + "shell.execute_reply": "2024-09-27T13:49:32.528751Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4f59575", + "id": "c93a5fc5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.582943Z", - "iopub.status.busy": "2024-09-26T17:03:04.582603Z", - "iopub.status.idle": "2024-09-26T17:03:04.585954Z", - "shell.execute_reply": "2024-09-26T17:03:04.585510Z" + "iopub.execute_input": "2024-09-27T13:49:32.531186Z", + "iopub.status.busy": "2024-09-27T13:49:32.530847Z", + "iopub.status.idle": "2024-09-27T13:49:32.533889Z", + "shell.execute_reply": "2024-09-27T13:49:32.533450Z" } }, "outputs": [ @@ -1622,33 +1622,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027b49213cf14d6f9cae1c522d69a94d": { + "1c1f69ce05ca41e2ab42ccc79d49b185": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c77305186841c8990219341fe2c985", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1f946f65a3064858bdc4d0b84b3e37fe", + "layout": "IPY_MODEL_89502115592c4197b735017806292967", + "placeholder": "​", + "style": "IPY_MODEL_67e9d04cd96c445c8005acfc36ae7e29", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "16c77305186841c8990219341fe2c985": { + "1e9e281acb8f4c05a040cc2f0d19a987": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,23 +1698,25 @@ "width": null } }, - "1f946f65a3064858bdc4d0b84b3e37fe": { + "32cebcf584a04d9794e7cd675f1cf965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fbb7a81a12049598efe0429bad742f5": { + "363e09fca0754055b1fb0a23c154fbad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,43 +1769,70 @@ "width": null } }, - "20a93723642e4c60a25be8cddfa5f862": { + "4fc6a038626e4490a9d76f3f9359ae82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fcba4714fba74b85af11a93938110f06", + "IPY_MODEL_7b414d5e5d744644b8330103365ce506", + "IPY_MODEL_519bf913af144fcea3d83180f3ae1150" + ], + "layout": "IPY_MODEL_6ab1ba108939480bbd60600a002b25cb", + "tabbable": null, + "tooltip": null } }, - "249e12cb3e404e84b62ee17c2a8ee91c": { + "519bf913af144fcea3d83180f3ae1150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3acab4d72dd4ada9a7b5d09d252f1e6", + "placeholder": "​", + "style": "IPY_MODEL_32cebcf584a04d9794e7cd675f1cf965", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1569019.90it/s]" + } + }, + "537971263b13437cbc2e8d270657a96f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "26fc21435c414965bb4fad79b3f9d46a": { + "5b46bacaa39b448a83cdc1b8b3090aa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1859,30 +1885,7 @@ "width": null } }, - "297ab574c00643e48ce44ee6cc78961f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecfe75f6dedb497a8ae75da5827d89f9", - "placeholder": "​", - "style": "IPY_MODEL_20a93723642e4c60a25be8cddfa5f862", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "35b7e773a8644fc9bbe62ca8dc8f77c8": { + "67e9d04cd96c445c8005acfc36ae7e29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1900,7 +1903,7 @@ "text_color": null } }, - "5e634c9387184fc2987a0af6f800548a": { + "6ab1ba108939480bbd60600a002b25cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,103 +1956,92 @@ "width": null } }, - "6cc76bea445c41c493f3b2acd04406b4": { + "6bdc1c15df354d60806f9f8b743a5127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26fc21435c414965bb4fad79b3f9d46a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a8633f13ed4ba4a549b9eb5d299249", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7633e799bda141e28661514bf3a1704c": { + "74618b1ea3a14f318fd439352bd763f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_297ab574c00643e48ce44ee6cc78961f", - "IPY_MODEL_027b49213cf14d6f9cae1c522d69a94d", - "IPY_MODEL_932461911f37410c90d83477c498bda7" - ], - "layout": "IPY_MODEL_bd01f47230b04888942468812505fd19", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e9e281acb8f4c05a040cc2f0d19a987", + "placeholder": "​", + "style": "IPY_MODEL_88c6b62022f342478878c9f95dc5d0ac", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 995184.36it/s]" } }, - "932461911f37410c90d83477c498bda7": { + "7b414d5e5d744644b8330103365ce506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b595c73dc553457cbb4ce82e7819ebb5", - "placeholder": "​", - "style": "IPY_MODEL_35b7e773a8644fc9bbe62ca8dc8f77c8", + "layout": "IPY_MODEL_8f5c14af127b4dfa80a803f558c65990", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_537971263b13437cbc2e8d270657a96f", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1033563.49it/s]" + "value": 50.0 } }, - "a6f5f93e1e074668b651f896ea64b8cf": { + "88c6b62022f342478878c9f95dc5d0ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e634c9387184fc2987a0af6f800548a", - "placeholder": "​", - "style": "IPY_MODEL_f4d800ccc5cd4a60b3671bb890b23752", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539081.17it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b595c73dc553457cbb4ce82e7819ebb5": { + "89502115592c4197b735017806292967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2102,7 +2094,7 @@ "width": null } }, - "b9a8633f13ed4ba4a549b9eb5d299249": { + "8c4164034e9c40f29c2793fa40f5b09a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2118,7 +2110,31 @@ "description_width": "" } }, - "baffbefc025a453aa10961ae95b22fdb": { + "8da4bd0f9f64487483493ffdb6f429e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c1f69ce05ca41e2ab42ccc79d49b185", + "IPY_MODEL_f17397c213f443d9bd7fe0a113c23c83", + "IPY_MODEL_74618b1ea3a14f318fd439352bd763f8" + ], + "layout": "IPY_MODEL_e395efb2609a4c51ad8b5843bef284fd", + "tabbable": null, + "tooltip": null + } + }, + "8f5c14af127b4dfa80a803f558c65990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2171,7 +2187,7 @@ "width": null } }, - "bd01f47230b04888942468812505fd19": { + "c3acab4d72dd4ada9a7b5d09d252f1e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,54 +2240,7 @@ "width": null } }, - "d55f75476cc642e590dfea2b8badf09b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6bdfa8ac0f24d1e92a159e2eae5f82e", - "IPY_MODEL_6cc76bea445c41c493f3b2acd04406b4", - "IPY_MODEL_a6f5f93e1e074668b651f896ea64b8cf" - ], - "layout": "IPY_MODEL_1fbb7a81a12049598efe0429bad742f5", - "tabbable": null, - "tooltip": null - } - }, - "e6bdfa8ac0f24d1e92a159e2eae5f82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baffbefc025a453aa10961ae95b22fdb", - "placeholder": "​", - "style": "IPY_MODEL_249e12cb3e404e84b62ee17c2a8ee91c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ecfe75f6dedb497a8ae75da5827d89f9": { + "e395efb2609a4c51ad8b5843bef284fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2293,53 @@ "width": null } }, - "f4d800ccc5cd4a60b3671bb890b23752": { + "f17397c213f443d9bd7fe0a113c23c83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5b46bacaa39b448a83cdc1b8b3090aa0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c4164034e9c40f29c2793fa40f5b09a", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "fcba4714fba74b85af11a93938110f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_363e09fca0754055b1fb0a23c154fbad", + "placeholder": "​", + "style": "IPY_MODEL_6bdc1c15df354d60806f9f8b743a5127", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index ade9796c5..cc4cd8fd6 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:07.887828Z", - "iopub.status.busy": "2024-09-26T17:03:07.887658Z", - "iopub.status.idle": "2024-09-26T17:03:09.081593Z", - "shell.execute_reply": "2024-09-26T17:03:09.080934Z" + "iopub.execute_input": "2024-09-27T13:49:36.063407Z", + "iopub.status.busy": "2024-09-27T13:49:36.062942Z", + "iopub.status.idle": "2024-09-27T13:49:37.284451Z", + "shell.execute_reply": "2024-09-27T13:49:37.283796Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.083776Z", - "iopub.status.busy": "2024-09-26T17:03:09.083483Z", - "iopub.status.idle": "2024-09-26T17:03:09.087386Z", - "shell.execute_reply": "2024-09-26T17:03:09.086916Z" + "iopub.execute_input": "2024-09-27T13:49:37.286562Z", + "iopub.status.busy": "2024-09-27T13:49:37.286237Z", + "iopub.status.idle": "2024-09-27T13:49:37.290149Z", + "shell.execute_reply": "2024-09-27T13:49:37.289659Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.089162Z", - "iopub.status.busy": "2024-09-26T17:03:09.088717Z", - "iopub.status.idle": "2024-09-26T17:03:09.465002Z", - "shell.execute_reply": "2024-09-26T17:03:09.464428Z" + "iopub.execute_input": "2024-09-27T13:49:37.291825Z", + "iopub.status.busy": "2024-09-27T13:49:37.291654Z", + "iopub.status.idle": "2024-09-27T13:49:37.556624Z", + "shell.execute_reply": "2024-09-27T13:49:37.555994Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.466895Z", - "iopub.status.busy": "2024-09-26T17:03:09.466533Z", - "iopub.status.idle": "2024-09-26T17:03:09.473520Z", - "shell.execute_reply": "2024-09-26T17:03:09.473021Z" + "iopub.execute_input": "2024-09-27T13:49:37.558867Z", + "iopub.status.busy": "2024-09-27T13:49:37.558381Z", + "iopub.status.idle": "2024-09-27T13:49:37.565980Z", + "shell.execute_reply": "2024-09-27T13:49:37.565444Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.475071Z", - "iopub.status.busy": "2024-09-26T17:03:09.474893Z", - "iopub.status.idle": "2024-09-26T17:03:09.482105Z", - "shell.execute_reply": "2024-09-26T17:03:09.481672Z" + "iopub.execute_input": "2024-09-27T13:49:37.567912Z", + "iopub.status.busy": "2024-09-27T13:49:37.567548Z", + "iopub.status.idle": "2024-09-27T13:49:37.574676Z", + "shell.execute_reply": "2024-09-27T13:49:37.574217Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.483732Z", - "iopub.status.busy": "2024-09-26T17:03:09.483451Z", - "iopub.status.idle": "2024-09-26T17:03:09.488341Z", - "shell.execute_reply": "2024-09-26T17:03:09.487750Z" + "iopub.execute_input": "2024-09-27T13:49:37.576306Z", + "iopub.status.busy": "2024-09-27T13:49:37.576128Z", + "iopub.status.idle": "2024-09-27T13:49:37.580836Z", + "shell.execute_reply": "2024-09-27T13:49:37.580383Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.490181Z", - "iopub.status.busy": "2024-09-26T17:03:09.489852Z", - "iopub.status.idle": "2024-09-26T17:03:09.495449Z", - "shell.execute_reply": "2024-09-26T17:03:09.494981Z" + "iopub.execute_input": "2024-09-27T13:49:37.582420Z", + "iopub.status.busy": "2024-09-27T13:49:37.582243Z", + "iopub.status.idle": "2024-09-27T13:49:37.589097Z", + "shell.execute_reply": "2024-09-27T13:49:37.588424Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.497149Z", - "iopub.status.busy": "2024-09-26T17:03:09.496808Z", - "iopub.status.idle": "2024-09-26T17:03:09.500629Z", - "shell.execute_reply": "2024-09-26T17:03:09.500187Z" + "iopub.execute_input": "2024-09-27T13:49:37.591160Z", + "iopub.status.busy": "2024-09-27T13:49:37.590660Z", + "iopub.status.idle": "2024-09-27T13:49:37.594897Z", + "shell.execute_reply": "2024-09-27T13:49:37.594465Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.502161Z", - "iopub.status.busy": "2024-09-26T17:03:09.501984Z", - "iopub.status.idle": "2024-09-26T17:03:09.567841Z", - "shell.execute_reply": "2024-09-26T17:03:09.567143Z" + "iopub.execute_input": "2024-09-27T13:49:37.596387Z", + "iopub.status.busy": "2024-09-27T13:49:37.596214Z", + "iopub.status.idle": "2024-09-27T13:49:37.663767Z", + "shell.execute_reply": "2024-09-27T13:49:37.663142Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.570224Z", - "iopub.status.busy": "2024-09-26T17:03:09.569621Z", - "iopub.status.idle": "2024-09-26T17:03:09.580875Z", - "shell.execute_reply": "2024-09-26T17:03:09.580332Z" + "iopub.execute_input": "2024-09-27T13:49:37.665990Z", + "iopub.status.busy": "2024-09-27T13:49:37.665506Z", + "iopub.status.idle": "2024-09-27T13:49:37.676792Z", + "shell.execute_reply": "2024-09-27T13:49:37.676215Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.582934Z", - "iopub.status.busy": "2024-09-26T17:03:09.582524Z", - "iopub.status.idle": "2024-09-26T17:03:09.602617Z", - "shell.execute_reply": "2024-09-26T17:03:09.602091Z" + "iopub.execute_input": "2024-09-27T13:49:37.679527Z", + "iopub.status.busy": "2024-09-27T13:49:37.678642Z", + "iopub.status.idle": "2024-09-27T13:49:37.700788Z", + "shell.execute_reply": "2024-09-27T13:49:37.700250Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.604629Z", - "iopub.status.busy": "2024-09-26T17:03:09.604227Z", - "iopub.status.idle": "2024-09-26T17:03:09.608565Z", - "shell.execute_reply": "2024-09-26T17:03:09.608048Z" + "iopub.execute_input": "2024-09-27T13:49:37.703850Z", + "iopub.status.busy": "2024-09-27T13:49:37.703099Z", + "iopub.status.idle": "2024-09-27T13:49:37.708579Z", + "shell.execute_reply": "2024-09-27T13:49:37.708087Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.611201Z", - "iopub.status.busy": "2024-09-26T17:03:09.610448Z", - "iopub.status.idle": "2024-09-26T17:03:09.616047Z", - "shell.execute_reply": "2024-09-26T17:03:09.615544Z" + "iopub.execute_input": "2024-09-27T13:49:37.711439Z", + "iopub.status.busy": "2024-09-27T13:49:37.710701Z", + "iopub.status.idle": "2024-09-27T13:49:37.716299Z", + "shell.execute_reply": "2024-09-27T13:49:37.715801Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.618936Z", - "iopub.status.busy": "2024-09-26T17:03:09.618195Z", - "iopub.status.idle": "2024-09-26T17:03:09.629920Z", - "shell.execute_reply": "2024-09-26T17:03:09.629486Z" + "iopub.execute_input": "2024-09-27T13:49:37.719140Z", + "iopub.status.busy": "2024-09-27T13:49:37.718400Z", + "iopub.status.idle": "2024-09-27T13:49:37.728871Z", + "shell.execute_reply": "2024-09-27T13:49:37.728441Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.631452Z", - "iopub.status.busy": "2024-09-26T17:03:09.631282Z", - "iopub.status.idle": "2024-09-26T17:03:09.635503Z", - "shell.execute_reply": "2024-09-26T17:03:09.635082Z" + "iopub.execute_input": "2024-09-27T13:49:37.730868Z", + "iopub.status.busy": "2024-09-27T13:49:37.730485Z", + "iopub.status.idle": "2024-09-27T13:49:37.735531Z", + "shell.execute_reply": "2024-09-27T13:49:37.734968Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.637074Z", - "iopub.status.busy": "2024-09-26T17:03:09.636920Z", - "iopub.status.idle": "2024-09-26T17:03:09.751705Z", - "shell.execute_reply": "2024-09-26T17:03:09.751197Z" + "iopub.execute_input": "2024-09-27T13:49:37.737395Z", + "iopub.status.busy": "2024-09-27T13:49:37.737079Z", + "iopub.status.idle": "2024-09-27T13:49:37.860657Z", + "shell.execute_reply": "2024-09-27T13:49:37.860138Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.753780Z", - "iopub.status.busy": "2024-09-26T17:03:09.753473Z", - "iopub.status.idle": "2024-09-26T17:03:09.763869Z", - "shell.execute_reply": "2024-09-26T17:03:09.763379Z" + "iopub.execute_input": "2024-09-27T13:49:37.862530Z", + "iopub.status.busy": "2024-09-27T13:49:37.862209Z", + "iopub.status.idle": "2024-09-27T13:49:37.868653Z", + "shell.execute_reply": "2024-09-27T13:49:37.868170Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.765757Z", - "iopub.status.busy": "2024-09-26T17:03:09.765399Z", - "iopub.status.idle": "2024-09-26T17:03:11.745053Z", - "shell.execute_reply": "2024-09-26T17:03:11.744416Z" + "iopub.execute_input": "2024-09-27T13:49:37.871135Z", + "iopub.status.busy": "2024-09-27T13:49:37.870425Z", + "iopub.status.idle": "2024-09-27T13:49:39.894594Z", + "shell.execute_reply": "2024-09-27T13:49:39.893912Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.747529Z", - "iopub.status.busy": "2024-09-26T17:03:11.746976Z", - "iopub.status.idle": "2024-09-26T17:03:11.760015Z", - "shell.execute_reply": "2024-09-26T17:03:11.759505Z" + "iopub.execute_input": "2024-09-27T13:49:39.898305Z", + "iopub.status.busy": "2024-09-27T13:49:39.897216Z", + "iopub.status.idle": "2024-09-27T13:49:39.912953Z", + "shell.execute_reply": "2024-09-27T13:49:39.912405Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.762003Z", - "iopub.status.busy": "2024-09-26T17:03:11.761617Z", - "iopub.status.idle": "2024-09-26T17:03:11.764511Z", - "shell.execute_reply": "2024-09-26T17:03:11.764016Z" + "iopub.execute_input": "2024-09-27T13:49:39.916108Z", + "iopub.status.busy": "2024-09-27T13:49:39.915341Z", + "iopub.status.idle": "2024-09-27T13:49:39.919141Z", + "shell.execute_reply": "2024-09-27T13:49:39.918633Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.766401Z", - "iopub.status.busy": "2024-09-26T17:03:11.766021Z", - "iopub.status.idle": "2024-09-26T17:03:11.770493Z", - "shell.execute_reply": "2024-09-26T17:03:11.769981Z" + "iopub.execute_input": "2024-09-27T13:49:39.922032Z", + "iopub.status.busy": "2024-09-27T13:49:39.921249Z", + "iopub.status.idle": "2024-09-27T13:49:39.926585Z", + "shell.execute_reply": "2024-09-27T13:49:39.926073Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.772408Z", - "iopub.status.busy": "2024-09-26T17:03:11.772028Z", - "iopub.status.idle": "2024-09-26T17:03:11.807613Z", - "shell.execute_reply": "2024-09-26T17:03:11.807086Z" + "iopub.execute_input": "2024-09-27T13:49:39.929683Z", + "iopub.status.busy": "2024-09-27T13:49:39.928826Z", + "iopub.status.idle": "2024-09-27T13:49:39.959231Z", + "shell.execute_reply": "2024-09-27T13:49:39.958525Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.809511Z", - "iopub.status.busy": "2024-09-26T17:03:11.809134Z", - "iopub.status.idle": "2024-09-26T17:03:12.338745Z", - "shell.execute_reply": "2024-09-26T17:03:12.338192Z" + "iopub.execute_input": "2024-09-27T13:49:39.961458Z", + "iopub.status.busy": "2024-09-27T13:49:39.961156Z", + "iopub.status.idle": "2024-09-27T13:49:40.480334Z", + "shell.execute_reply": "2024-09-27T13:49:40.479746Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.341049Z", - "iopub.status.busy": "2024-09-26T17:03:12.340668Z", - "iopub.status.idle": "2024-09-26T17:03:12.477140Z", - "shell.execute_reply": "2024-09-26T17:03:12.476474Z" + "iopub.execute_input": "2024-09-27T13:49:40.483535Z", + "iopub.status.busy": "2024-09-27T13:49:40.482730Z", + "iopub.status.idle": "2024-09-27T13:49:40.622832Z", + "shell.execute_reply": "2024-09-27T13:49:40.622203Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.480251Z", - "iopub.status.busy": "2024-09-26T17:03:12.479457Z", - "iopub.status.idle": "2024-09-26T17:03:12.487761Z", - "shell.execute_reply": "2024-09-26T17:03:12.487250Z" + "iopub.execute_input": "2024-09-27T13:49:40.625866Z", + "iopub.status.busy": "2024-09-27T13:49:40.625069Z", + "iopub.status.idle": "2024-09-27T13:49:40.633744Z", + "shell.execute_reply": "2024-09-27T13:49:40.633225Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.490696Z", - "iopub.status.busy": "2024-09-26T17:03:12.489940Z", - "iopub.status.idle": "2024-09-26T17:03:12.497460Z", - "shell.execute_reply": "2024-09-26T17:03:12.496930Z" + "iopub.execute_input": "2024-09-27T13:49:40.636749Z", + "iopub.status.busy": "2024-09-27T13:49:40.635964Z", + "iopub.status.idle": "2024-09-27T13:49:40.644199Z", + "shell.execute_reply": "2024-09-27T13:49:40.643667Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.500342Z", - "iopub.status.busy": "2024-09-26T17:03:12.499582Z", - "iopub.status.idle": "2024-09-26T17:03:12.506416Z", - "shell.execute_reply": "2024-09-26T17:03:12.505903Z" + "iopub.execute_input": "2024-09-27T13:49:40.647316Z", + "iopub.status.busy": "2024-09-27T13:49:40.646527Z", + "iopub.status.idle": "2024-09-27T13:49:40.653984Z", + "shell.execute_reply": "2024-09-27T13:49:40.653441Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.509304Z", - "iopub.status.busy": "2024-09-26T17:03:12.508532Z", - "iopub.status.idle": "2024-09-26T17:03:12.514132Z", - "shell.execute_reply": "2024-09-26T17:03:12.513613Z" + "iopub.execute_input": "2024-09-27T13:49:40.656969Z", + "iopub.status.busy": "2024-09-27T13:49:40.656207Z", + "iopub.status.idle": "2024-09-27T13:49:40.662089Z", + "shell.execute_reply": "2024-09-27T13:49:40.661547Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.516950Z", - "iopub.status.busy": "2024-09-26T17:03:12.516208Z", - "iopub.status.idle": "2024-09-26T17:03:12.521433Z", - "shell.execute_reply": "2024-09-26T17:03:12.520973Z" + "iopub.execute_input": "2024-09-27T13:49:40.664042Z", + "iopub.status.busy": "2024-09-27T13:49:40.663625Z", + "iopub.status.idle": "2024-09-27T13:49:40.668487Z", + "shell.execute_reply": "2024-09-27T13:49:40.668031Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.523760Z", - "iopub.status.busy": "2024-09-26T17:03:12.523152Z", - "iopub.status.idle": "2024-09-26T17:03:12.600802Z", - "shell.execute_reply": "2024-09-26T17:03:12.600279Z" + "iopub.execute_input": "2024-09-27T13:49:40.670335Z", + "iopub.status.busy": "2024-09-27T13:49:40.670148Z", + "iopub.status.idle": "2024-09-27T13:49:40.750849Z", + "shell.execute_reply": "2024-09-27T13:49:40.750346Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.602889Z", - "iopub.status.busy": "2024-09-26T17:03:12.602578Z", - "iopub.status.idle": "2024-09-26T17:03:12.611123Z", - "shell.execute_reply": "2024-09-26T17:03:12.610650Z" + "iopub.execute_input": "2024-09-27T13:49:40.752897Z", + "iopub.status.busy": "2024-09-27T13:49:40.752625Z", + "iopub.status.idle": "2024-09-27T13:49:40.761488Z", + "shell.execute_reply": "2024-09-27T13:49:40.761000Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.613116Z", - "iopub.status.busy": "2024-09-26T17:03:12.612781Z", - "iopub.status.idle": "2024-09-26T17:03:12.616227Z", - "shell.execute_reply": "2024-09-26T17:03:12.615762Z" + "iopub.execute_input": "2024-09-27T13:49:40.763717Z", + "iopub.status.busy": "2024-09-27T13:49:40.763403Z", + "iopub.status.idle": "2024-09-27T13:49:40.766376Z", + "shell.execute_reply": "2024-09-27T13:49:40.765784Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.617893Z", - "iopub.status.busy": "2024-09-26T17:03:12.617563Z", - "iopub.status.idle": "2024-09-26T17:03:12.626852Z", - "shell.execute_reply": "2024-09-26T17:03:12.626412Z" + "iopub.execute_input": "2024-09-27T13:49:40.768367Z", + "iopub.status.busy": "2024-09-27T13:49:40.767967Z", + "iopub.status.idle": "2024-09-27T13:49:40.778395Z", + "shell.execute_reply": "2024-09-27T13:49:40.777797Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.628682Z", - "iopub.status.busy": "2024-09-26T17:03:12.628351Z", - "iopub.status.idle": "2024-09-26T17:03:12.634666Z", - "shell.execute_reply": "2024-09-26T17:03:12.634214Z" + "iopub.execute_input": "2024-09-27T13:49:40.780256Z", + "iopub.status.busy": "2024-09-27T13:49:40.779904Z", + "iopub.status.idle": "2024-09-27T13:49:40.786750Z", + "shell.execute_reply": "2024-09-27T13:49:40.786242Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.636358Z", - "iopub.status.busy": "2024-09-26T17:03:12.636021Z", - "iopub.status.idle": "2024-09-26T17:03:12.639149Z", - "shell.execute_reply": "2024-09-26T17:03:12.638707Z" + "iopub.execute_input": "2024-09-27T13:49:40.788328Z", + "iopub.status.busy": "2024-09-27T13:49:40.788149Z", + "iopub.status.idle": "2024-09-27T13:49:40.791623Z", + "shell.execute_reply": "2024-09-27T13:49:40.791149Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.640826Z", - "iopub.status.busy": "2024-09-26T17:03:12.640500Z", - "iopub.status.idle": "2024-09-26T17:03:16.698340Z", - "shell.execute_reply": "2024-09-26T17:03:16.697800Z" + "iopub.execute_input": "2024-09-27T13:49:40.793340Z", + "iopub.status.busy": "2024-09-27T13:49:40.792984Z", + "iopub.status.idle": "2024-09-27T13:49:44.842085Z", + "shell.execute_reply": "2024-09-27T13:49:44.841530Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.700392Z", - "iopub.status.busy": "2024-09-26T17:03:16.700018Z", - "iopub.status.idle": "2024-09-26T17:03:16.703134Z", - "shell.execute_reply": "2024-09-26T17:03:16.702726Z" + "iopub.execute_input": "2024-09-27T13:49:44.844374Z", + "iopub.status.busy": "2024-09-27T13:49:44.843980Z", + "iopub.status.idle": "2024-09-27T13:49:44.847177Z", + "shell.execute_reply": "2024-09-27T13:49:44.846779Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.704961Z", - "iopub.status.busy": "2024-09-26T17:03:16.704501Z", - "iopub.status.idle": "2024-09-26T17:03:16.707303Z", - "shell.execute_reply": "2024-09-26T17:03:16.706855Z" + "iopub.execute_input": "2024-09-27T13:49:44.848611Z", + "iopub.status.busy": "2024-09-27T13:49:44.848437Z", + "iopub.status.idle": "2024-09-27T13:49:44.851280Z", + "shell.execute_reply": "2024-09-27T13:49:44.850836Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 79a94be48..3db453a12 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:19.757523Z", - "iopub.status.busy": "2024-09-26T17:03:19.757004Z", - "iopub.status.idle": "2024-09-26T17:03:20.993835Z", - "shell.execute_reply": "2024-09-26T17:03:20.993263Z" + "iopub.execute_input": "2024-09-27T13:49:47.955203Z", + "iopub.status.busy": "2024-09-27T13:49:47.954713Z", + "iopub.status.idle": "2024-09-27T13:49:49.202564Z", + "shell.execute_reply": "2024-09-27T13:49:49.201984Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:20.995910Z", - "iopub.status.busy": "2024-09-26T17:03:20.995628Z", - "iopub.status.idle": "2024-09-26T17:03:21.177031Z", - "shell.execute_reply": "2024-09-26T17:03:21.176503Z" + "iopub.execute_input": "2024-09-27T13:49:49.204710Z", + "iopub.status.busy": "2024-09-27T13:49:49.204267Z", + "iopub.status.idle": "2024-09-27T13:49:49.385602Z", + "shell.execute_reply": "2024-09-27T13:49:49.385040Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.179276Z", - "iopub.status.busy": "2024-09-26T17:03:21.178912Z", - "iopub.status.idle": "2024-09-26T17:03:21.190441Z", - "shell.execute_reply": "2024-09-26T17:03:21.189979Z" + "iopub.execute_input": "2024-09-27T13:49:49.387603Z", + "iopub.status.busy": "2024-09-27T13:49:49.387414Z", + "iopub.status.idle": "2024-09-27T13:49:49.399128Z", + "shell.execute_reply": "2024-09-27T13:49:49.398649Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.192354Z", - "iopub.status.busy": "2024-09-26T17:03:21.191924Z", - "iopub.status.idle": "2024-09-26T17:03:21.428342Z", - "shell.execute_reply": "2024-09-26T17:03:21.427841Z" + "iopub.execute_input": "2024-09-27T13:49:49.401113Z", + "iopub.status.busy": "2024-09-27T13:49:49.400681Z", + "iopub.status.idle": "2024-09-27T13:49:49.640205Z", + "shell.execute_reply": "2024-09-27T13:49:49.639632Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.430456Z", - "iopub.status.busy": "2024-09-26T17:03:21.430000Z", - "iopub.status.idle": "2024-09-26T17:03:21.460872Z", - "shell.execute_reply": "2024-09-26T17:03:21.460382Z" + "iopub.execute_input": "2024-09-27T13:49:49.642136Z", + "iopub.status.busy": "2024-09-27T13:49:49.641924Z", + "iopub.status.idle": "2024-09-27T13:49:49.668753Z", + "shell.execute_reply": "2024-09-27T13:49:49.668289Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.462907Z", - "iopub.status.busy": "2024-09-26T17:03:21.462542Z", - "iopub.status.idle": "2024-09-26T17:03:23.537686Z", - "shell.execute_reply": "2024-09-26T17:03:23.536960Z" + "iopub.execute_input": "2024-09-27T13:49:49.670405Z", + "iopub.status.busy": "2024-09-27T13:49:49.670225Z", + "iopub.status.idle": "2024-09-27T13:49:51.756166Z", + "shell.execute_reply": "2024-09-27T13:49:51.755567Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.540024Z", - "iopub.status.busy": "2024-09-26T17:03:23.539501Z", - "iopub.status.idle": "2024-09-26T17:03:23.557520Z", - "shell.execute_reply": "2024-09-26T17:03:23.557017Z" + "iopub.execute_input": "2024-09-27T13:49:51.758458Z", + "iopub.status.busy": "2024-09-27T13:49:51.757901Z", + "iopub.status.idle": "2024-09-27T13:49:51.776156Z", + "shell.execute_reply": "2024-09-27T13:49:51.775703Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.559289Z", - "iopub.status.busy": "2024-09-26T17:03:23.558937Z", - "iopub.status.idle": "2024-09-26T17:03:25.143810Z", - "shell.execute_reply": "2024-09-26T17:03:25.143145Z" + "iopub.execute_input": "2024-09-27T13:49:51.777989Z", + "iopub.status.busy": "2024-09-27T13:49:51.777684Z", + "iopub.status.idle": "2024-09-27T13:49:53.370088Z", + "shell.execute_reply": "2024-09-27T13:49:53.369508Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.146384Z", - "iopub.status.busy": "2024-09-26T17:03:25.145553Z", - "iopub.status.idle": "2024-09-26T17:03:25.159570Z", - "shell.execute_reply": "2024-09-26T17:03:25.159091Z" + "iopub.execute_input": "2024-09-27T13:49:53.372684Z", + "iopub.status.busy": "2024-09-27T13:49:53.371801Z", + "iopub.status.idle": "2024-09-27T13:49:53.386003Z", + "shell.execute_reply": "2024-09-27T13:49:53.385496Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.161037Z", - "iopub.status.busy": "2024-09-26T17:03:25.160870Z", - "iopub.status.idle": "2024-09-26T17:03:25.243567Z", - "shell.execute_reply": "2024-09-26T17:03:25.242905Z" + "iopub.execute_input": "2024-09-27T13:49:53.387980Z", + "iopub.status.busy": "2024-09-27T13:49:53.387516Z", + "iopub.status.idle": "2024-09-27T13:49:53.473842Z", + "shell.execute_reply": "2024-09-27T13:49:53.473196Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.245411Z", - "iopub.status.busy": "2024-09-26T17:03:25.245158Z", - "iopub.status.idle": "2024-09-26T17:03:25.460426Z", - "shell.execute_reply": "2024-09-26T17:03:25.459911Z" + "iopub.execute_input": "2024-09-27T13:49:53.475651Z", + "iopub.status.busy": "2024-09-27T13:49:53.475421Z", + "iopub.status.idle": "2024-09-27T13:49:53.690965Z", + "shell.execute_reply": "2024-09-27T13:49:53.690348Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.462274Z", - "iopub.status.busy": "2024-09-26T17:03:25.461916Z", - "iopub.status.idle": "2024-09-26T17:03:25.479129Z", - "shell.execute_reply": "2024-09-26T17:03:25.478671Z" + "iopub.execute_input": "2024-09-27T13:49:53.692793Z", + "iopub.status.busy": "2024-09-27T13:49:53.692463Z", + "iopub.status.idle": "2024-09-27T13:49:53.710417Z", + "shell.execute_reply": "2024-09-27T13:49:53.709980Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.480874Z", - "iopub.status.busy": "2024-09-26T17:03:25.480537Z", - "iopub.status.idle": "2024-09-26T17:03:25.490089Z", - "shell.execute_reply": "2024-09-26T17:03:25.489515Z" + "iopub.execute_input": "2024-09-27T13:49:53.712127Z", + "iopub.status.busy": "2024-09-27T13:49:53.711811Z", + "iopub.status.idle": "2024-09-27T13:49:53.721449Z", + "shell.execute_reply": "2024-09-27T13:49:53.720996Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.491899Z", - "iopub.status.busy": "2024-09-26T17:03:25.491571Z", - "iopub.status.idle": "2024-09-26T17:03:25.588418Z", - "shell.execute_reply": "2024-09-26T17:03:25.587869Z" + "iopub.execute_input": "2024-09-27T13:49:53.723130Z", + "iopub.status.busy": "2024-09-27T13:49:53.722857Z", + "iopub.status.idle": "2024-09-27T13:49:53.817375Z", + "shell.execute_reply": "2024-09-27T13:49:53.816703Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.590607Z", - "iopub.status.busy": "2024-09-26T17:03:25.590219Z", - "iopub.status.idle": "2024-09-26T17:03:25.732483Z", - "shell.execute_reply": "2024-09-26T17:03:25.731847Z" + "iopub.execute_input": "2024-09-27T13:49:53.819544Z", + "iopub.status.busy": "2024-09-27T13:49:53.819159Z", + "iopub.status.idle": "2024-09-27T13:49:53.965240Z", + "shell.execute_reply": "2024-09-27T13:49:53.964595Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.734544Z", - "iopub.status.busy": "2024-09-26T17:03:25.734306Z", - "iopub.status.idle": "2024-09-26T17:03:25.738188Z", - "shell.execute_reply": "2024-09-26T17:03:25.737635Z" + "iopub.execute_input": "2024-09-27T13:49:53.967132Z", + "iopub.status.busy": "2024-09-27T13:49:53.966887Z", + "iopub.status.idle": "2024-09-27T13:49:53.970653Z", + "shell.execute_reply": "2024-09-27T13:49:53.970184Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.739991Z", - "iopub.status.busy": "2024-09-26T17:03:25.739693Z", - "iopub.status.idle": "2024-09-26T17:03:25.743518Z", - "shell.execute_reply": "2024-09-26T17:03:25.742969Z" + "iopub.execute_input": "2024-09-27T13:49:53.972544Z", + "iopub.status.busy": "2024-09-27T13:49:53.972211Z", + "iopub.status.idle": "2024-09-27T13:49:53.975811Z", + "shell.execute_reply": "2024-09-27T13:49:53.975375Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.745282Z", - "iopub.status.busy": "2024-09-26T17:03:25.744869Z", - "iopub.status.idle": "2024-09-26T17:03:25.782713Z", - "shell.execute_reply": "2024-09-26T17:03:25.782255Z" + "iopub.execute_input": "2024-09-27T13:49:53.977483Z", + "iopub.status.busy": "2024-09-27T13:49:53.977162Z", + "iopub.status.idle": "2024-09-27T13:49:54.014798Z", + "shell.execute_reply": "2024-09-27T13:49:54.014320Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.784359Z", - "iopub.status.busy": "2024-09-26T17:03:25.784047Z", - "iopub.status.idle": "2024-09-26T17:03:25.825993Z", - "shell.execute_reply": "2024-09-26T17:03:25.825399Z" + "iopub.execute_input": "2024-09-27T13:49:54.016309Z", + "iopub.status.busy": "2024-09-27T13:49:54.016153Z", + "iopub.status.idle": "2024-09-27T13:49:54.058592Z", + "shell.execute_reply": "2024-09-27T13:49:54.058128Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.827788Z", - "iopub.status.busy": "2024-09-26T17:03:25.827395Z", - "iopub.status.idle": "2024-09-26T17:03:25.929754Z", - "shell.execute_reply": "2024-09-26T17:03:25.929087Z" + "iopub.execute_input": "2024-09-27T13:49:54.060328Z", + "iopub.status.busy": "2024-09-27T13:49:54.059989Z", + "iopub.status.idle": "2024-09-27T13:49:54.162310Z", + "shell.execute_reply": "2024-09-27T13:49:54.161576Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.931922Z", - "iopub.status.busy": "2024-09-26T17:03:25.931548Z", - "iopub.status.idle": "2024-09-26T17:03:26.038825Z", - "shell.execute_reply": "2024-09-26T17:03:26.038172Z" + "iopub.execute_input": "2024-09-27T13:49:54.164584Z", + "iopub.status.busy": "2024-09-27T13:49:54.164238Z", + "iopub.status.idle": "2024-09-27T13:49:54.272152Z", + "shell.execute_reply": "2024-09-27T13:49:54.271584Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.040684Z", - "iopub.status.busy": "2024-09-26T17:03:26.040446Z", - "iopub.status.idle": "2024-09-26T17:03:26.253554Z", - "shell.execute_reply": "2024-09-26T17:03:26.252936Z" + "iopub.execute_input": "2024-09-27T13:49:54.274181Z", + "iopub.status.busy": "2024-09-27T13:49:54.273772Z", + "iopub.status.idle": "2024-09-27T13:49:54.485007Z", + "shell.execute_reply": "2024-09-27T13:49:54.484491Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.255496Z", - "iopub.status.busy": "2024-09-26T17:03:26.255135Z", - "iopub.status.idle": "2024-09-26T17:03:26.476149Z", - "shell.execute_reply": "2024-09-26T17:03:26.475467Z" + "iopub.execute_input": "2024-09-27T13:49:54.486961Z", + "iopub.status.busy": "2024-09-27T13:49:54.486600Z", + "iopub.status.idle": "2024-09-27T13:49:54.707860Z", + "shell.execute_reply": "2024-09-27T13:49:54.707182Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.478208Z", - "iopub.status.busy": "2024-09-26T17:03:26.477882Z", - "iopub.status.idle": "2024-09-26T17:03:26.484331Z", - "shell.execute_reply": "2024-09-26T17:03:26.483897Z" + "iopub.execute_input": "2024-09-27T13:49:54.709923Z", + "iopub.status.busy": "2024-09-27T13:49:54.709461Z", + "iopub.status.idle": "2024-09-27T13:49:54.716021Z", + "shell.execute_reply": "2024-09-27T13:49:54.715572Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.485988Z", - "iopub.status.busy": "2024-09-26T17:03:26.485677Z", - "iopub.status.idle": "2024-09-26T17:03:26.705415Z", - "shell.execute_reply": "2024-09-26T17:03:26.704879Z" + "iopub.execute_input": "2024-09-27T13:49:54.717563Z", + "iopub.status.busy": "2024-09-27T13:49:54.717397Z", + "iopub.status.idle": "2024-09-27T13:49:54.936984Z", + "shell.execute_reply": "2024-09-27T13:49:54.936390Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.707343Z", - "iopub.status.busy": "2024-09-26T17:03:26.706986Z", - "iopub.status.idle": "2024-09-26T17:03:27.770864Z", - "shell.execute_reply": "2024-09-26T17:03:27.770364Z" + "iopub.execute_input": "2024-09-27T13:49:54.938887Z", + "iopub.status.busy": "2024-09-27T13:49:54.938530Z", + "iopub.status.idle": "2024-09-27T13:49:56.008191Z", + "shell.execute_reply": "2024-09-27T13:49:56.007633Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 0a628ca80..066a3be3f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:32.155568Z", - "iopub.status.busy": "2024-09-26T17:03:32.155382Z", - "iopub.status.idle": "2024-09-26T17:03:33.322663Z", - "shell.execute_reply": "2024-09-26T17:03:33.322106Z" + "iopub.execute_input": "2024-09-27T13:50:00.283031Z", + "iopub.status.busy": "2024-09-27T13:50:00.282850Z", + "iopub.status.idle": "2024-09-27T13:50:01.529982Z", + "shell.execute_reply": "2024-09-27T13:50:01.529363Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.325051Z", - "iopub.status.busy": "2024-09-26T17:03:33.324543Z", - "iopub.status.idle": "2024-09-26T17:03:33.327571Z", - "shell.execute_reply": "2024-09-26T17:03:33.327125Z" + "iopub.execute_input": "2024-09-27T13:50:01.532249Z", + "iopub.status.busy": "2024-09-27T13:50:01.531766Z", + "iopub.status.idle": "2024-09-27T13:50:01.535029Z", + "shell.execute_reply": "2024-09-27T13:50:01.534558Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.329481Z", - "iopub.status.busy": "2024-09-26T17:03:33.329106Z", - "iopub.status.idle": "2024-09-26T17:03:33.337328Z", - "shell.execute_reply": "2024-09-26T17:03:33.336753Z" + "iopub.execute_input": "2024-09-27T13:50:01.537031Z", + "iopub.status.busy": "2024-09-27T13:50:01.536667Z", + "iopub.status.idle": "2024-09-27T13:50:01.544914Z", + "shell.execute_reply": "2024-09-27T13:50:01.544396Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.338976Z", - "iopub.status.busy": "2024-09-26T17:03:33.338803Z", - "iopub.status.idle": "2024-09-26T17:03:33.384904Z", - "shell.execute_reply": "2024-09-26T17:03:33.384320Z" + "iopub.execute_input": "2024-09-27T13:50:01.546711Z", + "iopub.status.busy": "2024-09-27T13:50:01.546356Z", + "iopub.status.idle": "2024-09-27T13:50:01.593910Z", + "shell.execute_reply": "2024-09-27T13:50:01.593338Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.386626Z", - "iopub.status.busy": "2024-09-26T17:03:33.386442Z", - "iopub.status.idle": "2024-09-26T17:03:33.403626Z", - "shell.execute_reply": "2024-09-26T17:03:33.403085Z" + "iopub.execute_input": "2024-09-27T13:50:01.595899Z", + "iopub.status.busy": "2024-09-27T13:50:01.595701Z", + "iopub.status.idle": "2024-09-27T13:50:01.614081Z", + "shell.execute_reply": "2024-09-27T13:50:01.613547Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.405451Z", - "iopub.status.busy": "2024-09-26T17:03:33.405118Z", - "iopub.status.idle": "2024-09-26T17:03:33.409011Z", - "shell.execute_reply": "2024-09-26T17:03:33.408476Z" + "iopub.execute_input": "2024-09-27T13:50:01.615863Z", + "iopub.status.busy": "2024-09-27T13:50:01.615656Z", + "iopub.status.idle": "2024-09-27T13:50:01.619883Z", + "shell.execute_reply": "2024-09-27T13:50:01.619423Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.410796Z", - "iopub.status.busy": "2024-09-26T17:03:33.410382Z", - "iopub.status.idle": "2024-09-26T17:03:33.427653Z", - "shell.execute_reply": "2024-09-26T17:03:33.427072Z" + "iopub.execute_input": "2024-09-27T13:50:01.621805Z", + "iopub.status.busy": "2024-09-27T13:50:01.621459Z", + "iopub.status.idle": "2024-09-27T13:50:01.636304Z", + "shell.execute_reply": "2024-09-27T13:50:01.635842Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.429482Z", - "iopub.status.busy": "2024-09-26T17:03:33.429162Z", - "iopub.status.idle": "2024-09-26T17:03:33.455291Z", - "shell.execute_reply": "2024-09-26T17:03:33.454811Z" + "iopub.execute_input": "2024-09-27T13:50:01.638170Z", + "iopub.status.busy": "2024-09-27T13:50:01.637803Z", + "iopub.status.idle": "2024-09-27T13:50:01.664411Z", + "shell.execute_reply": "2024-09-27T13:50:01.663771Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.456954Z", - "iopub.status.busy": "2024-09-26T17:03:33.456624Z", - "iopub.status.idle": "2024-09-26T17:03:35.369827Z", - "shell.execute_reply": "2024-09-26T17:03:35.369227Z" + "iopub.execute_input": "2024-09-27T13:50:01.666543Z", + "iopub.status.busy": "2024-09-27T13:50:01.666195Z", + "iopub.status.idle": "2024-09-27T13:50:03.656395Z", + "shell.execute_reply": "2024-09-27T13:50:03.655827Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.372127Z", - "iopub.status.busy": "2024-09-26T17:03:35.371668Z", - "iopub.status.idle": "2024-09-26T17:03:35.378386Z", - "shell.execute_reply": "2024-09-26T17:03:35.377922Z" + "iopub.execute_input": "2024-09-27T13:50:03.658501Z", + "iopub.status.busy": "2024-09-27T13:50:03.658175Z", + "iopub.status.idle": "2024-09-27T13:50:03.665262Z", + "shell.execute_reply": "2024-09-27T13:50:03.664800Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.380068Z", - "iopub.status.busy": "2024-09-26T17:03:35.379731Z", - "iopub.status.idle": "2024-09-26T17:03:35.392208Z", - "shell.execute_reply": "2024-09-26T17:03:35.391671Z" + "iopub.execute_input": "2024-09-27T13:50:03.666987Z", + "iopub.status.busy": "2024-09-27T13:50:03.666805Z", + "iopub.status.idle": "2024-09-27T13:50:03.679807Z", + "shell.execute_reply": "2024-09-27T13:50:03.679246Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.393975Z", - "iopub.status.busy": "2024-09-26T17:03:35.393668Z", - "iopub.status.idle": "2024-09-26T17:03:35.399995Z", - "shell.execute_reply": "2024-09-26T17:03:35.399449Z" + "iopub.execute_input": "2024-09-27T13:50:03.681542Z", + "iopub.status.busy": "2024-09-27T13:50:03.681289Z", + "iopub.status.idle": "2024-09-27T13:50:03.687949Z", + "shell.execute_reply": "2024-09-27T13:50:03.687503Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.401696Z", - "iopub.status.busy": "2024-09-26T17:03:35.401521Z", - "iopub.status.idle": "2024-09-26T17:03:35.404204Z", - "shell.execute_reply": "2024-09-26T17:03:35.403751Z" + "iopub.execute_input": "2024-09-27T13:50:03.689686Z", + "iopub.status.busy": "2024-09-27T13:50:03.689509Z", + "iopub.status.idle": "2024-09-27T13:50:03.692058Z", + "shell.execute_reply": "2024-09-27T13:50:03.691626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.405738Z", - "iopub.status.busy": "2024-09-26T17:03:35.405571Z", - "iopub.status.idle": "2024-09-26T17:03:35.409161Z", - "shell.execute_reply": "2024-09-26T17:03:35.408696Z" + "iopub.execute_input": "2024-09-27T13:50:03.693849Z", + "iopub.status.busy": "2024-09-27T13:50:03.693409Z", + "iopub.status.idle": "2024-09-27T13:50:03.697114Z", + "shell.execute_reply": "2024-09-27T13:50:03.696549Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.410672Z", - "iopub.status.busy": "2024-09-26T17:03:35.410505Z", - "iopub.status.idle": "2024-09-26T17:03:35.413101Z", - "shell.execute_reply": "2024-09-26T17:03:35.412663Z" + "iopub.execute_input": "2024-09-27T13:50:03.698776Z", + "iopub.status.busy": "2024-09-27T13:50:03.698468Z", + "iopub.status.idle": "2024-09-27T13:50:03.701226Z", + "shell.execute_reply": "2024-09-27T13:50:03.700662Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.414705Z", - "iopub.status.busy": "2024-09-26T17:03:35.414538Z", - "iopub.status.idle": "2024-09-26T17:03:35.418607Z", - "shell.execute_reply": "2024-09-26T17:03:35.418062Z" + "iopub.execute_input": "2024-09-27T13:50:03.703170Z", + "iopub.status.busy": "2024-09-27T13:50:03.702730Z", + "iopub.status.idle": "2024-09-27T13:50:03.706827Z", + "shell.execute_reply": "2024-09-27T13:50:03.706370Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.420421Z", - "iopub.status.busy": "2024-09-26T17:03:35.420103Z", - "iopub.status.idle": "2024-09-26T17:03:35.449647Z", - "shell.execute_reply": "2024-09-26T17:03:35.449056Z" + "iopub.execute_input": "2024-09-27T13:50:03.708679Z", + "iopub.status.busy": "2024-09-27T13:50:03.708375Z", + "iopub.status.idle": "2024-09-27T13:50:03.737494Z", + "shell.execute_reply": "2024-09-27T13:50:03.736888Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.451503Z", - "iopub.status.busy": "2024-09-26T17:03:35.451157Z", - "iopub.status.idle": "2024-09-26T17:03:35.455545Z", - "shell.execute_reply": "2024-09-26T17:03:35.455091Z" + "iopub.execute_input": "2024-09-27T13:50:03.739537Z", + "iopub.status.busy": "2024-09-27T13:50:03.739354Z", + "iopub.status.idle": "2024-09-27T13:50:03.743924Z", + "shell.execute_reply": "2024-09-27T13:50:03.743478Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 9ceb5596d..15ae19f22 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:38.235356Z", - "iopub.status.busy": "2024-09-26T17:03:38.235187Z", - "iopub.status.idle": "2024-09-26T17:03:39.464936Z", - "shell.execute_reply": "2024-09-26T17:03:39.464384Z" + "iopub.execute_input": "2024-09-27T13:50:06.725990Z", + "iopub.status.busy": "2024-09-27T13:50:06.725779Z", + "iopub.status.idle": "2024-09-27T13:50:07.973724Z", + "shell.execute_reply": "2024-09-27T13:50:07.973155Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.467094Z", - "iopub.status.busy": "2024-09-26T17:03:39.466633Z", - "iopub.status.idle": "2024-09-26T17:03:39.661808Z", - "shell.execute_reply": "2024-09-26T17:03:39.661225Z" + "iopub.execute_input": "2024-09-27T13:50:07.975731Z", + "iopub.status.busy": "2024-09-27T13:50:07.975460Z", + "iopub.status.idle": "2024-09-27T13:50:08.171427Z", + "shell.execute_reply": "2024-09-27T13:50:08.170874Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.663940Z", - "iopub.status.busy": "2024-09-26T17:03:39.663552Z", - "iopub.status.idle": "2024-09-26T17:03:39.676592Z", - "shell.execute_reply": "2024-09-26T17:03:39.676141Z" + "iopub.execute_input": "2024-09-27T13:50:08.173720Z", + "iopub.status.busy": "2024-09-27T13:50:08.173246Z", + "iopub.status.idle": "2024-09-27T13:50:08.186415Z", + "shell.execute_reply": "2024-09-27T13:50:08.185928Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.678430Z", - "iopub.status.busy": "2024-09-26T17:03:39.678069Z", - "iopub.status.idle": "2024-09-26T17:03:42.338055Z", - "shell.execute_reply": "2024-09-26T17:03:42.337536Z" + "iopub.execute_input": "2024-09-27T13:50:08.188193Z", + "iopub.status.busy": "2024-09-27T13:50:08.187863Z", + "iopub.status.idle": "2024-09-27T13:50:10.832960Z", + "shell.execute_reply": "2024-09-27T13:50:10.832424Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:42.339955Z", - "iopub.status.busy": "2024-09-26T17:03:42.339587Z", - "iopub.status.idle": "2024-09-26T17:03:43.681959Z", - "shell.execute_reply": "2024-09-26T17:03:43.681410Z" + "iopub.execute_input": "2024-09-27T13:50:10.834988Z", + "iopub.status.busy": "2024-09-27T13:50:10.834545Z", + "iopub.status.idle": "2024-09-27T13:50:12.182428Z", + "shell.execute_reply": "2024-09-27T13:50:12.181868Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.683980Z", - "iopub.status.busy": "2024-09-26T17:03:43.683614Z", - "iopub.status.idle": "2024-09-26T17:03:43.687775Z", - "shell.execute_reply": "2024-09-26T17:03:43.687305Z" + "iopub.execute_input": "2024-09-27T13:50:12.184478Z", + "iopub.status.busy": "2024-09-27T13:50:12.184103Z", + "iopub.status.idle": "2024-09-27T13:50:12.187833Z", + "shell.execute_reply": "2024-09-27T13:50:12.187391Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.689610Z", - "iopub.status.busy": "2024-09-26T17:03:43.689277Z", - "iopub.status.idle": "2024-09-26T17:03:45.722043Z", - "shell.execute_reply": "2024-09-26T17:03:45.721346Z" + "iopub.execute_input": "2024-09-27T13:50:12.189617Z", + "iopub.status.busy": "2024-09-27T13:50:12.189276Z", + "iopub.status.idle": "2024-09-27T13:50:14.250365Z", + "shell.execute_reply": "2024-09-27T13:50:14.249644Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.724606Z", - "iopub.status.busy": "2024-09-26T17:03:45.723934Z", - "iopub.status.idle": "2024-09-26T17:03:45.733795Z", - "shell.execute_reply": "2024-09-26T17:03:45.733323Z" + "iopub.execute_input": "2024-09-27T13:50:14.253014Z", + "iopub.status.busy": "2024-09-27T13:50:14.252227Z", + "iopub.status.idle": "2024-09-27T13:50:14.261829Z", + "shell.execute_reply": "2024-09-27T13:50:14.261366Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.735506Z", - "iopub.status.busy": "2024-09-26T17:03:45.735322Z", - "iopub.status.idle": "2024-09-26T17:03:48.302047Z", - "shell.execute_reply": "2024-09-26T17:03:48.301457Z" + "iopub.execute_input": "2024-09-27T13:50:14.263623Z", + "iopub.status.busy": "2024-09-27T13:50:14.263292Z", + "iopub.status.idle": "2024-09-27T13:50:16.825728Z", + "shell.execute_reply": "2024-09-27T13:50:16.825201Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.303862Z", - "iopub.status.busy": "2024-09-26T17:03:48.303674Z", - "iopub.status.idle": "2024-09-26T17:03:48.306897Z", - "shell.execute_reply": "2024-09-26T17:03:48.306449Z" + "iopub.execute_input": "2024-09-27T13:50:16.827773Z", + "iopub.status.busy": "2024-09-27T13:50:16.827410Z", + "iopub.status.idle": "2024-09-27T13:50:16.830659Z", + "shell.execute_reply": "2024-09-27T13:50:16.830226Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.308470Z", - "iopub.status.busy": "2024-09-26T17:03:48.308294Z", - "iopub.status.idle": "2024-09-26T17:03:48.311851Z", - "shell.execute_reply": "2024-09-26T17:03:48.311399Z" + "iopub.execute_input": "2024-09-27T13:50:16.832389Z", + "iopub.status.busy": "2024-09-27T13:50:16.832049Z", + "iopub.status.idle": "2024-09-27T13:50:16.835392Z", + "shell.execute_reply": "2024-09-27T13:50:16.834951Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.313429Z", - "iopub.status.busy": "2024-09-26T17:03:48.313238Z", - "iopub.status.idle": "2024-09-26T17:03:48.316359Z", - "shell.execute_reply": "2024-09-26T17:03:48.315904Z" + "iopub.execute_input": "2024-09-27T13:50:16.837072Z", + "iopub.status.busy": "2024-09-27T13:50:16.836730Z", + "iopub.status.idle": "2024-09-27T13:50:16.839731Z", + "shell.execute_reply": "2024-09-27T13:50:16.839294Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 4cf1baa9c..74581ae08 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:50.872695Z", - "iopub.status.busy": "2024-09-26T17:03:50.872527Z", - "iopub.status.idle": "2024-09-26T17:03:52.108435Z", - "shell.execute_reply": "2024-09-26T17:03:52.107922Z" + "iopub.execute_input": "2024-09-27T13:50:19.443579Z", + "iopub.status.busy": "2024-09-27T13:50:19.443403Z", + "iopub.status.idle": "2024-09-27T13:50:20.702879Z", + "shell.execute_reply": "2024-09-27T13:50:20.702310Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:52.110652Z", - "iopub.status.busy": "2024-09-26T17:03:52.110373Z", - "iopub.status.idle": "2024-09-26T17:03:53.718304Z", - "shell.execute_reply": "2024-09-26T17:03:53.717592Z" + "iopub.execute_input": "2024-09-27T13:50:20.705084Z", + "iopub.status.busy": "2024-09-27T13:50:20.704636Z", + "iopub.status.idle": "2024-09-27T13:50:22.822151Z", + "shell.execute_reply": "2024-09-27T13:50:22.821410Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.720333Z", - "iopub.status.busy": "2024-09-26T17:03:53.720131Z", - "iopub.status.idle": "2024-09-26T17:03:53.723716Z", - "shell.execute_reply": "2024-09-26T17:03:53.723249Z" + "iopub.execute_input": "2024-09-27T13:50:22.824450Z", + "iopub.status.busy": "2024-09-27T13:50:22.823982Z", + "iopub.status.idle": "2024-09-27T13:50:22.827315Z", + "shell.execute_reply": "2024-09-27T13:50:22.826864Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.725367Z", - "iopub.status.busy": "2024-09-26T17:03:53.725176Z", - "iopub.status.idle": "2024-09-26T17:03:53.731881Z", - "shell.execute_reply": "2024-09-26T17:03:53.731422Z" + "iopub.execute_input": "2024-09-27T13:50:22.829177Z", + "iopub.status.busy": "2024-09-27T13:50:22.828729Z", + "iopub.status.idle": "2024-09-27T13:50:22.835505Z", + "shell.execute_reply": "2024-09-27T13:50:22.835064Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.733470Z", - "iopub.status.busy": "2024-09-26T17:03:53.733289Z", - "iopub.status.idle": "2024-09-26T17:03:54.226908Z", - "shell.execute_reply": "2024-09-26T17:03:54.226298Z" + "iopub.execute_input": "2024-09-27T13:50:22.837239Z", + "iopub.status.busy": "2024-09-27T13:50:22.836893Z", + "iopub.status.idle": "2024-09-27T13:50:23.331183Z", + "shell.execute_reply": "2024-09-27T13:50:23.330607Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.228918Z", - "iopub.status.busy": "2024-09-26T17:03:54.228500Z", - "iopub.status.idle": "2024-09-26T17:03:54.233862Z", - "shell.execute_reply": "2024-09-26T17:03:54.233427Z" + "iopub.execute_input": "2024-09-27T13:50:23.333657Z", + "iopub.status.busy": "2024-09-27T13:50:23.333258Z", + "iopub.status.idle": "2024-09-27T13:50:23.338644Z", + "shell.execute_reply": "2024-09-27T13:50:23.338176Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.235629Z", - "iopub.status.busy": "2024-09-26T17:03:54.235308Z", - "iopub.status.idle": "2024-09-26T17:03:54.239163Z", - "shell.execute_reply": "2024-09-26T17:03:54.238723Z" + "iopub.execute_input": "2024-09-27T13:50:23.340282Z", + "iopub.status.busy": "2024-09-27T13:50:23.339946Z", + "iopub.status.idle": "2024-09-27T13:50:23.343951Z", + "shell.execute_reply": "2024-09-27T13:50:23.343382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.240884Z", - "iopub.status.busy": "2024-09-26T17:03:54.240539Z", - "iopub.status.idle": "2024-09-26T17:03:55.132461Z", - "shell.execute_reply": "2024-09-26T17:03:55.131884Z" + "iopub.execute_input": "2024-09-27T13:50:23.345634Z", + "iopub.status.busy": "2024-09-27T13:50:23.345444Z", + "iopub.status.idle": "2024-09-27T13:50:24.311351Z", + "shell.execute_reply": "2024-09-27T13:50:24.310678Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.134485Z", - "iopub.status.busy": "2024-09-26T17:03:55.134101Z", - "iopub.status.idle": "2024-09-26T17:03:55.344926Z", - "shell.execute_reply": "2024-09-26T17:03:55.344350Z" + "iopub.execute_input": "2024-09-27T13:50:24.313472Z", + "iopub.status.busy": "2024-09-27T13:50:24.313086Z", + "iopub.status.idle": "2024-09-27T13:50:24.522945Z", + "shell.execute_reply": "2024-09-27T13:50:24.522473Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.347039Z", - "iopub.status.busy": "2024-09-26T17:03:55.346617Z", - "iopub.status.idle": "2024-09-26T17:03:55.351223Z", - "shell.execute_reply": "2024-09-26T17:03:55.350673Z" + "iopub.execute_input": "2024-09-27T13:50:24.524988Z", + "iopub.status.busy": "2024-09-27T13:50:24.524624Z", + "iopub.status.idle": "2024-09-27T13:50:24.529040Z", + "shell.execute_reply": "2024-09-27T13:50:24.528463Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.353046Z", - "iopub.status.busy": "2024-09-26T17:03:55.352712Z", - "iopub.status.idle": "2024-09-26T17:03:55.808907Z", - "shell.execute_reply": "2024-09-26T17:03:55.808307Z" + "iopub.execute_input": "2024-09-27T13:50:24.530989Z", + "iopub.status.busy": "2024-09-27T13:50:24.530646Z", + "iopub.status.idle": "2024-09-27T13:50:24.991345Z", + "shell.execute_reply": "2024-09-27T13:50:24.990700Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.811591Z", - "iopub.status.busy": "2024-09-26T17:03:55.811241Z", - "iopub.status.idle": "2024-09-26T17:03:56.145507Z", - "shell.execute_reply": "2024-09-26T17:03:56.144909Z" + "iopub.execute_input": "2024-09-27T13:50:24.994317Z", + "iopub.status.busy": "2024-09-27T13:50:24.993692Z", + "iopub.status.idle": "2024-09-27T13:50:25.302482Z", + "shell.execute_reply": "2024-09-27T13:50:25.301826Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.147534Z", - "iopub.status.busy": "2024-09-26T17:03:56.147172Z", - "iopub.status.idle": "2024-09-26T17:03:56.522806Z", - "shell.execute_reply": "2024-09-26T17:03:56.522185Z" + "iopub.execute_input": "2024-09-27T13:50:25.304445Z", + "iopub.status.busy": "2024-09-27T13:50:25.304098Z", + "iopub.status.idle": "2024-09-27T13:50:25.672846Z", + "shell.execute_reply": "2024-09-27T13:50:25.672241Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.525094Z", - "iopub.status.busy": "2024-09-26T17:03:56.524803Z", - "iopub.status.idle": "2024-09-26T17:03:56.938146Z", - "shell.execute_reply": "2024-09-26T17:03:56.937571Z" + "iopub.execute_input": "2024-09-27T13:50:25.675532Z", + "iopub.status.busy": "2024-09-27T13:50:25.675160Z", + "iopub.status.idle": "2024-09-27T13:50:26.138514Z", + "shell.execute_reply": "2024-09-27T13:50:26.137926Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.942264Z", - "iopub.status.busy": "2024-09-26T17:03:56.941870Z", - "iopub.status.idle": "2024-09-26T17:03:57.370517Z", - "shell.execute_reply": "2024-09-26T17:03:57.369935Z" + "iopub.execute_input": "2024-09-27T13:50:26.142672Z", + "iopub.status.busy": "2024-09-27T13:50:26.142279Z", + "iopub.status.idle": "2024-09-27T13:50:26.594693Z", + "shell.execute_reply": "2024-09-27T13:50:26.594081Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.373172Z", - "iopub.status.busy": "2024-09-26T17:03:57.372782Z", - "iopub.status.idle": "2024-09-26T17:03:57.563441Z", - "shell.execute_reply": "2024-09-26T17:03:57.562843Z" + "iopub.execute_input": "2024-09-27T13:50:26.597306Z", + "iopub.status.busy": "2024-09-27T13:50:26.597107Z", + "iopub.status.idle": "2024-09-27T13:50:26.821495Z", + "shell.execute_reply": "2024-09-27T13:50:26.820944Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.565901Z", - "iopub.status.busy": "2024-09-26T17:03:57.565444Z", - "iopub.status.idle": "2024-09-26T17:03:57.769189Z", - "shell.execute_reply": "2024-09-26T17:03:57.768596Z" + "iopub.execute_input": "2024-09-27T13:50:26.823432Z", + "iopub.status.busy": "2024-09-27T13:50:26.823089Z", + "iopub.status.idle": "2024-09-27T13:50:27.023714Z", + "shell.execute_reply": "2024-09-27T13:50:27.023125Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.771705Z", - "iopub.status.busy": "2024-09-26T17:03:57.771376Z", - "iopub.status.idle": "2024-09-26T17:03:57.774381Z", - "shell.execute_reply": "2024-09-26T17:03:57.773929Z" + "iopub.execute_input": "2024-09-27T13:50:27.025739Z", + "iopub.status.busy": "2024-09-27T13:50:27.025301Z", + "iopub.status.idle": "2024-09-27T13:50:27.028302Z", + "shell.execute_reply": "2024-09-27T13:50:27.027862Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.775799Z", - "iopub.status.busy": "2024-09-26T17:03:57.775632Z", - "iopub.status.idle": "2024-09-26T17:03:58.717491Z", - "shell.execute_reply": "2024-09-26T17:03:58.716886Z" + "iopub.execute_input": "2024-09-27T13:50:27.030091Z", + "iopub.status.busy": "2024-09-27T13:50:27.029679Z", + "iopub.status.idle": "2024-09-27T13:50:28.012427Z", + "shell.execute_reply": "2024-09-27T13:50:28.011865Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.719646Z", - "iopub.status.busy": "2024-09-26T17:03:58.719200Z", - "iopub.status.idle": "2024-09-26T17:03:58.860617Z", - "shell.execute_reply": "2024-09-26T17:03:58.860127Z" + "iopub.execute_input": "2024-09-27T13:50:28.014834Z", + "iopub.status.busy": "2024-09-27T13:50:28.014455Z", + "iopub.status.idle": "2024-09-27T13:50:28.134002Z", + "shell.execute_reply": "2024-09-27T13:50:28.133439Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.862547Z", - "iopub.status.busy": "2024-09-26T17:03:58.862194Z", - "iopub.status.idle": "2024-09-26T17:03:58.994557Z", - "shell.execute_reply": "2024-09-26T17:03:58.994095Z" + "iopub.execute_input": "2024-09-27T13:50:28.136003Z", + "iopub.status.busy": "2024-09-27T13:50:28.135574Z", + "iopub.status.idle": "2024-09-27T13:50:28.317635Z", + "shell.execute_reply": "2024-09-27T13:50:28.317140Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.996401Z", - "iopub.status.busy": "2024-09-26T17:03:58.996000Z", - "iopub.status.idle": "2024-09-26T17:03:59.724120Z", - "shell.execute_reply": "2024-09-26T17:03:59.723503Z" + "iopub.execute_input": "2024-09-27T13:50:28.319646Z", + "iopub.status.busy": "2024-09-27T13:50:28.319301Z", + "iopub.status.idle": "2024-09-27T13:50:29.078487Z", + "shell.execute_reply": "2024-09-27T13:50:29.077858Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:59.725920Z", - "iopub.status.busy": "2024-09-26T17:03:59.725591Z", - "iopub.status.idle": "2024-09-26T17:03:59.729320Z", - "shell.execute_reply": "2024-09-26T17:03:59.728740Z" + "iopub.execute_input": "2024-09-27T13:50:29.080254Z", + "iopub.status.busy": "2024-09-27T13:50:29.080059Z", + "iopub.status.idle": "2024-09-27T13:50:29.083764Z", + "shell.execute_reply": "2024-09-27T13:50:29.083320Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 178f049b6..a22f47f5c 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:01.971300Z", - "iopub.status.busy": "2024-09-26T17:04:01.971121Z", - "iopub.status.idle": "2024-09-26T17:04:04.854776Z", - "shell.execute_reply": "2024-09-26T17:04:04.854218Z" + "iopub.execute_input": "2024-09-27T13:50:31.336559Z", + "iopub.status.busy": "2024-09-27T13:50:31.336374Z", + "iopub.status.idle": "2024-09-27T13:50:34.288125Z", + "shell.execute_reply": "2024-09-27T13:50:34.287547Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:04.856883Z", - "iopub.status.busy": "2024-09-26T17:04:04.856573Z", - "iopub.status.idle": "2024-09-26T17:04:05.177735Z", - "shell.execute_reply": "2024-09-26T17:04:05.177154Z" + "iopub.execute_input": "2024-09-27T13:50:34.290281Z", + "iopub.status.busy": "2024-09-27T13:50:34.289977Z", + "iopub.status.idle": "2024-09-27T13:50:34.624581Z", + "shell.execute_reply": "2024-09-27T13:50:34.624016Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.180049Z", - "iopub.status.busy": "2024-09-26T17:04:05.179567Z", - "iopub.status.idle": "2024-09-26T17:04:05.183627Z", - "shell.execute_reply": "2024-09-26T17:04:05.183194Z" + "iopub.execute_input": "2024-09-27T13:50:34.626906Z", + "iopub.status.busy": "2024-09-27T13:50:34.626293Z", + "iopub.status.idle": "2024-09-27T13:50:34.630537Z", + "shell.execute_reply": "2024-09-27T13:50:34.629977Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.185553Z", - "iopub.status.busy": "2024-09-26T17:04:05.185191Z", - "iopub.status.idle": "2024-09-26T17:04:09.811124Z", - "shell.execute_reply": "2024-09-26T17:04:09.810509Z" + "iopub.execute_input": "2024-09-27T13:50:34.632208Z", + "iopub.status.busy": "2024-09-27T13:50:34.631889Z", + "iopub.status.idle": "2024-09-27T13:50:40.167372Z", + "shell.execute_reply": "2024-09-27T13:50:40.166857Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 2064384/170498071 [00:00<00:08, 20630382.53it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17324553.72it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:03, 52270442.86it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:02, 56350581.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17498112/170498071 [00:00<00:02, 64734739.67it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:02, 58867112.24it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29163520/170498071 [00:00<00:01, 85142994.91it/s]" + " 14%|█▎ | 23298048/170498071 [00:00<00:02, 62722855.85it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40796160/170498071 [00:00<00:01, 96352842.59it/s]" + " 18%|█▊ | 29884416/170498071 [00:00<00:02, 63725820.45it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52461568/170498071 [00:00<00:01, 103238176.66it/s]" + " 21%|██▏ | 36569088/170498071 [00:00<00:02, 64687801.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64094208/170498071 [00:00<00:00, 107007260.86it/s]" + " 25%|██▌ | 43057152/170498071 [00:00<00:01, 64045274.16it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75857920/170498071 [00:00<00:00, 110372379.91it/s]" + " 29%|██▉ | 49479680/170498071 [00:00<00:01, 63636758.17it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87588864/170498071 [00:00<00:00, 112453756.10it/s]" + " 33%|███▎ | 55869440/170498071 [00:00<00:01, 63530849.98it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99287040/170498071 [00:01<00:00, 113788226.67it/s]" + " 37%|███▋ | 62324736/170498071 [00:01<00:01, 63773721.91it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 110952448/170498071 [00:01<00:00, 114500206.50it/s]" + " 40%|████ | 68714496/170498071 [00:01<00:01, 63611956.56it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122650624/170498071 [00:01<00:00, 115205361.57it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:01, 63340021.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134381568/170498071 [00:01<00:00, 115630678.67it/s]" + " 48%|████▊ | 81592320/170498071 [00:01<00:01, 63646571.47it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146079744/170498071 [00:01<00:00, 115905368.54it/s]" + " 52%|█████▏ | 88145920/170498071 [00:01<00:01, 64135061.04it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 157777920/170498071 [00:01<00:00, 116224092.07it/s]" + " 56%|█████▌ | 95059968/170498071 [00:01<00:01, 65506735.07it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 169443328/170498071 [00:01<00:00, 116343059.81it/s]" + " 60%|█████▉ | 101777408/170498071 [00:01<00:01, 65926861.28it/s]" ] }, { @@ -380,7 +380,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]" + " 64%|██████▎ | 108593152/170498071 [00:01<00:00, 66500282.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115245056/170498071 [00:01<00:00, 66172108.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 66238030.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▌ | 128581632/170498071 [00:02<00:00, 66297330.54it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135430144/170498071 [00:02<00:00, 66911084.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142147584/170498071 [00:02<00:00, 66229052.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148930560/170498071 [00:02<00:00, 66687006.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155615232/170498071 [00:02<00:00, 65733593.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162201600/170498071 [00:02<00:00, 65517357.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168787968/170498071 [00:02<00:00, 64819767.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]" ] }, { @@ -498,10 +578,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.813180Z", - "iopub.status.busy": "2024-09-26T17:04:09.812843Z", - "iopub.status.idle": "2024-09-26T17:04:09.817679Z", - "shell.execute_reply": "2024-09-26T17:04:09.817089Z" + "iopub.execute_input": "2024-09-27T13:50:40.169405Z", + "iopub.status.busy": "2024-09-27T13:50:40.168936Z", + "iopub.status.idle": "2024-09-27T13:50:40.173943Z", + "shell.execute_reply": "2024-09-27T13:50:40.173496Z" }, "nbsphinx": "hidden" }, @@ -552,10 +632,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.819327Z", - "iopub.status.busy": "2024-09-26T17:04:09.819007Z", - "iopub.status.idle": "2024-09-26T17:04:10.358798Z", - "shell.execute_reply": "2024-09-26T17:04:10.358317Z" + "iopub.execute_input": "2024-09-27T13:50:40.175648Z", + "iopub.status.busy": "2024-09-27T13:50:40.175466Z", + "iopub.status.idle": "2024-09-27T13:50:40.714706Z", + "shell.execute_reply": "2024-09-27T13:50:40.714068Z" } }, "outputs": [ @@ -588,10 +668,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.360475Z", - "iopub.status.busy": "2024-09-26T17:04:10.360295Z", - "iopub.status.idle": "2024-09-26T17:04:10.842081Z", - "shell.execute_reply": "2024-09-26T17:04:10.841507Z" + "iopub.execute_input": "2024-09-27T13:50:40.716536Z", + "iopub.status.busy": "2024-09-27T13:50:40.716348Z", + "iopub.status.idle": "2024-09-27T13:50:41.219660Z", + "shell.execute_reply": "2024-09-27T13:50:41.219126Z" } }, "outputs": [ @@ -629,10 +709,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.843865Z", - "iopub.status.busy": "2024-09-26T17:04:10.843673Z", - "iopub.status.idle": "2024-09-26T17:04:10.847312Z", - "shell.execute_reply": "2024-09-26T17:04:10.846740Z" + "iopub.execute_input": "2024-09-27T13:50:41.221397Z", + "iopub.status.busy": "2024-09-27T13:50:41.221191Z", + "iopub.status.idle": "2024-09-27T13:50:41.225060Z", + "shell.execute_reply": "2024-09-27T13:50:41.224590Z" } }, "outputs": [], @@ -655,17 +735,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.849081Z", - "iopub.status.busy": "2024-09-26T17:04:10.848761Z", - "iopub.status.idle": "2024-09-26T17:04:23.742842Z", - "shell.execute_reply": "2024-09-26T17:04:23.742223Z" + "iopub.execute_input": "2024-09-27T13:50:41.226609Z", + "iopub.status.busy": "2024-09-27T13:50:41.226428Z", + "iopub.status.idle": "2024-09-27T13:50:53.794332Z", + "shell.execute_reply": "2024-09-27T13:50:53.793704Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "481cf30bee6943db835bc9693b38b7d0", + "model_id": "8e59a7f076e448cbb05804524a137e75", "version_major": 2, "version_minor": 0 }, @@ -724,10 +804,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:23.745010Z", - "iopub.status.busy": "2024-09-26T17:04:23.744585Z", - "iopub.status.idle": "2024-09-26T17:04:25.839364Z", - "shell.execute_reply": "2024-09-26T17:04:25.838719Z" + "iopub.execute_input": "2024-09-27T13:50:53.796281Z", + "iopub.status.busy": "2024-09-27T13:50:53.796075Z", + "iopub.status.idle": "2024-09-27T13:50:55.839092Z", + "shell.execute_reply": "2024-09-27T13:50:55.838479Z" } }, "outputs": [ @@ -771,10 +851,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:25.841749Z", - "iopub.status.busy": "2024-09-26T17:04:25.841296Z", - "iopub.status.idle": "2024-09-26T17:04:26.096812Z", - "shell.execute_reply": "2024-09-26T17:04:26.096240Z" + "iopub.execute_input": "2024-09-27T13:50:55.841077Z", + "iopub.status.busy": "2024-09-27T13:50:55.840883Z", + "iopub.status.idle": "2024-09-27T13:50:56.068164Z", + "shell.execute_reply": "2024-09-27T13:50:56.067368Z" } }, "outputs": [ @@ -810,10 +890,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.099329Z", - "iopub.status.busy": "2024-09-26T17:04:26.098877Z", - "iopub.status.idle": "2024-09-26T17:04:26.766406Z", - "shell.execute_reply": "2024-09-26T17:04:26.765862Z" + "iopub.execute_input": "2024-09-27T13:50:56.070248Z", + "iopub.status.busy": "2024-09-27T13:50:56.070059Z", + "iopub.status.idle": "2024-09-27T13:50:56.719579Z", + "shell.execute_reply": "2024-09-27T13:50:56.718990Z" } }, "outputs": [ @@ -863,10 +943,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.768620Z", - "iopub.status.busy": "2024-09-26T17:04:26.768224Z", - "iopub.status.idle": "2024-09-26T17:04:27.108073Z", - "shell.execute_reply": "2024-09-26T17:04:27.107473Z" + "iopub.execute_input": "2024-09-27T13:50:56.722081Z", + "iopub.status.busy": "2024-09-27T13:50:56.721673Z", + "iopub.status.idle": "2024-09-27T13:50:57.069923Z", + "shell.execute_reply": "2024-09-27T13:50:57.069392Z" } }, "outputs": [ @@ -914,10 +994,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.109834Z", - "iopub.status.busy": "2024-09-26T17:04:27.109650Z", - "iopub.status.idle": "2024-09-26T17:04:27.351524Z", - "shell.execute_reply": "2024-09-26T17:04:27.350876Z" + "iopub.execute_input": "2024-09-27T13:50:57.071861Z", + "iopub.status.busy": "2024-09-27T13:50:57.071481Z", + "iopub.status.idle": "2024-09-27T13:50:57.316398Z", + "shell.execute_reply": "2024-09-27T13:50:57.315816Z" } }, "outputs": [ @@ -973,10 +1053,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.354053Z", - "iopub.status.busy": "2024-09-26T17:04:27.353600Z", - "iopub.status.idle": "2024-09-26T17:04:27.447892Z", - "shell.execute_reply": "2024-09-26T17:04:27.447384Z" + "iopub.execute_input": "2024-09-27T13:50:57.318975Z", + "iopub.status.busy": "2024-09-27T13:50:57.318496Z", + "iopub.status.idle": "2024-09-27T13:50:57.417331Z", + "shell.execute_reply": "2024-09-27T13:50:57.416812Z" } }, "outputs": [], @@ -997,10 +1077,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.449743Z", - "iopub.status.busy": "2024-09-26T17:04:27.449562Z", - "iopub.status.idle": "2024-09-26T17:04:38.184870Z", - "shell.execute_reply": "2024-09-26T17:04:38.184254Z" + "iopub.execute_input": "2024-09-27T13:50:57.419373Z", + "iopub.status.busy": "2024-09-27T13:50:57.419019Z", + "iopub.status.idle": "2024-09-27T13:51:08.254190Z", + "shell.execute_reply": "2024-09-27T13:51:08.253562Z" } }, "outputs": [ @@ -1037,10 +1117,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:38.186868Z", - "iopub.status.busy": "2024-09-26T17:04:38.186659Z", - "iopub.status.idle": "2024-09-26T17:04:40.383970Z", - "shell.execute_reply": "2024-09-26T17:04:40.383460Z" + "iopub.execute_input": "2024-09-27T13:51:08.256355Z", + "iopub.status.busy": "2024-09-27T13:51:08.255957Z", + "iopub.status.idle": "2024-09-27T13:51:10.500115Z", + "shell.execute_reply": "2024-09-27T13:51:10.499556Z" } }, "outputs": [ @@ -1071,10 +1151,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.386614Z", - "iopub.status.busy": "2024-09-26T17:04:40.385949Z", - "iopub.status.idle": "2024-09-26T17:04:40.607538Z", - "shell.execute_reply": "2024-09-26T17:04:40.607022Z" + "iopub.execute_input": "2024-09-27T13:51:10.502313Z", + "iopub.status.busy": "2024-09-27T13:51:10.501787Z", + "iopub.status.idle": "2024-09-27T13:51:10.707690Z", + "shell.execute_reply": "2024-09-27T13:51:10.707063Z" } }, "outputs": [], @@ -1088,10 +1168,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.609616Z", - "iopub.status.busy": "2024-09-26T17:04:40.609228Z", - "iopub.status.idle": "2024-09-26T17:04:40.612336Z", - "shell.execute_reply": "2024-09-26T17:04:40.611909Z" + "iopub.execute_input": "2024-09-27T13:51:10.709735Z", + "iopub.status.busy": "2024-09-27T13:51:10.709439Z", + "iopub.status.idle": "2024-09-27T13:51:10.712726Z", + "shell.execute_reply": "2024-09-27T13:51:10.712173Z" } }, "outputs": [], @@ -1129,10 +1209,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.614035Z", - "iopub.status.busy": "2024-09-26T17:04:40.613703Z", - "iopub.status.idle": "2024-09-26T17:04:40.622171Z", - "shell.execute_reply": "2024-09-26T17:04:40.621706Z" + "iopub.execute_input": "2024-09-27T13:51:10.714435Z", + "iopub.status.busy": "2024-09-27T13:51:10.714266Z", + "iopub.status.idle": "2024-09-27T13:51:10.722614Z", + "shell.execute_reply": "2024-09-27T13:51:10.722178Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1257,56 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016906c40ec04434a96f0c6da6967bef": { + "1adbfa3fbfa54ba293de2b9b03f71b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb0db3b827c74f38b4b1991b101e964f", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7849ac70397848e496266851c5d956d1", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "28c0621e5d2b4951ab66ed9e5bc81fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5672ddb7d62c425e94757073a3500d04", + "placeholder": "​", + "style": "IPY_MODEL_bb17fd7956a84dbdb54505cd8cfb07c7", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "4d294500e0514c7e887575b26cc73e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,72 +1359,7 @@ "width": null } }, - "14c69cfacf3e48d2b95f46cd54e49c9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3972814dcab04892afc1ac1440552ac5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb5438c747049e5968c73417456b937", - "placeholder": "​", - "style": "IPY_MODEL_9362062e23974e61900f7a5522a0189b", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 129MB/s]" - } - }, - "481cf30bee6943db835bc9693b38b7d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_850360c1166847dfa53976aad59ff517", - "IPY_MODEL_8f07b9affc9c4c4a84fe88f43b488473", - "IPY_MODEL_3972814dcab04892afc1ac1440552ac5" - ], - "layout": "IPY_MODEL_adac6f450dbc46f989ade8c2425b2515", - "tabbable": null, - "tooltip": null - } - }, - "4bb5438c747049e5968c73417456b937": { + "5672ddb7d62c425e94757073a3500d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1348,90 +1412,65 @@ "width": null } }, - "6983437a251a418689409a3191804389": { + "5a69fbb1a7434f11b05d70b97ab05535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "850360c1166847dfa53976aad59ff517": { + "7849ac70397848e496266851c5d956d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_016906c40ec04434a96f0c6da6967bef", - "placeholder": "​", - "style": "IPY_MODEL_14c69cfacf3e48d2b95f46cd54e49c9b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f07b9affc9c4c4a84fe88f43b488473": { + "8e59a7f076e448cbb05804524a137e75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1c50b96b69e4282b9a88b0b784c08bf", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6983437a251a418689409a3191804389", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28c0621e5d2b4951ab66ed9e5bc81fc0", + "IPY_MODEL_1adbfa3fbfa54ba293de2b9b03f71b7b", + "IPY_MODEL_d63681a72bc34d61ad7e193ef1396969" + ], + "layout": "IPY_MODEL_4d294500e0514c7e887575b26cc73e59", "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "9362062e23974e61900f7a5522a0189b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "adac6f450dbc46f989ade8c2425b2515": { + "9de99fa1656b4220b4b86019adf6b18f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1523,48 @@ "width": null } }, - "b1c50b96b69e4282b9a88b0b784c08bf": { + "bb17fd7956a84dbdb54505cd8cfb07c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d63681a72bc34d61ad7e193ef1396969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9de99fa1656b4220b4b86019adf6b18f", + "placeholder": "​", + "style": "IPY_MODEL_5a69fbb1a7434f11b05d70b97ab05535", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "eb0db3b827c74f38b4b1991b101e964f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 4e0f503ec..a781c88d1 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:45.045613Z", - "iopub.status.busy": "2024-09-26T17:04:45.045449Z", - "iopub.status.idle": "2024-09-26T17:04:46.356026Z", - "shell.execute_reply": "2024-09-26T17:04:46.355424Z" + "iopub.execute_input": "2024-09-27T13:51:15.149161Z", + "iopub.status.busy": "2024-09-27T13:51:15.148999Z", + "iopub.status.idle": "2024-09-27T13:51:16.418985Z", + "shell.execute_reply": "2024-09-27T13:51:16.418425Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.358207Z", - "iopub.status.busy": "2024-09-26T17:04:46.357894Z", - "iopub.status.idle": "2024-09-26T17:04:46.377349Z", - "shell.execute_reply": "2024-09-26T17:04:46.376818Z" + "iopub.execute_input": "2024-09-27T13:51:16.420957Z", + "iopub.status.busy": "2024-09-27T13:51:16.420681Z", + "iopub.status.idle": "2024-09-27T13:51:16.439104Z", + "shell.execute_reply": "2024-09-27T13:51:16.438650Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.379468Z", - "iopub.status.busy": "2024-09-26T17:04:46.378978Z", - "iopub.status.idle": "2024-09-26T17:04:46.382061Z", - "shell.execute_reply": "2024-09-26T17:04:46.381595Z" + "iopub.execute_input": "2024-09-27T13:51:16.441018Z", + "iopub.status.busy": "2024-09-27T13:51:16.440605Z", + "iopub.status.idle": "2024-09-27T13:51:16.443577Z", + "shell.execute_reply": "2024-09-27T13:51:16.443113Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.383663Z", - "iopub.status.busy": "2024-09-26T17:04:46.383479Z", - "iopub.status.idle": "2024-09-26T17:04:46.481470Z", - "shell.execute_reply": "2024-09-26T17:04:46.480877Z" + "iopub.execute_input": "2024-09-27T13:51:16.445299Z", + "iopub.status.busy": "2024-09-27T13:51:16.444975Z", + "iopub.status.idle": "2024-09-27T13:51:16.552085Z", + "shell.execute_reply": "2024-09-27T13:51:16.551626Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.483670Z", - "iopub.status.busy": "2024-09-26T17:04:46.483192Z", - "iopub.status.idle": "2024-09-26T17:04:46.669376Z", - "shell.execute_reply": "2024-09-26T17:04:46.668677Z" + "iopub.execute_input": "2024-09-27T13:51:16.554009Z", + "iopub.status.busy": "2024-09-27T13:51:16.553632Z", + "iopub.status.idle": "2024-09-27T13:51:16.737330Z", + "shell.execute_reply": "2024-09-27T13:51:16.736689Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.671709Z", - "iopub.status.busy": "2024-09-26T17:04:46.671318Z", - "iopub.status.idle": "2024-09-26T17:04:46.889372Z", - "shell.execute_reply": "2024-09-26T17:04:46.888829Z" + "iopub.execute_input": "2024-09-27T13:51:16.739654Z", + "iopub.status.busy": "2024-09-27T13:51:16.739277Z", + "iopub.status.idle": "2024-09-27T13:51:16.985723Z", + "shell.execute_reply": "2024-09-27T13:51:16.985100Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.891445Z", - "iopub.status.busy": "2024-09-26T17:04:46.890916Z", - "iopub.status.idle": "2024-09-26T17:04:46.895690Z", - "shell.execute_reply": "2024-09-26T17:04:46.895219Z" + "iopub.execute_input": "2024-09-27T13:51:16.987526Z", + "iopub.status.busy": "2024-09-27T13:51:16.987225Z", + "iopub.status.idle": "2024-09-27T13:51:16.991621Z", + "shell.execute_reply": "2024-09-27T13:51:16.991153Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.897480Z", - "iopub.status.busy": "2024-09-26T17:04:46.897178Z", - "iopub.status.idle": "2024-09-26T17:04:46.903377Z", - "shell.execute_reply": "2024-09-26T17:04:46.902787Z" + "iopub.execute_input": "2024-09-27T13:51:16.993248Z", + "iopub.status.busy": "2024-09-27T13:51:16.992898Z", + "iopub.status.idle": "2024-09-27T13:51:16.998722Z", + "shell.execute_reply": "2024-09-27T13:51:16.998268Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.905000Z", - "iopub.status.busy": "2024-09-26T17:04:46.904823Z", - "iopub.status.idle": "2024-09-26T17:04:46.907722Z", - "shell.execute_reply": "2024-09-26T17:04:46.907293Z" + "iopub.execute_input": "2024-09-27T13:51:17.000381Z", + "iopub.status.busy": "2024-09-27T13:51:17.000114Z", + "iopub.status.idle": "2024-09-27T13:51:17.002650Z", + "shell.execute_reply": "2024-09-27T13:51:17.002204Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.909599Z", - "iopub.status.busy": "2024-09-26T17:04:46.909131Z", - "iopub.status.idle": "2024-09-26T17:04:55.883286Z", - "shell.execute_reply": "2024-09-26T17:04:55.882633Z" + "iopub.execute_input": "2024-09-27T13:51:17.004391Z", + "iopub.status.busy": "2024-09-27T13:51:17.003946Z", + "iopub.status.idle": "2024-09-27T13:51:26.067326Z", + "shell.execute_reply": "2024-09-27T13:51:26.066758Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.885851Z", - "iopub.status.busy": "2024-09-26T17:04:55.885210Z", - "iopub.status.idle": "2024-09-26T17:04:55.892917Z", - "shell.execute_reply": "2024-09-26T17:04:55.892454Z" + "iopub.execute_input": "2024-09-27T13:51:26.069894Z", + "iopub.status.busy": "2024-09-27T13:51:26.069345Z", + "iopub.status.idle": "2024-09-27T13:51:26.076338Z", + "shell.execute_reply": "2024-09-27T13:51:26.075881Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.894663Z", - "iopub.status.busy": "2024-09-26T17:04:55.894322Z", - "iopub.status.idle": "2024-09-26T17:04:55.897834Z", - "shell.execute_reply": "2024-09-26T17:04:55.897377Z" + "iopub.execute_input": "2024-09-27T13:51:26.078018Z", + "iopub.status.busy": "2024-09-27T13:51:26.077730Z", + "iopub.status.idle": "2024-09-27T13:51:26.081236Z", + "shell.execute_reply": "2024-09-27T13:51:26.080792Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.899532Z", - "iopub.status.busy": "2024-09-26T17:04:55.899211Z", - "iopub.status.idle": "2024-09-26T17:04:55.902535Z", - "shell.execute_reply": "2024-09-26T17:04:55.901994Z" + "iopub.execute_input": "2024-09-27T13:51:26.082932Z", + "iopub.status.busy": "2024-09-27T13:51:26.082598Z", + "iopub.status.idle": "2024-09-27T13:51:26.085987Z", + "shell.execute_reply": "2024-09-27T13:51:26.085516Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.904316Z", - "iopub.status.busy": "2024-09-26T17:04:55.903915Z", - "iopub.status.idle": "2024-09-26T17:04:55.906956Z", - "shell.execute_reply": "2024-09-26T17:04:55.906478Z" + "iopub.execute_input": "2024-09-27T13:51:26.087772Z", + "iopub.status.busy": "2024-09-27T13:51:26.087368Z", + "iopub.status.idle": "2024-09-27T13:51:26.090518Z", + "shell.execute_reply": "2024-09-27T13:51:26.090064Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.908409Z", - "iopub.status.busy": "2024-09-26T17:04:55.908236Z", - "iopub.status.idle": "2024-09-26T17:04:55.916410Z", - "shell.execute_reply": "2024-09-26T17:04:55.915860Z" + "iopub.execute_input": "2024-09-27T13:51:26.092191Z", + "iopub.status.busy": "2024-09-27T13:51:26.091860Z", + "iopub.status.idle": "2024-09-27T13:51:26.099609Z", + "shell.execute_reply": "2024-09-27T13:51:26.099158Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.918227Z", - "iopub.status.busy": "2024-09-26T17:04:55.917906Z", - "iopub.status.idle": "2024-09-26T17:04:55.920593Z", - "shell.execute_reply": "2024-09-26T17:04:55.920127Z" + "iopub.execute_input": "2024-09-27T13:51:26.101260Z", + "iopub.status.busy": "2024-09-27T13:51:26.100944Z", + "iopub.status.idle": "2024-09-27T13:51:26.103665Z", + "shell.execute_reply": "2024-09-27T13:51:26.103114Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.922554Z", - "iopub.status.busy": "2024-09-26T17:04:55.922044Z", - "iopub.status.idle": "2024-09-26T17:04:56.045940Z", - "shell.execute_reply": "2024-09-26T17:04:56.045422Z" + "iopub.execute_input": "2024-09-27T13:51:26.105327Z", + "iopub.status.busy": "2024-09-27T13:51:26.105016Z", + "iopub.status.idle": "2024-09-27T13:51:26.230588Z", + "shell.execute_reply": "2024-09-27T13:51:26.229994Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.047840Z", - "iopub.status.busy": "2024-09-26T17:04:56.047468Z", - "iopub.status.idle": "2024-09-26T17:04:56.167819Z", - "shell.execute_reply": "2024-09-26T17:04:56.167293Z" + "iopub.execute_input": "2024-09-27T13:51:26.232496Z", + "iopub.status.busy": "2024-09-27T13:51:26.232118Z", + "iopub.status.idle": "2024-09-27T13:51:26.342308Z", + "shell.execute_reply": "2024-09-27T13:51:26.341751Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.169945Z", - "iopub.status.busy": "2024-09-26T17:04:56.169503Z", - "iopub.status.idle": "2024-09-26T17:04:56.685934Z", - "shell.execute_reply": "2024-09-26T17:04:56.685296Z" + "iopub.execute_input": "2024-09-27T13:51:26.344213Z", + "iopub.status.busy": "2024-09-27T13:51:26.343885Z", + "iopub.status.idle": "2024-09-27T13:51:26.866342Z", + "shell.execute_reply": "2024-09-27T13:51:26.865682Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.688248Z", - "iopub.status.busy": "2024-09-26T17:04:56.687817Z", - "iopub.status.idle": "2024-09-26T17:04:56.783644Z", - "shell.execute_reply": "2024-09-26T17:04:56.783001Z" + "iopub.execute_input": "2024-09-27T13:51:26.868362Z", + "iopub.status.busy": "2024-09-27T13:51:26.868178Z", + "iopub.status.idle": "2024-09-27T13:51:26.964126Z", + "shell.execute_reply": "2024-09-27T13:51:26.963551Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.785728Z", - "iopub.status.busy": "2024-09-26T17:04:56.785306Z", - "iopub.status.idle": "2024-09-26T17:04:56.793844Z", - "shell.execute_reply": "2024-09-26T17:04:56.793274Z" + "iopub.execute_input": "2024-09-27T13:51:26.966053Z", + "iopub.status.busy": "2024-09-27T13:51:26.965821Z", + "iopub.status.idle": "2024-09-27T13:51:26.974429Z", + "shell.execute_reply": "2024-09-27T13:51:26.973838Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.795479Z", - "iopub.status.busy": "2024-09-26T17:04:56.795160Z", - "iopub.status.idle": "2024-09-26T17:04:56.797955Z", - "shell.execute_reply": "2024-09-26T17:04:56.797402Z" + "iopub.execute_input": "2024-09-27T13:51:26.976211Z", + "iopub.status.busy": "2024-09-27T13:51:26.975775Z", + "iopub.status.idle": "2024-09-27T13:51:26.978660Z", + "shell.execute_reply": "2024-09-27T13:51:26.978085Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.799958Z", - "iopub.status.busy": "2024-09-26T17:04:56.799621Z", - "iopub.status.idle": "2024-09-26T17:05:02.434662Z", - "shell.execute_reply": "2024-09-26T17:05:02.434117Z" + "iopub.execute_input": "2024-09-27T13:51:26.980464Z", + "iopub.status.busy": "2024-09-27T13:51:26.980130Z", + "iopub.status.idle": "2024-09-27T13:51:32.684948Z", + "shell.execute_reply": "2024-09-27T13:51:32.684334Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.436647Z", - "iopub.status.busy": "2024-09-26T17:05:02.436258Z", - "iopub.status.idle": "2024-09-26T17:05:02.444773Z", - "shell.execute_reply": "2024-09-26T17:05:02.444312Z" + "iopub.execute_input": "2024-09-27T13:51:32.686957Z", + "iopub.status.busy": "2024-09-27T13:51:32.686573Z", + "iopub.status.idle": "2024-09-27T13:51:32.695195Z", + "shell.execute_reply": "2024-09-27T13:51:32.694586Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.446489Z", - "iopub.status.busy": "2024-09-26T17:05:02.446154Z", - "iopub.status.idle": "2024-09-26T17:05:02.514195Z", - "shell.execute_reply": "2024-09-26T17:05:02.513712Z" + "iopub.execute_input": "2024-09-27T13:51:32.696968Z", + "iopub.status.busy": "2024-09-27T13:51:32.696618Z", + "iopub.status.idle": "2024-09-27T13:51:32.764496Z", + "shell.execute_reply": "2024-09-27T13:51:32.763852Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 0c953a37d..9dca2eb7d 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:05.717015Z", - "iopub.status.busy": "2024-09-26T17:05:05.716843Z", - "iopub.status.idle": "2024-09-26T17:05:08.037778Z", - "shell.execute_reply": "2024-09-26T17:05:08.037084Z" + "iopub.execute_input": "2024-09-27T13:51:35.933316Z", + "iopub.status.busy": "2024-09-27T13:51:35.933122Z", + "iopub.status.idle": "2024-09-27T13:51:38.270090Z", + "shell.execute_reply": "2024-09-27T13:51:38.269373Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:08.040304Z", - "iopub.status.busy": "2024-09-26T17:05:08.039827Z", - "iopub.status.idle": "2024-09-26T17:06:15.788536Z", - "shell.execute_reply": "2024-09-26T17:06:15.787814Z" + "iopub.execute_input": "2024-09-27T13:51:38.272195Z", + "iopub.status.busy": "2024-09-27T13:51:38.271991Z", + "iopub.status.idle": "2024-09-27T13:52:43.930890Z", + "shell.execute_reply": "2024-09-27T13:52:43.930121Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:15.791492Z", - "iopub.status.busy": "2024-09-26T17:06:15.790929Z", - "iopub.status.idle": "2024-09-26T17:06:17.030438Z", - "shell.execute_reply": "2024-09-26T17:06:17.029934Z" + "iopub.execute_input": "2024-09-27T13:52:43.933175Z", + "iopub.status.busy": "2024-09-27T13:52:43.932718Z", + "iopub.status.idle": "2024-09-27T13:52:45.152829Z", + "shell.execute_reply": "2024-09-27T13:52:45.152260Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.032578Z", - "iopub.status.busy": "2024-09-26T17:06:17.032181Z", - "iopub.status.idle": "2024-09-26T17:06:17.035397Z", - "shell.execute_reply": "2024-09-26T17:06:17.034940Z" + "iopub.execute_input": "2024-09-27T13:52:45.154808Z", + "iopub.status.busy": "2024-09-27T13:52:45.154531Z", + "iopub.status.idle": "2024-09-27T13:52:45.158007Z", + "shell.execute_reply": "2024-09-27T13:52:45.157435Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.037239Z", - "iopub.status.busy": "2024-09-26T17:06:17.036895Z", - "iopub.status.idle": "2024-09-26T17:06:17.040814Z", - "shell.execute_reply": "2024-09-26T17:06:17.040350Z" + "iopub.execute_input": "2024-09-27T13:52:45.159874Z", + "iopub.status.busy": "2024-09-27T13:52:45.159484Z", + "iopub.status.idle": "2024-09-27T13:52:45.163392Z", + "shell.execute_reply": "2024-09-27T13:52:45.162836Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.042465Z", - "iopub.status.busy": "2024-09-26T17:06:17.042192Z", - "iopub.status.idle": "2024-09-26T17:06:17.045640Z", - "shell.execute_reply": "2024-09-26T17:06:17.045177Z" + "iopub.execute_input": "2024-09-27T13:52:45.165264Z", + "iopub.status.busy": "2024-09-27T13:52:45.164843Z", + "iopub.status.idle": "2024-09-27T13:52:45.168434Z", + "shell.execute_reply": "2024-09-27T13:52:45.168001Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.047315Z", - "iopub.status.busy": "2024-09-26T17:06:17.046980Z", - "iopub.status.idle": "2024-09-26T17:06:17.049687Z", - "shell.execute_reply": "2024-09-26T17:06:17.049193Z" + "iopub.execute_input": "2024-09-27T13:52:45.170026Z", + "iopub.status.busy": "2024-09-27T13:52:45.169831Z", + "iopub.status.idle": "2024-09-27T13:52:45.172854Z", + "shell.execute_reply": "2024-09-27T13:52:45.172440Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.051353Z", - "iopub.status.busy": "2024-09-26T17:06:17.051011Z", - "iopub.status.idle": "2024-09-26T17:06:55.164616Z", - "shell.execute_reply": "2024-09-26T17:06:55.163984Z" + "iopub.execute_input": "2024-09-27T13:52:45.174469Z", + "iopub.status.busy": "2024-09-27T13:52:45.174131Z", + "iopub.status.idle": "2024-09-27T13:53:23.240572Z", + "shell.execute_reply": "2024-09-27T13:53:23.239851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9433b8180b7c45728863cb9c40d5e567", + "model_id": "0cacd283386e42a5bdc7ef667a30ed27", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "069caa427ad347c5bd1333db3bd5ec8b", + "model_id": "4644996a967241dfa8d773a9ca551092", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.166835Z", - "iopub.status.busy": "2024-09-26T17:06:55.166581Z", - "iopub.status.idle": "2024-09-26T17:06:55.838631Z", - "shell.execute_reply": "2024-09-26T17:06:55.838008Z" + "iopub.execute_input": "2024-09-27T13:53:23.243096Z", + "iopub.status.busy": "2024-09-27T13:53:23.242875Z", + "iopub.status.idle": "2024-09-27T13:53:23.927697Z", + "shell.execute_reply": "2024-09-27T13:53:23.927078Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.840661Z", - "iopub.status.busy": "2024-09-26T17:06:55.840128Z", - "iopub.status.idle": "2024-09-26T17:06:58.654558Z", - "shell.execute_reply": "2024-09-26T17:06:58.653954Z" + "iopub.execute_input": "2024-09-27T13:53:23.929799Z", + "iopub.status.busy": "2024-09-27T13:53:23.929338Z", + "iopub.status.idle": "2024-09-27T13:53:26.776889Z", + "shell.execute_reply": "2024-09-27T13:53:26.776303Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:58.656660Z", - "iopub.status.busy": "2024-09-26T17:06:58.656193Z", - "iopub.status.idle": "2024-09-26T17:07:31.282511Z", - "shell.execute_reply": "2024-09-26T17:07:31.282022Z" + "iopub.execute_input": "2024-09-27T13:53:26.778857Z", + "iopub.status.busy": "2024-09-27T13:53:26.778501Z", + "iopub.status.idle": "2024-09-27T13:54:00.727701Z", + "shell.execute_reply": "2024-09-27T13:54:00.727143Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "419483351ddf440f89b247293c5dcdc0", + "model_id": "ba6bd71b6bee41189f78a1c572677822", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:31.284330Z", - "iopub.status.busy": "2024-09-26T17:07:31.283976Z", - "iopub.status.idle": "2024-09-26T17:07:47.118288Z", - "shell.execute_reply": "2024-09-26T17:07:47.117716Z" + "iopub.execute_input": "2024-09-27T13:54:00.729587Z", + "iopub.status.busy": "2024-09-27T13:54:00.729293Z", + "iopub.status.idle": "2024-09-27T13:54:16.723181Z", + "shell.execute_reply": "2024-09-27T13:54:16.722543Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:47.120299Z", - "iopub.status.busy": "2024-09-26T17:07:47.119974Z", - "iopub.status.idle": "2024-09-26T17:07:50.977077Z", - "shell.execute_reply": "2024-09-26T17:07:50.976571Z" + "iopub.execute_input": "2024-09-27T13:54:16.725370Z", + "iopub.status.busy": "2024-09-27T13:54:16.725011Z", + "iopub.status.idle": "2024-09-27T13:54:20.576835Z", + "shell.execute_reply": "2024-09-27T13:54:20.576292Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:50.978894Z", - "iopub.status.busy": "2024-09-26T17:07:50.978599Z", - "iopub.status.idle": "2024-09-26T17:07:52.469581Z", - "shell.execute_reply": "2024-09-26T17:07:52.468926Z" + "iopub.execute_input": "2024-09-27T13:54:20.578749Z", + "iopub.status.busy": "2024-09-27T13:54:20.578398Z", + "iopub.status.idle": "2024-09-27T13:54:22.071673Z", + "shell.execute_reply": "2024-09-27T13:54:22.071167Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5a1fa9574814a138f8b11ada26aa7ce", + "model_id": "d5ee6722fdee41c9a5f051d5f4bc9eff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.471634Z", - "iopub.status.busy": "2024-09-26T17:07:52.471286Z", - "iopub.status.idle": "2024-09-26T17:07:52.502859Z", - "shell.execute_reply": "2024-09-26T17:07:52.502297Z" + "iopub.execute_input": "2024-09-27T13:54:22.073573Z", + "iopub.status.busy": "2024-09-27T13:54:22.073206Z", + "iopub.status.idle": "2024-09-27T13:54:22.104042Z", + "shell.execute_reply": "2024-09-27T13:54:22.103489Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.505051Z", - "iopub.status.busy": "2024-09-26T17:07:52.504670Z", - "iopub.status.idle": "2024-09-26T17:07:58.645124Z", - "shell.execute_reply": "2024-09-26T17:07:58.644610Z" + "iopub.execute_input": "2024-09-27T13:54:22.106225Z", + "iopub.status.busy": "2024-09-27T13:54:22.105837Z", + "iopub.status.idle": "2024-09-27T13:54:28.273568Z", + "shell.execute_reply": "2024-09-27T13:54:28.273000Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:58.646914Z", - "iopub.status.busy": "2024-09-26T17:07:58.646726Z", - "iopub.status.idle": "2024-09-26T17:07:58.703002Z", - "shell.execute_reply": "2024-09-26T17:07:58.702503Z" + "iopub.execute_input": "2024-09-27T13:54:28.275502Z", + "iopub.status.busy": "2024-09-27T13:54:28.275151Z", + "iopub.status.idle": "2024-09-27T13:54:28.331073Z", + "shell.execute_reply": "2024-09-27T13:54:28.330504Z" }, "nbsphinx": "hidden" }, @@ -1038,51 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010b8225b6d644ccabdfd571da8a8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "01cec593b4a8405da7b3c690d0e52a52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0517b037a82440458d02ea86105f06d8": { + "0203b35b408140bab3d7c2a3022596ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1135,7 +1091,48 @@ "width": null } }, - "069caa427ad347c5bd1333db3bd5ec8b": { + "097e65cda3524af0905ade254303944d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", + "placeholder": "​", + "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.13it/s]" + } + }, + "0b5b1e2e2b08468b89e5133045604b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0cacd283386e42a5bdc7ef667a30ed27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1150,32 +1147,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5cb76de001c842278b1d786d5a645fac", - "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", - "IPY_MODEL_6b40d316ff104deb90302ab718996261" + "IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", + "IPY_MODEL_bb81abffee574a08838324a05306fee5", + "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9" ], - "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", + "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null } }, - "081848e4dbc24107bd57eb8c702bd684": { + "0f8b6a653a2f4f39afc4a68e4562f8c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", + "placeholder": "​", + "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 796.57it/s]" + } + }, + "128282009133450bb17bacece244696d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "17297470645a4db58aed91eed1a148be": { + "1f59ad6477954ccdb68838abe6de8461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,25 +1250,60 @@ "width": null } }, - "192f38f69433493bbd3eeffe870e0abf": { - "model_module": "@jupyter-widgets/controls", + "2350f154084b4431bc8dc7aa3d7b707d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1b492cce44314110abd310d191addb69": { + "26ae1571806b4102a738df4d53c727cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1299,7 +1356,7 @@ "width": null } }, - "2414eb65ad8d4b00b3ea3d85c9bb9d16": { + "3122d5a201ad446fa1be25d4b21acc06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1314,38 +1371,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", + "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "​", - "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", + "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.14it/s]" + "value": " 30/30 [00:01<00:00, 20.64it/s]" } }, - "24272bf2500848a5bcf2d55525f3a0f9": { + "3c336c8b7a3b4cb59ec5f9f24031e6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", - "placeholder": "​", - "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", + "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 789.56it/s]" + "value": 4997683.0 + } + }, + "4644996a967241dfa8d773a9ca551092": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", + "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", + "IPY_MODEL_097e65cda3524af0905ade254303944d" + ], + "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", + "tabbable": null, + "tooltip": null } }, - "26346b2762a446b3852dd6fc6794aee5": { + "4775464e0f1042de98b0e5962d567596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1398,7 +1482,23 @@ "width": null } }, - "30b8f1a9ff53472095e7c2a925cb7b4f": { + "53c5265699634e29a6682fe80468d7c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5948a70e11d04859b1e2b8b837fb140f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1451,7 +1551,7 @@ "width": null } }, - "34abae56904c4b1bb3364dd32eb17639": { + "5c4c694a56634ea0a695dac6f2a36795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1469,7 +1569,7 @@ "text_color": null } }, - "3c78a7ea81274c7ab75aad3c51051fca": { + "5fbe8a5f1e7f4dfeb36f47d3f14ece88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1522,47 +1622,43 @@ "width": null } }, - "41247db7415843a19203dea65c75a294": { + "68adef88f65c4a45bd1410adbc35fdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "419483351ddf440f89b247293c5dcdc0": { + "74279ce0a6444b85a63f9df791957b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", - "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", - "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70" - ], - "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "46241f4b5b034271b6b861ea2799165d": { + "780258fed6944d3cbee72b74d6ec1757": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,56 +1674,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", - "max": 4997683.0, + "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", + "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "4f22d093744347f3b34a78e1d9fddc5c": { + "7b2a798493d54864b1c2c54e441dd6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5cb76de001c842278b1d786d5a645fac": { - "model_module": "@jupyter-widgets/controls", + "7bc851f2a1a84711b61cce3293e573e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", - "placeholder": "​", - "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "61df8743d35a43c98e0022ff4bc97293": { + "7f50700f58f74bcf874d2f107ce9d245": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1642,15 +1770,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", + "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "​", - "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", + "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "69bb131944b64f9999675a9ef28e496f": { + "84fbc4b7384b4f32ad612456874e559c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1665,79 +1793,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", + "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "​", - "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", + "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "6b40d316ff104deb90302ab718996261": { + "99eeb655b5874902944d39a1906553c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", - "placeholder": "​", - "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.15it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b7aa1adb8d04265acda6569262d2b70": { + "9f6962414e7246219b6d8d7d1e22b96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", - "placeholder": "​", - "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150688.70it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "704f533bc271466791f4aed2ff606b9f": { + "a6b9386ba4bd4ef382728a8509ff9733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "761e7aa8f1fd44fc9b5324d18d7cc6f0": { + "a84d7163b7a34ae3a5db5e214e41505f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", + "placeholder": "​", + "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "af09b1cee1824c9dbea2ba4a3df827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1927,7 @@ "width": null } }, - "8748256d360d48058ef6b131aab916a1": { + "b03044509d8e445ba8aede58ad56b8ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,33 +1980,7 @@ "width": null } }, - "8c95ca6d393b43da8b16aed149c46f65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8df337a907d546958dee64127541ca0c": { + "b39e88ec9789404db8f52fe3fad91062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,110 +2033,77 @@ "width": null } }, - "9433b8180b7c45728863cb9c40d5e567": { + "b49455ea450540e083563000c3fff983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", - "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", - "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9" - ], - "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", + "placeholder": "​", + "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:33<00:00, 147202.41it/s]" } }, - "9c63f3dd112d4cd188297907c9dc0947": { + "b5e463cc2461436bbdd695f021b40430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", + "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", + "placeholder": "​", + "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "100%" } }, - "9cc9bcba55184478a96ee6f5db50d92b": { - "model_module": "@jupyter-widgets/base", + "ba6bd71b6bee41189f78a1c572677822": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5e463cc2461436bbdd695f021b40430", + "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", + "IPY_MODEL_b49455ea450540e083563000c3fff983" + ], + "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", + "tabbable": null, + "tooltip": null } }, - "9ea0920685234045bf68210b35f9cadc": { + "bac053573d6d41a1a54925af41d6af17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,60 +2156,57 @@ "width": null } }, - "a011a519ef08415e9947399082ef4823": { - "model_module": "@jupyter-widgets/base", + "bb81abffee574a08838324a05306fee5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "d5ee6722fdee41c9a5f051d5f4bc9eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", + "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", + "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06" + ], + "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", + "tabbable": null, + "tooltip": null } }, - "a171038c0af1477c8a19cfa21eb51810": { + "d8d7e1a536fa4ed695fd3e65770925ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2184,7 +2259,7 @@ "width": null } }, - "adc4d154c7ff4de08c98e30f3e42eeb6": { + "dc7c8ce9cbda4e2ea98b9c02eba16a10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,7 +2277,33 @@ "text_color": null } }, - "af9ecce7424246c7b19990283f91d514": { + "eaf56531a9604d9b8b406e1e02d9f203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ee0e7b61c689421686d277113f1ec067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2255,7 +2356,7 @@ "width": null } }, - "c88cab906e394a4a84904cc6c17850f0": { + "f8793ef7a8f54cf1875b005a6c1f7124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2271,90 +2372,7 @@ "description_width": "" } }, - "d5a1fa9574814a138f8b11ada26aa7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69bb131944b64f9999675a9ef28e496f", - "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", - "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16" - ], - "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", - "tabbable": null, - "tooltip": null - } - }, - "d6dd9c9d112440f3bc8d3d30e256ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "daf32bd5ad8e47cbb62b30e0cc60714c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", - "placeholder": "​", - "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e2fcbf282272460dbb60c23ea7337738": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ead2da2da60e4805a2043cd58fc66569": { + "fa32975e7754475ba3d7e3d4cae1cee7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2425,7 @@ "width": null } }, - "f68fd43ccb474f5d9dd542f446750d8c": { + "fdddcd906c904034b566400adef66822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,24 +2477,6 @@ "visibility": null, "width": null } - }, - "f9cbc0159e8e401daeafe1258f07445e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index d173b02c1..77eaf7ec4 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:01.172227Z", - "iopub.status.busy": "2024-09-26T17:08:01.172043Z", - "iopub.status.idle": "2024-09-26T17:08:03.693417Z", - "shell.execute_reply": "2024-09-26T17:08:03.692836Z" + "iopub.execute_input": "2024-09-27T13:54:30.682391Z", + "iopub.status.busy": "2024-09-27T13:54:30.682226Z", + "iopub.status.idle": "2024-09-27T13:54:32.499916Z", + "shell.execute_reply": "2024-09-27T13:54:32.499221Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-27 13:54:30-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.105, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.105|:443... connected.\r\n", + "185.93.1.244, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.72MB/s in 0.2s \r\n", "\r\n", - "2024-09-26 17:08:01 (95.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-27 13:54:31 (5.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,16 +131,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.64, 3.5.16.102, 3.5.29.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.64|:443... " + "--2024-09-27 13:54:31-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.1.185, 3.5.27.97, 3.5.28.23, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.1.185|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -161,7 +160,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 391.92K 1.81MB/s " + "pred_probs.npz 10%[=> ] 1.67M 8.13MB/s " ] }, { @@ -169,7 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 6%[> ] 1.02M 2.40MB/s " + "pred_probs.npz 30%[=====> ] 4.95M 12.0MB/s " ] }, { @@ -177,7 +176,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 12%[=> ] 1.98M 3.12MB/s " + "pred_probs.npz 63%[===========> ] 10.30M 16.7MB/s " ] }, { @@ -185,41 +184,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 21%[===> ] 3.50M 4.13MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 36%[======> ] 5.85M 5.49MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 58%[==========> ] 9.48M 7.48MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 89%[================> ] 14.59M 9.94MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 10.7MB/s in 1.5s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 21.2MB/s in 0.8s \r\n", "\r\n", - "2024-09-26 17:08:03 (10.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-27 13:54:32 (21.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -236,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:03.695462Z", - "iopub.status.busy": "2024-09-26T17:08:03.695082Z", - "iopub.status.idle": "2024-09-26T17:08:05.014993Z", - "shell.execute_reply": "2024-09-26T17:08:05.014477Z" + "iopub.execute_input": "2024-09-27T13:54:32.502093Z", + "iopub.status.busy": "2024-09-27T13:54:32.501871Z", + "iopub.status.idle": "2024-09-27T13:54:33.874271Z", + "shell.execute_reply": "2024-09-27T13:54:33.873712Z" }, "nbsphinx": "hidden" }, @@ -250,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -276,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.017376Z", - "iopub.status.busy": "2024-09-26T17:08:05.016785Z", - "iopub.status.idle": "2024-09-26T17:08:05.020348Z", - "shell.execute_reply": "2024-09-26T17:08:05.019888Z" + "iopub.execute_input": "2024-09-27T13:54:33.876182Z", + "iopub.status.busy": "2024-09-27T13:54:33.875906Z", + "iopub.status.idle": "2024-09-27T13:54:33.879350Z", + "shell.execute_reply": "2024-09-27T13:54:33.878885Z" } }, "outputs": [], @@ -329,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.022091Z", - "iopub.status.busy": "2024-09-26T17:08:05.021753Z", - "iopub.status.idle": "2024-09-26T17:08:05.024810Z", - "shell.execute_reply": "2024-09-26T17:08:05.024352Z" + "iopub.execute_input": "2024-09-27T13:54:33.880907Z", + "iopub.status.busy": "2024-09-27T13:54:33.880727Z", + "iopub.status.idle": "2024-09-27T13:54:33.883843Z", + "shell.execute_reply": "2024-09-27T13:54:33.883277Z" }, "nbsphinx": "hidden" }, @@ -350,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.026456Z", - "iopub.status.busy": "2024-09-26T17:08:05.026117Z", - "iopub.status.idle": "2024-09-26T17:08:14.109789Z", - "shell.execute_reply": "2024-09-26T17:08:14.109088Z" + "iopub.execute_input": "2024-09-27T13:54:33.885688Z", + "iopub.status.busy": "2024-09-27T13:54:33.885271Z", + "iopub.status.idle": "2024-09-27T13:54:43.002666Z", + "shell.execute_reply": "2024-09-27T13:54:43.002108Z" } }, "outputs": [], @@ -427,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.112027Z", - "iopub.status.busy": "2024-09-26T17:08:14.111813Z", - "iopub.status.idle": "2024-09-26T17:08:14.117508Z", - "shell.execute_reply": "2024-09-26T17:08:14.117014Z" + "iopub.execute_input": "2024-09-27T13:54:43.004773Z", + "iopub.status.busy": "2024-09-27T13:54:43.004417Z", + "iopub.status.idle": "2024-09-27T13:54:43.010152Z", + "shell.execute_reply": "2024-09-27T13:54:43.009564Z" }, "nbsphinx": "hidden" }, @@ -470,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.119321Z", - "iopub.status.busy": "2024-09-26T17:08:14.118911Z", - "iopub.status.idle": "2024-09-26T17:08:14.502060Z", - "shell.execute_reply": "2024-09-26T17:08:14.501537Z" + "iopub.execute_input": "2024-09-27T13:54:43.011857Z", + "iopub.status.busy": "2024-09-27T13:54:43.011526Z", + "iopub.status.idle": "2024-09-27T13:54:43.353802Z", + "shell.execute_reply": "2024-09-27T13:54:43.353253Z" } }, "outputs": [], @@ -510,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.504135Z", - "iopub.status.busy": "2024-09-26T17:08:14.503821Z", - "iopub.status.idle": "2024-09-26T17:08:14.508644Z", - "shell.execute_reply": "2024-09-26T17:08:14.508165Z" + "iopub.execute_input": "2024-09-27T13:54:43.355704Z", + "iopub.status.busy": "2024-09-27T13:54:43.355518Z", + "iopub.status.idle": "2024-09-27T13:54:43.359631Z", + "shell.execute_reply": "2024-09-27T13:54:43.359167Z" } }, "outputs": [ @@ -585,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.510434Z", - "iopub.status.busy": "2024-09-26T17:08:14.510026Z", - "iopub.status.idle": "2024-09-26T17:08:17.327713Z", - "shell.execute_reply": "2024-09-26T17:08:17.326897Z" + "iopub.execute_input": "2024-09-27T13:54:43.361213Z", + "iopub.status.busy": "2024-09-27T13:54:43.361042Z", + "iopub.status.idle": "2024-09-27T13:54:45.990197Z", + "shell.execute_reply": "2024-09-27T13:54:45.989515Z" } }, "outputs": [], @@ -610,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.330466Z", - "iopub.status.busy": "2024-09-26T17:08:17.329827Z", - "iopub.status.idle": "2024-09-26T17:08:17.334402Z", - "shell.execute_reply": "2024-09-26T17:08:17.333930Z" + "iopub.execute_input": "2024-09-27T13:54:45.992775Z", + "iopub.status.busy": "2024-09-27T13:54:45.992168Z", + "iopub.status.idle": "2024-09-27T13:54:45.996546Z", + "shell.execute_reply": "2024-09-27T13:54:45.995970Z" } }, "outputs": [ @@ -649,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.335919Z", - "iopub.status.busy": "2024-09-26T17:08:17.335751Z", - "iopub.status.idle": "2024-09-26T17:08:17.341503Z", - "shell.execute_reply": "2024-09-26T17:08:17.341006Z" + "iopub.execute_input": "2024-09-27T13:54:45.998310Z", + "iopub.status.busy": "2024-09-27T13:54:45.998135Z", + "iopub.status.idle": "2024-09-27T13:54:46.003376Z", + "shell.execute_reply": "2024-09-27T13:54:46.002924Z" } }, "outputs": [ @@ -830,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.343180Z", - "iopub.status.busy": "2024-09-26T17:08:17.342845Z", - "iopub.status.idle": "2024-09-26T17:08:17.369375Z", - "shell.execute_reply": "2024-09-26T17:08:17.368871Z" + "iopub.execute_input": "2024-09-27T13:54:46.004939Z", + "iopub.status.busy": "2024-09-27T13:54:46.004762Z", + "iopub.status.idle": "2024-09-27T13:54:46.031322Z", + "shell.execute_reply": "2024-09-27T13:54:46.030837Z" } }, "outputs": [ @@ -935,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.371259Z", - "iopub.status.busy": "2024-09-26T17:08:17.370906Z", - "iopub.status.idle": "2024-09-26T17:08:17.375750Z", - "shell.execute_reply": "2024-09-26T17:08:17.375279Z" + "iopub.execute_input": "2024-09-27T13:54:46.032945Z", + "iopub.status.busy": "2024-09-27T13:54:46.032771Z", + "iopub.status.idle": "2024-09-27T13:54:46.036702Z", + "shell.execute_reply": "2024-09-27T13:54:46.036275Z" } }, "outputs": [ @@ -1012,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.377603Z", - "iopub.status.busy": "2024-09-26T17:08:17.377268Z", - "iopub.status.idle": "2024-09-26T17:08:18.815313Z", - "shell.execute_reply": "2024-09-26T17:08:18.814781Z" + "iopub.execute_input": "2024-09-27T13:54:46.038328Z", + "iopub.status.busy": "2024-09-27T13:54:46.038152Z", + "iopub.status.idle": "2024-09-27T13:54:47.420865Z", + "shell.execute_reply": "2024-09-27T13:54:47.420360Z" } }, "outputs": [ @@ -1187,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:18.817270Z", - "iopub.status.busy": "2024-09-26T17:08:18.816826Z", - "iopub.status.idle": "2024-09-26T17:08:18.820963Z", - "shell.execute_reply": "2024-09-26T17:08:18.820481Z" + "iopub.execute_input": "2024-09-27T13:54:47.422597Z", + "iopub.status.busy": "2024-09-27T13:54:47.422413Z", + "iopub.status.idle": "2024-09-27T13:54:47.426601Z", + "shell.execute_reply": "2024-09-27T13:54:47.426150Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 13f3cc7cd..62f36c5d0 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 5fc5f68e4..938cfbb81 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index c848ef22a..875b89834 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 5016ffb5a..e3f95b09a 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 521c6a0ed..fd579850f 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 9b466ad73..e414c8597 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index c0c799872..f49a4ab00 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 0a0cecdfd..2054f06b7 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 3f654a523..a29589b35 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 34311077b..4a44fc910 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 165a37e50..2bd6294ff 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 647139408..da24732e3 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index d39313345..a35fe9b27 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index 6ce229224..039f83b31 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 71eddd9d6..c7181e247 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 2f6c69fe5..0e584f384 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 87311552d..e019a9e5e 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 1c650c04e..782faccbf 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index db84cd2ba..e1cb8fa1a 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index f93569c2c..0974b495e 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 0833cf610..10d960c61 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index cc5cf1f54..e6d83059f 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index cadb4401d..3056ebf85 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 056cf538e..6351c4726 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 18235ca5f..9660e8c4c 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index e595ac996..8f12b18d3 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 9ed73d61e..96f365a6d 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 2a38619dd..082aad5a2 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 290d2d68e..a6323a6fc 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 1a72cc0e5..2cce8dad7 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 43236d6a2..624ffee91 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 4a0863913..15e6e837c 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 23cfb45bd..f7773bd33 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index fe6e0dd4b..a0a135a40 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index b5d9c7ad8..627ac5c8e 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 5b85852ef..0a42c04eb 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 09816c99e..dabee06ee 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index e7633fa88..84e31edbd 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index c853be875..0e6481870 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index c583fedf7..60ceff194 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index e030a0975..ca01c8f89 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 83e19088d..30df2fc81 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105, 110], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105, 106, 110], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108, 110], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "card_about_to_expir": [89, 96], "getting_spare_card": [89, 96], "visa_or_mastercard": [89, 96], "supported_cards_and_curr": [89, 96], "lost_or_stolen_phon": [89, 96], "card_payment_fee_charg": [89, 96], "change_pin": [89, 96], "beneficiary_not_allow": [89, 96], "apple_pay_or_google_pai": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 97, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105], "039122": 91, "044598": 91, "105": [91, 105, 110], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105, 110], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "020": [93, 98, 101], "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "710": 93, "493": 93, "060": 93, "163": [93, 100, 101], "330": [93, 100, 105], "505": 93, "662": 93, "476": [93, 100], "340": [93, 100], "968": [93, 104], "328": [93, 105], "310": 93, "706": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101, 110], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "009": 97, "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105, 110], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105, 110], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105, 110], "169": [101, 110], "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": 105, "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "110": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "105652681": 106, "68it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "1067": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "7mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108, 110], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105, 110], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105, 106], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108, 110], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 93, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "getting_spare_card": [89, 96], "change_pin": [89, 96], "visa_or_mastercard": [89, 96], "lost_or_stolen_phon": [89, 96], "supported_cards_and_curr": [89, 96], "card_about_to_expir": [89, 96], "beneficiary_not_allow": [89, 96], "card_payment_fee_charg": [89, 96], "apple_pay_or_google_pai": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108, 110], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105, 110], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "049": 93, "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "896": 93, "493": 93, "060": 93, "144": 93, "330": [93, 100, 105], "505": 93, "758": 93, "476": [93, 100], "340": [93, 100], "328": [93, 105], "310": 93, "781": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105, 110], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105, 110], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "153": [97, 100, 105], "110": [97, 105], "111": [97, 103, 108], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": 97, "009": 97, "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105, 110], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105], "169": 101, "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": 105, "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "64167863": 106, "25it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "940": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "72mb": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "2mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index b648c52ba..388c995f2 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:46.905901Z", - "iopub.status.busy": "2024-09-26T16:57:46.905412Z", - "iopub.status.idle": "2024-09-26T16:57:48.220424Z", - "shell.execute_reply": "2024-09-26T16:57:48.219845Z" + "iopub.execute_input": "2024-09-27T13:44:12.200916Z", + "iopub.status.busy": "2024-09-27T13:44:12.200561Z", + "iopub.status.idle": "2024-09-27T13:44:13.479668Z", + "shell.execute_reply": "2024-09-27T13:44:13.479088Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.222820Z", - "iopub.status.busy": "2024-09-26T16:57:48.222253Z", - "iopub.status.idle": "2024-09-26T16:57:48.241708Z", - "shell.execute_reply": "2024-09-26T16:57:48.241070Z" + "iopub.execute_input": "2024-09-27T13:44:13.482034Z", + "iopub.status.busy": "2024-09-27T13:44:13.481452Z", + "iopub.status.idle": "2024-09-27T13:44:13.500047Z", + "shell.execute_reply": "2024-09-27T13:44:13.499596Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.243929Z", - "iopub.status.busy": "2024-09-26T16:57:48.243487Z", - "iopub.status.idle": "2024-09-26T16:57:48.451471Z", - "shell.execute_reply": "2024-09-26T16:57:48.450893Z" + "iopub.execute_input": "2024-09-27T13:44:13.502039Z", + "iopub.status.busy": "2024-09-27T13:44:13.501593Z", + "iopub.status.idle": "2024-09-27T13:44:13.696938Z", + "shell.execute_reply": "2024-09-27T13:44:13.696313Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.483707Z", - "iopub.status.busy": "2024-09-26T16:57:48.483195Z", - "iopub.status.idle": "2024-09-26T16:57:48.487154Z", - "shell.execute_reply": "2024-09-26T16:57:48.486583Z" + "iopub.execute_input": "2024-09-27T13:44:13.729165Z", + "iopub.status.busy": "2024-09-27T13:44:13.728951Z", + "iopub.status.idle": "2024-09-27T13:44:13.732830Z", + "shell.execute_reply": "2024-09-27T13:44:13.732365Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.488961Z", - "iopub.status.busy": "2024-09-26T16:57:48.488621Z", - "iopub.status.idle": "2024-09-26T16:57:48.496919Z", - "shell.execute_reply": "2024-09-26T16:57:48.496323Z" + "iopub.execute_input": "2024-09-27T13:44:13.734478Z", + "iopub.status.busy": "2024-09-27T13:44:13.734300Z", + "iopub.status.idle": "2024-09-27T13:44:13.742648Z", + "shell.execute_reply": "2024-09-27T13:44:13.742221Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.498974Z", - "iopub.status.busy": "2024-09-26T16:57:48.498629Z", - "iopub.status.idle": "2024-09-26T16:57:48.500983Z", - "shell.execute_reply": "2024-09-26T16:57:48.500538Z" + "iopub.execute_input": "2024-09-27T13:44:13.744355Z", + "iopub.status.busy": "2024-09-27T13:44:13.744172Z", + "iopub.status.idle": "2024-09-27T13:44:13.746680Z", + "shell.execute_reply": "2024-09-27T13:44:13.746217Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.502678Z", - "iopub.status.busy": "2024-09-26T16:57:48.502341Z", - "iopub.status.idle": "2024-09-26T16:57:49.032323Z", - "shell.execute_reply": "2024-09-26T16:57:49.031807Z" + "iopub.execute_input": "2024-09-27T13:44:13.748214Z", + "iopub.status.busy": "2024-09-27T13:44:13.748042Z", + "iopub.status.idle": "2024-09-27T13:44:14.270554Z", + "shell.execute_reply": "2024-09-27T13:44:14.269884Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:49.034548Z", - "iopub.status.busy": "2024-09-26T16:57:49.034196Z", - "iopub.status.idle": "2024-09-26T16:57:50.968947Z", - "shell.execute_reply": "2024-09-26T16:57:50.968319Z" + "iopub.execute_input": "2024-09-27T13:44:14.272696Z", + "iopub.status.busy": "2024-09-27T13:44:14.272497Z", + "iopub.status.idle": "2024-09-27T13:44:16.167242Z", + "shell.execute_reply": "2024-09-27T13:44:16.166648Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.971511Z", - "iopub.status.busy": "2024-09-26T16:57:50.970708Z", - "iopub.status.idle": "2024-09-26T16:57:50.981203Z", - "shell.execute_reply": "2024-09-26T16:57:50.980707Z" + "iopub.execute_input": "2024-09-27T13:44:16.169775Z", + "iopub.status.busy": "2024-09-27T13:44:16.169000Z", + "iopub.status.idle": "2024-09-27T13:44:16.179484Z", + "shell.execute_reply": "2024-09-27T13:44:16.179037Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.983160Z", - "iopub.status.busy": "2024-09-26T16:57:50.982812Z", - "iopub.status.idle": "2024-09-26T16:57:50.986985Z", - "shell.execute_reply": "2024-09-26T16:57:50.986552Z" + "iopub.execute_input": "2024-09-27T13:44:16.181448Z", + "iopub.status.busy": "2024-09-27T13:44:16.181041Z", + "iopub.status.idle": "2024-09-27T13:44:16.185086Z", + "shell.execute_reply": "2024-09-27T13:44:16.184632Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.988771Z", - "iopub.status.busy": "2024-09-26T16:57:50.988449Z", - "iopub.status.idle": "2024-09-26T16:57:50.996238Z", - "shell.execute_reply": "2024-09-26T16:57:50.995660Z" + "iopub.execute_input": "2024-09-27T13:44:16.186814Z", + "iopub.status.busy": "2024-09-27T13:44:16.186483Z", + "iopub.status.idle": "2024-09-27T13:44:16.194898Z", + "shell.execute_reply": "2024-09-27T13:44:16.194442Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.998409Z", - "iopub.status.busy": "2024-09-26T16:57:50.997938Z", - "iopub.status.idle": "2024-09-26T16:57:51.112743Z", - "shell.execute_reply": "2024-09-26T16:57:51.112140Z" + "iopub.execute_input": "2024-09-27T13:44:16.196580Z", + "iopub.status.busy": "2024-09-27T13:44:16.196252Z", + "iopub.status.idle": "2024-09-27T13:44:16.309588Z", + "shell.execute_reply": "2024-09-27T13:44:16.309001Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.114671Z", - "iopub.status.busy": "2024-09-26T16:57:51.114330Z", - "iopub.status.idle": "2024-09-26T16:57:51.117374Z", - "shell.execute_reply": "2024-09-26T16:57:51.116803Z" + "iopub.execute_input": "2024-09-27T13:44:16.311378Z", + "iopub.status.busy": "2024-09-27T13:44:16.311198Z", + "iopub.status.idle": "2024-09-27T13:44:16.314110Z", + "shell.execute_reply": "2024-09-27T13:44:16.313548Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.119122Z", - "iopub.status.busy": "2024-09-26T16:57:51.118777Z", - "iopub.status.idle": "2024-09-26T16:57:53.250696Z", - "shell.execute_reply": "2024-09-26T16:57:53.249828Z" + "iopub.execute_input": "2024-09-27T13:44:16.315717Z", + "iopub.status.busy": "2024-09-27T13:44:16.315450Z", + "iopub.status.idle": "2024-09-27T13:44:18.461870Z", + "shell.execute_reply": "2024-09-27T13:44:18.461184Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.253432Z", - "iopub.status.busy": "2024-09-26T16:57:53.252773Z", - "iopub.status.idle": "2024-09-26T16:57:53.264456Z", - "shell.execute_reply": "2024-09-26T16:57:53.263964Z" + "iopub.execute_input": "2024-09-27T13:44:18.464456Z", + "iopub.status.busy": "2024-09-27T13:44:18.463827Z", + "iopub.status.idle": "2024-09-27T13:44:18.475330Z", + "shell.execute_reply": "2024-09-27T13:44:18.474881Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.266337Z", - "iopub.status.busy": "2024-09-26T16:57:53.265982Z", - "iopub.status.idle": "2024-09-26T16:57:53.320394Z", - "shell.execute_reply": "2024-09-26T16:57:53.319936Z" + "iopub.execute_input": "2024-09-27T13:44:18.476970Z", + "iopub.status.busy": "2024-09-27T13:44:18.476794Z", + "iopub.status.idle": "2024-09-27T13:44:18.534040Z", + "shell.execute_reply": "2024-09-27T13:44:18.533545Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index c663bca7f..102113368 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -830,7 +830,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}
+Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

@@ -893,43 +893,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1232,7 +1232,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 1b9d62b84..ee987f2db 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:56.582392Z", - "iopub.status.busy": "2024-09-26T16:57:56.581922Z", - "iopub.status.idle": "2024-09-26T16:57:59.568352Z", - "shell.execute_reply": "2024-09-26T16:57:59.567688Z" + "iopub.execute_input": "2024-09-27T13:44:21.818795Z", + "iopub.status.busy": "2024-09-27T13:44:21.818359Z", + "iopub.status.idle": "2024-09-27T13:44:25.172344Z", + "shell.execute_reply": "2024-09-27T13:44:25.171708Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.570666Z", - "iopub.status.busy": "2024-09-26T16:57:59.570348Z", - "iopub.status.idle": "2024-09-26T16:57:59.573999Z", - "shell.execute_reply": "2024-09-26T16:57:59.573434Z" + "iopub.execute_input": "2024-09-27T13:44:25.174634Z", + "iopub.status.busy": "2024-09-27T13:44:25.174327Z", + "iopub.status.idle": "2024-09-27T13:44:25.177811Z", + "shell.execute_reply": "2024-09-27T13:44:25.177332Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.575790Z", - "iopub.status.busy": "2024-09-26T16:57:59.575346Z", - "iopub.status.idle": "2024-09-26T16:57:59.578505Z", - "shell.execute_reply": "2024-09-26T16:57:59.578059Z" + "iopub.execute_input": "2024-09-27T13:44:25.179604Z", + "iopub.status.busy": "2024-09-27T13:44:25.179228Z", + "iopub.status.idle": "2024-09-27T13:44:25.182428Z", + "shell.execute_reply": "2024-09-27T13:44:25.181941Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.580278Z", - "iopub.status.busy": "2024-09-26T16:57:59.579942Z", - "iopub.status.idle": "2024-09-26T16:57:59.637557Z", - "shell.execute_reply": "2024-09-26T16:57:59.636941Z" + "iopub.execute_input": "2024-09-27T13:44:25.183984Z", + "iopub.status.busy": "2024-09-27T13:44:25.183812Z", + "iopub.status.idle": "2024-09-27T13:44:25.249858Z", + "shell.execute_reply": "2024-09-27T13:44:25.249370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.639548Z", - "iopub.status.busy": "2024-09-26T16:57:59.639173Z", - "iopub.status.idle": "2024-09-26T16:57:59.643067Z", - "shell.execute_reply": "2024-09-26T16:57:59.642599Z" + "iopub.execute_input": "2024-09-27T13:44:25.251675Z", + "iopub.status.busy": "2024-09-27T13:44:25.251321Z", + "iopub.status.idle": "2024-09-27T13:44:25.254967Z", + "shell.execute_reply": "2024-09-27T13:44:25.254497Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.644820Z", - "iopub.status.busy": "2024-09-26T16:57:59.644426Z", - "iopub.status.idle": "2024-09-26T16:57:59.648173Z", - "shell.execute_reply": "2024-09-26T16:57:59.647692Z" + "iopub.execute_input": "2024-09-27T13:44:25.256494Z", + "iopub.status.busy": "2024-09-27T13:44:25.256317Z", + "iopub.status.idle": "2024-09-27T13:44:25.259546Z", + "shell.execute_reply": "2024-09-27T13:44:25.259112Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.649862Z", - "iopub.status.busy": "2024-09-26T16:57:59.649584Z", - "iopub.status.idle": "2024-09-26T16:57:59.652681Z", - "shell.execute_reply": "2024-09-26T16:57:59.652224Z" + "iopub.execute_input": "2024-09-27T13:44:25.261161Z", + "iopub.status.busy": "2024-09-27T13:44:25.260831Z", + "iopub.status.idle": "2024-09-27T13:44:25.264077Z", + "shell.execute_reply": "2024-09-27T13:44:25.263614Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.654524Z", - "iopub.status.busy": "2024-09-26T16:57:59.654184Z", - "iopub.status.idle": "2024-09-26T16:57:59.657522Z", - "shell.execute_reply": "2024-09-26T16:57:59.657025Z" + "iopub.execute_input": "2024-09-27T13:44:25.265683Z", + "iopub.status.busy": "2024-09-27T13:44:25.265493Z", + "iopub.status.idle": "2024-09-27T13:44:25.268752Z", + "shell.execute_reply": "2024-09-27T13:44:25.268295Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.659231Z", - "iopub.status.busy": "2024-09-26T16:57:59.658903Z", - "iopub.status.idle": "2024-09-26T16:58:04.690826Z", - "shell.execute_reply": "2024-09-26T16:58:04.690184Z" + "iopub.execute_input": "2024-09-27T13:44:25.270462Z", + "iopub.status.busy": "2024-09-27T13:44:25.270157Z", + "iopub.status.idle": "2024-09-27T13:44:29.935939Z", + "shell.execute_reply": "2024-09-27T13:44:29.935366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c454eb6f366f411e9e5a792ee1c9e53e", + "model_id": "0b869b8329164886999ca781a3f1f88f", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55fc53367ab44c9d8da2fe8bbced532e", + "model_id": "2f7c87a3feeb43f391ce3706d650c567", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07e2bdd218e347478ce3ef4840fd25cd", + "model_id": "09adcc4cd1544f1ebd40819b4bc61c29", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94557935a2374333b2239085d88eec9a", + "model_id": "4d443bcc5d6f44bb9f778f33e726a41e", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c670a9f65c784a998597204abdd99c6c", + "model_id": "81db904263be418b972cdc74693c1347", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4bb31413f5b49d5a94609831a4b36f7", + "model_id": "857f6827f751492d8e4455d6dcc779a2", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9cbb0d355e3b4631ab5bde4863e208c9", + "model_id": "dd92079e014444fb8d53b9ecd43d4155", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.693169Z", - "iopub.status.busy": "2024-09-26T16:58:04.692979Z", - "iopub.status.idle": "2024-09-26T16:58:04.696816Z", - "shell.execute_reply": "2024-09-26T16:58:04.696217Z" + "iopub.execute_input": "2024-09-27T13:44:29.938477Z", + "iopub.status.busy": "2024-09-27T13:44:29.938022Z", + "iopub.status.idle": "2024-09-27T13:44:29.941082Z", + "shell.execute_reply": "2024-09-27T13:44:29.940499Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.698945Z", - "iopub.status.busy": "2024-09-26T16:58:04.698555Z", - "iopub.status.idle": "2024-09-26T16:58:04.701698Z", - "shell.execute_reply": "2024-09-26T16:58:04.701079Z" + "iopub.execute_input": "2024-09-27T13:44:29.942910Z", + "iopub.status.busy": "2024-09-27T13:44:29.942537Z", + "iopub.status.idle": "2024-09-27T13:44:29.945282Z", + "shell.execute_reply": "2024-09-27T13:44:29.944823Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.703349Z", - "iopub.status.busy": "2024-09-26T16:58:04.703169Z", - "iopub.status.idle": "2024-09-26T16:58:07.638950Z", - "shell.execute_reply": "2024-09-26T16:58:07.638268Z" + "iopub.execute_input": "2024-09-27T13:44:29.947025Z", + "iopub.status.busy": "2024-09-27T13:44:29.946610Z", + "iopub.status.idle": "2024-09-27T13:44:32.703158Z", + "shell.execute_reply": "2024-09-27T13:44:32.702446Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.641750Z", - "iopub.status.busy": "2024-09-26T16:58:07.641028Z", - "iopub.status.idle": "2024-09-26T16:58:07.649310Z", - "shell.execute_reply": "2024-09-26T16:58:07.648709Z" + "iopub.execute_input": "2024-09-27T13:44:32.705934Z", + "iopub.status.busy": "2024-09-27T13:44:32.705115Z", + "iopub.status.idle": "2024-09-27T13:44:32.713403Z", + "shell.execute_reply": "2024-09-27T13:44:32.712933Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.651234Z", - "iopub.status.busy": "2024-09-26T16:58:07.650776Z", - "iopub.status.idle": "2024-09-26T16:58:07.654975Z", - "shell.execute_reply": "2024-09-26T16:58:07.654450Z" + "iopub.execute_input": "2024-09-27T13:44:32.715431Z", + "iopub.status.busy": "2024-09-27T13:44:32.715087Z", + "iopub.status.idle": "2024-09-27T13:44:32.719832Z", + "shell.execute_reply": "2024-09-27T13:44:32.719339Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.656848Z", - "iopub.status.busy": "2024-09-26T16:58:07.656512Z", - "iopub.status.idle": "2024-09-26T16:58:07.659918Z", - "shell.execute_reply": "2024-09-26T16:58:07.659369Z" + "iopub.execute_input": "2024-09-27T13:44:32.721313Z", + "iopub.status.busy": "2024-09-27T13:44:32.721134Z", + "iopub.status.idle": "2024-09-27T13:44:32.724562Z", + "shell.execute_reply": "2024-09-27T13:44:32.724100Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.662038Z", - "iopub.status.busy": "2024-09-26T16:58:07.661635Z", - "iopub.status.idle": "2024-09-26T16:58:07.664815Z", - "shell.execute_reply": "2024-09-26T16:58:07.664344Z" + "iopub.execute_input": "2024-09-27T13:44:32.726129Z", + "iopub.status.busy": "2024-09-27T13:44:32.725939Z", + "iopub.status.idle": "2024-09-27T13:44:32.728884Z", + "shell.execute_reply": "2024-09-27T13:44:32.728424Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.666617Z", - "iopub.status.busy": "2024-09-26T16:58:07.666279Z", - "iopub.status.idle": "2024-09-26T16:58:07.673548Z", - "shell.execute_reply": "2024-09-26T16:58:07.672928Z" + "iopub.execute_input": "2024-09-27T13:44:32.730636Z", + "iopub.status.busy": "2024-09-27T13:44:32.730297Z", + "iopub.status.idle": "2024-09-27T13:44:32.737194Z", + "shell.execute_reply": "2024-09-27T13:44:32.736719Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.675394Z", - "iopub.status.busy": "2024-09-26T16:58:07.675051Z", - "iopub.status.idle": "2024-09-26T16:58:07.909209Z", - "shell.execute_reply": "2024-09-26T16:58:07.908613Z" + "iopub.execute_input": "2024-09-27T13:44:32.739037Z", + "iopub.status.busy": "2024-09-27T13:44:32.738695Z", + "iopub.status.idle": "2024-09-27T13:44:32.967915Z", + "shell.execute_reply": "2024-09-27T13:44:32.967330Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.912237Z", - "iopub.status.busy": "2024-09-26T16:58:07.911438Z", - "iopub.status.idle": "2024-09-26T16:58:08.105044Z", - "shell.execute_reply": "2024-09-26T16:58:08.104481Z" + "iopub.execute_input": "2024-09-27T13:44:32.970125Z", + "iopub.status.busy": "2024-09-27T13:44:32.969750Z", + "iopub.status.idle": "2024-09-27T13:44:33.182474Z", + "shell.execute_reply": "2024-09-27T13:44:33.181896Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:08.108440Z", - "iopub.status.busy": "2024-09-26T16:58:08.107647Z", - "iopub.status.idle": "2024-09-26T16:58:08.112497Z", - "shell.execute_reply": "2024-09-26T16:58:08.111965Z" + "iopub.execute_input": "2024-09-27T13:44:33.184797Z", + "iopub.status.busy": "2024-09-27T13:44:33.184365Z", + "iopub.status.idle": "2024-09-27T13:44:33.188436Z", + "shell.execute_reply": "2024-09-27T13:44:33.187921Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03a9fcdeeb9f4795928321d22c20b1f7": { + "0071d1f0936c4bccbd1edaa5a6ae1140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,25 @@ "text_color": null } }, - "03b1560a105349118e85e5322a8057be": { + "01540b61781c4eb58c18e156802a58d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "07d077e0c6b44e658f800f4771886c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1153,38 +1171,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58744c76ca2d4b4bb16b3ba153883f90", + "layout": "IPY_MODEL_a7e8d478c1164e08b3fd282538dc8416", "placeholder": "​", - "style": "IPY_MODEL_71273fc53eab44809f296c757a78d589", + "style": "IPY_MODEL_30c76f3386e144e1a905593cb8a7b12e", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": ".gitattributes: 100%" } }, - "0520794e1ebd4f6c921dfb71f4cffad6": { + "09adcc4cd1544f1ebd40819b4bc61c29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175e8d16291a4560868859b225cdac46", - "placeholder": "​", - "style": "IPY_MODEL_0854de3c0f4c455889479ae81081bfd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4e4680d87b8463aa7d08f5c6d456285", + "IPY_MODEL_dbef822c740d42df9d83e77b0148c4f4", + "IPY_MODEL_901dbc7b9c464aec8a3cac4e2e14e625" + ], + "layout": "IPY_MODEL_bad51eb444f94a938e31c59e3113684b", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" + "tooltip": null } }, - "0544fbd69b124534b049440d1f3e0d41": { + "0ad90065d8c740b1b5f909e1a0f97c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,25 +1256,7 @@ "width": null } }, - "05c30b39421044298e1e8ac7e138767d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e2bdd218e347478ce3ef4840fd25cd": { + "0b869b8329164886999ca781a3f1f88f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1270,70 +1271,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_768d4093bcd8494385059cb2bfb032bb", - "IPY_MODEL_0f51660866534becbe9d4f34c4c432f3", - "IPY_MODEL_c56505f3a8884fce9a47bbe99c1b9422" + "IPY_MODEL_07d077e0c6b44e658f800f4771886c72", + "IPY_MODEL_5f9b91f66f694d5eb6207514df3f361b", + "IPY_MODEL_801dfb197b9a4fffb3406e9b3339e8a6" ], - "layout": "IPY_MODEL_0c9fa872de1d46889ced023c38691b80", + "layout": "IPY_MODEL_74914279b76946f9b81bbd35eb876eb3", "tabbable": null, "tooltip": null } }, - "0854de3c0f4c455889479ae81081bfd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "08a01d42535f45c1afd47cdd82b5c40e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09070af955a14e1c8557d27f12ad54b3": { + "0bf168d57d974301a816bd335166c3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0c9fa872de1d46889ced023c38691b80": { + "0e1a742f353b4ae592d5e9d4c904dea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1349,25 @@ "width": null } }, - "0f51660866534becbe9d4f34c4c432f3": { + "100942b5144f4805a0308187f29c80ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "103601f7b0dd496689126efcf81dcfd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1402,70 +1383,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf9d5b94bbd24770874e0cc5af1a1615", - "max": 665.0, + "layout": "IPY_MODEL_8b68d00ec9e74aa99b854e1e6e50035f", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a0120faf64f6497691116777e44f77aa", + "style": "IPY_MODEL_839cd742a34841029c4a4e34d5a903fe", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 54245363.0 } }, - "0fed13bb7b7a48d08e8db8513746e242": { - "model_module": "@jupyter-widgets/base", + "13c263d5f8be43648b83c74ed95579a2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80896446ef2545c9bbbc50f05e195a0a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66da8b50d05043dba9d9652587054967", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "16d0ccf5f28d488e93908803a2b4c76d": { + "15162f4480c04b0aa1ed945e710c6f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1472,7 @@ "width": null } }, - "175e8d16291a4560868859b225cdac46": { + "15da45f559dc4baebc98b369b1b1bac9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,80 +1525,7 @@ "width": null } }, - "19015823d41c439e9c231621c87bcc79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a376e53928b43568a37bf5c1034a061", - "placeholder": "​", - "style": "IPY_MODEL_03a9fcdeeb9f4795928321d22c20b1f7", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "1e7e4021c02b427c840f1dde6a12c6b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1ecfcaca36e849409b94d9e2b3a6d2df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22a5fe5ff39e4ca2978a0d5638deed64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "264cad247c01411dbbec2aa09c72f96a": { + "165de584f55f4cc4a61989a56f9b49c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,7 +1578,7 @@ "width": null } }, - "2a376e53928b43568a37bf5c1034a061": { + "2062b55baccc4e66b21d4eaf7516bfb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1750,7 +1631,7 @@ "width": null } }, - "2dc0ab7b03f9425ebd4489c94893df8e": { + "2d58ff6fd7d14ca59a65d5f6fbfa0638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,76 +1684,49 @@ "width": null } }, - "31ac4e398f274fa2884c943b6c5bdf67": { - "model_module": "@jupyter-widgets/base", + "2f7c87a3feeb43f391ce3706d650c567": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c54f7221432415ba2afba64455af817", + "IPY_MODEL_13c263d5f8be43648b83c74ed95579a2", + "IPY_MODEL_b9e3785791cb4f3f85a367cbdffbc2ce" + ], + "layout": "IPY_MODEL_0ad90065d8c740b1b5f909e1a0f97c65", + "tabbable": null, + "tooltip": null } }, - "39ee56051f0c4ee8b154fc79d637ae7f": { + "30c76f3386e144e1a905593cb8a7b12e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a682b5847a0438eb5702f512f795f1c": { + "3305b2d61b3f4915bbc3a70282874455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,15 +1741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d9abfaf1d24260b3f87b1ea0c4209a", + "layout": "IPY_MODEL_91544e5b16174f2e909f6bb9aadf6a74", "placeholder": "​", - "style": "IPY_MODEL_09070af955a14e1c8557d27f12ad54b3", + "style": "IPY_MODEL_48b5e652296a41afabe845a77e1a40c6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 117MB/s]" + "value": " 232k/232k [00:00<00:00, 31.8MB/s]" } }, - "42172bed218f48b48601266fd4b31f94": { + "3731f8d339c84d94a28f11beefec8fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1913,7 +1767,7 @@ "text_color": null } }, - "45f797f62ab84a74bc35ca4a2b3595cc": { + "3e2db40e57e84f2b90bc19d497f69a00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1820,48 @@ "width": null } }, - "55fc53367ab44c9d8da2fe8bbced532e": { + "468ecd46323f48c58c97d2c4190cdfa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7ef1ed37e7949049da1bc6875f2930d", + "placeholder": "​", + "style": "IPY_MODEL_d6c315a338314fa6b05bdb0eb28b15f1", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.08kB/s]" + } + }, + "48b5e652296a41afabe845a77e1a40c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d443bcc5d6f44bb9f778f33e726a41e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1981,16 +1876,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03b1560a105349118e85e5322a8057be", - "IPY_MODEL_c3093ff50e5d4a039d2e953cfd360463", - "IPY_MODEL_0520794e1ebd4f6c921dfb71f4cffad6" + "IPY_MODEL_5af95243387d4a879df020d4e1cb9e2a", + "IPY_MODEL_103601f7b0dd496689126efcf81dcfd7", + "IPY_MODEL_ef4c1ce3b993449bb0aaf04a55c873f3" ], - "layout": "IPY_MODEL_0fed13bb7b7a48d08e8db8513746e242", + "layout": "IPY_MODEL_15162f4480c04b0aa1ed945e710c6f47", "tabbable": null, "tooltip": null } }, - "583111a984204d99b91ecb3dfb37bf0e": { + "4dfef38574554577ab70c1090376620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,7 +1938,108 @@ "width": null } }, - "58744c76ca2d4b4bb16b3ba153883f90": { + "506c7f29cf3d491e9d8df294ae722e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8c2df192a274240a738bf66fe3a221b", + "placeholder": "​", + "style": "IPY_MODEL_b58fdee4702849c092df49b1636d2bad", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 5.61MB/s]" + } + }, + "51d4961d8f8541eb88e2da893fa47eed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56b546e9a9534adb835c7ed1d9aa4667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af95243387d4a879df020d4e1cb9e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_660acb2278724be28796fcec6f69d7bf", + "placeholder": "​", + "style": "IPY_MODEL_92f6f017f752469aac3c5c095c42bb92", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "5c54f7221432415ba2afba64455af817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2062b55baccc4e66b21d4eaf7516bfb2", + "placeholder": "​", + "style": "IPY_MODEL_a62d8b73dd434befa5c8f4700fdebb3a", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "5e1fdc7754424b10af668c3784d1d79b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,7 +2092,7 @@ "width": null } }, - "589d98252cef4f85bf193ba74b4f11d4": { + "5f9b91f66f694d5eb6207514df3f361b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2112,17 +2108,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae489b923a8340a3ba0481c4d1ea261d", - "max": 48.0, + "layout": "IPY_MODEL_2d58ff6fd7d14ca59a65d5f6fbfa0638", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_39ee56051f0c4ee8b154fc79d637ae7f", + "style": "IPY_MODEL_51d4961d8f8541eb88e2da893fa47eed", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 391.0 + } + }, + "62a0b42d5f6c4da2ab47c1a7942d3337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5955dd04859341989c951890a4df5fa5": { + "660acb2278724be28796fcec6f69d7bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,114 +2189,168 @@ "width": null } }, - "5a8d7753d65946d9bba9b5af5477e2f0": { + "66da8b50d05043dba9d9652587054967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dc0ab7b03f9425ebd4489c94893df8e", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6501307f5ce34203ab7fdf2215a08557", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5e53f21879bb44d39a75f785746eb86f": { + "6c15800b0d624e8d81d8abfc85f9254f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d0ccf5f28d488e93908803a2b4c76d", - "placeholder": "​", - "style": "IPY_MODEL_e55810572ac94069938f8aa1d5c89733", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f7b4af5f8fb4207a5fc1453ead1657d": { - "model_module": "@jupyter-widgets/controls", + "70de1cac82cd4800a25b8f67e952ca42": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45f797f62ab84a74bc35ca4a2b3595cc", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22a5fe5ff39e4ca2978a0d5638deed64", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6501307f5ce34203ab7fdf2215a08557": { - "model_module": "@jupyter-widgets/controls", + "74914279b76946f9b81bbd35eb876eb3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "674c5467100e43c3a14efcbbaa694b2f": { + "801dfb197b9a4fffb3406e9b3339e8a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dfef38574554577ab70c1090376620e", + "placeholder": "​", + "style": "IPY_MODEL_b9ab52a5d21a46f397d61d32477dd414", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.9kB/s]" } }, - "67c1114ef93e46e4875c1a36196581fe": { + "80896446ef2545c9bbbc50f05e195a0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2335,7 +2403,31 @@ "width": null } }, - "68665ef2c2d344649a6bb5bef2cd0cf1": { + "81db904263be418b972cdc74693c1347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9202292df4544bb09b34656d6dd33226", + "IPY_MODEL_af6e581b18b24606b3bfcf4f16217c63", + "IPY_MODEL_506c7f29cf3d491e9d8df294ae722e21" + ], + "layout": "IPY_MODEL_b7c7600372e74de589a5cfb229cb8728", + "tabbable": null, + "tooltip": null + } + }, + "839cd742a34841029c4a4e34d5a903fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2351,7 +2443,31 @@ "description_width": "" } }, - "6bffd8a3cc944217923e11e74caa87ed": { + "857f6827f751492d8e4455d6dcc779a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5f1210c6850475f951124e6e276868f", + "IPY_MODEL_b45a54addc1642888759cbcda460b064", + "IPY_MODEL_468ecd46323f48c58c97d2c4190cdfa6" + ], + "layout": "IPY_MODEL_15da45f559dc4baebc98b369b1b1bac9", + "tabbable": null, + "tooltip": null + } + }, + "867d9702d3e54bc588e06b3916ce2240": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,71 +2520,7 @@ "width": null } }, - "6ccf6a21dc3945fbb2d43252f575ef5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5955dd04859341989c951890a4df5fa5", - "placeholder": "​", - "style": "IPY_MODEL_951eb939a72f45bd92ba8792847aa1eb", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "71273fc53eab44809f296c757a78d589": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73f23d2d6373465e9dbad61f9ad06ef4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6fd9b1124fc4d558957370f8075ca1f", - "placeholder": "​", - "style": "IPY_MODEL_78da90f9dba54434957f9d14c8d668ed", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "74470f7ecc834ba8b2c48bdabc27a04d": { + "8b68d00ec9e74aa99b854e1e6e50035f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,7 +2573,7 @@ "width": null } }, - "768d4093bcd8494385059cb2bfb032bb": { + "901dbc7b9c464aec8a3cac4e2e14e625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2536,15 +2588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4d73ac4b9df4def8a36beec9df58011", + "layout": "IPY_MODEL_ec91ee5e87014770a996a744ed36e8f7", "placeholder": "​", - "style": "IPY_MODEL_fb9887fc25ab4f2394962edb6a9502f5", + "style": "IPY_MODEL_01540b61781c4eb58c18e156802a58d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "76eba979f94c468e8d98b7112a0724a5": { + "91544e5b16174f2e909f6bb9aadf6a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2649,30 @@ "width": null } }, - "78da90f9dba54434957f9d14c8d668ed": { + "9202292df4544bb09b34656d6dd33226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12fb1a366134caf8620d9c169f63fb1", + "placeholder": "​", + "style": "IPY_MODEL_62a0b42d5f6c4da2ab47c1a7942d3337", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "92f6f017f752469aac3c5c095c42bb92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2615,7 +2690,7 @@ "text_color": null } }, - "79795d7634484b35a621edac0423512e": { + "9883831e5e574351a71cbc22708f91c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2668,7 +2743,25 @@ "width": null } }, - "7c1143c17f2040eaa6e34bdebb77865d": { + "a62d8b73dd434befa5c8f4700fdebb3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7e8d478c1164e08b3fd282538dc8416": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2814,7 @@ "width": null } }, - "86a1f95ab6d54233a5b9ed9a5716805f": { + "a817cdafff274fccbeaceccbaef0ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2739,112 +2832,215 @@ "text_color": null } }, - "94557935a2374333b2239085d88eec9a": { + "aa4c151e344c4e0abf44676bbc9d2d45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6ccf6a21dc3945fbb2d43252f575ef5a", - "IPY_MODEL_5f7b4af5f8fb4207a5fc1453ead1657d", - "IPY_MODEL_3a682b5847a0438eb5702f512f795f1c" - ], - "layout": "IPY_MODEL_67c1114ef93e46e4875c1a36196581fe", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "951eb939a72f45bd92ba8792847aa1eb": { + "af6e581b18b24606b3bfcf4f16217c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2db40e57e84f2b90bc19d497f69a00", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9bde3a464254c5da9b0c1fbe9a12c90", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "9a1b4b67f4494b1a8782e13d9f96e298": { + "b0459879b52642d29b2816724da7b8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c1143c17f2040eaa6e34bdebb77865d", - "placeholder": "​", - "style": "IPY_MODEL_08a01d42535f45c1afd47cdd82b5c40e", + "layout": "IPY_MODEL_5e1fdc7754424b10af668c3784d1d79b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bf168d57d974301a816bd335166c3e4", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.81MB/s]" + "value": 231508.0 } }, - "9cbb0d355e3b4631ab5bde4863e208c9": { + "b45a54addc1642888759cbcda460b064": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73f23d2d6373465e9dbad61f9ad06ef4", - "IPY_MODEL_e6d0b0f32de440cea180d66631646e9c", - "IPY_MODEL_5e53f21879bb44d39a75f785746eb86f" - ], - "layout": "IPY_MODEL_264cad247c01411dbbec2aa09c72f96a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9883831e5e574351a71cbc22708f91c9", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c15800b0d624e8d81d8abfc85f9254f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "b58fdee4702849c092df49b1636d2bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7c7600372e74de589a5cfb229cb8728": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ab52a5d21a46f397d61d32477dd414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0120faf64f6497691116777e44f77aa": { + "b9e3785791cb4f3f85a367cbdffbc2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb6d77b735c24be98e3a75116bd9d3d1", + "placeholder": "​", + "style": "IPY_MODEL_3731f8d339c84d94a28f11beefec8fc8", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" } }, - "ae489b923a8340a3ba0481c4d1ea261d": { + "bad51eb444f94a938e31c59e3113684b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +3093,7 @@ "width": null } }, - "b0d9abfaf1d24260b3f87b1ea0c4209a": { + "c12fb1a366134caf8620d9c169f63fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +3146,7 @@ "width": null } }, - "b4fa9e58d31840ddb31dbe586ab1d95e": { + "c4e4680d87b8463aa7d08f5c6d456285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2965,33 +3161,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74470f7ecc834ba8b2c48bdabc27a04d", + "layout": "IPY_MODEL_70de1cac82cd4800a25b8f67e952ca42", "placeholder": "​", - "style": "IPY_MODEL_42172bed218f48b48601266fd4b31f94", + "style": "IPY_MODEL_0071d1f0936c4bccbd1edaa5a6ae1140", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b533e592f3a247a29f1370a2808a81e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "config.json: 100%" } }, - "bb320defcbac47aeb8b230aae7ef2e42": { + "c5f1210c6850475f951124e6e276868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3006,15 +3184,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0544fbd69b124534b049440d1f3e0d41", + "layout": "IPY_MODEL_165de584f55f4cc4a61989a56f9b49c5", "placeholder": "​", - "style": "IPY_MODEL_1ecfcaca36e849409b94d9e2b3a6d2df", + "style": "IPY_MODEL_100942b5144f4805a0308187f29c80ec", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 6.88kB/s]" + "value": "tokenizer_config.json: 100%" + } + }, + "d6c315a338314fa6b05bdb0eb28b15f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf9d5b94bbd24770874e0cc5af1a1615": { + "dab9adcd9e7c4d6cadb92cc8fbfee50a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,7 +3263,7 @@ "width": null } }, - "c3093ff50e5d4a039d2e953cfd360463": { + "dbef822c740d42df9d83e77b0148c4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3083,64 +3279,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce20eedd96024e7cb76caa10382b98f3", - "max": 2211.0, + "layout": "IPY_MODEL_0e1a742f353b4ae592d5e9d4c904dea7", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_68665ef2c2d344649a6bb5bef2cd0cf1", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "c454eb6f366f411e9e5a792ee1c9e53e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19015823d41c439e9c231621c87bcc79", - "IPY_MODEL_cbdee891ff404e1c89551209815fe333", - "IPY_MODEL_d47720ed569042059b470abcac870e91" - ], - "layout": "IPY_MODEL_e506b0552dce44f58fe55b55001595e6", - "tabbable": null, - "tooltip": null - } - }, - "c56505f3a8884fce9a47bbe99c1b9422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e836e2ba2e3f4854ac42659a1eeeeade", - "placeholder": "​", - "style": "IPY_MODEL_86a1f95ab6d54233a5b9ed9a5716805f", + "style": "IPY_MODEL_56b546e9a9534adb835c7ed1d9aa4667", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" + "value": 665.0 } }, - "c670a9f65c784a998597204abdd99c6c": { + "dd92079e014444fb8d53b9ecd43d4155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3155,42 +3304,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b4fa9e58d31840ddb31dbe586ab1d95e", - "IPY_MODEL_5a8d7753d65946d9bba9b5af5477e2f0", - "IPY_MODEL_9a1b4b67f4494b1a8782e13d9f96e298" + "IPY_MODEL_f9aa0a5acc2d4c988ab5f6b876ade570", + "IPY_MODEL_b0459879b52642d29b2816724da7b8f2", + "IPY_MODEL_3305b2d61b3f4915bbc3a70282874455" ], - "layout": "IPY_MODEL_31ac4e398f274fa2884c943b6c5bdf67", + "layout": "IPY_MODEL_dab9adcd9e7c4d6cadb92cc8fbfee50a", "tabbable": null, "tooltip": null } }, - "cbdee891ff404e1c89551209815fe333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76eba979f94c468e8d98b7112a0724a5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7e4021c02b427c840f1dde6a12c6b7", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "cd63150bb3a1425c9689cc541dcbf29a": { + "e8c2df192a274240a738bf66fe3a221b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,7 +3366,7 @@ "width": null } }, - "ce20eedd96024e7cb76caa10382b98f3": { + "ec91ee5e87014770a996a744ed36e8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3296,54 +3419,7 @@ "width": null } }, - "d47720ed569042059b470abcac870e91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd63150bb3a1425c9689cc541dcbf29a", - "placeholder": "​", - "style": "IPY_MODEL_05c30b39421044298e1e8ac7e138767d", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 54.7kB/s]" - } - }, - "e4bb31413f5b49d5a94609831a4b36f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e81be626ddb14f05bda0812ebd9f1e69", - "IPY_MODEL_589d98252cef4f85bf193ba74b4f11d4", - "IPY_MODEL_bb320defcbac47aeb8b230aae7ef2e42" - ], - "layout": "IPY_MODEL_6bffd8a3cc944217923e11e74caa87ed", - "tabbable": null, - "tooltip": null - } - }, - "e506b0552dce44f58fe55b55001595e6": { + "ed4314e49f3e423ab3e2f4721f4b9212": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,51 +3472,30 @@ "width": null } }, - "e55810572ac94069938f8aa1d5c89733": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e6d0b0f32de440cea180d66631646e9c": { + "ef4c1ce3b993449bb0aaf04a55c873f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_583111a984204d99b91ecb3dfb37bf0e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_674c5467100e43c3a14efcbbaa694b2f", + "layout": "IPY_MODEL_867d9702d3e54bc588e06b3916ce2240", + "placeholder": "​", + "style": "IPY_MODEL_a817cdafff274fccbeaceccbaef0ae77", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 54.2M/54.2M [00:00<00:00, 194MB/s]" } }, - "e6fd9b1124fc4d558957370f8075ca1f": { + "f7ef1ed37e7949049da1bc6875f2930d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3548,7 @@ "width": null } }, - "e81be626ddb14f05bda0812ebd9f1e69": { + "f9aa0a5acc2d4c988ab5f6b876ade570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3508,68 +3563,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79795d7634484b35a621edac0423512e", + "layout": "IPY_MODEL_ed4314e49f3e423ab3e2f4721f4b9212", "placeholder": "​", - "style": "IPY_MODEL_b533e592f3a247a29f1370a2808a81e3", + "style": "IPY_MODEL_aa4c151e344c4e0abf44676bbc9d2d45", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "vocab.txt: 100%" } }, - "e836e2ba2e3f4854ac42659a1eeeeade": { - "model_module": "@jupyter-widgets/base", + "f9bde3a464254c5da9b0c1fbe9a12c90": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4d73ac4b9df4def8a36beec9df58011": { + "fb6d77b735c24be98e3a75116bd9d3d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "fb9887fc25ab4f2394962edb6a9502f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index aa62f6c34..1edf7d4a2 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1360,7 +1360,7 @@

5. Use cleanlab to find label issues -{"state": {"d72d99b3b0104e81845d798e3082b95c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a11de9efd4c4eb1bcdb5e0572a7a6cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27c15cee7b864a8bbb79e8a88cb39b17": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", "tabbable": null, "tooltip": null, "value": 2041.0}}, "a8f57adf102641838fd50c8bbaf3c77e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61e09812f1bc40019dcf1e4e5110b6eb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04b2119cb5c24b1282f4651b60c081db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", "placeholder": "\u200b", "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "24bd633b981f4071bfa481b55e491ae3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01dd619d956847aa997ffce9331c6f7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ef3f35a45534012b74dce3efb231dc3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", "placeholder": "\u200b", "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007448kB/s]"}}, "5f4f61eaf6bf46b098b8abb00a3d84bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "069285b7fcae4a49aa4d8b2a0ec5e1f7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3"], "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", "tabbable": null, "tooltip": null}}, "80b84f6784d245229070cb0b2c51ed60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77d1a086e62d42df9d823e2016fd7a8b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "61dfbe2e6b0f4758ae16a0d955f1c152": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "af1897d6c781491a840fec89717380dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8431f88fd57741c591d760cf54e05437": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37f7257044bd41dc9f107740b3e64070": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", "placeholder": "\u200b", "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "2611ff525a1f41f0b9d0440d5259df6d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1689568cadba4428a3c16e73aec93064": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4fe513d681ba466d900d11c396115fa5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", "placeholder": "\u200b", "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200756.0MB/s]"}}, "3e8e9bbc1d5144968fadad5594c865a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "691c3e35f66d4a8d9767d80f6b85f07d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_37f7257044bd41dc9f107740b3e64070", "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", "IPY_MODEL_4fe513d681ba466d900d11c396115fa5"], "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", "tabbable": null, "tooltip": null}}, "348223f05553429fad2b7618c7dbd29c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a937547234f4e3e8c99c9942633b902": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3521b72379974fbfaa344ab8e0fc15a2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", "tabbable": null, "tooltip": null, "value": 3201.0}}, "bd8ed9c113d64a59aed51794c9f93adb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3c6eb59d32548d28aaf3137df63dd43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c0c0f4c36114fdf9aeb5e0e2108452e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", "placeholder": "\u200b", "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "ec1a41355e7f4d23b1bd5a452a1839f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ead2917d2cb47caa5737a8fe7543902": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "119d581cffd34949a8d48c293a69272b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", "placeholder": "\u200b", "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007827kB/s]"}}, "6b3edac5eedd4e929d87d30168008e9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64a71dc2611f471ea0d375c4aa5cc6a5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", "IPY_MODEL_119d581cffd34949a8d48c293a69272b"], "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", "tabbable": null, "tooltip": null}}, "4aa4c543e9214f93af3a4075231e3d53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22f37e2ccb594a9b9e6d3ed7ba64429d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1bb31cd8192b40ce90db2d1561f184d9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "58a8dcd03ec24652964baa102fc44bba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3061b1986853449599f2d06f2326b1e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ced3b9d2c3be456b90083e8f9057f668": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", "placeholder": "\u200b", "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "5dcab6e3e9b74150a77ee8695ec6f12c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f56a5502560a40e5a983b3bdcefc7a73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9acb79e5c9248618d2fe0e135c9aae1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", "placeholder": "\u200b", "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007137MB/s]"}}, "f95194d703394d719ae03aad8cc8c815": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ab74bd10a8b4e988d838d02d6a7f8f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1"], "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", "tabbable": null, "tooltip": null}}, "d0a44fb871b448adbba43c44b4502169": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1207321f92434ac49c2b3961aa955300": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5614924105cd4430824c54f8fbd620e2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", "tabbable": null, "tooltip": null, "value": 128619.0}}, "ffde30c67f7742f88a8ff28a1b3a78a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c0d8e35a50f4d4eb5c8b76fe80c92a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2105f964155648f587a79823e2dc52df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", "placeholder": "\u200b", "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "e67238f3e71a4da182cad9cfc8a90dbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c46a370402f2481bb9924ac5e9f67307": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55987e4ef9f44c18a42f73fe72df11ac": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", "placeholder": "\u200b", "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.68MB/s]"}}, "0d9c93e26d3641af937b86cb28f1043c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad0fb9aac7a14f05a1580ff6488782c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2105f964155648f587a79823e2dc52df", "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac"], "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2ddcca527ea545e2918701a00e64a4b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f67f2e8fc6e47b182ba7f1089a4c5b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ad8e8630e0ef4330a5851661d05cca2d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", "tabbable": null, "tooltip": null, "value": 2041.0}}, "c486a759402940f1a631675c983d06ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "151e8ca846e44a6e9194a75128fb307e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68af8a48d81e4721b4da3d3dc6a8ef57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", "placeholder": "\u200b", "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "76c50230cb5a4154b63c7afd956c5656": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf5b5193a91d476588d2b32f118e2805": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4be297a9bba4232b2b5d09f2781b53c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", "placeholder": "\u200b", "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007444kB/s]"}}, "5be1b1a4405046d392c0d881cefd9325": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "992b4d56eba94771a314a42397dfaa94": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c"], "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", "tabbable": null, "tooltip": null}}, "2a672c9d548d45dd9723f972d19f5cd5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "949f7d6cad114c68aa53aebedd9ca92e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "571870242b4f43aa8e6e1bdd1628ecae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "a62e67926fe849f384b2c354aa669eb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d61231cf2b94494a8c4901a0f9cfc33b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "168def778e954cfab29445ed86ae3d09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "\u200b", "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "5e9038000b834a668c338ea02511ac69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a33fbac541a5428c8a0d561d886f279f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "accf3e2b636443809c5c8d0b8a6ff5bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", "placeholder": "\u200b", "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007123MB/s]"}}, "2c41fc16193949dabc14c8dea52ea0ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "818535aa611c461389a532d95e7c1934": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_168def778e954cfab29445ed86ae3d09", "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf"], "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", "tabbable": null, "tooltip": null}}, "03f302b33f0f499db69c7ab14a1ca2e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c30d7917105425b986c353f9fee84f6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "668f7d7744d84739b5a00b9fa075e89a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d91d31ef52e240b3a7fbfbdfe4c6ec01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "612eaf97f5134a35b05234006254d4f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c3b53f037b3487a80cffb640af03495": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", "placeholder": "\u200b", "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "47ad7ceb8f4d4fce9cebe4190fd489d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10c368927baf4420969cb6ae68c4e717": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c80c47b2a3c54cf787e88de611551989": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", "placeholder": "\u200b", "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007753kB/s]"}}, "762ccb3a102448568ee60cc41b44dc7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8432060f5fed40438f092ea7936c46c7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c3b53f037b3487a80cffb640af03495", "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", "IPY_MODEL_c80c47b2a3c54cf787e88de611551989"], "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", "tabbable": null, "tooltip": null}}, "d7774cb8b5a24b4fb76f4da281a186e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "782c8b9cb2704b4694519195d9c535d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50977494445c4346b297684613074520": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "e7d4217753f2470494b46b000eb13525": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5863021a6f354713830e74ab4fcfa0a6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6d30e9cda9f43ccac9318d15445f701": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", "placeholder": "\u200b", "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "ac04b000aacb4879bf4e95114361c74e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "936f5441144546599078322a02ea1264": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11915e48f4504281b814613868eca199": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "\u200b", "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007230MB/s]"}}, "e2d39e561781403d9baca72c88e6f3c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c97a8b48d85148af82daab8dd0193369": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", "IPY_MODEL_50977494445c4346b297684613074520", "IPY_MODEL_11915e48f4504281b814613868eca199"], "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, "tooltip": null}}, "4053bae3cf9f4d7c99f6bd1bf8fec47a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0af8aaa092d489583a475dc5f415438": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4a182bf1825140f88b758ae22e5f180c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, "value": 128619.0}}, "c89a331526a94333842b49ad04c7fec9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40c77a336db74f489321f1f6b9e81cf3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a43ca99790144e9a5702ff9b3b2cd34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", "placeholder": "\u200b", "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "b74268b143c3457ea3926c8c5144f8b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8ae14d02947401f8ef065665ec71125": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "018d3e0de5994deeaf61abcc22f7e853": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "\u200b", "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20073.40MB/s]"}}, "9649f71e84fd4f539505e104fdc2b949": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df407e638a9648569ea77312b39b3124": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853"], "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index a5325d72b..4d8b78fd5 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:11.666172Z", - "iopub.status.busy": "2024-09-26T16:58:11.665997Z", - "iopub.status.idle": "2024-09-26T16:58:17.115098Z", - "shell.execute_reply": "2024-09-26T16:58:17.114580Z" + "iopub.execute_input": "2024-09-27T13:44:36.603453Z", + "iopub.status.busy": "2024-09-27T13:44:36.603070Z", + "iopub.status.idle": "2024-09-27T13:44:42.107486Z", + "shell.execute_reply": "2024-09-27T13:44:42.106821Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.117549Z", - "iopub.status.busy": "2024-09-26T16:58:17.116881Z", - "iopub.status.idle": "2024-09-26T16:58:17.120196Z", - "shell.execute_reply": "2024-09-26T16:58:17.119731Z" + "iopub.execute_input": "2024-09-27T13:44:42.109797Z", + "iopub.status.busy": "2024-09-27T13:44:42.109442Z", + "iopub.status.idle": "2024-09-27T13:44:42.112852Z", + "shell.execute_reply": "2024-09-27T13:44:42.112294Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.121809Z", - "iopub.status.busy": "2024-09-26T16:58:17.121619Z", - "iopub.status.idle": "2024-09-26T16:58:17.126367Z", - "shell.execute_reply": "2024-09-26T16:58:17.125801Z" + "iopub.execute_input": "2024-09-27T13:44:42.114568Z", + "iopub.status.busy": "2024-09-27T13:44:42.114269Z", + "iopub.status.idle": "2024-09-27T13:44:42.119040Z", + "shell.execute_reply": "2024-09-27T13:44:42.118475Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.128273Z", - "iopub.status.busy": "2024-09-26T16:58:17.127955Z", - "iopub.status.idle": "2024-09-26T16:58:18.305634Z", - "shell.execute_reply": "2024-09-26T16:58:18.304924Z" + "iopub.execute_input": "2024-09-27T13:44:42.120949Z", + "iopub.status.busy": "2024-09-27T13:44:42.120568Z", + "iopub.status.idle": "2024-09-27T13:44:43.941703Z", + "shell.execute_reply": "2024-09-27T13:44:43.940859Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.307831Z", - "iopub.status.busy": "2024-09-26T16:58:18.307625Z", - "iopub.status.idle": "2024-09-26T16:58:18.318649Z", - "shell.execute_reply": "2024-09-26T16:58:18.318056Z" + "iopub.execute_input": "2024-09-27T13:44:43.943941Z", + "iopub.status.busy": "2024-09-27T13:44:43.943720Z", + "iopub.status.idle": "2024-09-27T13:44:43.955413Z", + "shell.execute_reply": "2024-09-27T13:44:43.954952Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.320584Z", - "iopub.status.busy": "2024-09-26T16:58:18.320195Z", - "iopub.status.idle": "2024-09-26T16:58:18.325935Z", - "shell.execute_reply": "2024-09-26T16:58:18.325369Z" + "iopub.execute_input": "2024-09-27T13:44:43.957114Z", + "iopub.status.busy": "2024-09-27T13:44:43.956812Z", + "iopub.status.idle": "2024-09-27T13:44:43.962413Z", + "shell.execute_reply": "2024-09-27T13:44:43.961847Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.327582Z", - "iopub.status.busy": "2024-09-26T16:58:18.327252Z", - "iopub.status.idle": "2024-09-26T16:58:18.797178Z", - "shell.execute_reply": "2024-09-26T16:58:18.796545Z" + "iopub.execute_input": "2024-09-27T13:44:43.964221Z", + "iopub.status.busy": "2024-09-27T13:44:43.963888Z", + "iopub.status.idle": "2024-09-27T13:44:44.422014Z", + "shell.execute_reply": "2024-09-27T13:44:44.421486Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.799295Z", - "iopub.status.busy": "2024-09-26T16:58:18.798812Z", - "iopub.status.idle": "2024-09-26T16:58:19.937622Z", - "shell.execute_reply": "2024-09-26T16:58:19.936983Z" + "iopub.execute_input": "2024-09-27T13:44:44.423808Z", + "iopub.status.busy": "2024-09-27T13:44:44.423482Z", + "iopub.status.idle": "2024-09-27T13:44:45.385758Z", + "shell.execute_reply": "2024-09-27T13:44:45.385212Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.939805Z", - "iopub.status.busy": "2024-09-26T16:58:19.939457Z", - "iopub.status.idle": "2024-09-26T16:58:19.957921Z", - "shell.execute_reply": "2024-09-26T16:58:19.957472Z" + "iopub.execute_input": "2024-09-27T13:44:45.387774Z", + "iopub.status.busy": "2024-09-27T13:44:45.387444Z", + "iopub.status.idle": "2024-09-27T13:44:45.405880Z", + "shell.execute_reply": "2024-09-27T13:44:45.405337Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.959708Z", - "iopub.status.busy": "2024-09-26T16:58:19.959373Z", - "iopub.status.idle": "2024-09-26T16:58:19.962455Z", - "shell.execute_reply": "2024-09-26T16:58:19.962003Z" + "iopub.execute_input": "2024-09-27T13:44:45.407707Z", + "iopub.status.busy": "2024-09-27T13:44:45.407368Z", + "iopub.status.idle": "2024-09-27T13:44:45.410436Z", + "shell.execute_reply": "2024-09-27T13:44:45.409969Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.964013Z", - "iopub.status.busy": "2024-09-26T16:58:19.963713Z", - "iopub.status.idle": "2024-09-26T16:58:34.705096Z", - "shell.execute_reply": "2024-09-26T16:58:34.704532Z" + "iopub.execute_input": "2024-09-27T13:44:45.412058Z", + "iopub.status.busy": "2024-09-27T13:44:45.411732Z", + "iopub.status.idle": "2024-09-27T13:44:59.801008Z", + "shell.execute_reply": "2024-09-27T13:44:59.800349Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.707498Z", - "iopub.status.busy": "2024-09-26T16:58:34.707096Z", - "iopub.status.idle": "2024-09-26T16:58:34.711017Z", - "shell.execute_reply": "2024-09-26T16:58:34.710531Z" + "iopub.execute_input": "2024-09-27T13:44:59.803402Z", + "iopub.status.busy": "2024-09-27T13:44:59.803141Z", + "iopub.status.idle": "2024-09-27T13:44:59.807543Z", + "shell.execute_reply": "2024-09-27T13:44:59.807041Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.712913Z", - "iopub.status.busy": "2024-09-26T16:58:34.712565Z", - "iopub.status.idle": "2024-09-26T16:58:35.450910Z", - "shell.execute_reply": "2024-09-26T16:58:35.450314Z" + "iopub.execute_input": "2024-09-27T13:44:59.809665Z", + "iopub.status.busy": "2024-09-27T13:44:59.809247Z", + "iopub.status.idle": "2024-09-27T13:45:00.567639Z", + "shell.execute_reply": "2024-09-27T13:45:00.566984Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.453164Z", - "iopub.status.busy": "2024-09-26T16:58:35.452805Z", - "iopub.status.idle": "2024-09-26T16:58:35.457809Z", - "shell.execute_reply": "2024-09-26T16:58:35.457267Z" + "iopub.execute_input": "2024-09-27T13:45:00.570314Z", + "iopub.status.busy": "2024-09-27T13:45:00.569847Z", + "iopub.status.idle": "2024-09-27T13:45:00.575162Z", + "shell.execute_reply": "2024-09-27T13:45:00.574623Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.459721Z", - "iopub.status.busy": "2024-09-26T16:58:35.459376Z", - "iopub.status.idle": "2024-09-26T16:58:35.584541Z", - "shell.execute_reply": "2024-09-26T16:58:35.583868Z" + "iopub.execute_input": "2024-09-27T13:45:00.577328Z", + "iopub.status.busy": "2024-09-27T13:45:00.576927Z", + "iopub.status.idle": "2024-09-27T13:45:00.691103Z", + "shell.execute_reply": "2024-09-27T13:45:00.690409Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.586408Z", - "iopub.status.busy": "2024-09-26T16:58:35.586206Z", - "iopub.status.idle": "2024-09-26T16:58:35.599540Z", - "shell.execute_reply": "2024-09-26T16:58:35.599063Z" + "iopub.execute_input": "2024-09-27T13:45:00.693335Z", + "iopub.status.busy": "2024-09-27T13:45:00.692963Z", + "iopub.status.idle": "2024-09-27T13:45:00.706085Z", + "shell.execute_reply": "2024-09-27T13:45:00.705457Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.601125Z", - "iopub.status.busy": "2024-09-26T16:58:35.600946Z", - "iopub.status.idle": "2024-09-26T16:58:35.608862Z", - "shell.execute_reply": "2024-09-26T16:58:35.608287Z" + "iopub.execute_input": "2024-09-27T13:45:00.708127Z", + "iopub.status.busy": "2024-09-27T13:45:00.707715Z", + "iopub.status.idle": "2024-09-27T13:45:00.716060Z", + "shell.execute_reply": "2024-09-27T13:45:00.715507Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.610542Z", - "iopub.status.busy": "2024-09-26T16:58:35.610361Z", - "iopub.status.idle": "2024-09-26T16:58:35.614478Z", - "shell.execute_reply": "2024-09-26T16:58:35.614026Z" + "iopub.execute_input": "2024-09-27T13:45:00.717915Z", + "iopub.status.busy": "2024-09-27T13:45:00.717603Z", + "iopub.status.idle": "2024-09-27T13:45:00.722261Z", + "shell.execute_reply": "2024-09-27T13:45:00.721747Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.616016Z", - "iopub.status.busy": "2024-09-26T16:58:35.615841Z", - "iopub.status.idle": "2024-09-26T16:58:35.621639Z", - "shell.execute_reply": "2024-09-26T16:58:35.621174Z" + "iopub.execute_input": "2024-09-27T13:45:00.724102Z", + "iopub.status.busy": "2024-09-27T13:45:00.723755Z", + "iopub.status.idle": "2024-09-27T13:45:00.729426Z", + "shell.execute_reply": "2024-09-27T13:45:00.728942Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.623234Z", - "iopub.status.busy": "2024-09-26T16:58:35.623053Z", - "iopub.status.idle": "2024-09-26T16:58:35.739774Z", - "shell.execute_reply": "2024-09-26T16:58:35.739189Z" + "iopub.execute_input": "2024-09-27T13:45:00.731141Z", + "iopub.status.busy": "2024-09-27T13:45:00.730829Z", + "iopub.status.idle": "2024-09-27T13:45:00.853648Z", + "shell.execute_reply": "2024-09-27T13:45:00.853124Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.741627Z", - "iopub.status.busy": "2024-09-26T16:58:35.741282Z", - "iopub.status.idle": "2024-09-26T16:58:35.848790Z", - "shell.execute_reply": "2024-09-26T16:58:35.848301Z" + "iopub.execute_input": "2024-09-27T13:45:00.855705Z", + "iopub.status.busy": "2024-09-27T13:45:00.855318Z", + "iopub.status.idle": "2024-09-27T13:45:00.964042Z", + "shell.execute_reply": "2024-09-27T13:45:00.963452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.850804Z", - "iopub.status.busy": "2024-09-26T16:58:35.850284Z", - "iopub.status.idle": "2024-09-26T16:58:35.953589Z", - "shell.execute_reply": "2024-09-26T16:58:35.953058Z" + "iopub.execute_input": "2024-09-27T13:45:00.965938Z", + "iopub.status.busy": "2024-09-27T13:45:00.965576Z", + "iopub.status.idle": "2024-09-27T13:45:01.070709Z", + "shell.execute_reply": "2024-09-27T13:45:01.070224Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.955515Z", - "iopub.status.busy": "2024-09-26T16:58:35.955161Z", - "iopub.status.idle": "2024-09-26T16:58:36.069054Z", - "shell.execute_reply": "2024-09-26T16:58:36.068561Z" + "iopub.execute_input": "2024-09-27T13:45:01.072505Z", + "iopub.status.busy": "2024-09-27T13:45:01.072108Z", + "iopub.status.idle": "2024-09-27T13:45:01.175748Z", + "shell.execute_reply": "2024-09-27T13:45:01.175154Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:36.070954Z", - "iopub.status.busy": "2024-09-26T16:58:36.070626Z", - "iopub.status.idle": "2024-09-26T16:58:36.073888Z", - "shell.execute_reply": "2024-09-26T16:58:36.073420Z" + "iopub.execute_input": "2024-09-27T13:45:01.177710Z", + "iopub.status.busy": "2024-09-27T13:45:01.177244Z", + "iopub.status.idle": "2024-09-27T13:45:01.180494Z", + "shell.execute_reply": "2024-09-27T13:45:01.180049Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01dd619d956847aa997ffce9331c6f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "04b2119cb5c24b1282f4651b60c081db": { + "018d3e0de5994deeaf61abcc22f7e853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1425,39 +1407,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", + "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "​", - "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", + "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 3.40MB/s]" } }, - "069285b7fcae4a49aa4d8b2a0ec5e1f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", - "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", - "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3" - ], - "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", - "tabbable": null, - "tooltip": null - } - }, - "0d9c93e26d3641af937b86cb28f1043c": { + "03f302b33f0f499db69c7ab14a1ca2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,7 +1468,25 @@ "width": null } }, - "119d581cffd34949a8d48c293a69272b": { + "10c368927baf4420969cb6ae68c4e717": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11915e48f4504281b814613868eca199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1525,31 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", + "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "​", - "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", + "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 827kB/s]" - } - }, - "1207321f92434ac49c2b3961aa955300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 230MB/s]" } }, - "1689568cadba4428a3c16e73aec93064": { + "151e8ca846e44a6e9194a75128fb307e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1567,49 +1527,7 @@ "text_color": null } }, - "1a937547234f4e3e8c99c9942633b902": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1bb31cd8192b40ce90db2d1561f184d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "2105f964155648f587a79823e2dc52df": { + "168def778e954cfab29445ed86ae3d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1624,15 +1542,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", + "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "​", - "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", + "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "22f37e2ccb594a9b9e6d3ed7ba64429d": { + "1c30d7917105425b986c353f9fee84f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1648,7 +1566,7 @@ "description_width": "" } }, - "24bd633b981f4071bfa481b55e491ae3": { + "2a672c9d548d45dd9723f972d19f5cd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1619,7 @@ "width": null } }, - "2611ff525a1f41f0b9d0440d5259df6d": { + "2c41fc16193949dabc14c8dea52ea0ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,74 +1672,7 @@ "width": null } }, - "27c15cee7b864a8bbb79e8a88cb39b17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "2ef3f35a45534012b74dce3efb231dc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", - "placeholder": "​", - "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 448kB/s]" - } - }, - "3061b1986853449599f2d06f2326b1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "348223f05553429fad2b7618c7dbd29c": { + "2ddcca527ea545e2918701a00e64a4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,80 +1725,7 @@ "width": null } }, - "3521b72379974fbfaa344ab8e0fc15a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "37f7257044bd41dc9f107740b3e64070": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", - "placeholder": "​", - "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "3ab74bd10a8b4e988d838d02d6a7f8f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", - "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", - "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1" - ], - "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", - "tabbable": null, - "tooltip": null - } - }, - "3e8e9bbc1d5144968fadad5594c865a3": { + "4053bae3cf9f4d7c99f6bd1bf8fec47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1778,25 @@ "width": null } }, - "4aa4c543e9214f93af3a4075231e3d53": { + "40c77a336db74f489321f1f6b9e81cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "47ad7ceb8f4d4fce9cebe4190fd489d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2053,120 +1849,126 @@ "width": null } }, - "4c0c0f4c36114fdf9aeb5e0e2108452e": { + "4a182bf1825140f88b758ae22e5f180c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", - "placeholder": "​", - "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", + "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 128619.0 } }, - "4c0d8e35a50f4d4eb5c8b76fe80c92a7": { + "50977494445c4346b297684613074520": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "4fe513d681ba466d900d11c396115fa5": { + "571870242b4f43aa8e6e1bdd1628ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", - "placeholder": "​", - "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", + "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 56.0MB/s]" + "value": 16887676.0 } }, - "55987e4ef9f44c18a42f73fe72df11ac": { + "5863021a6f354713830e74ab4fcfa0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", - "placeholder": "​", - "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.68MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5614924105cd4430824c54f8fbd620e2": { + "5a43ca99790144e9a5702ff9b3b2cd34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", + "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", + "placeholder": "​", + "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "label_encoder.txt: 100%" } }, - "58a8dcd03ec24652964baa102fc44bba": { + "5be1b1a4405046d392c0d881cefd9325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2021,7 @@ "width": null } }, - "5dcab6e3e9b74150a77ee8695ec6f12c": { + "5e9038000b834a668c338ea02511ac69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,60 +2074,25 @@ "width": null } }, - "5f4f61eaf6bf46b098b8abb00a3d84bf": { - "model_module": "@jupyter-widgets/base", + "612eaf97f5134a35b05234006254d4f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "61dfbe2e6b0f4758ae16a0d955f1c152": { + "668f7d7744d84739b5a00b9fa075e89a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2341,83 +2108,116 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", - "max": 16887676.0, + "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", + "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "61e09812f1bc40019dcf1e4e5110b6eb": { + "68af8a48d81e4721b4da3d3dc6a8ef57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", + "placeholder": "​", + "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "64a71dc2611f471ea0d375c4aa5cc6a5": { + "6c3b53f037b3487a80cffb640af03495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", - "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", - "IPY_MODEL_119d581cffd34949a8d48c293a69272b" - ], - "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", + "placeholder": "​", + "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "691c3e35f66d4a8d9767d80f6b85f07d": { - "model_module": "@jupyter-widgets/controls", + "762ccb3a102448568ee60cc41b44dc7a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37f7257044bd41dc9f107740b3e64070", - "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", - "IPY_MODEL_4fe513d681ba466d900d11c396115fa5" - ], - "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b3edac5eedd4e929d87d30168008e9e": { + "76c50230cb5a4154b63c7afd956c5656": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,7 +2270,89 @@ "width": null } }, - "77d1a086e62d42df9d823e2016fd7a8b": { + "782c8b9cb2704b4694519195d9c535d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818535aa611c461389a532d95e7c1934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_168def778e954cfab29445ed86ae3d09", + "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", + "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf" + ], + "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", + "tabbable": null, + "tooltip": null + } + }, + "8432060f5fed40438f092ea7936c46c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c3b53f037b3487a80cffb640af03495", + "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", + "IPY_MODEL_c80c47b2a3c54cf787e88de611551989" + ], + "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", + "tabbable": null, + "tooltip": null + } + }, + "936f5441144546599078322a02ea1264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "949f7d6cad114c68aa53aebedd9ca92e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2486,7 +2368,7 @@ "description_width": "" } }, - "80b84f6784d245229070cb0b2c51ed60": { + "9649f71e84fd4f539505e104fdc2b949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2539,25 +2421,31 @@ "width": null } }, - "8431f88fd57741c591d760cf54e05437": { + "992b4d56eba94771a314a42397dfaa94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", + "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", + "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c" + ], + "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", + "tabbable": null, + "tooltip": null } }, - "8a11de9efd4c4eb1bcdb5e0572a7a6cf": { + "9f67f2e8fc6e47b182ba7f1089a4c5b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2573,7 +2461,7 @@ "description_width": "" } }, - "8ead2917d2cb47caa5737a8fe7543902": { + "a33fbac541a5428c8a0d561d886f279f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2591,7 +2479,7 @@ "text_color": null } }, - "a8f57adf102641838fd50c8bbaf3c77e": { + "a62e67926fe849f384b2c354aa669eb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,31 +2532,7 @@ "width": null } }, - "ad0fb9aac7a14f05a1580ff6488782c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2105f964155648f587a79823e2dc52df", - "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", - "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac" - ], - "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", - "tabbable": null, - "tooltip": null - } - }, - "af1897d6c781491a840fec89717380dc": { + "ac04b000aacb4879bf4e95114361c74e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2585,56 @@ "width": null } }, - "bd8ed9c113d64a59aed51794c9f93adb": { + "accf3e2b636443809c5c8d0b8a6ff5bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", + "placeholder": "​", + "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 123MB/s]" + } + }, + "ad8e8630e0ef4330a5851661d05cca2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "b74268b143c3457ea3926c8c5144f8b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,7 +2687,7 @@ "width": null } }, - "c46a370402f2481bb9924ac5e9f67307": { + "b8ae14d02947401f8ef065665ec71125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2792,30 +2705,25 @@ "text_color": null } }, - "ced3b9d2c3be456b90083e8f9057f668": { + "bf5b5193a91d476588d2b32f118e2805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", - "placeholder": "​", - "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0a44fb871b448adbba43c44b4502169": { + "c486a759402940f1a631675c983d06ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,25 +2776,30 @@ "width": null } }, - "d3c6eb59d32548d28aaf3137df63dd43": { + "c80c47b2a3c54cf787e88de611551989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", + "placeholder": "​", + "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 753kB/s]" } }, - "d72d99b3b0104e81845d798e3082b95c": { + "c89a331526a94333842b49ad04c7fec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2939,30 +2852,49 @@ "width": null } }, - "d9acb79e5c9248618d2fe0e135c9aae1": { + "c97a8b48d85148af82daab8dd0193369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", - "placeholder": "​", - "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", + "IPY_MODEL_50977494445c4346b297684613074520", + "IPY_MODEL_11915e48f4504281b814613868eca199" + ], + "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + "tooltip": null + } + }, + "d61231cf2b94494a8c4901a0f9cfc33b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e67238f3e71a4da182cad9cfc8a90dbe": { + "d7774cb8b5a24b4fb76f4da281a186e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3015,7 +2947,7 @@ "width": null } }, - "ec1a41355e7f4d23b1bd5a452a1839f7": { + "d91d31ef52e240b3a7fbfbdfe4c6ec01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3068,25 +3000,47 @@ "width": null } }, - "f56a5502560a40e5a983b3bdcefc7a73": { + "df407e638a9648569ea77312b39b3124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", + "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", + "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853" + ], + "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", + "tabbable": null, + "tooltip": null + } + }, + "e0af8aaa092d489583a475dc5f415438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f95194d703394d719ae03aad8cc8c815": { + "e2d39e561781403d9baca72c88e6f3c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3093,30 @@ "width": null } }, - "ffde30c67f7742f88a8ff28a1b3a78a7": { + "e6d30e9cda9f43ccac9318d15445f701": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", + "placeholder": "​", + "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "e7d4217753f2470494b46b000eb13525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3168,29 @@ "visibility": null, "width": null } + }, + "f4be297a9bba4232b2b5d09f2781b53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", + "placeholder": "​", + "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 444kB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 006197e41..bb7b57343 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1304,7 +1304,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1579,7 +1579,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"d590738a78bc4dc5b75006050b4cfd20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95805e5fdb02411cbbf6cfaf4ec7c3f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5a7327b11df54676b5fb98e19a96e526": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", "tabbable": null, "tooltip": null, "value": 132.0}}, "818e28bbe3084ddcaa93c64bdb1f508c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0d26fa2294748cdae66f37cac146d99": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "493d4fe5a17b4542a5cba6b8200f4ae7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", "placeholder": "\u200b", "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b90f5b04ff9c4839ab6282c6ada4d10e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a64dad38377142beab7236d5c03dd452": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c62f251c21d64f54a595d6aed66e7783": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", "placeholder": "\u200b", "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712335.91\u2007examples/s]"}}, "990cfc063988462d9c5a3959cb8810e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f129293f2b7f4d01baa85a24c751e661": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783"], "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"9bafe95cde0d418990b519ee1c938809": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13e0a4b1bcb64960ae4953c3ec5c1636": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d927327f69d4cdfb32e031a5ee96d57": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", "tabbable": null, "tooltip": null, "value": 132.0}}, "e450d708e2ef4d12b0412b094270b7ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5eafd2215f0341cd91a935914978c169": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5d0a705e9874a42a56adc5b9dab4d24": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", "placeholder": "\u200b", "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "cbaab24fee4e48e29c8c9a265a769a67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7203aad39f349f5a2ab732b1748e935": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74154c49b3f64aa4a35fca171dbe795e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", "placeholder": "\u200b", "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712681.19\u2007examples/s]"}}, "496f194feb564a1daa738de061db6b9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50cf0d4e3a5e40da9095dbb72f93a5f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e"], "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index ffc430e68..f96269130 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:39.586217Z", - "iopub.status.busy": "2024-09-26T16:58:39.585770Z", - "iopub.status.idle": "2024-09-26T16:58:40.868805Z", - "shell.execute_reply": "2024-09-26T16:58:40.868290Z" + "iopub.execute_input": "2024-09-27T13:45:05.545064Z", + "iopub.status.busy": "2024-09-27T13:45:05.544883Z", + "iopub.status.idle": "2024-09-27T13:45:06.777330Z", + "shell.execute_reply": "2024-09-27T13:45:06.776775Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.871104Z", - "iopub.status.busy": "2024-09-26T16:58:40.870653Z", - "iopub.status.idle": "2024-09-26T16:58:40.873864Z", - "shell.execute_reply": "2024-09-26T16:58:40.873292Z" + "iopub.execute_input": "2024-09-27T13:45:06.779593Z", + "iopub.status.busy": "2024-09-27T13:45:06.779069Z", + "iopub.status.idle": "2024-09-27T13:45:06.782274Z", + "shell.execute_reply": "2024-09-27T13:45:06.781769Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.875643Z", - "iopub.status.busy": "2024-09-26T16:58:40.875341Z", - "iopub.status.idle": "2024-09-26T16:58:40.884143Z", - "shell.execute_reply": "2024-09-26T16:58:40.883552Z" + "iopub.execute_input": "2024-09-27T13:45:06.784051Z", + "iopub.status.busy": "2024-09-27T13:45:06.783747Z", + "iopub.status.idle": "2024-09-27T13:45:06.792444Z", + "shell.execute_reply": "2024-09-27T13:45:06.791879Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.885948Z", - "iopub.status.busy": "2024-09-26T16:58:40.885595Z", - "iopub.status.idle": "2024-09-26T16:58:40.890353Z", - "shell.execute_reply": "2024-09-26T16:58:40.889899Z" + "iopub.execute_input": "2024-09-27T13:45:06.794094Z", + "iopub.status.busy": "2024-09-27T13:45:06.793909Z", + "iopub.status.idle": "2024-09-27T13:45:06.798914Z", + "shell.execute_reply": "2024-09-27T13:45:06.798484Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.892204Z", - "iopub.status.busy": "2024-09-26T16:58:40.891849Z", - "iopub.status.idle": "2024-09-26T16:58:41.080702Z", - "shell.execute_reply": "2024-09-26T16:58:41.080055Z" + "iopub.execute_input": "2024-09-27T13:45:06.800723Z", + "iopub.status.busy": "2024-09-27T13:45:06.800392Z", + "iopub.status.idle": "2024-09-27T13:45:06.986289Z", + "shell.execute_reply": "2024-09-27T13:45:06.985622Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.083033Z", - "iopub.status.busy": "2024-09-26T16:58:41.082578Z", - "iopub.status.idle": "2024-09-26T16:58:41.413208Z", - "shell.execute_reply": "2024-09-26T16:58:41.412618Z" + "iopub.execute_input": "2024-09-27T13:45:06.988338Z", + "iopub.status.busy": "2024-09-27T13:45:06.988040Z", + "iopub.status.idle": "2024-09-27T13:45:07.366255Z", + "shell.execute_reply": "2024-09-27T13:45:07.365671Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.415261Z", - "iopub.status.busy": "2024-09-26T16:58:41.414880Z", - "iopub.status.idle": "2024-09-26T16:58:41.439241Z", - "shell.execute_reply": "2024-09-26T16:58:41.438758Z" + "iopub.execute_input": "2024-09-27T13:45:07.368186Z", + "iopub.status.busy": "2024-09-27T13:45:07.367830Z", + "iopub.status.idle": "2024-09-27T13:45:07.391565Z", + "shell.execute_reply": "2024-09-27T13:45:07.391095Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.441206Z", - "iopub.status.busy": "2024-09-26T16:58:41.440852Z", - "iopub.status.idle": "2024-09-26T16:58:41.530137Z", - "shell.execute_reply": "2024-09-26T16:58:41.529646Z" + "iopub.execute_input": "2024-09-27T13:45:07.393457Z", + "iopub.status.busy": "2024-09-27T13:45:07.393097Z", + "iopub.status.idle": "2024-09-27T13:45:07.479260Z", + "shell.execute_reply": "2024-09-27T13:45:07.478768Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.532252Z", - "iopub.status.busy": "2024-09-26T16:58:41.531887Z", - "iopub.status.idle": "2024-09-26T16:58:43.523076Z", - "shell.execute_reply": "2024-09-26T16:58:43.522490Z" + "iopub.execute_input": "2024-09-27T13:45:07.481318Z", + "iopub.status.busy": "2024-09-27T13:45:07.480967Z", + "iopub.status.idle": "2024-09-27T13:45:09.458434Z", + "shell.execute_reply": "2024-09-27T13:45:09.457792Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.525189Z", - "iopub.status.busy": "2024-09-26T16:58:43.524668Z", - "iopub.status.idle": "2024-09-26T16:58:43.546082Z", - "shell.execute_reply": "2024-09-26T16:58:43.545611Z" + "iopub.execute_input": "2024-09-27T13:45:09.460455Z", + "iopub.status.busy": "2024-09-27T13:45:09.460050Z", + "iopub.status.idle": "2024-09-27T13:45:09.481260Z", + "shell.execute_reply": "2024-09-27T13:45:09.480768Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.547971Z", - "iopub.status.busy": "2024-09-26T16:58:43.547533Z", - "iopub.status.idle": "2024-09-26T16:58:43.565545Z", - "shell.execute_reply": "2024-09-26T16:58:43.564959Z" + "iopub.execute_input": "2024-09-27T13:45:09.483053Z", + "iopub.status.busy": "2024-09-27T13:45:09.482738Z", + "iopub.status.idle": "2024-09-27T13:45:09.500620Z", + "shell.execute_reply": "2024-09-27T13:45:09.500057Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.567356Z", - "iopub.status.busy": "2024-09-26T16:58:43.566943Z", - "iopub.status.idle": "2024-09-26T16:58:43.580877Z", - "shell.execute_reply": "2024-09-26T16:58:43.580421Z" + "iopub.execute_input": "2024-09-27T13:45:09.502444Z", + "iopub.status.busy": "2024-09-27T13:45:09.502128Z", + "iopub.status.idle": "2024-09-27T13:45:09.516645Z", + "shell.execute_reply": "2024-09-27T13:45:09.516087Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.582509Z", - "iopub.status.busy": "2024-09-26T16:58:43.582336Z", - "iopub.status.idle": "2024-09-26T16:58:43.602652Z", - "shell.execute_reply": "2024-09-26T16:58:43.602186Z" + "iopub.execute_input": "2024-09-27T13:45:09.518510Z", + "iopub.status.busy": "2024-09-27T13:45:09.518107Z", + "iopub.status.idle": "2024-09-27T13:45:09.537902Z", + "shell.execute_reply": "2024-09-27T13:45:09.537447Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f129293f2b7f4d01baa85a24c751e661", + "model_id": "50cf0d4e3a5e40da9095dbb72f93a5f0", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.604349Z", - "iopub.status.busy": "2024-09-26T16:58:43.604011Z", - "iopub.status.idle": "2024-09-26T16:58:43.618854Z", - "shell.execute_reply": "2024-09-26T16:58:43.618317Z" + "iopub.execute_input": "2024-09-27T13:45:09.539519Z", + "iopub.status.busy": "2024-09-27T13:45:09.539343Z", + "iopub.status.idle": "2024-09-27T13:45:09.554415Z", + "shell.execute_reply": "2024-09-27T13:45:09.553921Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.620668Z", - "iopub.status.busy": "2024-09-26T16:58:43.620349Z", - "iopub.status.idle": "2024-09-26T16:58:43.626243Z", - "shell.execute_reply": "2024-09-26T16:58:43.625776Z" + "iopub.execute_input": "2024-09-27T13:45:09.555991Z", + "iopub.status.busy": "2024-09-27T13:45:09.555819Z", + "iopub.status.idle": "2024-09-27T13:45:09.561554Z", + "shell.execute_reply": "2024-09-27T13:45:09.561107Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.628003Z", - "iopub.status.busy": "2024-09-26T16:58:43.627682Z", - "iopub.status.idle": "2024-09-26T16:58:43.646139Z", - "shell.execute_reply": "2024-09-26T16:58:43.645652Z" + "iopub.execute_input": "2024-09-27T13:45:09.563243Z", + "iopub.status.busy": "2024-09-27T13:45:09.562908Z", + "iopub.status.idle": "2024-09-27T13:45:09.580496Z", + "shell.execute_reply": "2024-09-27T13:45:09.580033Z" } }, "outputs": [ @@ -1447,56 +1447,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "493d4fe5a17b4542a5cba6b8200f4ae7": { + "13e0a4b1bcb64960ae4953c3ec5c1636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", - "placeholder": "​", - "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "5a7327b11df54676b5fb98e19a96e526": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "818e28bbe3084ddcaa93c64bdb1f508c": { + "496f194feb564a1daa738de061db6b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1516,98 @@ "width": null } }, - "95805e5fdb02411cbbf6cfaf4ec7c3f2": { + "4d927327f69d4cdfb32e031a5ee96d57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "50cf0d4e3a5e40da9095dbb72f93a5f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", + "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", + "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e" + ], + "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", + "tabbable": null, + "tooltip": null + } + }, + "5eafd2215f0341cd91a935914978c169": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "990cfc063988462d9c5a3959cb8810e8": { + "74154c49b3f64aa4a35fca171dbe795e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", + "placeholder": "​", + "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12681.19 examples/s]" + } + }, + "9bafe95cde0d418990b519ee1c938809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,43 +1660,30 @@ "width": null } }, - "a0d26fa2294748cdae66f37cac146d99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64dad38377142beab7236d5c03dd452": { + "a5d0a705e9874a42a56adc5b9dab4d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", + "placeholder": "​", + "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "b90f5b04ff9c4839ab6282c6ada4d10e": { + "cbaab24fee4e48e29c8c9a265a769a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1707,30 +1736,7 @@ "width": null } }, - "c62f251c21d64f54a595d6aed66e7783": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", - "placeholder": "​", - "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12335.91 examples/s]" - } - }, - "d590738a78bc4dc5b75006050b4cfd20": { + "e450d708e2ef4d12b0412b094270b7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,28 +1789,22 @@ "width": null } }, - "f129293f2b7f4d01baa85a24c751e661": { + "e7203aad39f349f5a2ab732b1748e935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", - "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", - "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783" - ], - "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 54e829ffc..ce77562ed 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:46.520582Z", - "iopub.status.busy": "2024-09-26T16:58:46.520135Z", - "iopub.status.idle": "2024-09-26T16:58:47.747238Z", - "shell.execute_reply": "2024-09-26T16:58:47.746611Z" + "iopub.execute_input": "2024-09-27T13:45:12.449349Z", + "iopub.status.busy": "2024-09-27T13:45:12.449169Z", + "iopub.status.idle": "2024-09-27T13:45:13.685579Z", + "shell.execute_reply": "2024-09-27T13:45:13.684973Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.749716Z", - "iopub.status.busy": "2024-09-26T16:58:47.749089Z", - "iopub.status.idle": "2024-09-26T16:58:47.752228Z", - "shell.execute_reply": "2024-09-26T16:58:47.751798Z" + "iopub.execute_input": "2024-09-27T13:45:13.687686Z", + "iopub.status.busy": "2024-09-27T13:45:13.687268Z", + "iopub.status.idle": "2024-09-27T13:45:13.690359Z", + "shell.execute_reply": "2024-09-27T13:45:13.689877Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.754183Z", - "iopub.status.busy": "2024-09-26T16:58:47.753797Z", - "iopub.status.idle": "2024-09-26T16:58:47.762845Z", - "shell.execute_reply": "2024-09-26T16:58:47.762414Z" + "iopub.execute_input": "2024-09-27T13:45:13.692049Z", + "iopub.status.busy": "2024-09-27T13:45:13.691875Z", + "iopub.status.idle": "2024-09-27T13:45:13.700878Z", + "shell.execute_reply": "2024-09-27T13:45:13.700441Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.764312Z", - "iopub.status.busy": "2024-09-26T16:58:47.764139Z", - "iopub.status.idle": "2024-09-26T16:58:47.768778Z", - "shell.execute_reply": "2024-09-26T16:58:47.768359Z" + "iopub.execute_input": "2024-09-27T13:45:13.702335Z", + "iopub.status.busy": "2024-09-27T13:45:13.702155Z", + "iopub.status.idle": "2024-09-27T13:45:13.707197Z", + "shell.execute_reply": "2024-09-27T13:45:13.706613Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.770422Z", - "iopub.status.busy": "2024-09-26T16:58:47.770241Z", - "iopub.status.idle": "2024-09-26T16:58:47.953927Z", - "shell.execute_reply": "2024-09-26T16:58:47.953369Z" + "iopub.execute_input": "2024-09-27T13:45:13.709224Z", + "iopub.status.busy": "2024-09-27T13:45:13.708778Z", + "iopub.status.idle": "2024-09-27T13:45:13.895158Z", + "shell.execute_reply": "2024-09-27T13:45:13.894579Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.955878Z", - "iopub.status.busy": "2024-09-26T16:58:47.955545Z", - "iopub.status.idle": "2024-09-26T16:58:48.331139Z", - "shell.execute_reply": "2024-09-26T16:58:48.330595Z" + "iopub.execute_input": "2024-09-27T13:45:13.897147Z", + "iopub.status.busy": "2024-09-27T13:45:13.896877Z", + "iopub.status.idle": "2024-09-27T13:45:14.233059Z", + "shell.execute_reply": "2024-09-27T13:45:14.232489Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.333057Z", - "iopub.status.busy": "2024-09-26T16:58:48.332771Z", - "iopub.status.idle": "2024-09-26T16:58:48.335783Z", - "shell.execute_reply": "2024-09-26T16:58:48.335363Z" + "iopub.execute_input": "2024-09-27T13:45:14.235157Z", + "iopub.status.busy": "2024-09-27T13:45:14.234707Z", + "iopub.status.idle": "2024-09-27T13:45:14.237635Z", + "shell.execute_reply": "2024-09-27T13:45:14.237187Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.337521Z", - "iopub.status.busy": "2024-09-26T16:58:48.337167Z", - "iopub.status.idle": "2024-09-26T16:58:48.371595Z", - "shell.execute_reply": "2024-09-26T16:58:48.371120Z" + "iopub.execute_input": "2024-09-27T13:45:14.239301Z", + "iopub.status.busy": "2024-09-27T13:45:14.239117Z", + "iopub.status.idle": "2024-09-27T13:45:14.273678Z", + "shell.execute_reply": "2024-09-27T13:45:14.273114Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.373233Z", - "iopub.status.busy": "2024-09-26T16:58:48.372923Z", - "iopub.status.idle": "2024-09-26T16:58:50.400212Z", - "shell.execute_reply": "2024-09-26T16:58:50.399604Z" + "iopub.execute_input": "2024-09-27T13:45:14.275640Z", + "iopub.status.busy": "2024-09-27T13:45:14.275229Z", + "iopub.status.idle": "2024-09-27T13:45:16.344723Z", + "shell.execute_reply": "2024-09-27T13:45:16.344059Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.402429Z", - "iopub.status.busy": "2024-09-26T16:58:50.401916Z", - "iopub.status.idle": "2024-09-26T16:58:50.420509Z", - "shell.execute_reply": "2024-09-26T16:58:50.420015Z" + "iopub.execute_input": "2024-09-27T13:45:16.347002Z", + "iopub.status.busy": "2024-09-27T13:45:16.346480Z", + "iopub.status.idle": "2024-09-27T13:45:16.365149Z", + "shell.execute_reply": "2024-09-27T13:45:16.364694Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.422399Z", - "iopub.status.busy": "2024-09-26T16:58:50.421975Z", - "iopub.status.idle": "2024-09-26T16:58:50.428339Z", - "shell.execute_reply": "2024-09-26T16:58:50.427906Z" + "iopub.execute_input": "2024-09-27T13:45:16.366944Z", + "iopub.status.busy": "2024-09-27T13:45:16.366625Z", + "iopub.status.idle": "2024-09-27T13:45:16.373078Z", + "shell.execute_reply": "2024-09-27T13:45:16.372627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.430067Z", - "iopub.status.busy": "2024-09-26T16:58:50.429730Z", - "iopub.status.idle": "2024-09-26T16:58:50.435287Z", - "shell.execute_reply": "2024-09-26T16:58:50.434843Z" + "iopub.execute_input": "2024-09-27T13:45:16.374800Z", + "iopub.status.busy": "2024-09-27T13:45:16.374466Z", + "iopub.status.idle": "2024-09-27T13:45:16.380038Z", + "shell.execute_reply": "2024-09-27T13:45:16.379595Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.436910Z", - "iopub.status.busy": "2024-09-26T16:58:50.436575Z", - "iopub.status.idle": "2024-09-26T16:58:50.446601Z", - "shell.execute_reply": "2024-09-26T16:58:50.446159Z" + "iopub.execute_input": "2024-09-27T13:45:16.381766Z", + "iopub.status.busy": "2024-09-27T13:45:16.381371Z", + "iopub.status.idle": "2024-09-27T13:45:16.391456Z", + "shell.execute_reply": "2024-09-27T13:45:16.390908Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.448308Z", - "iopub.status.busy": "2024-09-26T16:58:50.447987Z", - "iopub.status.idle": "2024-09-26T16:58:50.456869Z", - "shell.execute_reply": "2024-09-26T16:58:50.456315Z" + "iopub.execute_input": "2024-09-27T13:45:16.393310Z", + "iopub.status.busy": "2024-09-27T13:45:16.392915Z", + "iopub.status.idle": "2024-09-27T13:45:16.401735Z", + "shell.execute_reply": "2024-09-27T13:45:16.401281Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.458607Z", - "iopub.status.busy": "2024-09-26T16:58:50.458282Z", - "iopub.status.idle": "2024-09-26T16:58:50.465100Z", - "shell.execute_reply": "2024-09-26T16:58:50.464548Z" + "iopub.execute_input": "2024-09-27T13:45:16.403279Z", + "iopub.status.busy": "2024-09-27T13:45:16.403108Z", + "iopub.status.idle": "2024-09-27T13:45:16.409811Z", + "shell.execute_reply": "2024-09-27T13:45:16.409374Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.466816Z", - "iopub.status.busy": "2024-09-26T16:58:50.466493Z", - "iopub.status.idle": "2024-09-26T16:58:50.475579Z", - "shell.execute_reply": "2024-09-26T16:58:50.475136Z" + "iopub.execute_input": "2024-09-27T13:45:16.411631Z", + "iopub.status.busy": "2024-09-27T13:45:16.411232Z", + "iopub.status.idle": "2024-09-27T13:45:16.420514Z", + "shell.execute_reply": "2024-09-27T13:45:16.419938Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.477133Z", - "iopub.status.busy": "2024-09-26T16:58:50.476962Z", - "iopub.status.idle": "2024-09-26T16:58:50.493434Z", - "shell.execute_reply": "2024-09-26T16:58:50.492823Z" + "iopub.execute_input": "2024-09-27T13:45:16.422097Z", + "iopub.status.busy": "2024-09-27T13:45:16.421922Z", + "iopub.status.idle": "2024-09-27T13:45:16.439717Z", + "shell.execute_reply": "2024-09-27T13:45:16.439288Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 30e253092..545d19f44 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -740,31 +740,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1077,7 +1077,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1109,7 +1109,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1141,7 +1141,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2111,7 +2111,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 728d586b2..3f66f37a1 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:53.411773Z", - "iopub.status.busy": "2024-09-26T16:58:53.411606Z", - "iopub.status.idle": "2024-09-26T16:58:56.467577Z", - "shell.execute_reply": "2024-09-26T16:58:56.467015Z" + "iopub.execute_input": "2024-09-27T13:45:19.192307Z", + "iopub.status.busy": "2024-09-27T13:45:19.192117Z", + "iopub.status.idle": "2024-09-27T13:45:22.256949Z", + "shell.execute_reply": "2024-09-27T13:45:22.256396Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.469779Z", - "iopub.status.busy": "2024-09-26T16:58:56.469465Z", - "iopub.status.idle": "2024-09-26T16:58:56.473173Z", - "shell.execute_reply": "2024-09-26T16:58:56.472707Z" + "iopub.execute_input": "2024-09-27T13:45:22.259042Z", + "iopub.status.busy": "2024-09-27T13:45:22.258751Z", + "iopub.status.idle": "2024-09-27T13:45:22.262361Z", + "shell.execute_reply": "2024-09-27T13:45:22.261892Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.475000Z", - "iopub.status.busy": "2024-09-26T16:58:56.474674Z", - "iopub.status.idle": "2024-09-26T16:58:59.847498Z", - "shell.execute_reply": "2024-09-26T16:58:59.847018Z" + "iopub.execute_input": "2024-09-27T13:45:22.264021Z", + "iopub.status.busy": "2024-09-27T13:45:22.263690Z", + "iopub.status.idle": "2024-09-27T13:45:25.535718Z", + "shell.execute_reply": "2024-09-27T13:45:25.535139Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed3e7469df2c4560897c195c6e1c0003", + "model_id": "e9fb2e15855a495eb8393c8b1c470abe", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2c29b6ce7974f23abf1753e738849b6", + "model_id": "62d0e0c88f1a4c2abca87123937bd572", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d87537574d1b46388a5f4de507d1aedd", + "model_id": "fca7e86a7eb34f15a6e35dfad2b37d04", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "258343123ee64d078d587fad6e7e195f", + "model_id": "aea869f9cc8d44cf80997dc63f1b0a73", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "219ae75bd53e46b39c1ca8d09542d8c6", + "model_id": "907485478951427389e624de9ba0865d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.849333Z", - "iopub.status.busy": "2024-09-26T16:58:59.848963Z", - "iopub.status.idle": "2024-09-26T16:58:59.852849Z", - "shell.execute_reply": "2024-09-26T16:58:59.852310Z" + "iopub.execute_input": "2024-09-27T13:45:25.537751Z", + "iopub.status.busy": "2024-09-27T13:45:25.537387Z", + "iopub.status.idle": "2024-09-27T13:45:25.541431Z", + "shell.execute_reply": "2024-09-27T13:45:25.540977Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.854463Z", - "iopub.status.busy": "2024-09-26T16:58:59.854166Z", - "iopub.status.idle": "2024-09-26T16:59:11.144483Z", - "shell.execute_reply": "2024-09-26T16:59:11.143910Z" + "iopub.execute_input": "2024-09-27T13:45:25.543067Z", + "iopub.status.busy": "2024-09-27T13:45:25.542758Z", + "iopub.status.idle": "2024-09-27T13:45:36.948754Z", + "shell.execute_reply": "2024-09-27T13:45:36.948076Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30f170149e6d448aaa4ebe763786395b", + "model_id": "b9cec9f2501a478298bdf046984e17af", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:11.146451Z", - "iopub.status.busy": "2024-09-26T16:59:11.146216Z", - "iopub.status.idle": "2024-09-26T16:59:29.523070Z", - "shell.execute_reply": "2024-09-26T16:59:29.522532Z" + "iopub.execute_input": "2024-09-27T13:45:36.951145Z", + "iopub.status.busy": "2024-09-27T13:45:36.950781Z", + "iopub.status.idle": "2024-09-27T13:45:55.344083Z", + "shell.execute_reply": "2024-09-27T13:45:55.343530Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.525358Z", - "iopub.status.busy": "2024-09-26T16:59:29.524954Z", - "iopub.status.idle": "2024-09-26T16:59:29.530885Z", - "shell.execute_reply": "2024-09-26T16:59:29.530434Z" + "iopub.execute_input": "2024-09-27T13:45:55.346499Z", + "iopub.status.busy": "2024-09-27T13:45:55.346039Z", + "iopub.status.idle": "2024-09-27T13:45:55.351081Z", + "shell.execute_reply": "2024-09-27T13:45:55.350506Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.532500Z", - "iopub.status.busy": "2024-09-26T16:59:29.532161Z", - "iopub.status.idle": "2024-09-26T16:59:29.536179Z", - "shell.execute_reply": "2024-09-26T16:59:29.535767Z" + "iopub.execute_input": "2024-09-27T13:45:55.352921Z", + "iopub.status.busy": "2024-09-27T13:45:55.352512Z", + "iopub.status.idle": "2024-09-27T13:45:55.356736Z", + "shell.execute_reply": "2024-09-27T13:45:55.356311Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.538000Z", - "iopub.status.busy": "2024-09-26T16:59:29.537676Z", - "iopub.status.idle": "2024-09-26T16:59:29.546498Z", - "shell.execute_reply": "2024-09-26T16:59:29.546051Z" + "iopub.execute_input": "2024-09-27T13:45:55.358366Z", + "iopub.status.busy": "2024-09-27T13:45:55.358194Z", + "iopub.status.idle": "2024-09-27T13:45:55.367089Z", + "shell.execute_reply": "2024-09-27T13:45:55.366635Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.548140Z", - "iopub.status.busy": "2024-09-26T16:59:29.547810Z", - "iopub.status.idle": "2024-09-26T16:59:29.576281Z", - "shell.execute_reply": "2024-09-26T16:59:29.575747Z" + "iopub.execute_input": "2024-09-27T13:45:55.368819Z", + "iopub.status.busy": "2024-09-27T13:45:55.368623Z", + "iopub.status.idle": "2024-09-27T13:45:55.407222Z", + "shell.execute_reply": "2024-09-27T13:45:55.406716Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.578551Z", - "iopub.status.busy": "2024-09-26T16:59:29.578155Z", - "iopub.status.idle": "2024-09-26T17:00:03.433901Z", - "shell.execute_reply": "2024-09-26T17:00:03.433237Z" + "iopub.execute_input": "2024-09-27T13:45:55.409382Z", + "iopub.status.busy": "2024-09-27T13:45:55.408920Z", + "iopub.status.idle": "2024-09-27T13:46:29.730340Z", + "shell.execute_reply": "2024-09-27T13:46:29.729712Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.020\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.049\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.710\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.896\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa4f2e95243f4fa7a40ad4fcfe57c6c0", + "model_id": "44364892919440e29a4daa044be042e7", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "731f00f919044a8a88cc076b579e46dc", + "model_id": "48dc2c5f935d4a06a9268360f445144f", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.163\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.662\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.758\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9f651479fb634fe188bcbb02162bfd50", + "model_id": "8587b883949a4e399dabc4f91c49eb97", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "262103e39f614b7ba8346cb40a06a364", + "model_id": "c217771fa5814aabb7107510b1d6e6a8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.968\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.120\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.706\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.781\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe416b8103714c939d38072d169f1695", + "model_id": "c9feed1c5a194d669dfaa347748b2250", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de925572cfb54cafa807449424d39b7e", + "model_id": "c88a0a54a7d8495c90e0ceefd16c73ea", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.436161Z", - "iopub.status.busy": "2024-09-26T17:00:03.435771Z", - "iopub.status.idle": "2024-09-26T17:00:03.452443Z", - "shell.execute_reply": "2024-09-26T17:00:03.452024Z" + "iopub.execute_input": "2024-09-27T13:46:29.732349Z", + "iopub.status.busy": "2024-09-27T13:46:29.732107Z", + "iopub.status.idle": "2024-09-27T13:46:29.748596Z", + "shell.execute_reply": "2024-09-27T13:46:29.748051Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.454156Z", - "iopub.status.busy": "2024-09-26T17:00:03.453981Z", - "iopub.status.idle": "2024-09-26T17:00:03.923150Z", - "shell.execute_reply": "2024-09-26T17:00:03.922671Z" + "iopub.execute_input": "2024-09-27T13:46:29.750480Z", + "iopub.status.busy": "2024-09-27T13:46:29.750177Z", + "iopub.status.idle": "2024-09-27T13:46:30.218781Z", + "shell.execute_reply": "2024-09-27T13:46:30.218120Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.925208Z", - "iopub.status.busy": "2024-09-26T17:00:03.924815Z", - "iopub.status.idle": "2024-09-26T17:01:55.216532Z", - "shell.execute_reply": "2024-09-26T17:01:55.215848Z" + "iopub.execute_input": "2024-09-27T13:46:30.220918Z", + "iopub.status.busy": "2024-09-27T13:46:30.220731Z", + "iopub.status.idle": "2024-09-27T13:48:21.510252Z", + "shell.execute_reply": "2024-09-27T13:48:21.509624Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20ae57fa05ee4e83901a856b849b3891", + "model_id": "9b584fe98d9c4efaa2b4e34b431444f0", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.218688Z", - "iopub.status.busy": "2024-09-26T17:01:55.218316Z", - "iopub.status.idle": "2024-09-26T17:01:55.686428Z", - "shell.execute_reply": "2024-09-26T17:01:55.685792Z" + "iopub.execute_input": "2024-09-27T13:48:21.512469Z", + "iopub.status.busy": "2024-09-27T13:48:21.511882Z", + "iopub.status.idle": "2024-09-27T13:48:21.969651Z", + "shell.execute_reply": "2024-09-27T13:48:21.969088Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.688736Z", - "iopub.status.busy": "2024-09-26T17:01:55.688529Z", - "iopub.status.idle": "2024-09-26T17:01:55.750648Z", - "shell.execute_reply": "2024-09-26T17:01:55.750042Z" + "iopub.execute_input": "2024-09-27T13:48:21.971962Z", + "iopub.status.busy": "2024-09-27T13:48:21.971637Z", + "iopub.status.idle": "2024-09-27T13:48:22.033131Z", + "shell.execute_reply": "2024-09-27T13:48:22.032635Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.752599Z", - "iopub.status.busy": "2024-09-26T17:01:55.752266Z", - "iopub.status.idle": "2024-09-26T17:01:55.761230Z", - "shell.execute_reply": "2024-09-26T17:01:55.760653Z" + "iopub.execute_input": "2024-09-27T13:48:22.035050Z", + "iopub.status.busy": "2024-09-27T13:48:22.034706Z", + "iopub.status.idle": "2024-09-27T13:48:22.043297Z", + "shell.execute_reply": "2024-09-27T13:48:22.042841Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.762949Z", - "iopub.status.busy": "2024-09-26T17:01:55.762675Z", - "iopub.status.idle": "2024-09-26T17:01:55.767458Z", - "shell.execute_reply": "2024-09-26T17:01:55.766879Z" + "iopub.execute_input": "2024-09-27T13:48:22.045108Z", + "iopub.status.busy": "2024-09-27T13:48:22.044706Z", + "iopub.status.idle": "2024-09-27T13:48:22.049614Z", + "shell.execute_reply": "2024-09-27T13:48:22.049150Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.769237Z", - "iopub.status.busy": "2024-09-26T17:01:55.768788Z", - "iopub.status.idle": "2024-09-26T17:01:56.270226Z", - "shell.execute_reply": "2024-09-26T17:01:56.269609Z" + "iopub.execute_input": "2024-09-27T13:48:22.051112Z", + "iopub.status.busy": "2024-09-27T13:48:22.050938Z", + "iopub.status.idle": "2024-09-27T13:48:22.550532Z", + "shell.execute_reply": "2024-09-27T13:48:22.549905Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.272148Z", - "iopub.status.busy": "2024-09-26T17:01:56.271744Z", - "iopub.status.idle": "2024-09-26T17:01:56.280250Z", - "shell.execute_reply": "2024-09-26T17:01:56.279691Z" + "iopub.execute_input": "2024-09-27T13:48:22.552263Z", + "iopub.status.busy": "2024-09-27T13:48:22.552084Z", + "iopub.status.idle": "2024-09-27T13:48:22.560446Z", + "shell.execute_reply": "2024-09-27T13:48:22.560005Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.282121Z", - "iopub.status.busy": "2024-09-26T17:01:56.281789Z", - "iopub.status.idle": "2024-09-26T17:01:56.289090Z", - "shell.execute_reply": "2024-09-26T17:01:56.288525Z" + "iopub.execute_input": "2024-09-27T13:48:22.562109Z", + "iopub.status.busy": "2024-09-27T13:48:22.561922Z", + "iopub.status.idle": "2024-09-27T13:48:22.568965Z", + "shell.execute_reply": "2024-09-27T13:48:22.568523Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.291094Z", - "iopub.status.busy": "2024-09-26T17:01:56.290554Z", - "iopub.status.idle": "2024-09-26T17:01:56.760975Z", - "shell.execute_reply": "2024-09-26T17:01:56.760351Z" + "iopub.execute_input": "2024-09-27T13:48:22.570574Z", + "iopub.status.busy": "2024-09-27T13:48:22.570400Z", + "iopub.status.idle": "2024-09-27T13:48:23.038305Z", + "shell.execute_reply": "2024-09-27T13:48:23.037704Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.762860Z", - "iopub.status.busy": "2024-09-26T17:01:56.762505Z", - "iopub.status.idle": "2024-09-26T17:01:56.777586Z", - "shell.execute_reply": "2024-09-26T17:01:56.777116Z" + "iopub.execute_input": "2024-09-27T13:48:23.040310Z", + "iopub.status.busy": "2024-09-27T13:48:23.039947Z", + "iopub.status.idle": "2024-09-27T13:48:23.055305Z", + "shell.execute_reply": "2024-09-27T13:48:23.054831Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.779480Z", - "iopub.status.busy": "2024-09-26T17:01:56.779138Z", - "iopub.status.idle": "2024-09-26T17:01:56.784613Z", - "shell.execute_reply": "2024-09-26T17:01:56.784161Z" + "iopub.execute_input": "2024-09-27T13:48:23.057245Z", + "iopub.status.busy": "2024-09-27T13:48:23.056900Z", + "iopub.status.idle": "2024-09-27T13:48:23.062573Z", + "shell.execute_reply": "2024-09-27T13:48:23.062007Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.786223Z", - "iopub.status.busy": "2024-09-26T17:01:56.785890Z", - "iopub.status.idle": "2024-09-26T17:01:57.544005Z", - "shell.execute_reply": "2024-09-26T17:01:57.543433Z" + "iopub.execute_input": "2024-09-27T13:48:23.064087Z", + "iopub.status.busy": "2024-09-27T13:48:23.063915Z", + "iopub.status.idle": "2024-09-27T13:48:23.767378Z", + "shell.execute_reply": "2024-09-27T13:48:23.766755Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.546041Z", - "iopub.status.busy": "2024-09-26T17:01:57.545838Z", - "iopub.status.idle": "2024-09-26T17:01:57.556107Z", - "shell.execute_reply": "2024-09-26T17:01:57.555567Z" + "iopub.execute_input": "2024-09-27T13:48:23.769501Z", + "iopub.status.busy": "2024-09-27T13:48:23.769322Z", + "iopub.status.idle": "2024-09-27T13:48:23.778619Z", + "shell.execute_reply": "2024-09-27T13:48:23.778012Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.558206Z", - "iopub.status.busy": "2024-09-26T17:01:57.558007Z", - "iopub.status.idle": "2024-09-26T17:01:57.564674Z", - "shell.execute_reply": "2024-09-26T17:01:57.564129Z" + "iopub.execute_input": "2024-09-27T13:48:23.780575Z", + "iopub.status.busy": "2024-09-27T13:48:23.780399Z", + "iopub.status.idle": "2024-09-27T13:48:23.785587Z", + "shell.execute_reply": "2024-09-27T13:48:23.785005Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.566774Z", - "iopub.status.busy": "2024-09-26T17:01:57.566367Z", - "iopub.status.idle": "2024-09-26T17:01:57.768978Z", - "shell.execute_reply": "2024-09-26T17:01:57.768415Z" + "iopub.execute_input": "2024-09-27T13:48:23.787352Z", + "iopub.status.busy": "2024-09-27T13:48:23.787182Z", + "iopub.status.idle": "2024-09-27T13:48:23.966439Z", + "shell.execute_reply": "2024-09-27T13:48:23.965775Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.771130Z", - "iopub.status.busy": "2024-09-26T17:01:57.770703Z", - "iopub.status.idle": "2024-09-26T17:01:57.778526Z", - "shell.execute_reply": "2024-09-26T17:01:57.778048Z" + "iopub.execute_input": "2024-09-27T13:48:23.968665Z", + "iopub.status.busy": "2024-09-27T13:48:23.968476Z", + "iopub.status.idle": "2024-09-27T13:48:23.977999Z", + "shell.execute_reply": "2024-09-27T13:48:23.977408Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.780134Z", - "iopub.status.busy": "2024-09-26T17:01:57.779959Z", - "iopub.status.idle": "2024-09-26T17:01:57.951031Z", - "shell.execute_reply": "2024-09-26T17:01:57.950434Z" + "iopub.execute_input": "2024-09-27T13:48:23.979913Z", + "iopub.status.busy": "2024-09-27T13:48:23.979502Z", + "iopub.status.idle": "2024-09-27T13:48:24.151812Z", + "shell.execute_reply": "2024-09-27T13:48:24.151203Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.952982Z", - "iopub.status.busy": "2024-09-26T17:01:57.952568Z", - "iopub.status.idle": "2024-09-26T17:01:57.957023Z", - "shell.execute_reply": "2024-09-26T17:01:57.956578Z" + "iopub.execute_input": "2024-09-27T13:48:24.153793Z", + "iopub.status.busy": "2024-09-27T13:48:24.153384Z", + "iopub.status.idle": "2024-09-27T13:48:24.157912Z", + "shell.execute_reply": "2024-09-27T13:48:24.157350Z" }, "nbsphinx": "hidden" }, @@ -2555,136 +2555,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02526371af764684aad4897d7046a365": { + "002c47d512744c3fb829f25bccd29856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2c0b351610b424a8cb54f4c25c0257e", - "placeholder": "​", - "style": "IPY_MODEL_ba1f4e88e2294c9a9ae17a70f35db16e", + "layout": "IPY_MODEL_d3d80ec4b9644c34aa7dec8beecea5f1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3df19d52b5fc4a0386413fdd1a5664b9", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "035f34e6a54c4b3f92421455a5670762": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "03c5fbd3c4ce4ea3984de19281b147af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 60000.0 } }, - "03f55df51f0c402d9c5708341635fe40": { + "025f175b1bc3460aa89f24cec6604d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2634,7 @@ "width": null } }, - "04922fddf2054ab9878395aa1dc5e2f3": { + "02853640143d49f7b2b53d5367f5366c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2752,15 +2649,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb652988afd24cf39d30d03f9b269bcc", + "layout": "IPY_MODEL_c879a51624034291b6cdf7b3b37731ac", "placeholder": "​", - "style": "IPY_MODEL_08a40c06549e498fa902f8ad4a556c8d", + "style": "IPY_MODEL_02ca223a4d244a87ba6bbf44a8020805", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5604.15 examples/s]" + "value": "100%" } }, - "0650dd8061c74475b7cdbeae70782dba": { + "02ca223a4d244a87ba6bbf44a8020805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2778,7 +2675,7 @@ "text_color": null } }, - "06e241b5f01342ee8d3b0aebd6334347": { + "08efa39df96a4a8a920c810498a698dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2794,30 +2691,7 @@ "description_width": "" } }, - "0770995c96e7450eb9dd81b263cd14e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d048bd8c5542b6b70d1e261b8dc718", - "placeholder": "​", - "style": "IPY_MODEL_d0536047d0804b29a6ffc9d1743720b2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "0889c9fe4bbf404ab1eff02e6fd5ffb9": { + "09c9d6cec18948cb9ab2f8fca3850384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2835,7 +2709,7 @@ "text_color": null } }, - "08a40c06549e498fa902f8ad4a556c8d": { + "0a7525dabaae4dca8e04969f7126849d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2853,30 +2727,7 @@ "text_color": null } }, - "0987ec15d6064297a9565901e22c60ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9627b06404dc417283abd3bbd64bcd8f", - "placeholder": "​", - "style": "IPY_MODEL_8263a572de4e4c51a641723f1be42eb8", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "09e50636d37d4ddc95009d6c95403302": { + "0b9d536d30c348e1b0ee4b0e6fd7f865": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2929,7 +2780,7 @@ "width": null } }, - "130a697771f84e80b9ea4c02d03ff62a": { + "0ed7f54f7cb54b18a2f8364afef47f0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2944,41 +2795,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41f6476f5f3049ca937e85253a058768", + "layout": "IPY_MODEL_4a5b873579bc440fb5e928cbcd9e8234", "placeholder": "​", - "style": "IPY_MODEL_6d26f9d99de84cd8ae50d08e423a9a63", + "style": "IPY_MODEL_922fec678412462e833e856911d44510", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1415e475761d42f1aa1007fae7458666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad687e0e218b466f8fa90ea5d77f2d8c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d2592a858d1d4bc3a7166e7814eb9d4c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "146da5ec780b4aac90aa3bbe92293e2f": { + "0f922409e00c49d9a9eeec3cde61b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,7 +2856,7 @@ "width": null } }, - "19d4d84dc95d4fb280f602be22e0c3cc": { + "12da9f31adcb4e82baab27c1b7261fe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3084,124 +2909,67 @@ "width": null } }, - "1a786c5ee7b14db9a60268ce2d3b9d35": { - "model_module": "@jupyter-widgets/controls", + "1333c86767824ba2bfdc4b6770dbafa9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cecba2ddba24988b0c32a3d2ee48be6": { - "model_module": "@jupyter-widgets/controls", + "14216ca27f61486ba99444444f1a70dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20ae57fa05ee4e83901a856b849b3891": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37e7fc65d04d40c6af6a1ae75c0546ef", - "IPY_MODEL_e027fdb1fd7e4cb8ad7d32a540884a3f", - "IPY_MODEL_5fa31c28566b44368ecfc567dacb405f" - ], - "layout": "IPY_MODEL_2754204b7400466cb5c5a6ffe197c89a", - "tabbable": null, - "tooltip": null - } - }, - "210e5f58051a429ba35833408833e675": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98625178d3c94ba6aa8694f50e9cdea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06e241b5f01342ee8d3b0aebd6334347", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "219ae75bd53e46b39c1ca8d09542d8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7647881f3689427e8af3b75d42cf0955", - "IPY_MODEL_d8c0fe97e2c044588249051a7efa85af", - "IPY_MODEL_3d99c44fdd794cda8666e6a73ca9c36b" - ], - "layout": "IPY_MODEL_36e63c9cf648431a8aef6237de973774", - "tabbable": null, - "tooltip": null - } - }, - "21dffe123dda45ca921adea1ee821ed2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3247,33 +3015,7 @@ "width": null } }, - "2215a31e00c54862aaf7ac054bbc1aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d92644c603c4714a4323cbd5c7def02", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ea2add80ce54083878a4116c9ef864c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "24fe7aabcef64c109f622061e0158fe0": { + "15e69809c93145258a4330c0e888e019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3326,31 +3068,7 @@ "width": null } }, - "258343123ee64d078d587fad6e7e195f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0987ec15d6064297a9565901e22c60ad", - "IPY_MODEL_89795a6284bd43cc835148fe363e72a4", - "IPY_MODEL_68bc22f66089416691ac84bc6e9e2f68" - ], - "layout": "IPY_MODEL_9b592443fd5c4a3fad02fe6396ff2168", - "tabbable": null, - "tooltip": null - } - }, - "2607500fa00c409ca1c6a4d2a5b954ec": { + "16090d1c79bc4d79944c3db2302e3ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,31 +3121,92 @@ "width": null } }, - "262103e39f614b7ba8346cb40a06a364": { + "184f9afe203d4b1da69ecfc142c87d3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54947a11404642838dd6ac6508a28be5", - "IPY_MODEL_1415e475761d42f1aa1007fae7458666", - "IPY_MODEL_5492f35efd7742c48dd625ba8592112f" - ], - "layout": "IPY_MODEL_c2946c68ee174245bcdd55745289e1b7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71dbb609000745ee81c749a485c20ca4", + "placeholder": "​", + "style": "IPY_MODEL_d2308e6aa2c346db8e5f494a09a900df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "1943f172c86b499fa74d2c6a950c476a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8687d2dd5a4b42bcbeb9c9ab9dcf7954", + "placeholder": "​", + "style": "IPY_MODEL_34619bf82add4c5b9cec777474318ba8", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "1b0dee58b4e24391ae1c6c3aba2e0615": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1e2228f9753b442bb900eae6d16b0696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c771392a402e4f02a8adc98797fbbcf2", + "placeholder": "​", + "style": "IPY_MODEL_bc749c7612fa4072b6e6984641f56a13", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1129.56it/s]" } }, - "2754204b7400466cb5c5a6ffe197c89a": { + "1e56f8f70dda4ab08089dd57df8705ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,7 +3259,7 @@ "width": null } }, - "2895596c7bce4e01bf33024c61fa1430": { + "1ec68b1b3e0b4beba1dbb2306c65cb25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3495,15 +3274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cd770306d9140b38f9f6769c71463c6", + "layout": "IPY_MODEL_a797bb167a3a464eab4111ffcbbaacb0", "placeholder": "​", - "style": "IPY_MODEL_61cb09df6d6b46d6b0e7e6fe2dba2b8c", + "style": "IPY_MODEL_bbbc5680d7f54c4ba83de0786a5d362d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "28d048bd8c5542b6b70d1e261b8dc718": { + "21273b24249c4cf494228a97e6e6323c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3556,7 +3335,7 @@ "width": null } }, - "28dda56b04364578939536044765661e": { + "220c8d108a9f4d709a8fe4f12c10acd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,39 +3350,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_146da5ec780b4aac90aa3bbe92293e2f", + "layout": "IPY_MODEL_f2e4496d9bd04825889b9c186e65f9b4", "placeholder": "​", - "style": "IPY_MODEL_0889c9fe4bbf404ab1eff02e6fd5ffb9", + "style": "IPY_MODEL_cfed0889f9f74e5797b43674331d24cb", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 36.6MB/s]" - } - }, - "30f170149e6d448aaa4ebe763786395b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5372f1d6c299485e8680e9d5eace8471", - "IPY_MODEL_2215a31e00c54862aaf7ac054bbc1aa9", - "IPY_MODEL_04922fddf2054ab9878395aa1dc5e2f3" - ], - "layout": "IPY_MODEL_ca12b0b5aa404384aed47c6ee217cbac", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 63.33it/s]" } }, - "3239d991ce634399b2910d27bfcb746f": { + "22a42e320abb49f8adc090a7ffb13967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3621,30 +3376,25 @@ "text_color": null } }, - "3267636d8cfe4aefb95062323b8beed3": { + "2506ec2e415149d0821f3541b2eaaf74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55e4a7231fac49038bc8cfa3f2024501", - "placeholder": "​", - "style": "IPY_MODEL_3239d991ce634399b2910d27bfcb746f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "332e863acfa84fbfa8f23f214c0afded": { + "273f714dbdd749fda418a3dbcdcdb56d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3660,91 +3410,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6b7b4edf0b54766bb2595264c412440", - "max": 40.0, + "layout": "IPY_MODEL_281cb8c9ae6b4c68a5d6d8df2286a56c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c087d94edd244d06bc339ae3eae373b3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "341ba052899a46a39f6a75bbeff09cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ee4e9762e70467191acd8fe944bb30c", - "placeholder": "​", - "style": "IPY_MODEL_ce2bdbdf7ffa4ed793d5d360fa121258", + "style": "IPY_MODEL_548655fd1e9243dc9415665c2e9b5103", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.75it/s]" + "value": 60000.0 } }, - "3580f919b155455397a655ec3658894f": { - "model_module": "@jupyter-widgets/controls", + "279461e9a239483d82ba4799fdf324d6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "369a2a2d596c42679bd5d6150343580a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a334bd3b18749a694dbba7cc4ccfd20", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1a3ba97be74a5497c8c8323f7d9e25", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "36e63c9cf648431a8aef6237de973774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3790,56 +3473,7 @@ "width": null } }, - "37e7fc65d04d40c6af6a1ae75c0546ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21dffe123dda45ca921adea1ee821ed2", - "placeholder": "​", - "style": "IPY_MODEL_90378f2557ad48428999c94049d0f188", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3841ab79c51346799f39d11f1342e840": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88c371ef2071478ea464b014ef44388b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eb2ac9db956a43c695844d19480874ce", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3af5790668ef4fd8926ccbfef46e8b36": { + "281cb8c9ae6b4c68a5d6d8df2286a56c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3892,53 +3526,7 @@ "width": null } }, - "3b2afe08176b4aabb69056cefaacb5cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2607500fa00c409ca1c6a4d2a5b954ec", - "placeholder": "​", - "style": "IPY_MODEL_61aa613e156c437d9f9fc30e135cd74d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3d99c44fdd794cda8666e6a73ca9c36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be1cbcf9b7b4432eb3fb1ff24bb8ad77", - "placeholder": "​", - "style": "IPY_MODEL_e50e3c1c825f4781a2ddf6979af74bcf", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 243618.35 examples/s]" - } - }, - "416cf1f58de24f37ba6c0b9bd9bdc5d6": { + "292a189eb66e4301bfc896b4f8dc100b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3991,7 +3579,7 @@ "width": null } }, - "41f6476f5f3049ca937e85253a058768": { + "2a50581896484c0b976aedade7f12cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4044,113 +3632,51 @@ "width": null } }, - "4b2880e86cc84b4bb20092e88ae37e13": { - "model_module": "@jupyter-widgets/base", + "3070a952e2ca45bdb899c4d4198a9fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_292a189eb66e4301bfc896b4f8dc100b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b0bc94aa2b643519d5909658b963a45", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "4c2a376b53e04076b5ec3b93703c7bcf": { - "model_module": "@jupyter-widgets/base", + "34619bf82add4c5b9cec777474318ba8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d0a92c29e944931b6a22814c9d20524": { + "3778d1f5c0104c7cb2d7bcce800be452": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4203,48 +3729,23 @@ "width": null } }, - "522cf8445e0042feaa3d882bb0c3dfca": { + "3b0bc94aa2b643519d5909658b963a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5372f1d6c299485e8680e9d5eace8471": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb87b58f2ac54a589cbef4e34fafee8d", - "placeholder": "​", - "style": "IPY_MODEL_dca2d257b6ad44eabe656a8f5f3bc7e6", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "bar_color": null, + "description_width": "" } }, - "54841d1608114ce69f63a7780325533d": { + "3b55e363cfde4908ad226f56c13f1d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4297,7 +3798,7 @@ "width": null } }, - "5492f35efd7742c48dd625ba8592112f": { + "3bde4480ffa94ce4a2f7159486381564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4312,18 +3813,118 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f330741bd3a495e945aad4a4ce4d358", + "layout": "IPY_MODEL_0b9d536d30c348e1b0ee4b0e6fd7f865", "placeholder": "​", - "style": "IPY_MODEL_c28945c3acdc445ba0cd672a325d45ce", + "style": "IPY_MODEL_51493ffa05404893af4a5dab6f77dbca", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.88it/s]" + "value": "Generating train split: 100%" } }, - "54947a11404642838dd6ac6508a28be5": { + "3c3e29691e4f4ad6840284ca3b17cfd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3df19d52b5fc4a0386413fdd1a5664b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "430a9c6146344b98802597b77c3f3be9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44364892919440e29a4daa044be042e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ec68b1b3e0b4beba1dbb2306c65cb25", + "IPY_MODEL_9066808f620341428e1ffba3d084bca4", + "IPY_MODEL_a5d814399565484a909f082c8b7e872b" + ], + "layout": "IPY_MODEL_d8ae40c5da4b4b0089c20c890333293e", + "tabbable": null, + "tooltip": null + } + }, + "44d904ba3762435b8839df2e24700f3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778d1f5c0104c7cb2d7bcce800be452", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08efa39df96a4a8a920c810498a698dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "453ac5707a4d42ea81efc5e1565c4272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4335,15 +3936,650 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e465c1cd187a40f08ae74891d98d2689", + "layout": "IPY_MODEL_8d46174213f04048904879468ae71cc2", "placeholder": "​", - "style": "IPY_MODEL_c2861ca15b3244f8be1b0c9cca4eb464", + "style": "IPY_MODEL_22a42e320abb49f8adc090a7ffb13967", "tabbable": null, "tooltip": null, "value": "100%" } }, - "553af763d43c4e7ab92d8c26794fc190": { + "4749b626cbe94fc48d4b03ff6b199529": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48dc2c5f935d4a06a9268360f445144f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ed7f54f7cb54b18a2f8364afef47f0d", + "IPY_MODEL_4ca2bb4902ef4978ae0992bba223f34f", + "IPY_MODEL_7bbd9038dc554aed81bdf10fee8af2e4" + ], + "layout": "IPY_MODEL_ef45c415b584442b90eddf019859b2fa", + "tabbable": null, + "tooltip": null + } + }, + "4a5b873579bc440fb5e928cbcd9e8234": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aa1a02c15664164a38a57b714c9f47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c346a8ee11d94046a99d5f57ca946487", + "placeholder": "​", + "style": "IPY_MODEL_09c9d6cec18948cb9ab2f8fca3850384", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 23.0MB/s]" + } + }, + "4ca2bb4902ef4978ae0992bba223f34f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15e69809c93145258a4330c0e888e019", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce1305427aef46539cd0b52d2a4d80c5", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4faac9084cd14f7d9ab6683cd9cd154b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4fdb056e1ace496abe457111412c9432": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51493ffa05404893af4a5dab6f77dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5183bf12f78c49ed8e0b391f732cea7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "548655fd1e9243dc9415665c2e9b5103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "577f31248c7e4e5395e3c6c065b26c4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cba06315d8e47efa34517225eba91f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62d0e0c88f1a4c2abca87123937bd572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffa49044d9234ebd9ec0888b452e8736", + "IPY_MODEL_6b3ea55673a641d0b9359241bc72e1ad", + "IPY_MODEL_7e7b44e1efd24e0e9970f5bdd54948e8" + ], + "layout": "IPY_MODEL_9b94d4160a064040bec6b5cea5b17e13", + "tabbable": null, + "tooltip": null + } + }, + "66783477b102444cad83795901922fd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6796911564e248d6a2edc13c06584dd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67fa9a2630bb48a3b16c5e994c294ae6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b3ea55673a641d0b9359241bc72e1ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21273b24249c4cf494228a97e6e6323c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73fc8ea97ef84eef8297d0f573949655", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "6c4fcee6e76b44cf8f0a29ebaa311f66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71dbb609000745ee81c749a485c20ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4396,7 +4632,23 @@ "width": null } }, - "55e4a7231fac49038bc8cfa3f2024501": { + "73fc8ea97ef84eef8297d0f573949655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7508894f89054a63884f667b7402cd0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4449,7 +4701,7 @@ "width": null } }, - "5be663589e854e1ca2d5091a520b9adb": { + "767e0f06b3954e37b720f3c3db178341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4464,49 +4716,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e50636d37d4ddc95009d6c95403302", + "layout": "IPY_MODEL_a4ad05f1a8d242eda71d46ff04931d4d", "placeholder": "​", - "style": "IPY_MODEL_d2fec809ded6478fa101f2ee9596becb", + "style": "IPY_MODEL_da7f1b082c844fcf930864e35764ee69", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.75it/s]" - } - }, - "5e0283188f004ba3a715af38795bbabc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ea2add80ce54083878a4116c9ef864c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 40/40 [00:00<00:00, 56.79it/s]" } }, - "5fa31c28566b44368ecfc567dacb405f": { + "776aa050d3de4b2da0c5382c76274a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4521,85 +4739,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_553af763d43c4e7ab92d8c26794fc190", + "layout": "IPY_MODEL_16090d1c79bc4d79944c3db2302e3ee4", "placeholder": "​", - "style": "IPY_MODEL_5e0283188f004ba3a715af38795bbabc", + "style": "IPY_MODEL_80bb02045bc3428cacc4a8bcfc972f07", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1166.47it/s]" - } - }, - "61aa613e156c437d9f9fc30e135cd74d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61cb09df6d6b46d6b0e7e6fe2dba2b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64f9c4a5caac4ed4a19638a0b0e449ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "67f4dfd67393497c82cdaf0ab4a36a35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "68bc22f66089416691ac84bc6e9e2f68": { + "78e7fdc2f6ad4c19826157e8a3133740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4614,31 +4762,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f55df51f0c402d9c5708341635fe40", + "layout": "IPY_MODEL_ff829270eb2a450eb4bc4925b67b9353", "placeholder": "​", - "style": "IPY_MODEL_84f1dad5ee8b48ebb18278f22a5f4af8", + "style": "IPY_MODEL_a841775f0ace49feb3f9b7bbc04db697", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 253081.92 examples/s]" + "value": " 60000/60000 [00:00<00:00, 274804.21 examples/s]" } }, - "6c1a3ba97be74a5497c8c8323f7d9e25": { + "79712b33a5e94203b162a657bcb12a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67fa9a2630bb48a3b16c5e994c294ae6", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f02980876a54dbb8324c1fb8a142491", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d26f9d99de84cd8ae50d08e423a9a63": { + "7ab9a46c76fe4397b418d39e88da20c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4656,7 +4814,7 @@ "text_color": null } }, - "6f0f807797024621adc6abb7e0c9eaa2": { + "7bbd9038dc554aed81bdf10fee8af2e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4671,15 +4829,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_416cf1f58de24f37ba6c0b9bd9bdc5d6", + "layout": "IPY_MODEL_f5c1c2b5231846bc965b4a84d97c4978", "placeholder": "​", - "style": "IPY_MODEL_1cecba2ddba24988b0c32a3d2ee48be6", + "style": "IPY_MODEL_f351d976879e4e049d1f0ab7a19a6e3f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.56it/s]" + "value": " 40/40 [00:00<00:00, 60.58it/s]" } }, - "7038f74f23cb484984b1f5b1a8467611": { + "7bd4513692a04dcdb49f383da06e9355": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,7 +4890,7 @@ "width": null } }, - "7250fcd5c60e4b2e913bf33bc3e948ec": { + "7cc4d425c4ba401c934dfbc8568af440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4785,31 +4943,7 @@ "width": null } }, - "731f00f919044a8a88cc076b579e46dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3267636d8cfe4aefb95062323b8beed3", - "IPY_MODEL_7e380dbf96504aa19f37a01d07f25c8d", - "IPY_MODEL_d7fd58aec3be4461b5345173cf2a723e" - ], - "layout": "IPY_MODEL_24fe7aabcef64c109f622061e0158fe0", - "tabbable": null, - "tooltip": null - } - }, - "744cacf45c594f1688ae383d7a5c2fec": { + "7d37a14566bc46748576dd5718acf67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4862,7 +4996,7 @@ "width": null } }, - "7647881f3689427e8af3b75d42cf0955": { + "7e7b44e1efd24e0e9970f5bdd54948e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4877,15 +5011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc6e5172aa4d481b866ee9019152d9a8", + "layout": "IPY_MODEL_e1c866811f2c45698441743106275cc8", "placeholder": "​", - "style": "IPY_MODEL_3580f919b155455397a655ec3658894f", + "style": "IPY_MODEL_4faac9084cd14f7d9ab6683cd9cd154b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 36.5MB/s]" } }, - "77f21503eda044e1927d7ecee477a275": { + "7f02980876a54dbb8324c1fb8a142491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4901,76 +5035,85 @@ "description_width": "" } }, - "78a107afdf9d4ea49f9a9125e4c4348e": { - "model_module": "@jupyter-widgets/base", + "7f448eb8f9734416890102ab074a5c56": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a049ad814974333972be807cc0a70ac": { + "7f474e068b7447a4a707fae39fc4779a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80bb02045bc3428cacc4a8bcfc972f07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8587b883949a4e399dabc4f91c49eb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932527b3058d413a8641e6ad04c14915", + "IPY_MODEL_d171ea950ab94c3fbaccb8d2373a6da6", + "IPY_MODEL_767e0f06b3954e37b720f3c3db178341" + ], + "layout": "IPY_MODEL_12da9f31adcb4e82baab27c1b7261fe7", + "tabbable": null, + "tooltip": null } }, - "7a334bd3b18749a694dbba7cc4ccfd20": { + "8687d2dd5a4b42bcbeb9c9ab9dcf7954": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +5166,30 @@ "width": null } }, - "7c73c164138a422c88af31b40796165c": { + "8a51589c96d04591a2667d780bf7ad33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_577f31248c7e4e5395e3c6c065b26c4a", + "placeholder": "​", + "style": "IPY_MODEL_6796911564e248d6a2edc13c06584dd7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6898.07 examples/s]" + } + }, + "8d46174213f04048904879468ae71cc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,23 +5242,7 @@ "width": null } }, - "7e35d053e8e846a2b5a5c3c7590496ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e380dbf96504aa19f37a01d07f25c8d": { + "9066808f620341428e1ffba3d084bca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5108,17 +5258,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b2880e86cc84b4bb20092e88ae37e13", + "layout": "IPY_MODEL_7cc4d425c4ba401c934dfbc8568af440", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_aba08fb2e9e8429791ee936b70d37d77", + "style": "IPY_MODEL_bd7992dfee39487da2fdad5caff6a94f", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7eca5077ed044501ad01b2a33813c5c0": { + "907485478951427389e624de9ba0865d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff792f1c1a83439ab079e6e7c4cf646a", + "IPY_MODEL_79712b33a5e94203b162a657bcb12a35", + "IPY_MODEL_a6ec3c12e3ed442b863c224cbc4006ec" + ], + "layout": "IPY_MODEL_025f175b1bc3460aa89f24cec6604d04", + "tabbable": null, + "tooltip": null + } + }, + "91c443f7ff764f1dba681c3c09a14ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5345,7 @@ "width": null } }, - "8263a572de4e4c51a641723f1be42eb8": { + "922fec678412462e833e856911d44510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5189,7 +5363,30 @@ "text_color": null } }, - "84f1dad5ee8b48ebb18278f22a5f4af8": { + "932527b3058d413a8641e6ad04c14915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7508894f89054a63884f667b7402cd0b", + "placeholder": "​", + "style": "IPY_MODEL_7f474e068b7447a4a707fae39fc4779a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "966bf58e5bd14b8aa8e5fb75608923bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5207,7 +5404,7 @@ "text_color": null } }, - "88c371ef2071478ea464b014ef44388b": { + "97e27482e67741c58d5adb5df19c4e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5260,103 +5457,31 @@ "width": null } }, - "89795a6284bd43cc835148fe363e72a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c2a376b53e04076b5ec3b93703c7bcf", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a478aae5cc6447a3967de33488043afa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "89c909015de74accbfb91189d3a0649c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d4d84dc95d4fb280f602be22e0c3cc", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a049ad814974333972be807cc0a70ac", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "8b19e50194a7452a8003471537d3763f": { + "9b584fe98d9c4efaa2b4e34b431444f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_744cacf45c594f1688ae383d7a5c2fec", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e35d053e8e846a2b5a5c3c7590496ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f328d6279d4641508fd95fa254664013", + "IPY_MODEL_002c47d512744c3fb829f25bccd29856", + "IPY_MODEL_1e2228f9753b442bb900eae6d16b0696" + ], + "layout": "IPY_MODEL_6c4fcee6e76b44cf8f0a29ebaa311f66", "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "8cbbe4a65db040a5a3cd69e593a07e1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "8cd770306d9140b38f9f6769c71463c6": { + "9b94d4160a064040bec6b5cea5b17e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,7 +5534,7 @@ "width": null } }, - "8dd8bbfcf5eb4f7791da688e32498197": { + "a1df0d01bf0e4cc6ac9bea2b331ada11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5425,7 +5550,7 @@ "description_width": "" } }, - "8e5afc6c10514e5f82023b27683a226e": { + "a4ad05f1a8d242eda71d46ff04931d4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5478,7 +5603,30 @@ "width": null } }, - "8ec2b90bf10c433a8459e57d425c8760": { + "a5d814399565484a909f082c8b7e872b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debfb1185b13494a9970d6a72d784b60", + "placeholder": "​", + "style": "IPY_MODEL_0a7525dabaae4dca8e04969f7126849d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.87it/s]" + } + }, + "a6ec3c12e3ed442b863c224cbc4006ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5493,15 +5641,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7eca5077ed044501ad01b2a33813c5c0", + "layout": "IPY_MODEL_c55069dce44f4f9a96ca7801f9823170", "placeholder": "​", - "style": "IPY_MODEL_522cf8445e0042feaa3d882bb0c3dfca", + "style": "IPY_MODEL_66783477b102444cad83795901922fd6", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 67.6MB/s]" + "value": " 10000/10000 [00:00<00:00, 252363.34 examples/s]" } }, - "8ee4e9762e70467191acd8fe944bb30c": { + "a797bb167a3a464eab4111ffcbbaacb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5554,7 +5702,90 @@ "width": null } }, - "8f330741bd3a495e945aad4a4ce4d358": { + "a841775f0ace49feb3f9b7bbc04db697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa0eb853a308442c86674889c9306833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aea869f9cc8d44cf80997dc63f1b0a73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bde4480ffa94ce4a2f7159486381564", + "IPY_MODEL_44d904ba3762435b8839df2e24700f3c", + "IPY_MODEL_78e7fdc2f6ad4c19826157e8a3133740" + ], + "layout": "IPY_MODEL_97e27482e67741c58d5adb5df19c4e16", + "tabbable": null, + "tooltip": null + } + }, + "af4e03b9990a4c36a589dde3f0ab1f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0d9a87e19e84400b026e8429c228a51", + "placeholder": "​", + "style": "IPY_MODEL_2506ec2e415149d0821f3541b2eaaf74", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.42it/s]" + } + }, + "b0d9a87e19e84400b026e8429c228a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5607,60 +5838,103 @@ "width": null } }, - "9002357990284f828a897347131f356e": { - "model_module": "@jupyter-widgets/base", + "b36513bdac0f46ceb83785d8a9bde09e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d37a14566bc46748576dd5718acf67c", + "placeholder": "​", + "style": "IPY_MODEL_f849bc18dadf47e89463232339c585a5", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "b896146cc7f64fd186cf2ed0dbf51c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5183bf12f78c49ed8e0b391f732cea7e", + "placeholder": "​", + "style": "IPY_MODEL_7ab9a46c76fe4397b418d39e88da20c3", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 579.16it/s]" + } + }, + "b9cec9f2501a478298bdf046984e17af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc5f5ae55db2472581e2857a66600c42", + "IPY_MODEL_273f714dbdd749fda418a3dbcdcdb56d", + "IPY_MODEL_8a51589c96d04591a2667d780bf7ad33" + ], + "layout": "IPY_MODEL_7bd4513692a04dcdb49f383da06e9355", + "tabbable": null, + "tooltip": null + } + }, + "bb4c35815c7449a8aed853a01aa86fa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc87aab28a8c4d119db816e03e6122d3", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b0dee58b4e24391ae1c6c3aba2e0615", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "90378f2557ad48428999c94049d0f188": { + "bbbc5680d7f54c4ba83de0786a5d362d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5678,30 +5952,25 @@ "text_color": null } }, - "903b0619b70a440ca79228d1c65fc405": { + "bc749c7612fa4072b6e6984641f56a13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54841d1608114ce69f63a7780325533d", - "placeholder": "​", - "style": "IPY_MODEL_67f4dfd67393497c82cdaf0ab4a36a35", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91feb6a6496446f48de62109e80a5436": { + "bc87aab28a8c4d119db816e03e6122d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5754,7 +6023,23 @@ "width": null } }, - "9627b06404dc417283abd3bbd64bcd8f": { + "bd7992dfee39487da2fdad5caff6a94f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c02b0661ef614d25a8b00a2146ff5ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5807,7 +6092,31 @@ "width": null } }, - "98625178d3c94ba6aa8694f50e9cdea9": { + "c217771fa5814aabb7107510b1d6e6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_453ac5707a4d42ea81efc5e1565c4272", + "IPY_MODEL_d7550fd273714d05a635895342a929bb", + "IPY_MODEL_220c8d108a9f4d709a8fe4f12c10acd2" + ], + "layout": "IPY_MODEL_1e56f8f70dda4ab08089dd57df8705ff", + "tabbable": null, + "tooltip": null + } + }, + "c346a8ee11d94046a99d5f57ca946487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5860,7 +6169,7 @@ "width": null } }, - "9b592443fd5c4a3fad02fe6396ff2168": { + "c55069dce44f4f9a96ca7801f9823170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,7 +6222,7 @@ "width": null } }, - "9d92644c603c4714a4323cbd5c7def02": { + "c771392a402e4f02a8adc98797fbbcf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,108 +6260,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ecf5c7750b847d4bf2c0d59f10434a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da49b42ce92046c998e9eb384ee0c39e", - "placeholder": "​", - "style": "IPY_MODEL_f1becfe00eb44b9bb936e4528ea9e942", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.14it/s]" - } - }, - "9f651479fb634fe188bcbb02162bfd50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9875d5f680740d58b957c92f84083c3", - "IPY_MODEL_aa9a51c33c8f4854aa529f9859b40b9f", - "IPY_MODEL_9ecf5c7750b847d4bf2c0d59f10434a2" - ], - "layout": "IPY_MODEL_8e5afc6c10514e5f82023b27683a226e", - "tabbable": null, - "tooltip": null - } - }, - "a478aae5cc6447a3967de33488043afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a5f665c94e1e4e7cb9bda8382e1e00cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d0a92c29e944931b6a22814c9d20524", - "placeholder": "​", - "style": "IPY_MODEL_b5a1be7d14b44a2b90d6c5e8c0ecbe95", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 620.23it/s]" + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8c9eaa0ec7a40f5b91b6c381bf54765": { + "c879a51624034291b6cdf7b3b37731ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6105,7 +6328,7 @@ "width": null } }, - "aa4f2e95243f4fa7a40ad4fcfe57c6c0": { + "c88a0a54a7d8495c90e0ceefd16c73ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6120,42 +6343,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_130a697771f84e80b9ea4c02d03ff62a", - "IPY_MODEL_3841ab79c51346799f39d11f1342e840", - "IPY_MODEL_5be663589e854e1ca2d5091a520b9adb" + "IPY_MODEL_02853640143d49f7b2b53d5367f5366c", + "IPY_MODEL_e16b0d4eaf784c8c99039a50e0c30aba", + "IPY_MODEL_af4e03b9990a4c36a589dde3f0ab1f57" ], - "layout": "IPY_MODEL_03c5fbd3c4ce4ea3984de19281b147af", + "layout": "IPY_MODEL_e3c308c6e2834aca9d4c0ee48a779a51", "tabbable": null, "tooltip": null } }, - "aa9a51c33c8f4854aa529f9859b40b9f": { + "c88f01ca4b5546fc8a07b2d1c845732e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9feed1c5a194d669dfaa347748b2250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_035f34e6a54c4b3f92421455a5670762", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_77f21503eda044e1927d7ecee477a275", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_184f9afe203d4b1da69ecfc142c87d3a", + "IPY_MODEL_f9ecde13ff2f4aa6b46a617709da636b", + "IPY_MODEL_e9de42840a6f4ef5ad2bd529eebdb5af" + ], + "layout": "IPY_MODEL_0f922409e00c49d9a9eeec3cde61b32b", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "aba08fb2e9e8429791ee936b70d37d77": { + "ca07382e91084da7af02c7ff7e300311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6171,60 +6410,23 @@ "description_width": "" } }, - "ad687e0e218b466f8fa90ea5d77f2d8c": { - "model_module": "@jupyter-widgets/base", + "ce1305427aef46539cd0b52d2a4d80c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b5a1be7d14b44a2b90d6c5e8c0ecbe95": { + "cfed0889f9f74e5797b43674331d24cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6242,60 +6444,33 @@ "text_color": null } }, - "b9cee27e7db1451a9caff091181782e1": { - "model_module": "@jupyter-widgets/base", + "d171ea950ab94c3fbaccb8d2373a6da6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14216ca27f61486ba99444444f1a70dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1df0d01bf0e4cc6ac9bea2b331ada11", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ba1f4e88e2294c9a9ae17a70f35db16e": { + "d2308e6aa2c346db8e5f494a09a900df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6313,7 +6488,7 @@ "text_color": null } }, - "be1cbcf9b7b4432eb3fb1ff24bb8ad77": { + "d3d80ec4b9644c34aa7dec8beecea5f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6366,23 +6541,57 @@ "width": null } }, - "c087d94edd244d06bc339ae3eae373b3": { + "d601f361fa2b4a219d2e10c6491a7d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1943f172c86b499fa74d2c6a950c476a", + "IPY_MODEL_3070a952e2ca45bdb899c4d4198a9fff", + "IPY_MODEL_b896146cc7f64fd186cf2ed0dbf51c0c" + ], + "layout": "IPY_MODEL_1333c86767824ba2bfdc4b6770dbafa9", + "tabbable": null, + "tooltip": null + } + }, + "d7550fd273714d05a635895342a929bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93c51ff0a3040cab6611c1a43b2e805", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca07382e91084da7af02c7ff7e300311", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "c11ba1f9642647e6b19c9534b3391681": { + "d8ae40c5da4b4b0089c20c890333293e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6435,25 +6644,23 @@ "width": null } }, - "c2861ca15b3244f8be1b0c9cca4eb464": { + "d9a6b702bb5e4e309f95c88d6c690b39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c28945c3acdc445ba0cd672a325d45ce": { + "da7f1b082c844fcf930864e35764ee69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6471,7 +6678,30 @@ "text_color": null } }, - "c2946c68ee174245bcdd55745289e1b7": { + "dc5f5ae55db2472581e2857a66600c42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279461e9a239483d82ba4799fdf324d6", + "placeholder": "​", + "style": "IPY_MODEL_ec3747524c714804b0de0a16bfad570c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "debfb1185b13494a9970d6a72d784b60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6524,7 +6754,59 @@ "width": null } }, - "c8e7c01446584517b3c53cd3261e5d45": { + "e03fa8b0f49f49f1baa465b1ca0883d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4749b626cbe94fc48d4b03ff6b199529", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9a6b702bb5e4e309f95c88d6c690b39", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "e16b0d4eaf784c8c99039a50e0c30aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cba06315d8e47efa34517225eba91f1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f05df81817754b7b87f99efbdce1f223", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e1c866811f2c45698441743106275cc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6577,7 +6859,7 @@ "width": null } }, - "ca12b0b5aa404384aed47c6ee217cbac": { + "e3c308c6e2834aca9d4c0ee48a779a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6630,116 +6912,7 @@ "width": null } }, - "ce2bdbdf7ffa4ed793d5d360fa121258": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0536047d0804b29a6ffc9d1743720b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0cd44c2bac844dd9f2edbdea4c9aa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3d8772d91d74a74bbfc3c241eb0ce09", - "placeholder": "​", - "style": "IPY_MODEL_8cbbe4a65db040a5a3cd69e593a07e1a", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.17MB/s]" - } - }, - "d2592a858d1d4bc3a7166e7814eb9d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d2fec809ded6478fa101f2ee9596becb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d398fec274b44e2b907f4c5cae300b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6b7b4edf0b54766bb2595264c412440": { + "e93c51ff0a3040cab6611c1a43b2e805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6792,152 +6965,7 @@ "width": null } }, - "d7fd58aec3be4461b5345173cf2a723e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9002357990284f828a897347131f356e", - "placeholder": "​", - "style": "IPY_MODEL_1a786c5ee7b14db9a60268ce2d3b9d35", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.17it/s]" - } - }, - "d87537574d1b46388a5f4de507d1aedd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0770995c96e7450eb9dd81b263cd14e1", - "IPY_MODEL_89c909015de74accbfb91189d3a0649c", - "IPY_MODEL_28dda56b04364578939536044765661e" - ], - "layout": "IPY_MODEL_b9cee27e7db1451a9caff091181782e1", - "tabbable": null, - "tooltip": null - } - }, - "d8c0fe97e2c044588249051a7efa85af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91feb6a6496446f48de62109e80a5436", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64f9c4a5caac4ed4a19638a0b0e449ae", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "d9875d5f680740d58b957c92f84083c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c73c164138a422c88af31b40796165c", - "placeholder": "​", - "style": "IPY_MODEL_0650dd8061c74475b7cdbeae70782dba", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d992a44e172d47668b49fe9830d4ea41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a107afdf9d4ea49f9a9125e4c4348e", - "placeholder": "​", - "style": "IPY_MODEL_ebd09a0dfc4e41d8b37610226c9e7be8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "da461b681769492d812461f46d6775ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8c9eaa0ec7a40f5b91b6c381bf54765", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8dd8bbfcf5eb4f7791da688e32498197", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "da49b42ce92046c998e9eb384ee0c39e": { + "e9980f6d6bf842ce92b80dcf43f39e4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,25 +7018,30 @@ "width": null } }, - "dca2d257b6ad44eabe656a8f5f3bc7e6": { + "e9de42840a6f4ef5ad2bd529eebdb5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9837661e474434ba02cde38ddef5148", + "placeholder": "​", + "style": "IPY_MODEL_430a9c6146344b98802597b77c3f3be9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.40it/s]" } }, - "de925572cfb54cafa807449424d39b7e": { + "e9fb2e15855a495eb8393c8b1c470abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7023,42 +7056,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903b0619b70a440ca79228d1c65fc405", - "IPY_MODEL_332e863acfa84fbfa8f23f214c0afded", - "IPY_MODEL_6f0f807797024621adc6abb7e0c9eaa2" + "IPY_MODEL_ed5aaff857784513a498c55586a92986", + "IPY_MODEL_bb4c35815c7449a8aed853a01aa86fa4", + "IPY_MODEL_b36513bdac0f46ceb83785d8a9bde09e" ], - "layout": "IPY_MODEL_3af5790668ef4fd8926ccbfef46e8b36", + "layout": "IPY_MODEL_91c443f7ff764f1dba681c3c09a14ff1", "tabbable": null, "tooltip": null } }, - "e027fdb1fd7e4cb8ad7d32a540884a3f": { + "ec3747524c714804b0de0a16bfad570c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed5aaff857784513a498c55586a92986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efaaf8ce120240269b0246dccf24c672", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d398fec274b44e2b907f4c5cae300b81", + "layout": "IPY_MODEL_3b55e363cfde4908ad226f56c13f1d9e", + "placeholder": "​", + "style": "IPY_MODEL_966bf58e5bd14b8aa8e5fb75608923bb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading readme: 100%" } }, - "e2c0b351610b424a8cb54f4c25c0257e": { + "ef45c415b584442b90eddf019859b2fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,60 +7159,23 @@ "width": null } }, - "e3d8772d91d74a74bbfc3c241eb0ce09": { - "model_module": "@jupyter-widgets/base", + "f05df81817754b7b87f99efbdce1f223": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e465c1cd187a40f08ae74891d98d2689": { + "f2e4496d9bd04825889b9c186e65f9b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,41 +7228,30 @@ "width": null } }, - "e50e3c1c825f4781a2ddf6979af74bcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2ac9db956a43c695844d19480874ce": { + "f328d6279d4641508fd95fa254664013": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fdb056e1ace496abe457111412c9432", + "placeholder": "​", + "style": "IPY_MODEL_aa0eb853a308442c86674889c9306833", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ebd09a0dfc4e41d8b37610226c9e7be8": { + "f351d976879e4e049d1f0ab7a19a6e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7269,55 +7269,7 @@ "text_color": null } }, - "ed3dd5752c5341fca2216803c8c4b46d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d992a44e172d47668b49fe9830d4ea41", - "IPY_MODEL_8b19e50194a7452a8003471537d3763f", - "IPY_MODEL_a5f665c94e1e4e7cb9bda8382e1e00cc" - ], - "layout": "IPY_MODEL_7038f74f23cb484984b1f5b1a8467611", - "tabbable": null, - "tooltip": null - } - }, - "ed3e7469df2c4560897c195c6e1c0003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02526371af764684aad4897d7046a365", - "IPY_MODEL_369a2a2d596c42679bd5d6150343580a", - "IPY_MODEL_d0cd44c2bac844dd9f2edbdea4c9aa01" - ], - "layout": "IPY_MODEL_c8e7c01446584517b3c53cd3261e5d45", - "tabbable": null, - "tooltip": null - } - }, - "efaaf8ce120240269b0246dccf24c672": { + "f5c1c2b5231846bc965b4a84d97c4978": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,7 +7322,7 @@ "width": null } }, - "f1becfe00eb44b9bb936e4528ea9e942": { + "f849bc18dadf47e89463232339c585a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7388,31 +7340,7 @@ "text_color": null } }, - "f2c29b6ce7974f23abf1753e738849b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b2afe08176b4aabb69056cefaacb5cd", - "IPY_MODEL_210e5f58051a429ba35833408833e675", - "IPY_MODEL_8ec2b90bf10c433a8459e57d425c8760" - ], - "layout": "IPY_MODEL_c11ba1f9642647e6b19c9534b3391681", - "tabbable": null, - "tooltip": null - } - }, - "fb652988afd24cf39d30d03f9b269bcc": { + "f8c948dfdc854e989e91dc328f4b69c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7393,7 @@ "width": null } }, - "fb87b58f2ac54a589cbef4e34fafee8d": { + "f9837661e474434ba02cde38ddef5148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,7 +7446,80 @@ "width": null } }, - "fc6e5172aa4d481b866ee9019152d9a8": { + "f9ecde13ff2f4aa6b46a617709da636b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a50581896484c0b976aedade7f12cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3e29691e4f4ad6840284ca3b17cfd9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fca7e86a7eb34f15a6e35dfad2b37d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_776aa050d3de4b2da0c5382c76274a23", + "IPY_MODEL_e03fa8b0f49f49f1baa465b1ca0883d5", + "IPY_MODEL_4aa1a02c15664164a38a57b714c9f47c" + ], + "layout": "IPY_MODEL_c02b0661ef614d25a8b00a2146ff5ca5", + "tabbable": null, + "tooltip": null + } + }, + "ff792f1c1a83439ab079e6e7c4cf646a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e9980f6d6bf842ce92b80dcf43f39e4d", + "placeholder": "​", + "style": "IPY_MODEL_c88f01ca4b5546fc8a07b2d1c845732e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff829270eb2a450eb4bc4925b67b9353": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,28 +7572,27 @@ "width": null } }, - "fe416b8103714c939d38072d169f1695": { + "ffa49044d9234ebd9ec0888b452e8736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2895596c7bce4e01bf33024c61fa1430", - "IPY_MODEL_da461b681769492d812461f46d6775ee", - "IPY_MODEL_341ba052899a46a39f6a75bbeff09cc3" - ], - "layout": "IPY_MODEL_7250fcd5c60e4b2e913bf33bc3e948ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8c948dfdc854e989e91dc328f4b69c7", + "placeholder": "​", + "style": "IPY_MODEL_7f448eb8f9734416890102ab074a5c56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 169e30683..61c139cf0 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:01.656948Z", - "iopub.status.busy": "2024-09-26T17:02:01.656539Z", - "iopub.status.idle": "2024-09-26T17:02:02.850939Z", - "shell.execute_reply": "2024-09-26T17:02:02.850256Z" + "iopub.execute_input": "2024-09-27T13:48:28.690694Z", + "iopub.status.busy": "2024-09-27T13:48:28.690508Z", + "iopub.status.idle": "2024-09-27T13:48:29.909631Z", + "shell.execute_reply": "2024-09-27T13:48:29.909082Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.853271Z", - "iopub.status.busy": "2024-09-26T17:02:02.852947Z", - "iopub.status.idle": "2024-09-26T17:02:02.875172Z", - "shell.execute_reply": "2024-09-26T17:02:02.874705Z" + "iopub.execute_input": "2024-09-27T13:48:29.911776Z", + "iopub.status.busy": "2024-09-27T13:48:29.911485Z", + "iopub.status.idle": "2024-09-27T13:48:29.929829Z", + "shell.execute_reply": "2024-09-27T13:48:29.929260Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.877142Z", - "iopub.status.busy": "2024-09-26T17:02:02.876721Z", - "iopub.status.idle": "2024-09-26T17:02:02.901260Z", - "shell.execute_reply": "2024-09-26T17:02:02.900803Z" + "iopub.execute_input": "2024-09-27T13:48:29.931726Z", + "iopub.status.busy": "2024-09-27T13:48:29.931354Z", + "iopub.status.idle": "2024-09-27T13:48:29.955883Z", + "shell.execute_reply": "2024-09-27T13:48:29.955429Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.903032Z", - "iopub.status.busy": "2024-09-26T17:02:02.902670Z", - "iopub.status.idle": "2024-09-26T17:02:02.906081Z", - "shell.execute_reply": "2024-09-26T17:02:02.905633Z" + "iopub.execute_input": "2024-09-27T13:48:29.957546Z", + "iopub.status.busy": "2024-09-27T13:48:29.957198Z", + "iopub.status.idle": "2024-09-27T13:48:29.960644Z", + "shell.execute_reply": "2024-09-27T13:48:29.960187Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.907891Z", - "iopub.status.busy": "2024-09-26T17:02:02.907547Z", - "iopub.status.idle": "2024-09-26T17:02:02.915059Z", - "shell.execute_reply": "2024-09-26T17:02:02.914598Z" + "iopub.execute_input": "2024-09-27T13:48:29.962526Z", + "iopub.status.busy": "2024-09-27T13:48:29.962099Z", + "iopub.status.idle": "2024-09-27T13:48:29.970289Z", + "shell.execute_reply": "2024-09-27T13:48:29.969831Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.916797Z", - "iopub.status.busy": "2024-09-26T17:02:02.916457Z", - "iopub.status.idle": "2024-09-26T17:02:02.918910Z", - "shell.execute_reply": "2024-09-26T17:02:02.918455Z" + "iopub.execute_input": "2024-09-27T13:48:29.972004Z", + "iopub.status.busy": "2024-09-27T13:48:29.971668Z", + "iopub.status.idle": "2024-09-27T13:48:29.974120Z", + "shell.execute_reply": "2024-09-27T13:48:29.973664Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.920658Z", - "iopub.status.busy": "2024-09-26T17:02:02.920329Z", - "iopub.status.idle": "2024-09-26T17:02:05.951867Z", - "shell.execute_reply": "2024-09-26T17:02:05.951334Z" + "iopub.execute_input": "2024-09-27T13:48:29.975796Z", + "iopub.status.busy": "2024-09-27T13:48:29.975523Z", + "iopub.status.idle": "2024-09-27T13:48:33.022239Z", + "shell.execute_reply": "2024-09-27T13:48:33.021576Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.953863Z", - "iopub.status.busy": "2024-09-26T17:02:05.953664Z", - "iopub.status.idle": "2024-09-26T17:02:05.962841Z", - "shell.execute_reply": "2024-09-26T17:02:05.962408Z" + "iopub.execute_input": "2024-09-27T13:48:33.024546Z", + "iopub.status.busy": "2024-09-27T13:48:33.024174Z", + "iopub.status.idle": "2024-09-27T13:48:33.033530Z", + "shell.execute_reply": "2024-09-27T13:48:33.033087Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.964552Z", - "iopub.status.busy": "2024-09-26T17:02:05.964224Z", - "iopub.status.idle": "2024-09-26T17:02:07.908703Z", - "shell.execute_reply": "2024-09-26T17:02:07.908090Z" + "iopub.execute_input": "2024-09-27T13:48:33.035207Z", + "iopub.status.busy": "2024-09-27T13:48:33.035031Z", + "iopub.status.idle": "2024-09-27T13:48:35.057425Z", + "shell.execute_reply": "2024-09-27T13:48:35.056829Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.910953Z", - "iopub.status.busy": "2024-09-26T17:02:07.910373Z", - "iopub.status.idle": "2024-09-26T17:02:07.928712Z", - "shell.execute_reply": "2024-09-26T17:02:07.928235Z" + "iopub.execute_input": "2024-09-27T13:48:35.059795Z", + "iopub.status.busy": "2024-09-27T13:48:35.059229Z", + "iopub.status.idle": "2024-09-27T13:48:35.078592Z", + "shell.execute_reply": "2024-09-27T13:48:35.078085Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.930415Z", - "iopub.status.busy": "2024-09-26T17:02:07.930091Z", - "iopub.status.idle": "2024-09-26T17:02:07.937827Z", - "shell.execute_reply": "2024-09-26T17:02:07.937268Z" + "iopub.execute_input": "2024-09-27T13:48:35.080517Z", + "iopub.status.busy": "2024-09-27T13:48:35.080147Z", + "iopub.status.idle": "2024-09-27T13:48:35.088054Z", + "shell.execute_reply": "2024-09-27T13:48:35.087581Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.939627Z", - "iopub.status.busy": "2024-09-26T17:02:07.939288Z", - "iopub.status.idle": "2024-09-26T17:02:07.948313Z", - "shell.execute_reply": "2024-09-26T17:02:07.947729Z" + "iopub.execute_input": "2024-09-27T13:48:35.089935Z", + "iopub.status.busy": "2024-09-27T13:48:35.089521Z", + "iopub.status.idle": "2024-09-27T13:48:35.098940Z", + "shell.execute_reply": "2024-09-27T13:48:35.098374Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.950161Z", - "iopub.status.busy": "2024-09-26T17:02:07.949841Z", - "iopub.status.idle": "2024-09-26T17:02:07.957648Z", - "shell.execute_reply": "2024-09-26T17:02:07.957041Z" + "iopub.execute_input": "2024-09-27T13:48:35.100861Z", + "iopub.status.busy": "2024-09-27T13:48:35.100449Z", + "iopub.status.idle": "2024-09-27T13:48:35.108869Z", + "shell.execute_reply": "2024-09-27T13:48:35.108267Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.959493Z", - "iopub.status.busy": "2024-09-26T17:02:07.959139Z", - "iopub.status.idle": "2024-09-26T17:02:07.969567Z", - "shell.execute_reply": "2024-09-26T17:02:07.968948Z" + "iopub.execute_input": "2024-09-27T13:48:35.110735Z", + "iopub.status.busy": "2024-09-27T13:48:35.110393Z", + "iopub.status.idle": "2024-09-27T13:48:35.119177Z", + "shell.execute_reply": "2024-09-27T13:48:35.118615Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.971246Z", - "iopub.status.busy": "2024-09-26T17:02:07.971075Z", - "iopub.status.idle": "2024-09-26T17:02:07.978570Z", - "shell.execute_reply": "2024-09-26T17:02:07.978076Z" + "iopub.execute_input": "2024-09-27T13:48:35.120900Z", + "iopub.status.busy": "2024-09-27T13:48:35.120578Z", + "iopub.status.idle": "2024-09-27T13:48:35.128239Z", + "shell.execute_reply": "2024-09-27T13:48:35.127660Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.980461Z", - "iopub.status.busy": "2024-09-26T17:02:07.980085Z", - "iopub.status.idle": "2024-09-26T17:02:07.988648Z", - "shell.execute_reply": "2024-09-26T17:02:07.988195Z" + "iopub.execute_input": "2024-09-27T13:48:35.130045Z", + "iopub.status.busy": "2024-09-27T13:48:35.129690Z", + "iopub.status.idle": "2024-09-27T13:48:35.137653Z", + "shell.execute_reply": "2024-09-27T13:48:35.137215Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.990420Z", - "iopub.status.busy": "2024-09-26T17:02:07.990085Z", - "iopub.status.idle": "2024-09-26T17:02:07.998038Z", - "shell.execute_reply": "2024-09-26T17:02:07.997573Z" + "iopub.execute_input": "2024-09-27T13:48:35.139474Z", + "iopub.status.busy": "2024-09-27T13:48:35.139126Z", + "iopub.status.idle": "2024-09-27T13:48:35.147699Z", + "shell.execute_reply": "2024-09-27T13:48:35.147238Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index c12116815..ab858b9be 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -804,7 +804,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}
+Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 343f76c9a..b10d7534a 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:10.815001Z", - "iopub.status.busy": "2024-09-26T17:02:10.814842Z", - "iopub.status.idle": "2024-09-26T17:02:13.720806Z", - "shell.execute_reply": "2024-09-26T17:02:13.720189Z" + "iopub.execute_input": "2024-09-27T13:48:38.123019Z", + "iopub.status.busy": "2024-09-27T13:48:38.122617Z", + "iopub.status.idle": "2024-09-27T13:48:41.156902Z", + "shell.execute_reply": "2024-09-27T13:48:41.156293Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.723175Z", - "iopub.status.busy": "2024-09-26T17:02:13.722674Z", - "iopub.status.idle": "2024-09-26T17:02:13.725899Z", - "shell.execute_reply": "2024-09-26T17:02:13.725444Z" + "iopub.execute_input": "2024-09-27T13:48:41.159363Z", + "iopub.status.busy": "2024-09-27T13:48:41.158760Z", + "iopub.status.idle": "2024-09-27T13:48:41.162218Z", + "shell.execute_reply": "2024-09-27T13:48:41.161666Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.727650Z", - "iopub.status.busy": "2024-09-26T17:02:13.727301Z", - "iopub.status.idle": "2024-09-26T17:02:13.730292Z", - "shell.execute_reply": "2024-09-26T17:02:13.729849Z" + "iopub.execute_input": "2024-09-27T13:48:41.164034Z", + "iopub.status.busy": "2024-09-27T13:48:41.163676Z", + "iopub.status.idle": "2024-09-27T13:48:41.166941Z", + "shell.execute_reply": "2024-09-27T13:48:41.166439Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.731901Z", - "iopub.status.busy": "2024-09-26T17:02:13.731621Z", - "iopub.status.idle": "2024-09-26T17:02:13.756874Z", - "shell.execute_reply": "2024-09-26T17:02:13.756312Z" + "iopub.execute_input": "2024-09-27T13:48:41.168602Z", + "iopub.status.busy": "2024-09-27T13:48:41.168322Z", + "iopub.status.idle": "2024-09-27T13:48:41.194210Z", + "shell.execute_reply": "2024-09-27T13:48:41.193635Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.758691Z", - "iopub.status.busy": "2024-09-26T17:02:13.758260Z", - "iopub.status.idle": "2024-09-26T17:02:13.761816Z", - "shell.execute_reply": "2024-09-26T17:02:13.761257Z" + "iopub.execute_input": "2024-09-27T13:48:41.196238Z", + "iopub.status.busy": "2024-09-27T13:48:41.195805Z", + "iopub.status.idle": "2024-09-27T13:48:41.199937Z", + "shell.execute_reply": "2024-09-27T13:48:41.199359Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.763566Z", - "iopub.status.busy": "2024-09-26T17:02:13.763110Z", - "iopub.status.idle": "2024-09-26T17:02:13.766236Z", - "shell.execute_reply": "2024-09-26T17:02:13.765787Z" + "iopub.execute_input": "2024-09-27T13:48:41.201902Z", + "iopub.status.busy": "2024-09-27T13:48:41.201575Z", + "iopub.status.idle": "2024-09-27T13:48:41.204610Z", + "shell.execute_reply": "2024-09-27T13:48:41.204162Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.767931Z", - "iopub.status.busy": "2024-09-26T17:02:13.767610Z", - "iopub.status.idle": "2024-09-26T17:02:17.637562Z", - "shell.execute_reply": "2024-09-26T17:02:17.636903Z" + "iopub.execute_input": "2024-09-27T13:48:41.206413Z", + "iopub.status.busy": "2024-09-27T13:48:41.206079Z", + "iopub.status.idle": "2024-09-27T13:48:45.163696Z", + "shell.execute_reply": "2024-09-27T13:48:45.163141Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:17.639989Z", - "iopub.status.busy": "2024-09-26T17:02:17.639568Z", - "iopub.status.idle": "2024-09-26T17:02:18.534074Z", - "shell.execute_reply": "2024-09-26T17:02:18.533483Z" + "iopub.execute_input": "2024-09-27T13:48:45.165987Z", + "iopub.status.busy": "2024-09-27T13:48:45.165561Z", + "iopub.status.idle": "2024-09-27T13:48:46.068707Z", + "shell.execute_reply": "2024-09-27T13:48:46.068104Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.536535Z", - "iopub.status.busy": "2024-09-26T17:02:18.536141Z", - "iopub.status.idle": "2024-09-26T17:02:18.539097Z", - "shell.execute_reply": "2024-09-26T17:02:18.538594Z" + "iopub.execute_input": "2024-09-27T13:48:46.071667Z", + "iopub.status.busy": "2024-09-27T13:48:46.070894Z", + "iopub.status.idle": "2024-09-27T13:48:46.074612Z", + "shell.execute_reply": "2024-09-27T13:48:46.074101Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.541035Z", - "iopub.status.busy": "2024-09-26T17:02:18.540659Z", - "iopub.status.idle": "2024-09-26T17:02:20.483284Z", - "shell.execute_reply": "2024-09-26T17:02:20.482560Z" + "iopub.execute_input": "2024-09-27T13:48:46.077488Z", + "iopub.status.busy": "2024-09-27T13:48:46.076743Z", + "iopub.status.idle": "2024-09-27T13:48:48.102638Z", + "shell.execute_reply": "2024-09-27T13:48:48.101922Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.486447Z", - "iopub.status.busy": "2024-09-26T17:02:20.486003Z", - "iopub.status.idle": "2024-09-26T17:02:20.511442Z", - "shell.execute_reply": "2024-09-26T17:02:20.510928Z" + "iopub.execute_input": "2024-09-27T13:48:48.106046Z", + "iopub.status.busy": "2024-09-27T13:48:48.104814Z", + "iopub.status.idle": "2024-09-27T13:48:48.130901Z", + "shell.execute_reply": "2024-09-27T13:48:48.130366Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.514446Z", - "iopub.status.busy": "2024-09-26T17:02:20.513683Z", - "iopub.status.idle": "2024-09-26T17:02:20.524155Z", - "shell.execute_reply": "2024-09-26T17:02:20.523745Z" + "iopub.execute_input": "2024-09-27T13:48:48.133937Z", + "iopub.status.busy": "2024-09-27T13:48:48.133159Z", + "iopub.status.idle": "2024-09-27T13:48:48.143530Z", + "shell.execute_reply": "2024-09-27T13:48:48.143089Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.525970Z", - "iopub.status.busy": "2024-09-26T17:02:20.525788Z", - "iopub.status.idle": "2024-09-26T17:02:20.530473Z", - "shell.execute_reply": "2024-09-26T17:02:20.529997Z" + "iopub.execute_input": "2024-09-27T13:48:48.145142Z", + "iopub.status.busy": "2024-09-27T13:48:48.144964Z", + "iopub.status.idle": "2024-09-27T13:48:48.149332Z", + "shell.execute_reply": "2024-09-27T13:48:48.148851Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.532181Z", - "iopub.status.busy": "2024-09-26T17:02:20.531868Z", - "iopub.status.idle": "2024-09-26T17:02:20.538319Z", - "shell.execute_reply": "2024-09-26T17:02:20.537858Z" + "iopub.execute_input": "2024-09-27T13:48:48.151063Z", + "iopub.status.busy": "2024-09-27T13:48:48.150710Z", + "iopub.status.idle": "2024-09-27T13:48:48.156987Z", + "shell.execute_reply": "2024-09-27T13:48:48.156523Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.539829Z", - "iopub.status.busy": "2024-09-26T17:02:20.539657Z", - "iopub.status.idle": "2024-09-26T17:02:20.546053Z", - "shell.execute_reply": "2024-09-26T17:02:20.545618Z" + "iopub.execute_input": "2024-09-27T13:48:48.158687Z", + "iopub.status.busy": "2024-09-27T13:48:48.158353Z", + "iopub.status.idle": "2024-09-27T13:48:48.164503Z", + "shell.execute_reply": "2024-09-27T13:48:48.164070Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.547624Z", - "iopub.status.busy": "2024-09-26T17:02:20.547452Z", - "iopub.status.idle": "2024-09-26T17:02:20.553718Z", - "shell.execute_reply": "2024-09-26T17:02:20.553293Z" + "iopub.execute_input": "2024-09-27T13:48:48.166263Z", + "iopub.status.busy": "2024-09-27T13:48:48.165891Z", + "iopub.status.idle": "2024-09-27T13:48:48.171483Z", + "shell.execute_reply": "2024-09-27T13:48:48.171050Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.555248Z", - "iopub.status.busy": "2024-09-26T17:02:20.555076Z", - "iopub.status.idle": "2024-09-26T17:02:20.563590Z", - "shell.execute_reply": "2024-09-26T17:02:20.563144Z" + "iopub.execute_input": "2024-09-27T13:48:48.173156Z", + "iopub.status.busy": "2024-09-27T13:48:48.172819Z", + "iopub.status.idle": "2024-09-27T13:48:48.180987Z", + "shell.execute_reply": "2024-09-27T13:48:48.180558Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.565315Z", - "iopub.status.busy": "2024-09-26T17:02:20.564973Z", - "iopub.status.idle": "2024-09-26T17:02:20.570343Z", - "shell.execute_reply": "2024-09-26T17:02:20.569902Z" + "iopub.execute_input": "2024-09-27T13:48:48.182819Z", + "iopub.status.busy": "2024-09-27T13:48:48.182411Z", + "iopub.status.idle": "2024-09-27T13:48:48.187916Z", + "shell.execute_reply": "2024-09-27T13:48:48.187364Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.571994Z", - "iopub.status.busy": "2024-09-26T17:02:20.571657Z", - "iopub.status.idle": "2024-09-26T17:02:20.576878Z", - "shell.execute_reply": "2024-09-26T17:02:20.576423Z" + "iopub.execute_input": "2024-09-27T13:48:48.189674Z", + "iopub.status.busy": "2024-09-27T13:48:48.189285Z", + "iopub.status.idle": "2024-09-27T13:48:48.194675Z", + "shell.execute_reply": "2024-09-27T13:48:48.194131Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.578582Z", - "iopub.status.busy": "2024-09-26T17:02:20.578244Z", - "iopub.status.idle": "2024-09-26T17:02:20.581841Z", - "shell.execute_reply": "2024-09-26T17:02:20.581279Z" + "iopub.execute_input": "2024-09-27T13:48:48.196499Z", + "iopub.status.busy": "2024-09-27T13:48:48.196169Z", + "iopub.status.idle": "2024-09-27T13:48:48.199803Z", + "shell.execute_reply": "2024-09-27T13:48:48.199234Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.583557Z", - "iopub.status.busy": "2024-09-26T17:02:20.583273Z", - "iopub.status.idle": "2024-09-26T17:02:20.588436Z", - "shell.execute_reply": "2024-09-26T17:02:20.587875Z" + "iopub.execute_input": "2024-09-27T13:48:48.201595Z", + "iopub.status.busy": "2024-09-27T13:48:48.201275Z", + "iopub.status.idle": "2024-09-27T13:48:48.206336Z", + "shell.execute_reply": "2024-09-27T13:48:48.205863Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 54354e6e0..b815f4c46 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3153,224 +3153,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3516,16 +3516,16 @@

1. Load the Dataset
---2024-09-26 17:02:40--  https://s.cleanlab.ai/CIFAR-10-subset.zip
-Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...
-Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
+--2024-09-27 13:49:07--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...
+Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
 CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.009s
 
-2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3595,7 +3595,7 @@

2. Run Datalab Analysis
-
+
@@ -3818,35 +3818,35 @@

3. Interpret the Results - dark_score is_dark_issue + dark_score 0 - 0.237196 True + 0.237196 1 - 0.197229 True + 0.197229 2 - 0.254188 True + 0.254188 3 - 0.229170 True + 0.229170 4 - 0.208907 True + 0.208907 ... @@ -3855,28 +3855,28 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0841a1abf..a1e0d1e42 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:24.778635Z", - "iopub.status.busy": "2024-09-26T17:02:24.778451Z", - "iopub.status.idle": "2024-09-26T17:02:25.474946Z", - "shell.execute_reply": "2024-09-26T17:02:25.474332Z" + "iopub.execute_input": "2024-09-27T13:48:51.496056Z", + "iopub.status.busy": "2024-09-27T13:48:51.495876Z", + "iopub.status.idle": "2024-09-27T13:48:52.184420Z", + "shell.execute_reply": "2024-09-27T13:48:52.183872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.477084Z", - "iopub.status.busy": "2024-09-26T17:02:25.476819Z", - "iopub.status.idle": "2024-09-26T17:02:25.608315Z", - "shell.execute_reply": "2024-09-26T17:02:25.607729Z" + "iopub.execute_input": "2024-09-27T13:48:52.186744Z", + "iopub.status.busy": "2024-09-27T13:48:52.186314Z", + "iopub.status.idle": "2024-09-27T13:48:52.317662Z", + "shell.execute_reply": "2024-09-27T13:48:52.317086Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.610318Z", - "iopub.status.busy": "2024-09-26T17:02:25.609878Z", - "iopub.status.idle": "2024-09-26T17:02:25.633373Z", - "shell.execute_reply": "2024-09-26T17:02:25.632806Z" + "iopub.execute_input": "2024-09-27T13:48:52.319925Z", + "iopub.status.busy": "2024-09-27T13:48:52.319422Z", + "iopub.status.idle": "2024-09-27T13:48:52.343036Z", + "shell.execute_reply": "2024-09-27T13:48:52.342381Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.635543Z", - "iopub.status.busy": "2024-09-26T17:02:25.635055Z", - "iopub.status.idle": "2024-09-26T17:02:28.161306Z", - "shell.execute_reply": "2024-09-26T17:02:28.160724Z" + "iopub.execute_input": "2024-09-27T13:48:52.345328Z", + "iopub.status.busy": "2024-09-27T13:48:52.344798Z", + "iopub.status.idle": "2024-09-27T13:48:54.885695Z", + "shell.execute_reply": "2024-09-27T13:48:54.885077Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:28.163661Z", - "iopub.status.busy": "2024-09-26T17:02:28.163055Z", - "iopub.status.idle": "2024-09-26T17:02:36.892887Z", - "shell.execute_reply": "2024-09-26T17:02:36.892386Z" + "iopub.execute_input": "2024-09-27T13:48:54.888111Z", + "iopub.status.busy": "2024-09-27T13:48:54.887560Z", + "iopub.status.idle": "2024-09-27T13:49:03.631088Z", + "shell.execute_reply": "2024-09-27T13:49:03.630566Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:36.894869Z", - "iopub.status.busy": "2024-09-26T17:02:36.894502Z", - "iopub.status.idle": "2024-09-26T17:02:37.053891Z", - "shell.execute_reply": "2024-09-26T17:02:37.053318Z" + "iopub.execute_input": "2024-09-27T13:49:03.633038Z", + "iopub.status.busy": "2024-09-27T13:49:03.632663Z", + "iopub.status.idle": "2024-09-27T13:49:03.795547Z", + "shell.execute_reply": "2024-09-27T13:49:03.794905Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:37.055816Z", - "iopub.status.busy": "2024-09-26T17:02:37.055631Z", - "iopub.status.idle": "2024-09-26T17:02:38.527977Z", - "shell.execute_reply": "2024-09-26T17:02:38.527389Z" + "iopub.execute_input": "2024-09-27T13:49:03.797652Z", + "iopub.status.busy": "2024-09-27T13:49:03.797275Z", + "iopub.status.idle": "2024-09-27T13:49:05.326251Z", + "shell.execute_reply": "2024-09-27T13:49:05.325634Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:38.529829Z", - "iopub.status.busy": "2024-09-26T17:02:38.529535Z", - "iopub.status.idle": "2024-09-26T17:02:39.100506Z", - "shell.execute_reply": "2024-09-26T17:02:39.099974Z" + "iopub.execute_input": "2024-09-27T13:49:05.328218Z", + "iopub.status.busy": "2024-09-27T13:49:05.327762Z", + "iopub.status.idle": "2024-09-27T13:49:05.849926Z", + "shell.execute_reply": "2024-09-27T13:49:05.849331Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.102597Z", - "iopub.status.busy": "2024-09-26T17:02:39.102150Z", - "iopub.status.idle": "2024-09-26T17:02:39.116273Z", - "shell.execute_reply": "2024-09-26T17:02:39.115754Z" + "iopub.execute_input": "2024-09-27T13:49:05.852040Z", + "iopub.status.busy": "2024-09-27T13:49:05.851525Z", + "iopub.status.idle": "2024-09-27T13:49:05.866255Z", + "shell.execute_reply": "2024-09-27T13:49:05.865737Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.118338Z", - "iopub.status.busy": "2024-09-26T17:02:39.117938Z", - "iopub.status.idle": "2024-09-26T17:02:39.136893Z", - "shell.execute_reply": "2024-09-26T17:02:39.136335Z" + "iopub.execute_input": "2024-09-27T13:49:05.868138Z", + "iopub.status.busy": "2024-09-27T13:49:05.867678Z", + "iopub.status.idle": "2024-09-27T13:49:05.886264Z", + "shell.execute_reply": "2024-09-27T13:49:05.885683Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.138729Z", - "iopub.status.busy": "2024-09-26T17:02:39.138427Z", - "iopub.status.idle": "2024-09-26T17:02:39.386313Z", - "shell.execute_reply": "2024-09-26T17:02:39.385663Z" + "iopub.execute_input": "2024-09-27T13:49:05.888344Z", + "iopub.status.busy": "2024-09-27T13:49:05.887777Z", + "iopub.status.idle": "2024-09-27T13:49:06.118006Z", + "shell.execute_reply": "2024-09-27T13:49:06.117350Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.388687Z", - "iopub.status.busy": "2024-09-26T17:02:39.388276Z", - "iopub.status.idle": "2024-09-26T17:02:39.407274Z", - "shell.execute_reply": "2024-09-26T17:02:39.406806Z" + "iopub.execute_input": "2024-09-27T13:49:06.120304Z", + "iopub.status.busy": "2024-09-27T13:49:06.119967Z", + "iopub.status.idle": "2024-09-27T13:49:06.139235Z", + "shell.execute_reply": "2024-09-27T13:49:06.138785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.409088Z", - "iopub.status.busy": "2024-09-26T17:02:39.408745Z", - "iopub.status.idle": "2024-09-26T17:02:39.577750Z", - "shell.execute_reply": "2024-09-26T17:02:39.577160Z" + "iopub.execute_input": "2024-09-27T13:49:06.140987Z", + "iopub.status.busy": "2024-09-27T13:49:06.140668Z", + "iopub.status.idle": "2024-09-27T13:49:06.310511Z", + "shell.execute_reply": "2024-09-27T13:49:06.309966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.579768Z", - "iopub.status.busy": "2024-09-26T17:02:39.579483Z", - "iopub.status.idle": "2024-09-26T17:02:39.589520Z", - "shell.execute_reply": "2024-09-26T17:02:39.589043Z" + "iopub.execute_input": "2024-09-27T13:49:06.312450Z", + "iopub.status.busy": "2024-09-27T13:49:06.312126Z", + "iopub.status.idle": "2024-09-27T13:49:06.322584Z", + "shell.execute_reply": "2024-09-27T13:49:06.322028Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.591438Z", - "iopub.status.busy": "2024-09-26T17:02:39.590922Z", - "iopub.status.idle": "2024-09-26T17:02:39.600829Z", - "shell.execute_reply": "2024-09-26T17:02:39.600331Z" + "iopub.execute_input": "2024-09-27T13:49:06.324337Z", + "iopub.status.busy": "2024-09-27T13:49:06.324008Z", + "iopub.status.idle": "2024-09-27T13:49:06.333763Z", + "shell.execute_reply": "2024-09-27T13:49:06.333320Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.602860Z", - "iopub.status.busy": "2024-09-26T17:02:39.602471Z", - "iopub.status.idle": "2024-09-26T17:02:39.629873Z", - "shell.execute_reply": "2024-09-26T17:02:39.629375Z" + "iopub.execute_input": "2024-09-27T13:49:06.335525Z", + "iopub.status.busy": "2024-09-27T13:49:06.335189Z", + "iopub.status.idle": "2024-09-27T13:49:06.362958Z", + "shell.execute_reply": "2024-09-27T13:49:06.362463Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.631810Z", - "iopub.status.busy": "2024-09-26T17:02:39.631461Z", - "iopub.status.idle": "2024-09-26T17:02:39.634313Z", - "shell.execute_reply": "2024-09-26T17:02:39.633858Z" + "iopub.execute_input": "2024-09-27T13:49:06.364868Z", + "iopub.status.busy": "2024-09-27T13:49:06.364520Z", + "iopub.status.idle": "2024-09-27T13:49:06.367266Z", + "shell.execute_reply": "2024-09-27T13:49:06.366815Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.635838Z", - "iopub.status.busy": "2024-09-26T17:02:39.635659Z", - "iopub.status.idle": "2024-09-26T17:02:39.655327Z", - "shell.execute_reply": "2024-09-26T17:02:39.654863Z" + "iopub.execute_input": "2024-09-27T13:49:06.369082Z", + "iopub.status.busy": "2024-09-27T13:49:06.368636Z", + "iopub.status.idle": "2024-09-27T13:49:06.388912Z", + "shell.execute_reply": "2024-09-27T13:49:06.388311Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.657166Z", - "iopub.status.busy": "2024-09-26T17:02:39.656832Z", - "iopub.status.idle": "2024-09-26T17:02:39.661109Z", - "shell.execute_reply": "2024-09-26T17:02:39.660645Z" + "iopub.execute_input": "2024-09-27T13:49:06.390933Z", + "iopub.status.busy": "2024-09-27T13:49:06.390590Z", + "iopub.status.idle": "2024-09-27T13:49:06.395045Z", + "shell.execute_reply": "2024-09-27T13:49:06.394578Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.662859Z", - "iopub.status.busy": "2024-09-26T17:02:39.662510Z", - "iopub.status.idle": "2024-09-26T17:02:39.689643Z", - "shell.execute_reply": "2024-09-26T17:02:39.689166Z" + "iopub.execute_input": "2024-09-27T13:49:06.396786Z", + "iopub.status.busy": "2024-09-27T13:49:06.396435Z", + "iopub.status.idle": "2024-09-27T13:49:06.424718Z", + "shell.execute_reply": "2024-09-27T13:49:06.424137Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.691433Z", - "iopub.status.busy": "2024-09-26T17:02:39.691099Z", - "iopub.status.idle": "2024-09-26T17:02:40.010447Z", - "shell.execute_reply": "2024-09-26T17:02:40.009941Z" + "iopub.execute_input": "2024-09-27T13:49:06.426619Z", + "iopub.status.busy": "2024-09-27T13:49:06.426287Z", + "iopub.status.idle": "2024-09-27T13:49:06.743211Z", + "shell.execute_reply": "2024-09-27T13:49:06.742598Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.012296Z", - "iopub.status.busy": "2024-09-26T17:02:40.011936Z", - "iopub.status.idle": "2024-09-26T17:02:40.015264Z", - "shell.execute_reply": "2024-09-26T17:02:40.014692Z" + "iopub.execute_input": "2024-09-27T13:49:06.745276Z", + "iopub.status.busy": "2024-09-27T13:49:06.744881Z", + "iopub.status.idle": "2024-09-27T13:49:06.748268Z", + "shell.execute_reply": "2024-09-27T13:49:06.747713Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.016986Z", - "iopub.status.busy": "2024-09-26T17:02:40.016665Z", - "iopub.status.idle": "2024-09-26T17:02:40.029777Z", - "shell.execute_reply": "2024-09-26T17:02:40.029286Z" + "iopub.execute_input": "2024-09-27T13:49:06.750100Z", + "iopub.status.busy": "2024-09-27T13:49:06.749661Z", + "iopub.status.idle": "2024-09-27T13:49:06.762637Z", + "shell.execute_reply": "2024-09-27T13:49:06.762172Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.031319Z", - "iopub.status.busy": "2024-09-26T17:02:40.031147Z", - "iopub.status.idle": "2024-09-26T17:02:40.044461Z", - "shell.execute_reply": "2024-09-26T17:02:40.044001Z" + "iopub.execute_input": "2024-09-27T13:49:06.764357Z", + "iopub.status.busy": "2024-09-27T13:49:06.764029Z", + "iopub.status.idle": "2024-09-27T13:49:06.777313Z", + "shell.execute_reply": "2024-09-27T13:49:06.776869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.045959Z", - "iopub.status.busy": "2024-09-26T17:02:40.045789Z", - "iopub.status.idle": "2024-09-26T17:02:40.055654Z", - "shell.execute_reply": "2024-09-26T17:02:40.055208Z" + "iopub.execute_input": "2024-09-27T13:49:06.779116Z", + "iopub.status.busy": "2024-09-27T13:49:06.778790Z", + "iopub.status.idle": "2024-09-27T13:49:06.788739Z", + "shell.execute_reply": "2024-09-27T13:49:06.788301Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.057463Z", - "iopub.status.busy": "2024-09-26T17:02:40.057040Z", - "iopub.status.idle": "2024-09-26T17:02:40.066461Z", - "shell.execute_reply": "2024-09-26T17:02:40.066024Z" + "iopub.execute_input": "2024-09-27T13:49:06.790547Z", + "iopub.status.busy": "2024-09-27T13:49:06.790222Z", + "iopub.status.idle": "2024-09-27T13:49:06.799443Z", + "shell.execute_reply": "2024-09-27T13:49:06.798885Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.068180Z", - "iopub.status.busy": "2024-09-26T17:02:40.067865Z", - "iopub.status.idle": "2024-09-26T17:02:40.071589Z", - "shell.execute_reply": "2024-09-26T17:02:40.071132Z" + "iopub.execute_input": "2024-09-27T13:49:06.801301Z", + "iopub.status.busy": "2024-09-27T13:49:06.800918Z", + "iopub.status.idle": "2024-09-27T13:49:06.804814Z", + "shell.execute_reply": "2024-09-27T13:49:06.804343Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.073193Z", - "iopub.status.busy": "2024-09-26T17:02:40.073018Z", - "iopub.status.idle": "2024-09-26T17:02:40.124206Z", - "shell.execute_reply": "2024-09-26T17:02:40.123615Z" + "iopub.execute_input": "2024-09-27T13:49:06.806422Z", + "iopub.status.busy": "2024-09-27T13:49:06.806251Z", + "iopub.status.idle": "2024-09-27T13:49:06.857449Z", + "shell.execute_reply": "2024-09-27T13:49:06.856916Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.126151Z", - "iopub.status.busy": "2024-09-26T17:02:40.125730Z", - "iopub.status.idle": "2024-09-26T17:02:40.131441Z", - "shell.execute_reply": "2024-09-26T17:02:40.130972Z" + "iopub.execute_input": "2024-09-27T13:49:06.859420Z", + "iopub.status.busy": "2024-09-27T13:49:06.859015Z", + "iopub.status.idle": "2024-09-27T13:49:06.864670Z", + "shell.execute_reply": "2024-09-27T13:49:06.864242Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.133105Z", - "iopub.status.busy": "2024-09-26T17:02:40.132773Z", - "iopub.status.idle": "2024-09-26T17:02:40.143871Z", - "shell.execute_reply": "2024-09-26T17:02:40.143281Z" + "iopub.execute_input": "2024-09-27T13:49:06.866287Z", + "iopub.status.busy": "2024-09-27T13:49:06.866115Z", + "iopub.status.idle": "2024-09-27T13:49:06.876920Z", + "shell.execute_reply": "2024-09-27T13:49:06.876434Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.145630Z", - "iopub.status.busy": "2024-09-26T17:02:40.145214Z", - "iopub.status.idle": "2024-09-26T17:02:40.325382Z", - "shell.execute_reply": "2024-09-26T17:02:40.324770Z" + "iopub.execute_input": "2024-09-27T13:49:06.878558Z", + "iopub.status.busy": "2024-09-27T13:49:06.878380Z", + "iopub.status.idle": "2024-09-27T13:49:07.060650Z", + "shell.execute_reply": "2024-09-27T13:49:07.060030Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.327253Z", - "iopub.status.busy": "2024-09-26T17:02:40.327068Z", - "iopub.status.idle": "2024-09-26T17:02:40.334965Z", - "shell.execute_reply": "2024-09-26T17:02:40.334498Z" + "iopub.execute_input": "2024-09-27T13:49:07.062718Z", + "iopub.status.busy": "2024-09-27T13:49:07.062539Z", + "iopub.status.idle": "2024-09-27T13:49:07.070338Z", + "shell.execute_reply": "2024-09-27T13:49:07.069829Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.336727Z", - "iopub.status.busy": "2024-09-26T17:02:40.336548Z", - "iopub.status.idle": "2024-09-26T17:02:40.688647Z", - "shell.execute_reply": "2024-09-26T17:02:40.687981Z" + "iopub.execute_input": "2024-09-27T13:49:07.072127Z", + "iopub.status.busy": "2024-09-27T13:49:07.071792Z", + "iopub.status.idle": "2024-09-27T13:49:07.476374Z", + "shell.execute_reply": "2024-09-27T13:49:07.475651Z" } }, "outputs": [ @@ -3767,10 +3767,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:02:40-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-27 13:49:07-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", @@ -3785,7 +3792,7 @@ "\r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3808,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.690797Z", - "iopub.status.busy": "2024-09-26T17:02:40.690582Z", - "iopub.status.idle": "2024-09-26T17:02:42.601575Z", - "shell.execute_reply": "2024-09-26T17:02:42.601019Z" + "iopub.execute_input": "2024-09-27T13:49:07.478778Z", + "iopub.status.busy": "2024-09-27T13:49:07.478350Z", + "iopub.status.idle": "2024-09-27T13:49:09.398148Z", + "shell.execute_reply": "2024-09-27T13:49:09.397605Z" } }, "outputs": [], @@ -3850,10 +3857,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:42.603741Z", - "iopub.status.busy": "2024-09-26T17:02:42.603283Z", - "iopub.status.idle": "2024-09-26T17:02:43.250432Z", - "shell.execute_reply": "2024-09-26T17:02:43.249848Z" + "iopub.execute_input": "2024-09-27T13:49:09.400590Z", + "iopub.status.busy": "2024-09-27T13:49:09.400073Z", + "iopub.status.idle": "2024-09-27T13:49:10.030817Z", + "shell.execute_reply": "2024-09-27T13:49:10.030212Z" } }, "outputs": [ @@ -3868,7 +3875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b9834476d6492a83139db43a944e0e", + "model_id": "8e1f9b96233947f6b3a427e71e7dfaeb", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4015,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.252987Z", - "iopub.status.busy": "2024-09-26T17:02:43.252430Z", - "iopub.status.idle": "2024-09-26T17:02:43.265787Z", - "shell.execute_reply": "2024-09-26T17:02:43.265283Z" + "iopub.execute_input": "2024-09-27T13:49:10.033073Z", + "iopub.status.busy": "2024-09-27T13:49:10.032625Z", + "iopub.status.idle": "2024-09-27T13:49:10.046468Z", + "shell.execute_reply": "2024-09-27T13:49:10.045870Z" } }, "outputs": [ @@ -4130,35 +4137,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4167,28 +4174,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4196,18 +4203,18 @@ "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4257,10 +4264,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.267822Z", - "iopub.status.busy": "2024-09-26T17:02:43.267336Z", - "iopub.status.idle": "2024-09-26T17:02:43.416210Z", - "shell.execute_reply": "2024-09-26T17:02:43.415723Z" + "iopub.execute_input": "2024-09-27T13:49:10.049069Z", + "iopub.status.busy": "2024-09-27T13:49:10.048871Z", + "iopub.status.idle": "2024-09-27T13:49:10.200506Z", + "shell.execute_reply": "2024-09-27T13:49:10.199945Z" } }, "outputs": [ @@ -4325,10 +4332,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.417926Z", - "iopub.status.busy": "2024-09-26T17:02:43.417762Z", - "iopub.status.idle": "2024-09-26T17:02:43.921803Z", - "shell.execute_reply": "2024-09-26T17:02:43.921142Z" + "iopub.execute_input": "2024-09-27T13:49:10.202250Z", + "iopub.status.busy": "2024-09-27T13:49:10.202069Z", + "iopub.status.idle": "2024-09-27T13:49:10.721292Z", + "shell.execute_reply": "2024-09-27T13:49:10.720636Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3c15ea55fcb40aabc8074ab6ffea568", + "model_id": "26b36add52da4112a035f44e319d71b1", "version_major": 2, "version_minor": 0 }, @@ -4473,35 +4480,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4510,28 +4517,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4539,18 +4546,18 @@ "
" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4598,10 +4605,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.923933Z", - "iopub.status.busy": "2024-09-26T17:02:43.923568Z", - "iopub.status.idle": "2024-09-26T17:02:44.073210Z", - "shell.execute_reply": "2024-09-26T17:02:44.072669Z" + "iopub.execute_input": "2024-09-27T13:49:10.723313Z", + "iopub.status.busy": "2024-09-27T13:49:10.723116Z", + "iopub.status.idle": "2024-09-27T13:49:10.876739Z", + "shell.execute_reply": "2024-09-27T13:49:10.876250Z" }, "nbsphinx": "hidden" }, @@ -4653,49 +4660,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e740c2d1ad4ce5a790babbad1a7a44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d45b3340a2f45e894572fdb7227cad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b82154b9b89449ccb7991242504f019f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e740c2d1ad4ce5a790babbad1a7a44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "17637fd97d794f1484b8d827f4b7071d": { + "00f543c6d4fe4b9c87127e99d81bcb56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4713,7 +4678,7 @@ "text_color": null } }, - "3ad50386530f49c8a766d426ae0cff17": { + "15322e1f9fc841ec94366898b88e7974": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,48 +4731,31 @@ "width": null } }, - "4087b33fc2d24559b56ed69ce9b4cfcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "478f35d4014e419785fc626f1903c45b": { + "26b36add52da4112a035f44e319d71b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffb786b50a824c8d894769a9444ff34f", - "placeholder": "​", - "style": "IPY_MODEL_b2d9cc6ea5c04ef09b2141a3e151c3ad", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91c583132bd64a11ad21964364c042e5", + "IPY_MODEL_93b05aaa0ef5484fb99187905101ecf7", + "IPY_MODEL_92cb9c1d41d14d5f8a158ce007f825e3" + ], + "layout": "IPY_MODEL_afa25d583ad94d24825c08705279088b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "585be98b5f9a4ab7aa67a879906fa19a": { + "2bd019eae91047bab06ebcae4fdcc656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4825,7 +4773,7 @@ "text_color": null } }, - "625a7d4fc79f41f2a0247635be08467c": { + "2fdd00670d4b4d7f8a4fb924330db3f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4878,30 +4826,23 @@ "width": null } }, - "7c043d610e054733bf00e10d52a14072": { + "30848fed2eae4492a503a37c674a72d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1539ff4c8ef473783f55dba9ebdd6be", - "placeholder": "​", - "style": "IPY_MODEL_585be98b5f9a4ab7aa67a879906fa19a", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 707.69it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a65f2f21a79245a7b40c9fd256031840": { + "586568b828a144edbc73b4c68db32154": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,31 +4895,30 @@ "width": null } }, - "b2b9834476d6492a83139db43a944e0e": { + "5ebba9b71afa4a7fa599d36b29f98e58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d981f6091a084df4b39cd8fc9990f867", - "IPY_MODEL_0d45b3340a2f45e894572fdb7227cad6", - "IPY_MODEL_fb31467058e741cb9eae03eb807fb42c" - ], - "layout": "IPY_MODEL_b6cad30966d74ceda8da8dad5c36175a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fdd00670d4b4d7f8a4fb924330db3f3", + "placeholder": "​", + "style": "IPY_MODEL_f1f181a3a0a14127bb356925adebd4da", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 798.61it/s]" } }, - "b2d9cc6ea5c04ef09b2141a3e151c3ad": { + "87522669ac8140519e1c560f30fd9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4996,7 +4936,54 @@ "text_color": null } }, - "b6cad30966d74ceda8da8dad5c36175a": { + "8e1f9b96233947f6b3a427e71e7dfaeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eca917ff8b294f91b70d3a766dce356b", + "IPY_MODEL_e72487e7516a4e3cb1d6ae5235dd6b91", + "IPY_MODEL_5ebba9b71afa4a7fa599d36b29f98e58" + ], + "layout": "IPY_MODEL_925ca2cf3c4b4f299c37d44bb4ee4fa9", + "tabbable": null, + "tooltip": null + } + }, + "91c583132bd64a11ad21964364c042e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8bcd20c9e8d4e298260f7cedb8c6862", + "placeholder": "​", + "style": "IPY_MODEL_2bd019eae91047bab06ebcae4fdcc656", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "925ca2cf3c4b4f299c37d44bb4ee4fa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,7 +5036,7 @@ "width": null } }, - "b82154b9b89449ccb7991242504f019f": { + "9261380574e74d7b930f02999b245f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,54 +5089,72 @@ "width": null } }, - "d3c15ea55fcb40aabc8074ab6ffea568": { + "92cb9c1d41d14d5f8a158ce007f825e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_478f35d4014e419785fc626f1903c45b", - "IPY_MODEL_f8bcd49b06674d8295365b9e5701de5e", - "IPY_MODEL_7c043d610e054733bf00e10d52a14072" - ], - "layout": "IPY_MODEL_3ad50386530f49c8a766d426ae0cff17", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9261380574e74d7b930f02999b245f81", + "placeholder": "​", + "style": "IPY_MODEL_00f543c6d4fe4b9c87127e99d81bcb56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 693.55it/s]" } }, - "d981f6091a084df4b39cd8fc9990f867": { + "93b05aaa0ef5484fb99187905101ecf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_625a7d4fc79f41f2a0247635be08467c", - "placeholder": "​", - "style": "IPY_MODEL_4087b33fc2d24559b56ed69ce9b4cfcf", + "layout": "IPY_MODEL_b9ddd6efa82d4d39bae57e7099340a78", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aebc4648fbf64400a539523e1dc4ce7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "ddb2a771afd34214b4936ae6ca4b8d91": { + "aebc4648fbf64400a539523e1dc4ce7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "afa25d583ad94d24825c08705279088b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5202,23 +5207,7 @@ "width": null } }, - "e6b72ea07d9a475f8269916a0267f20e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f1539ff4c8ef473783f55dba9ebdd6be": { + "b9ddd6efa82d4d39bae57e7099340a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5271,7 +5260,7 @@ "width": null } }, - "f8bcd49b06674d8295365b9e5701de5e": { + "e72487e7516a4e3cb1d6ae5235dd6b91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5287,40 +5276,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddb2a771afd34214b4936ae6ca4b8d91", + "layout": "IPY_MODEL_586568b828a144edbc73b4c68db32154", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e6b72ea07d9a475f8269916a0267f20e", + "style": "IPY_MODEL_30848fed2eae4492a503a37c674a72d6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "fb31467058e741cb9eae03eb807fb42c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a65f2f21a79245a7b40c9fd256031840", - "placeholder": "​", - "style": "IPY_MODEL_17637fd97d794f1484b8d827f4b7071d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 718.33it/s]" - } - }, - "ffb786b50a824c8d894769a9444ff34f": { + "e8bcd20c9e8d4e298260f7cedb8c6862": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5372,6 +5338,47 @@ "visibility": null, "width": null } + }, + "eca917ff8b294f91b70d3a766dce356b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15322e1f9fc841ec94366898b88e7974", + "placeholder": "​", + "style": "IPY_MODEL_87522669ac8140519e1c560f30fd9dca", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f1f181a3a0a14127bb356925adebd4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 0f1a9673c..7a4a275e8 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:48.026780Z", - "iopub.status.busy": "2024-09-26T17:02:48.026603Z", - "iopub.status.idle": "2024-09-26T17:02:49.199322Z", - "shell.execute_reply": "2024-09-26T17:02:49.198698Z" + "iopub.execute_input": "2024-09-27T13:49:14.981020Z", + "iopub.status.busy": "2024-09-27T13:49:14.980618Z", + "iopub.status.idle": "2024-09-27T13:49:16.174240Z", + "shell.execute_reply": "2024-09-27T13:49:16.173656Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.201404Z", - "iopub.status.busy": "2024-09-26T17:02:49.201072Z", - "iopub.status.idle": "2024-09-26T17:02:49.204495Z", - "shell.execute_reply": "2024-09-26T17:02:49.203935Z" + "iopub.execute_input": "2024-09-27T13:49:16.176497Z", + "iopub.status.busy": "2024-09-27T13:49:16.176040Z", + "iopub.status.idle": "2024-09-27T13:49:16.178778Z", + "shell.execute_reply": "2024-09-27T13:49:16.178331Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.206494Z", - "iopub.status.busy": "2024-09-26T17:02:49.206146Z", - "iopub.status.idle": "2024-09-26T17:02:49.218110Z", - "shell.execute_reply": "2024-09-26T17:02:49.217517Z" + "iopub.execute_input": "2024-09-27T13:49:16.180625Z", + "iopub.status.busy": "2024-09-27T13:49:16.180310Z", + "iopub.status.idle": "2024-09-27T13:49:16.192112Z", + "shell.execute_reply": "2024-09-27T13:49:16.191578Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.219988Z", - "iopub.status.busy": "2024-09-26T17:02:49.219651Z", - "iopub.status.idle": "2024-09-26T17:02:54.126698Z", - "shell.execute_reply": "2024-09-26T17:02:54.126225Z" + "iopub.execute_input": "2024-09-27T13:49:16.193883Z", + "iopub.status.busy": "2024-09-27T13:49:16.193570Z", + "iopub.status.idle": "2024-09-27T13:49:21.858596Z", + "shell.execute_reply": "2024-09-27T13:49:21.858120Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 39947d50a..31f0d52c8 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -844,13 +844,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1715,7 +1715,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index edab415e1..5566fbc6f 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:56.360615Z", - "iopub.status.busy": "2024-09-26T17:02:56.360206Z", - "iopub.status.idle": "2024-09-26T17:02:57.593148Z", - "shell.execute_reply": "2024-09-26T17:02:57.592592Z" + "iopub.execute_input": "2024-09-27T13:49:24.275648Z", + "iopub.status.busy": "2024-09-27T13:49:24.275473Z", + "iopub.status.idle": "2024-09-27T13:49:25.502999Z", + "shell.execute_reply": "2024-09-27T13:49:25.502358Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.595634Z", - "iopub.status.busy": "2024-09-26T17:02:57.595168Z", - "iopub.status.idle": "2024-09-26T17:02:57.598583Z", - "shell.execute_reply": "2024-09-26T17:02:57.598123Z" + "iopub.execute_input": "2024-09-27T13:49:25.505303Z", + "iopub.status.busy": "2024-09-27T13:49:25.505015Z", + "iopub.status.idle": "2024-09-27T13:49:25.508248Z", + "shell.execute_reply": "2024-09-27T13:49:25.507786Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.600444Z", - "iopub.status.busy": "2024-09-26T17:02:57.600102Z", - "iopub.status.idle": "2024-09-26T17:03:00.936555Z", - "shell.execute_reply": "2024-09-26T17:03:00.935769Z" + "iopub.execute_input": "2024-09-27T13:49:25.509903Z", + "iopub.status.busy": "2024-09-27T13:49:25.509725Z", + "iopub.status.idle": "2024-09-27T13:49:28.910277Z", + "shell.execute_reply": "2024-09-27T13:49:28.909577Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.939323Z", - "iopub.status.busy": "2024-09-26T17:03:00.938653Z", - "iopub.status.idle": "2024-09-26T17:03:00.983835Z", - "shell.execute_reply": "2024-09-26T17:03:00.983085Z" + "iopub.execute_input": "2024-09-27T13:49:28.913026Z", + "iopub.status.busy": "2024-09-27T13:49:28.912182Z", + "iopub.status.idle": "2024-09-27T13:49:28.961330Z", + "shell.execute_reply": "2024-09-27T13:49:28.960694Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.985981Z", - "iopub.status.busy": "2024-09-26T17:03:00.985722Z", - "iopub.status.idle": "2024-09-26T17:03:01.026561Z", - "shell.execute_reply": "2024-09-26T17:03:01.025789Z" + "iopub.execute_input": "2024-09-27T13:49:28.963581Z", + "iopub.status.busy": "2024-09-27T13:49:28.963253Z", + "iopub.status.idle": "2024-09-27T13:49:29.011303Z", + "shell.execute_reply": "2024-09-27T13:49:29.010628Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.028998Z", - "iopub.status.busy": "2024-09-26T17:03:01.028581Z", - "iopub.status.idle": "2024-09-26T17:03:01.031727Z", - "shell.execute_reply": "2024-09-26T17:03:01.031258Z" + "iopub.execute_input": "2024-09-27T13:49:29.013523Z", + "iopub.status.busy": "2024-09-27T13:49:29.013179Z", + "iopub.status.idle": "2024-09-27T13:49:29.016591Z", + "shell.execute_reply": "2024-09-27T13:49:29.016042Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.033482Z", - "iopub.status.busy": "2024-09-26T17:03:01.033113Z", - "iopub.status.idle": "2024-09-26T17:03:01.035872Z", - "shell.execute_reply": "2024-09-26T17:03:01.035414Z" + "iopub.execute_input": "2024-09-27T13:49:29.018358Z", + "iopub.status.busy": "2024-09-27T13:49:29.018018Z", + "iopub.status.idle": "2024-09-27T13:49:29.020804Z", + "shell.execute_reply": "2024-09-27T13:49:29.020221Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.037562Z", - "iopub.status.busy": "2024-09-26T17:03:01.037369Z", - "iopub.status.idle": "2024-09-26T17:03:01.061451Z", - "shell.execute_reply": "2024-09-26T17:03:01.060849Z" + "iopub.execute_input": "2024-09-27T13:49:29.022876Z", + "iopub.status.busy": "2024-09-27T13:49:29.022566Z", + "iopub.status.idle": "2024-09-27T13:49:29.047765Z", + "shell.execute_reply": "2024-09-27T13:49:29.047140Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7633e799bda141e28661514bf3a1704c", + "model_id": "8da4bd0f9f64487483493ffdb6f429e8", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d55f75476cc642e590dfea2b8badf09b", + "model_id": "4fc6a038626e4490a9d76f3f9359ae82", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.063656Z", - "iopub.status.busy": "2024-09-26T17:03:01.063472Z", - "iopub.status.idle": "2024-09-26T17:03:01.070092Z", - "shell.execute_reply": "2024-09-26T17:03:01.069533Z" + "iopub.execute_input": "2024-09-27T13:49:29.050320Z", + "iopub.status.busy": "2024-09-27T13:49:29.050093Z", + "iopub.status.idle": "2024-09-27T13:49:29.057387Z", + "shell.execute_reply": "2024-09-27T13:49:29.056903Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.071690Z", - "iopub.status.busy": "2024-09-26T17:03:01.071525Z", - "iopub.status.idle": "2024-09-26T17:03:01.074898Z", - "shell.execute_reply": "2024-09-26T17:03:01.074458Z" + "iopub.execute_input": "2024-09-27T13:49:29.059162Z", + "iopub.status.busy": "2024-09-27T13:49:29.058979Z", + "iopub.status.idle": "2024-09-27T13:49:29.062842Z", + "shell.execute_reply": "2024-09-27T13:49:29.062400Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.076464Z", - "iopub.status.busy": "2024-09-26T17:03:01.076289Z", - "iopub.status.idle": "2024-09-26T17:03:01.082573Z", - "shell.execute_reply": "2024-09-26T17:03:01.082136Z" + "iopub.execute_input": "2024-09-27T13:49:29.064535Z", + "iopub.status.busy": "2024-09-27T13:49:29.064203Z", + "iopub.status.idle": "2024-09-27T13:49:29.070891Z", + "shell.execute_reply": "2024-09-27T13:49:29.070295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.084058Z", - "iopub.status.busy": "2024-09-26T17:03:01.083885Z", - "iopub.status.idle": "2024-09-26T17:03:01.129493Z", - "shell.execute_reply": "2024-09-26T17:03:01.128813Z" + "iopub.execute_input": "2024-09-27T13:49:29.072733Z", + "iopub.status.busy": "2024-09-27T13:49:29.072387Z", + "iopub.status.idle": "2024-09-27T13:49:29.118212Z", + "shell.execute_reply": "2024-09-27T13:49:29.117539Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.131673Z", - "iopub.status.busy": "2024-09-26T17:03:01.131282Z", - "iopub.status.idle": "2024-09-26T17:03:01.174982Z", - "shell.execute_reply": "2024-09-26T17:03:01.174379Z" + "iopub.execute_input": "2024-09-27T13:49:29.120347Z", + "iopub.status.busy": "2024-09-27T13:49:29.119989Z", + "iopub.status.idle": "2024-09-27T13:49:29.166190Z", + "shell.execute_reply": "2024-09-27T13:49:29.165389Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.177397Z", - "iopub.status.busy": "2024-09-26T17:03:01.176899Z", - "iopub.status.idle": "2024-09-26T17:03:01.309798Z", - "shell.execute_reply": "2024-09-26T17:03:01.309219Z" + "iopub.execute_input": "2024-09-27T13:49:29.168576Z", + "iopub.status.busy": "2024-09-27T13:49:29.168187Z", + "iopub.status.idle": "2024-09-27T13:49:29.304197Z", + "shell.execute_reply": "2024-09-27T13:49:29.303502Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.312323Z", - "iopub.status.busy": "2024-09-26T17:03:01.311542Z", - "iopub.status.idle": "2024-09-26T17:03:04.449275Z", - "shell.execute_reply": "2024-09-26T17:03:04.448739Z" + "iopub.execute_input": "2024-09-27T13:49:29.306632Z", + "iopub.status.busy": "2024-09-27T13:49:29.305854Z", + "iopub.status.idle": "2024-09-27T13:49:32.396057Z", + "shell.execute_reply": "2024-09-27T13:49:32.395396Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.451450Z", - "iopub.status.busy": "2024-09-26T17:03:04.451054Z", - "iopub.status.idle": "2024-09-26T17:03:04.509327Z", - "shell.execute_reply": "2024-09-26T17:03:04.508783Z" + "iopub.execute_input": "2024-09-27T13:49:32.398059Z", + "iopub.status.busy": "2024-09-27T13:49:32.397754Z", + "iopub.status.idle": "2024-09-27T13:49:32.455992Z", + "shell.execute_reply": "2024-09-27T13:49:32.455418Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.511187Z", - "iopub.status.busy": "2024-09-26T17:03:04.510686Z", - "iopub.status.idle": "2024-09-26T17:03:04.551738Z", - "shell.execute_reply": "2024-09-26T17:03:04.551149Z" + "iopub.execute_input": "2024-09-27T13:49:32.457640Z", + "iopub.status.busy": "2024-09-27T13:49:32.457454Z", + "iopub.status.idle": "2024-09-27T13:49:32.498172Z", + "shell.execute_reply": "2024-09-27T13:49:32.497565Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "185ea250", + "id": "110863a4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "c50f3d96", + "id": "65add30a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "84fafb96", + "id": "bf7fb938", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "eed28ebf", + "id": "14dba376", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.553540Z", - "iopub.status.busy": "2024-09-26T17:03:04.553194Z", - "iopub.status.idle": "2024-09-26T17:03:04.560950Z", - "shell.execute_reply": "2024-09-26T17:03:04.560391Z" + "iopub.execute_input": "2024-09-27T13:49:32.500172Z", + "iopub.status.busy": "2024-09-27T13:49:32.499847Z", + "iopub.status.idle": "2024-09-27T13:49:32.507587Z", + "shell.execute_reply": "2024-09-27T13:49:32.507101Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "b5e76c72", + "id": "a88e3681", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "187a70e9", + "id": "044361a4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.562840Z", - "iopub.status.busy": "2024-09-26T17:03:04.562495Z", - "iopub.status.idle": "2024-09-26T17:03:04.581313Z", - "shell.execute_reply": "2024-09-26T17:03:04.580823Z" + "iopub.execute_input": "2024-09-27T13:49:32.509236Z", + "iopub.status.busy": "2024-09-27T13:49:32.509060Z", + "iopub.status.idle": "2024-09-27T13:49:32.529248Z", + "shell.execute_reply": "2024-09-27T13:49:32.528751Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4f59575", + "id": "c93a5fc5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.582943Z", - "iopub.status.busy": "2024-09-26T17:03:04.582603Z", - "iopub.status.idle": "2024-09-26T17:03:04.585954Z", - "shell.execute_reply": "2024-09-26T17:03:04.585510Z" + "iopub.execute_input": "2024-09-27T13:49:32.531186Z", + "iopub.status.busy": "2024-09-27T13:49:32.530847Z", + "iopub.status.idle": "2024-09-27T13:49:32.533889Z", + "shell.execute_reply": "2024-09-27T13:49:32.533450Z" } }, "outputs": [ @@ -1622,33 +1622,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027b49213cf14d6f9cae1c522d69a94d": { + "1c1f69ce05ca41e2ab42ccc79d49b185": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c77305186841c8990219341fe2c985", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1f946f65a3064858bdc4d0b84b3e37fe", + "layout": "IPY_MODEL_89502115592c4197b735017806292967", + "placeholder": "​", + "style": "IPY_MODEL_67e9d04cd96c445c8005acfc36ae7e29", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "16c77305186841c8990219341fe2c985": { + "1e9e281acb8f4c05a040cc2f0d19a987": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,23 +1698,25 @@ "width": null } }, - "1f946f65a3064858bdc4d0b84b3e37fe": { + "32cebcf584a04d9794e7cd675f1cf965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fbb7a81a12049598efe0429bad742f5": { + "363e09fca0754055b1fb0a23c154fbad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,43 +1769,70 @@ "width": null } }, - "20a93723642e4c60a25be8cddfa5f862": { + "4fc6a038626e4490a9d76f3f9359ae82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fcba4714fba74b85af11a93938110f06", + "IPY_MODEL_7b414d5e5d744644b8330103365ce506", + "IPY_MODEL_519bf913af144fcea3d83180f3ae1150" + ], + "layout": "IPY_MODEL_6ab1ba108939480bbd60600a002b25cb", + "tabbable": null, + "tooltip": null } }, - "249e12cb3e404e84b62ee17c2a8ee91c": { + "519bf913af144fcea3d83180f3ae1150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3acab4d72dd4ada9a7b5d09d252f1e6", + "placeholder": "​", + "style": "IPY_MODEL_32cebcf584a04d9794e7cd675f1cf965", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1569019.90it/s]" + } + }, + "537971263b13437cbc2e8d270657a96f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "26fc21435c414965bb4fad79b3f9d46a": { + "5b46bacaa39b448a83cdc1b8b3090aa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1859,30 +1885,7 @@ "width": null } }, - "297ab574c00643e48ce44ee6cc78961f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecfe75f6dedb497a8ae75da5827d89f9", - "placeholder": "​", - "style": "IPY_MODEL_20a93723642e4c60a25be8cddfa5f862", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "35b7e773a8644fc9bbe62ca8dc8f77c8": { + "67e9d04cd96c445c8005acfc36ae7e29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1900,7 +1903,7 @@ "text_color": null } }, - "5e634c9387184fc2987a0af6f800548a": { + "6ab1ba108939480bbd60600a002b25cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,103 +1956,92 @@ "width": null } }, - "6cc76bea445c41c493f3b2acd04406b4": { + "6bdc1c15df354d60806f9f8b743a5127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26fc21435c414965bb4fad79b3f9d46a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a8633f13ed4ba4a549b9eb5d299249", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7633e799bda141e28661514bf3a1704c": { + "74618b1ea3a14f318fd439352bd763f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_297ab574c00643e48ce44ee6cc78961f", - "IPY_MODEL_027b49213cf14d6f9cae1c522d69a94d", - "IPY_MODEL_932461911f37410c90d83477c498bda7" - ], - "layout": "IPY_MODEL_bd01f47230b04888942468812505fd19", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e9e281acb8f4c05a040cc2f0d19a987", + "placeholder": "​", + "style": "IPY_MODEL_88c6b62022f342478878c9f95dc5d0ac", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 995184.36it/s]" } }, - "932461911f37410c90d83477c498bda7": { + "7b414d5e5d744644b8330103365ce506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b595c73dc553457cbb4ce82e7819ebb5", - "placeholder": "​", - "style": "IPY_MODEL_35b7e773a8644fc9bbe62ca8dc8f77c8", + "layout": "IPY_MODEL_8f5c14af127b4dfa80a803f558c65990", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_537971263b13437cbc2e8d270657a96f", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1033563.49it/s]" + "value": 50.0 } }, - "a6f5f93e1e074668b651f896ea64b8cf": { + "88c6b62022f342478878c9f95dc5d0ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e634c9387184fc2987a0af6f800548a", - "placeholder": "​", - "style": "IPY_MODEL_f4d800ccc5cd4a60b3671bb890b23752", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539081.17it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b595c73dc553457cbb4ce82e7819ebb5": { + "89502115592c4197b735017806292967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2102,7 +2094,7 @@ "width": null } }, - "b9a8633f13ed4ba4a549b9eb5d299249": { + "8c4164034e9c40f29c2793fa40f5b09a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2118,7 +2110,31 @@ "description_width": "" } }, - "baffbefc025a453aa10961ae95b22fdb": { + "8da4bd0f9f64487483493ffdb6f429e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c1f69ce05ca41e2ab42ccc79d49b185", + "IPY_MODEL_f17397c213f443d9bd7fe0a113c23c83", + "IPY_MODEL_74618b1ea3a14f318fd439352bd763f8" + ], + "layout": "IPY_MODEL_e395efb2609a4c51ad8b5843bef284fd", + "tabbable": null, + "tooltip": null + } + }, + "8f5c14af127b4dfa80a803f558c65990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2171,7 +2187,7 @@ "width": null } }, - "bd01f47230b04888942468812505fd19": { + "c3acab4d72dd4ada9a7b5d09d252f1e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,54 +2240,7 @@ "width": null } }, - "d55f75476cc642e590dfea2b8badf09b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6bdfa8ac0f24d1e92a159e2eae5f82e", - "IPY_MODEL_6cc76bea445c41c493f3b2acd04406b4", - "IPY_MODEL_a6f5f93e1e074668b651f896ea64b8cf" - ], - "layout": "IPY_MODEL_1fbb7a81a12049598efe0429bad742f5", - "tabbable": null, - "tooltip": null - } - }, - "e6bdfa8ac0f24d1e92a159e2eae5f82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baffbefc025a453aa10961ae95b22fdb", - "placeholder": "​", - "style": "IPY_MODEL_249e12cb3e404e84b62ee17c2a8ee91c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ecfe75f6dedb497a8ae75da5827d89f9": { + "e395efb2609a4c51ad8b5843bef284fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2293,53 @@ "width": null } }, - "f4d800ccc5cd4a60b3671bb890b23752": { + "f17397c213f443d9bd7fe0a113c23c83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5b46bacaa39b448a83cdc1b8b3090aa0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c4164034e9c40f29c2793fa40f5b09a", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "fcba4714fba74b85af11a93938110f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_363e09fca0754055b1fb0a23c154fbad", + "placeholder": "​", + "style": "IPY_MODEL_6bdc1c15df354d60806f9f8b743a5127", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index ade9796c5..cc4cd8fd6 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:07.887828Z", - "iopub.status.busy": "2024-09-26T17:03:07.887658Z", - "iopub.status.idle": "2024-09-26T17:03:09.081593Z", - "shell.execute_reply": "2024-09-26T17:03:09.080934Z" + "iopub.execute_input": "2024-09-27T13:49:36.063407Z", + "iopub.status.busy": "2024-09-27T13:49:36.062942Z", + "iopub.status.idle": "2024-09-27T13:49:37.284451Z", + "shell.execute_reply": "2024-09-27T13:49:37.283796Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.083776Z", - "iopub.status.busy": "2024-09-26T17:03:09.083483Z", - "iopub.status.idle": "2024-09-26T17:03:09.087386Z", - "shell.execute_reply": "2024-09-26T17:03:09.086916Z" + "iopub.execute_input": "2024-09-27T13:49:37.286562Z", + "iopub.status.busy": "2024-09-27T13:49:37.286237Z", + "iopub.status.idle": "2024-09-27T13:49:37.290149Z", + "shell.execute_reply": "2024-09-27T13:49:37.289659Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.089162Z", - "iopub.status.busy": "2024-09-26T17:03:09.088717Z", - "iopub.status.idle": "2024-09-26T17:03:09.465002Z", - "shell.execute_reply": "2024-09-26T17:03:09.464428Z" + "iopub.execute_input": "2024-09-27T13:49:37.291825Z", + "iopub.status.busy": "2024-09-27T13:49:37.291654Z", + "iopub.status.idle": "2024-09-27T13:49:37.556624Z", + "shell.execute_reply": "2024-09-27T13:49:37.555994Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.466895Z", - "iopub.status.busy": "2024-09-26T17:03:09.466533Z", - "iopub.status.idle": "2024-09-26T17:03:09.473520Z", - "shell.execute_reply": "2024-09-26T17:03:09.473021Z" + "iopub.execute_input": "2024-09-27T13:49:37.558867Z", + "iopub.status.busy": "2024-09-27T13:49:37.558381Z", + "iopub.status.idle": "2024-09-27T13:49:37.565980Z", + "shell.execute_reply": "2024-09-27T13:49:37.565444Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.475071Z", - "iopub.status.busy": "2024-09-26T17:03:09.474893Z", - "iopub.status.idle": "2024-09-26T17:03:09.482105Z", - "shell.execute_reply": "2024-09-26T17:03:09.481672Z" + "iopub.execute_input": "2024-09-27T13:49:37.567912Z", + "iopub.status.busy": "2024-09-27T13:49:37.567548Z", + "iopub.status.idle": "2024-09-27T13:49:37.574676Z", + "shell.execute_reply": "2024-09-27T13:49:37.574217Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.483732Z", - "iopub.status.busy": "2024-09-26T17:03:09.483451Z", - "iopub.status.idle": "2024-09-26T17:03:09.488341Z", - "shell.execute_reply": "2024-09-26T17:03:09.487750Z" + "iopub.execute_input": "2024-09-27T13:49:37.576306Z", + "iopub.status.busy": "2024-09-27T13:49:37.576128Z", + "iopub.status.idle": "2024-09-27T13:49:37.580836Z", + "shell.execute_reply": "2024-09-27T13:49:37.580383Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.490181Z", - "iopub.status.busy": "2024-09-26T17:03:09.489852Z", - "iopub.status.idle": "2024-09-26T17:03:09.495449Z", - "shell.execute_reply": "2024-09-26T17:03:09.494981Z" + "iopub.execute_input": "2024-09-27T13:49:37.582420Z", + "iopub.status.busy": "2024-09-27T13:49:37.582243Z", + "iopub.status.idle": "2024-09-27T13:49:37.589097Z", + "shell.execute_reply": "2024-09-27T13:49:37.588424Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.497149Z", - "iopub.status.busy": "2024-09-26T17:03:09.496808Z", - "iopub.status.idle": "2024-09-26T17:03:09.500629Z", - "shell.execute_reply": "2024-09-26T17:03:09.500187Z" + "iopub.execute_input": "2024-09-27T13:49:37.591160Z", + "iopub.status.busy": "2024-09-27T13:49:37.590660Z", + "iopub.status.idle": "2024-09-27T13:49:37.594897Z", + "shell.execute_reply": "2024-09-27T13:49:37.594465Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.502161Z", - "iopub.status.busy": "2024-09-26T17:03:09.501984Z", - "iopub.status.idle": "2024-09-26T17:03:09.567841Z", - "shell.execute_reply": "2024-09-26T17:03:09.567143Z" + "iopub.execute_input": "2024-09-27T13:49:37.596387Z", + "iopub.status.busy": "2024-09-27T13:49:37.596214Z", + "iopub.status.idle": "2024-09-27T13:49:37.663767Z", + "shell.execute_reply": "2024-09-27T13:49:37.663142Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.570224Z", - "iopub.status.busy": "2024-09-26T17:03:09.569621Z", - "iopub.status.idle": "2024-09-26T17:03:09.580875Z", - "shell.execute_reply": "2024-09-26T17:03:09.580332Z" + "iopub.execute_input": "2024-09-27T13:49:37.665990Z", + "iopub.status.busy": "2024-09-27T13:49:37.665506Z", + "iopub.status.idle": "2024-09-27T13:49:37.676792Z", + "shell.execute_reply": "2024-09-27T13:49:37.676215Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.582934Z", - "iopub.status.busy": "2024-09-26T17:03:09.582524Z", - "iopub.status.idle": "2024-09-26T17:03:09.602617Z", - "shell.execute_reply": "2024-09-26T17:03:09.602091Z" + "iopub.execute_input": "2024-09-27T13:49:37.679527Z", + "iopub.status.busy": "2024-09-27T13:49:37.678642Z", + "iopub.status.idle": "2024-09-27T13:49:37.700788Z", + "shell.execute_reply": "2024-09-27T13:49:37.700250Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.604629Z", - "iopub.status.busy": "2024-09-26T17:03:09.604227Z", - "iopub.status.idle": "2024-09-26T17:03:09.608565Z", - "shell.execute_reply": "2024-09-26T17:03:09.608048Z" + "iopub.execute_input": "2024-09-27T13:49:37.703850Z", + "iopub.status.busy": "2024-09-27T13:49:37.703099Z", + "iopub.status.idle": "2024-09-27T13:49:37.708579Z", + "shell.execute_reply": "2024-09-27T13:49:37.708087Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.611201Z", - "iopub.status.busy": "2024-09-26T17:03:09.610448Z", - "iopub.status.idle": "2024-09-26T17:03:09.616047Z", - "shell.execute_reply": "2024-09-26T17:03:09.615544Z" + "iopub.execute_input": "2024-09-27T13:49:37.711439Z", + "iopub.status.busy": "2024-09-27T13:49:37.710701Z", + "iopub.status.idle": "2024-09-27T13:49:37.716299Z", + "shell.execute_reply": "2024-09-27T13:49:37.715801Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.618936Z", - "iopub.status.busy": "2024-09-26T17:03:09.618195Z", - "iopub.status.idle": "2024-09-26T17:03:09.629920Z", - "shell.execute_reply": "2024-09-26T17:03:09.629486Z" + "iopub.execute_input": "2024-09-27T13:49:37.719140Z", + "iopub.status.busy": "2024-09-27T13:49:37.718400Z", + "iopub.status.idle": "2024-09-27T13:49:37.728871Z", + "shell.execute_reply": "2024-09-27T13:49:37.728441Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.631452Z", - "iopub.status.busy": "2024-09-26T17:03:09.631282Z", - "iopub.status.idle": "2024-09-26T17:03:09.635503Z", - "shell.execute_reply": "2024-09-26T17:03:09.635082Z" + "iopub.execute_input": "2024-09-27T13:49:37.730868Z", + "iopub.status.busy": "2024-09-27T13:49:37.730485Z", + "iopub.status.idle": "2024-09-27T13:49:37.735531Z", + "shell.execute_reply": "2024-09-27T13:49:37.734968Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.637074Z", - "iopub.status.busy": "2024-09-26T17:03:09.636920Z", - "iopub.status.idle": "2024-09-26T17:03:09.751705Z", - "shell.execute_reply": "2024-09-26T17:03:09.751197Z" + "iopub.execute_input": "2024-09-27T13:49:37.737395Z", + "iopub.status.busy": "2024-09-27T13:49:37.737079Z", + "iopub.status.idle": "2024-09-27T13:49:37.860657Z", + "shell.execute_reply": "2024-09-27T13:49:37.860138Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.753780Z", - "iopub.status.busy": "2024-09-26T17:03:09.753473Z", - "iopub.status.idle": "2024-09-26T17:03:09.763869Z", - "shell.execute_reply": "2024-09-26T17:03:09.763379Z" + "iopub.execute_input": "2024-09-27T13:49:37.862530Z", + "iopub.status.busy": "2024-09-27T13:49:37.862209Z", + "iopub.status.idle": "2024-09-27T13:49:37.868653Z", + "shell.execute_reply": "2024-09-27T13:49:37.868170Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.765757Z", - "iopub.status.busy": "2024-09-26T17:03:09.765399Z", - "iopub.status.idle": "2024-09-26T17:03:11.745053Z", - "shell.execute_reply": "2024-09-26T17:03:11.744416Z" + "iopub.execute_input": "2024-09-27T13:49:37.871135Z", + "iopub.status.busy": "2024-09-27T13:49:37.870425Z", + "iopub.status.idle": "2024-09-27T13:49:39.894594Z", + "shell.execute_reply": "2024-09-27T13:49:39.893912Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.747529Z", - "iopub.status.busy": "2024-09-26T17:03:11.746976Z", - "iopub.status.idle": "2024-09-26T17:03:11.760015Z", - "shell.execute_reply": "2024-09-26T17:03:11.759505Z" + "iopub.execute_input": "2024-09-27T13:49:39.898305Z", + "iopub.status.busy": "2024-09-27T13:49:39.897216Z", + "iopub.status.idle": "2024-09-27T13:49:39.912953Z", + "shell.execute_reply": "2024-09-27T13:49:39.912405Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.762003Z", - "iopub.status.busy": "2024-09-26T17:03:11.761617Z", - "iopub.status.idle": "2024-09-26T17:03:11.764511Z", - "shell.execute_reply": "2024-09-26T17:03:11.764016Z" + "iopub.execute_input": "2024-09-27T13:49:39.916108Z", + "iopub.status.busy": "2024-09-27T13:49:39.915341Z", + "iopub.status.idle": "2024-09-27T13:49:39.919141Z", + "shell.execute_reply": "2024-09-27T13:49:39.918633Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.766401Z", - "iopub.status.busy": "2024-09-26T17:03:11.766021Z", - "iopub.status.idle": "2024-09-26T17:03:11.770493Z", - "shell.execute_reply": "2024-09-26T17:03:11.769981Z" + "iopub.execute_input": "2024-09-27T13:49:39.922032Z", + "iopub.status.busy": "2024-09-27T13:49:39.921249Z", + "iopub.status.idle": "2024-09-27T13:49:39.926585Z", + "shell.execute_reply": "2024-09-27T13:49:39.926073Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.772408Z", - "iopub.status.busy": "2024-09-26T17:03:11.772028Z", - "iopub.status.idle": "2024-09-26T17:03:11.807613Z", - "shell.execute_reply": "2024-09-26T17:03:11.807086Z" + "iopub.execute_input": "2024-09-27T13:49:39.929683Z", + "iopub.status.busy": "2024-09-27T13:49:39.928826Z", + "iopub.status.idle": "2024-09-27T13:49:39.959231Z", + "shell.execute_reply": "2024-09-27T13:49:39.958525Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.809511Z", - "iopub.status.busy": "2024-09-26T17:03:11.809134Z", - "iopub.status.idle": "2024-09-26T17:03:12.338745Z", - "shell.execute_reply": "2024-09-26T17:03:12.338192Z" + "iopub.execute_input": "2024-09-27T13:49:39.961458Z", + "iopub.status.busy": "2024-09-27T13:49:39.961156Z", + "iopub.status.idle": "2024-09-27T13:49:40.480334Z", + "shell.execute_reply": "2024-09-27T13:49:40.479746Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.341049Z", - "iopub.status.busy": "2024-09-26T17:03:12.340668Z", - "iopub.status.idle": "2024-09-26T17:03:12.477140Z", - "shell.execute_reply": "2024-09-26T17:03:12.476474Z" + "iopub.execute_input": "2024-09-27T13:49:40.483535Z", + "iopub.status.busy": "2024-09-27T13:49:40.482730Z", + "iopub.status.idle": "2024-09-27T13:49:40.622832Z", + "shell.execute_reply": "2024-09-27T13:49:40.622203Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.480251Z", - "iopub.status.busy": "2024-09-26T17:03:12.479457Z", - "iopub.status.idle": "2024-09-26T17:03:12.487761Z", - "shell.execute_reply": "2024-09-26T17:03:12.487250Z" + "iopub.execute_input": "2024-09-27T13:49:40.625866Z", + "iopub.status.busy": "2024-09-27T13:49:40.625069Z", + "iopub.status.idle": "2024-09-27T13:49:40.633744Z", + "shell.execute_reply": "2024-09-27T13:49:40.633225Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.490696Z", - "iopub.status.busy": "2024-09-26T17:03:12.489940Z", - "iopub.status.idle": "2024-09-26T17:03:12.497460Z", - "shell.execute_reply": "2024-09-26T17:03:12.496930Z" + "iopub.execute_input": "2024-09-27T13:49:40.636749Z", + "iopub.status.busy": "2024-09-27T13:49:40.635964Z", + "iopub.status.idle": "2024-09-27T13:49:40.644199Z", + "shell.execute_reply": "2024-09-27T13:49:40.643667Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.500342Z", - "iopub.status.busy": "2024-09-26T17:03:12.499582Z", - "iopub.status.idle": "2024-09-26T17:03:12.506416Z", - "shell.execute_reply": "2024-09-26T17:03:12.505903Z" + "iopub.execute_input": "2024-09-27T13:49:40.647316Z", + "iopub.status.busy": "2024-09-27T13:49:40.646527Z", + "iopub.status.idle": "2024-09-27T13:49:40.653984Z", + "shell.execute_reply": "2024-09-27T13:49:40.653441Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.509304Z", - "iopub.status.busy": "2024-09-26T17:03:12.508532Z", - "iopub.status.idle": "2024-09-26T17:03:12.514132Z", - "shell.execute_reply": "2024-09-26T17:03:12.513613Z" + "iopub.execute_input": "2024-09-27T13:49:40.656969Z", + "iopub.status.busy": "2024-09-27T13:49:40.656207Z", + "iopub.status.idle": "2024-09-27T13:49:40.662089Z", + "shell.execute_reply": "2024-09-27T13:49:40.661547Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.516950Z", - "iopub.status.busy": "2024-09-26T17:03:12.516208Z", - "iopub.status.idle": "2024-09-26T17:03:12.521433Z", - "shell.execute_reply": "2024-09-26T17:03:12.520973Z" + "iopub.execute_input": "2024-09-27T13:49:40.664042Z", + "iopub.status.busy": "2024-09-27T13:49:40.663625Z", + "iopub.status.idle": "2024-09-27T13:49:40.668487Z", + "shell.execute_reply": "2024-09-27T13:49:40.668031Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.523760Z", - "iopub.status.busy": "2024-09-26T17:03:12.523152Z", - "iopub.status.idle": "2024-09-26T17:03:12.600802Z", - "shell.execute_reply": "2024-09-26T17:03:12.600279Z" + "iopub.execute_input": "2024-09-27T13:49:40.670335Z", + "iopub.status.busy": "2024-09-27T13:49:40.670148Z", + "iopub.status.idle": "2024-09-27T13:49:40.750849Z", + "shell.execute_reply": "2024-09-27T13:49:40.750346Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.602889Z", - "iopub.status.busy": "2024-09-26T17:03:12.602578Z", - "iopub.status.idle": "2024-09-26T17:03:12.611123Z", - "shell.execute_reply": "2024-09-26T17:03:12.610650Z" + "iopub.execute_input": "2024-09-27T13:49:40.752897Z", + "iopub.status.busy": "2024-09-27T13:49:40.752625Z", + "iopub.status.idle": "2024-09-27T13:49:40.761488Z", + "shell.execute_reply": "2024-09-27T13:49:40.761000Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.613116Z", - "iopub.status.busy": "2024-09-26T17:03:12.612781Z", - "iopub.status.idle": "2024-09-26T17:03:12.616227Z", - "shell.execute_reply": "2024-09-26T17:03:12.615762Z" + "iopub.execute_input": "2024-09-27T13:49:40.763717Z", + "iopub.status.busy": "2024-09-27T13:49:40.763403Z", + "iopub.status.idle": "2024-09-27T13:49:40.766376Z", + "shell.execute_reply": "2024-09-27T13:49:40.765784Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.617893Z", - "iopub.status.busy": "2024-09-26T17:03:12.617563Z", - "iopub.status.idle": "2024-09-26T17:03:12.626852Z", - "shell.execute_reply": "2024-09-26T17:03:12.626412Z" + "iopub.execute_input": "2024-09-27T13:49:40.768367Z", + "iopub.status.busy": "2024-09-27T13:49:40.767967Z", + "iopub.status.idle": "2024-09-27T13:49:40.778395Z", + "shell.execute_reply": "2024-09-27T13:49:40.777797Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.628682Z", - "iopub.status.busy": "2024-09-26T17:03:12.628351Z", - "iopub.status.idle": "2024-09-26T17:03:12.634666Z", - "shell.execute_reply": "2024-09-26T17:03:12.634214Z" + "iopub.execute_input": "2024-09-27T13:49:40.780256Z", + "iopub.status.busy": "2024-09-27T13:49:40.779904Z", + "iopub.status.idle": "2024-09-27T13:49:40.786750Z", + "shell.execute_reply": "2024-09-27T13:49:40.786242Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.636358Z", - "iopub.status.busy": "2024-09-26T17:03:12.636021Z", - "iopub.status.idle": "2024-09-26T17:03:12.639149Z", - "shell.execute_reply": "2024-09-26T17:03:12.638707Z" + "iopub.execute_input": "2024-09-27T13:49:40.788328Z", + "iopub.status.busy": "2024-09-27T13:49:40.788149Z", + "iopub.status.idle": "2024-09-27T13:49:40.791623Z", + "shell.execute_reply": "2024-09-27T13:49:40.791149Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.640826Z", - "iopub.status.busy": "2024-09-26T17:03:12.640500Z", - "iopub.status.idle": "2024-09-26T17:03:16.698340Z", - "shell.execute_reply": "2024-09-26T17:03:16.697800Z" + "iopub.execute_input": "2024-09-27T13:49:40.793340Z", + "iopub.status.busy": "2024-09-27T13:49:40.792984Z", + "iopub.status.idle": "2024-09-27T13:49:44.842085Z", + "shell.execute_reply": "2024-09-27T13:49:44.841530Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.700392Z", - "iopub.status.busy": "2024-09-26T17:03:16.700018Z", - "iopub.status.idle": "2024-09-26T17:03:16.703134Z", - "shell.execute_reply": "2024-09-26T17:03:16.702726Z" + "iopub.execute_input": "2024-09-27T13:49:44.844374Z", + "iopub.status.busy": "2024-09-27T13:49:44.843980Z", + "iopub.status.idle": "2024-09-27T13:49:44.847177Z", + "shell.execute_reply": "2024-09-27T13:49:44.846779Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.704961Z", - "iopub.status.busy": "2024-09-26T17:03:16.704501Z", - "iopub.status.idle": "2024-09-26T17:03:16.707303Z", - "shell.execute_reply": "2024-09-26T17:03:16.706855Z" + "iopub.execute_input": "2024-09-27T13:49:44.848611Z", + "iopub.status.busy": "2024-09-27T13:49:44.848437Z", + "iopub.status.idle": "2024-09-27T13:49:44.851280Z", + "shell.execute_reply": "2024-09-27T13:49:44.850836Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 79a94be48..3db453a12 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:19.757523Z", - "iopub.status.busy": "2024-09-26T17:03:19.757004Z", - "iopub.status.idle": "2024-09-26T17:03:20.993835Z", - "shell.execute_reply": "2024-09-26T17:03:20.993263Z" + "iopub.execute_input": "2024-09-27T13:49:47.955203Z", + "iopub.status.busy": "2024-09-27T13:49:47.954713Z", + "iopub.status.idle": "2024-09-27T13:49:49.202564Z", + "shell.execute_reply": "2024-09-27T13:49:49.201984Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:20.995910Z", - "iopub.status.busy": "2024-09-26T17:03:20.995628Z", - "iopub.status.idle": "2024-09-26T17:03:21.177031Z", - "shell.execute_reply": "2024-09-26T17:03:21.176503Z" + "iopub.execute_input": "2024-09-27T13:49:49.204710Z", + "iopub.status.busy": "2024-09-27T13:49:49.204267Z", + "iopub.status.idle": "2024-09-27T13:49:49.385602Z", + "shell.execute_reply": "2024-09-27T13:49:49.385040Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.179276Z", - "iopub.status.busy": "2024-09-26T17:03:21.178912Z", - "iopub.status.idle": "2024-09-26T17:03:21.190441Z", - "shell.execute_reply": "2024-09-26T17:03:21.189979Z" + "iopub.execute_input": "2024-09-27T13:49:49.387603Z", + "iopub.status.busy": "2024-09-27T13:49:49.387414Z", + "iopub.status.idle": "2024-09-27T13:49:49.399128Z", + "shell.execute_reply": "2024-09-27T13:49:49.398649Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.192354Z", - "iopub.status.busy": "2024-09-26T17:03:21.191924Z", - "iopub.status.idle": "2024-09-26T17:03:21.428342Z", - "shell.execute_reply": "2024-09-26T17:03:21.427841Z" + "iopub.execute_input": "2024-09-27T13:49:49.401113Z", + "iopub.status.busy": "2024-09-27T13:49:49.400681Z", + "iopub.status.idle": "2024-09-27T13:49:49.640205Z", + "shell.execute_reply": "2024-09-27T13:49:49.639632Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.430456Z", - "iopub.status.busy": "2024-09-26T17:03:21.430000Z", - "iopub.status.idle": "2024-09-26T17:03:21.460872Z", - "shell.execute_reply": "2024-09-26T17:03:21.460382Z" + "iopub.execute_input": "2024-09-27T13:49:49.642136Z", + "iopub.status.busy": "2024-09-27T13:49:49.641924Z", + "iopub.status.idle": "2024-09-27T13:49:49.668753Z", + "shell.execute_reply": "2024-09-27T13:49:49.668289Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.462907Z", - "iopub.status.busy": "2024-09-26T17:03:21.462542Z", - "iopub.status.idle": "2024-09-26T17:03:23.537686Z", - "shell.execute_reply": "2024-09-26T17:03:23.536960Z" + "iopub.execute_input": "2024-09-27T13:49:49.670405Z", + "iopub.status.busy": "2024-09-27T13:49:49.670225Z", + "iopub.status.idle": "2024-09-27T13:49:51.756166Z", + "shell.execute_reply": "2024-09-27T13:49:51.755567Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.540024Z", - "iopub.status.busy": "2024-09-26T17:03:23.539501Z", - "iopub.status.idle": "2024-09-26T17:03:23.557520Z", - "shell.execute_reply": "2024-09-26T17:03:23.557017Z" + "iopub.execute_input": "2024-09-27T13:49:51.758458Z", + "iopub.status.busy": "2024-09-27T13:49:51.757901Z", + "iopub.status.idle": "2024-09-27T13:49:51.776156Z", + "shell.execute_reply": "2024-09-27T13:49:51.775703Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.559289Z", - "iopub.status.busy": "2024-09-26T17:03:23.558937Z", - "iopub.status.idle": "2024-09-26T17:03:25.143810Z", - "shell.execute_reply": "2024-09-26T17:03:25.143145Z" + "iopub.execute_input": "2024-09-27T13:49:51.777989Z", + "iopub.status.busy": "2024-09-27T13:49:51.777684Z", + "iopub.status.idle": "2024-09-27T13:49:53.370088Z", + "shell.execute_reply": "2024-09-27T13:49:53.369508Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.146384Z", - "iopub.status.busy": "2024-09-26T17:03:25.145553Z", - "iopub.status.idle": "2024-09-26T17:03:25.159570Z", - "shell.execute_reply": "2024-09-26T17:03:25.159091Z" + "iopub.execute_input": "2024-09-27T13:49:53.372684Z", + "iopub.status.busy": "2024-09-27T13:49:53.371801Z", + "iopub.status.idle": "2024-09-27T13:49:53.386003Z", + "shell.execute_reply": "2024-09-27T13:49:53.385496Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.161037Z", - "iopub.status.busy": "2024-09-26T17:03:25.160870Z", - "iopub.status.idle": "2024-09-26T17:03:25.243567Z", - "shell.execute_reply": "2024-09-26T17:03:25.242905Z" + "iopub.execute_input": "2024-09-27T13:49:53.387980Z", + "iopub.status.busy": "2024-09-27T13:49:53.387516Z", + "iopub.status.idle": "2024-09-27T13:49:53.473842Z", + "shell.execute_reply": "2024-09-27T13:49:53.473196Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.245411Z", - "iopub.status.busy": "2024-09-26T17:03:25.245158Z", - "iopub.status.idle": "2024-09-26T17:03:25.460426Z", - "shell.execute_reply": "2024-09-26T17:03:25.459911Z" + "iopub.execute_input": "2024-09-27T13:49:53.475651Z", + "iopub.status.busy": "2024-09-27T13:49:53.475421Z", + "iopub.status.idle": "2024-09-27T13:49:53.690965Z", + "shell.execute_reply": "2024-09-27T13:49:53.690348Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.462274Z", - "iopub.status.busy": "2024-09-26T17:03:25.461916Z", - "iopub.status.idle": "2024-09-26T17:03:25.479129Z", - "shell.execute_reply": "2024-09-26T17:03:25.478671Z" + "iopub.execute_input": "2024-09-27T13:49:53.692793Z", + "iopub.status.busy": "2024-09-27T13:49:53.692463Z", + "iopub.status.idle": "2024-09-27T13:49:53.710417Z", + "shell.execute_reply": "2024-09-27T13:49:53.709980Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.480874Z", - "iopub.status.busy": "2024-09-26T17:03:25.480537Z", - "iopub.status.idle": "2024-09-26T17:03:25.490089Z", - "shell.execute_reply": "2024-09-26T17:03:25.489515Z" + "iopub.execute_input": "2024-09-27T13:49:53.712127Z", + "iopub.status.busy": "2024-09-27T13:49:53.711811Z", + "iopub.status.idle": "2024-09-27T13:49:53.721449Z", + "shell.execute_reply": "2024-09-27T13:49:53.720996Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.491899Z", - "iopub.status.busy": "2024-09-26T17:03:25.491571Z", - "iopub.status.idle": "2024-09-26T17:03:25.588418Z", - "shell.execute_reply": "2024-09-26T17:03:25.587869Z" + "iopub.execute_input": "2024-09-27T13:49:53.723130Z", + "iopub.status.busy": "2024-09-27T13:49:53.722857Z", + "iopub.status.idle": "2024-09-27T13:49:53.817375Z", + "shell.execute_reply": "2024-09-27T13:49:53.816703Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.590607Z", - "iopub.status.busy": "2024-09-26T17:03:25.590219Z", - "iopub.status.idle": "2024-09-26T17:03:25.732483Z", - "shell.execute_reply": "2024-09-26T17:03:25.731847Z" + "iopub.execute_input": "2024-09-27T13:49:53.819544Z", + "iopub.status.busy": "2024-09-27T13:49:53.819159Z", + "iopub.status.idle": "2024-09-27T13:49:53.965240Z", + "shell.execute_reply": "2024-09-27T13:49:53.964595Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.734544Z", - "iopub.status.busy": "2024-09-26T17:03:25.734306Z", - "iopub.status.idle": "2024-09-26T17:03:25.738188Z", - "shell.execute_reply": "2024-09-26T17:03:25.737635Z" + "iopub.execute_input": "2024-09-27T13:49:53.967132Z", + "iopub.status.busy": "2024-09-27T13:49:53.966887Z", + "iopub.status.idle": "2024-09-27T13:49:53.970653Z", + "shell.execute_reply": "2024-09-27T13:49:53.970184Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.739991Z", - "iopub.status.busy": "2024-09-26T17:03:25.739693Z", - "iopub.status.idle": "2024-09-26T17:03:25.743518Z", - "shell.execute_reply": "2024-09-26T17:03:25.742969Z" + "iopub.execute_input": "2024-09-27T13:49:53.972544Z", + "iopub.status.busy": "2024-09-27T13:49:53.972211Z", + "iopub.status.idle": "2024-09-27T13:49:53.975811Z", + "shell.execute_reply": "2024-09-27T13:49:53.975375Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.745282Z", - "iopub.status.busy": "2024-09-26T17:03:25.744869Z", - "iopub.status.idle": "2024-09-26T17:03:25.782713Z", - "shell.execute_reply": "2024-09-26T17:03:25.782255Z" + "iopub.execute_input": "2024-09-27T13:49:53.977483Z", + "iopub.status.busy": "2024-09-27T13:49:53.977162Z", + "iopub.status.idle": "2024-09-27T13:49:54.014798Z", + "shell.execute_reply": "2024-09-27T13:49:54.014320Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.784359Z", - "iopub.status.busy": "2024-09-26T17:03:25.784047Z", - "iopub.status.idle": "2024-09-26T17:03:25.825993Z", - "shell.execute_reply": "2024-09-26T17:03:25.825399Z" + "iopub.execute_input": "2024-09-27T13:49:54.016309Z", + "iopub.status.busy": "2024-09-27T13:49:54.016153Z", + "iopub.status.idle": "2024-09-27T13:49:54.058592Z", + "shell.execute_reply": "2024-09-27T13:49:54.058128Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.827788Z", - "iopub.status.busy": "2024-09-26T17:03:25.827395Z", - "iopub.status.idle": "2024-09-26T17:03:25.929754Z", - "shell.execute_reply": "2024-09-26T17:03:25.929087Z" + "iopub.execute_input": "2024-09-27T13:49:54.060328Z", + "iopub.status.busy": "2024-09-27T13:49:54.059989Z", + "iopub.status.idle": "2024-09-27T13:49:54.162310Z", + "shell.execute_reply": "2024-09-27T13:49:54.161576Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.931922Z", - "iopub.status.busy": "2024-09-26T17:03:25.931548Z", - "iopub.status.idle": "2024-09-26T17:03:26.038825Z", - "shell.execute_reply": "2024-09-26T17:03:26.038172Z" + "iopub.execute_input": "2024-09-27T13:49:54.164584Z", + "iopub.status.busy": "2024-09-27T13:49:54.164238Z", + "iopub.status.idle": "2024-09-27T13:49:54.272152Z", + "shell.execute_reply": "2024-09-27T13:49:54.271584Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.040684Z", - "iopub.status.busy": "2024-09-26T17:03:26.040446Z", - "iopub.status.idle": "2024-09-26T17:03:26.253554Z", - "shell.execute_reply": "2024-09-26T17:03:26.252936Z" + "iopub.execute_input": "2024-09-27T13:49:54.274181Z", + "iopub.status.busy": "2024-09-27T13:49:54.273772Z", + "iopub.status.idle": "2024-09-27T13:49:54.485007Z", + "shell.execute_reply": "2024-09-27T13:49:54.484491Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.255496Z", - "iopub.status.busy": "2024-09-26T17:03:26.255135Z", - "iopub.status.idle": "2024-09-26T17:03:26.476149Z", - "shell.execute_reply": "2024-09-26T17:03:26.475467Z" + "iopub.execute_input": "2024-09-27T13:49:54.486961Z", + "iopub.status.busy": "2024-09-27T13:49:54.486600Z", + "iopub.status.idle": "2024-09-27T13:49:54.707860Z", + "shell.execute_reply": "2024-09-27T13:49:54.707182Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.478208Z", - "iopub.status.busy": "2024-09-26T17:03:26.477882Z", - "iopub.status.idle": "2024-09-26T17:03:26.484331Z", - "shell.execute_reply": "2024-09-26T17:03:26.483897Z" + "iopub.execute_input": "2024-09-27T13:49:54.709923Z", + "iopub.status.busy": "2024-09-27T13:49:54.709461Z", + "iopub.status.idle": "2024-09-27T13:49:54.716021Z", + "shell.execute_reply": "2024-09-27T13:49:54.715572Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.485988Z", - "iopub.status.busy": "2024-09-26T17:03:26.485677Z", - "iopub.status.idle": "2024-09-26T17:03:26.705415Z", - "shell.execute_reply": "2024-09-26T17:03:26.704879Z" + "iopub.execute_input": "2024-09-27T13:49:54.717563Z", + "iopub.status.busy": "2024-09-27T13:49:54.717397Z", + "iopub.status.idle": "2024-09-27T13:49:54.936984Z", + "shell.execute_reply": "2024-09-27T13:49:54.936390Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.707343Z", - "iopub.status.busy": "2024-09-26T17:03:26.706986Z", - "iopub.status.idle": "2024-09-26T17:03:27.770864Z", - "shell.execute_reply": "2024-09-26T17:03:27.770364Z" + "iopub.execute_input": "2024-09-27T13:49:54.938887Z", + "iopub.status.busy": "2024-09-27T13:49:54.938530Z", + "iopub.status.idle": "2024-09-27T13:49:56.008191Z", + "shell.execute_reply": "2024-09-27T13:49:56.007633Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 0a628ca80..066a3be3f 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:32.155568Z", - "iopub.status.busy": "2024-09-26T17:03:32.155382Z", - "iopub.status.idle": "2024-09-26T17:03:33.322663Z", - "shell.execute_reply": "2024-09-26T17:03:33.322106Z" + "iopub.execute_input": "2024-09-27T13:50:00.283031Z", + "iopub.status.busy": "2024-09-27T13:50:00.282850Z", + "iopub.status.idle": "2024-09-27T13:50:01.529982Z", + "shell.execute_reply": "2024-09-27T13:50:01.529363Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.325051Z", - "iopub.status.busy": "2024-09-26T17:03:33.324543Z", - "iopub.status.idle": "2024-09-26T17:03:33.327571Z", - "shell.execute_reply": "2024-09-26T17:03:33.327125Z" + "iopub.execute_input": "2024-09-27T13:50:01.532249Z", + "iopub.status.busy": "2024-09-27T13:50:01.531766Z", + "iopub.status.idle": "2024-09-27T13:50:01.535029Z", + "shell.execute_reply": "2024-09-27T13:50:01.534558Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.329481Z", - "iopub.status.busy": "2024-09-26T17:03:33.329106Z", - "iopub.status.idle": "2024-09-26T17:03:33.337328Z", - "shell.execute_reply": "2024-09-26T17:03:33.336753Z" + "iopub.execute_input": "2024-09-27T13:50:01.537031Z", + "iopub.status.busy": "2024-09-27T13:50:01.536667Z", + "iopub.status.idle": "2024-09-27T13:50:01.544914Z", + "shell.execute_reply": "2024-09-27T13:50:01.544396Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.338976Z", - "iopub.status.busy": "2024-09-26T17:03:33.338803Z", - "iopub.status.idle": "2024-09-26T17:03:33.384904Z", - "shell.execute_reply": "2024-09-26T17:03:33.384320Z" + "iopub.execute_input": "2024-09-27T13:50:01.546711Z", + "iopub.status.busy": "2024-09-27T13:50:01.546356Z", + "iopub.status.idle": "2024-09-27T13:50:01.593910Z", + "shell.execute_reply": "2024-09-27T13:50:01.593338Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.386626Z", - "iopub.status.busy": "2024-09-26T17:03:33.386442Z", - "iopub.status.idle": "2024-09-26T17:03:33.403626Z", - "shell.execute_reply": "2024-09-26T17:03:33.403085Z" + "iopub.execute_input": "2024-09-27T13:50:01.595899Z", + "iopub.status.busy": "2024-09-27T13:50:01.595701Z", + "iopub.status.idle": "2024-09-27T13:50:01.614081Z", + "shell.execute_reply": "2024-09-27T13:50:01.613547Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.405451Z", - "iopub.status.busy": "2024-09-26T17:03:33.405118Z", - "iopub.status.idle": "2024-09-26T17:03:33.409011Z", - "shell.execute_reply": "2024-09-26T17:03:33.408476Z" + "iopub.execute_input": "2024-09-27T13:50:01.615863Z", + "iopub.status.busy": "2024-09-27T13:50:01.615656Z", + "iopub.status.idle": "2024-09-27T13:50:01.619883Z", + "shell.execute_reply": "2024-09-27T13:50:01.619423Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.410796Z", - "iopub.status.busy": "2024-09-26T17:03:33.410382Z", - "iopub.status.idle": "2024-09-26T17:03:33.427653Z", - "shell.execute_reply": "2024-09-26T17:03:33.427072Z" + "iopub.execute_input": "2024-09-27T13:50:01.621805Z", + "iopub.status.busy": "2024-09-27T13:50:01.621459Z", + "iopub.status.idle": "2024-09-27T13:50:01.636304Z", + "shell.execute_reply": "2024-09-27T13:50:01.635842Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.429482Z", - "iopub.status.busy": "2024-09-26T17:03:33.429162Z", - "iopub.status.idle": "2024-09-26T17:03:33.455291Z", - "shell.execute_reply": "2024-09-26T17:03:33.454811Z" + "iopub.execute_input": "2024-09-27T13:50:01.638170Z", + "iopub.status.busy": "2024-09-27T13:50:01.637803Z", + "iopub.status.idle": "2024-09-27T13:50:01.664411Z", + "shell.execute_reply": "2024-09-27T13:50:01.663771Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.456954Z", - "iopub.status.busy": "2024-09-26T17:03:33.456624Z", - "iopub.status.idle": "2024-09-26T17:03:35.369827Z", - "shell.execute_reply": "2024-09-26T17:03:35.369227Z" + "iopub.execute_input": "2024-09-27T13:50:01.666543Z", + "iopub.status.busy": "2024-09-27T13:50:01.666195Z", + "iopub.status.idle": "2024-09-27T13:50:03.656395Z", + "shell.execute_reply": "2024-09-27T13:50:03.655827Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.372127Z", - "iopub.status.busy": "2024-09-26T17:03:35.371668Z", - "iopub.status.idle": "2024-09-26T17:03:35.378386Z", - "shell.execute_reply": "2024-09-26T17:03:35.377922Z" + "iopub.execute_input": "2024-09-27T13:50:03.658501Z", + "iopub.status.busy": "2024-09-27T13:50:03.658175Z", + "iopub.status.idle": "2024-09-27T13:50:03.665262Z", + "shell.execute_reply": "2024-09-27T13:50:03.664800Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.380068Z", - "iopub.status.busy": "2024-09-26T17:03:35.379731Z", - "iopub.status.idle": "2024-09-26T17:03:35.392208Z", - "shell.execute_reply": "2024-09-26T17:03:35.391671Z" + "iopub.execute_input": "2024-09-27T13:50:03.666987Z", + "iopub.status.busy": "2024-09-27T13:50:03.666805Z", + "iopub.status.idle": "2024-09-27T13:50:03.679807Z", + "shell.execute_reply": "2024-09-27T13:50:03.679246Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.393975Z", - "iopub.status.busy": "2024-09-26T17:03:35.393668Z", - "iopub.status.idle": "2024-09-26T17:03:35.399995Z", - "shell.execute_reply": "2024-09-26T17:03:35.399449Z" + "iopub.execute_input": "2024-09-27T13:50:03.681542Z", + "iopub.status.busy": "2024-09-27T13:50:03.681289Z", + "iopub.status.idle": "2024-09-27T13:50:03.687949Z", + "shell.execute_reply": "2024-09-27T13:50:03.687503Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.401696Z", - "iopub.status.busy": "2024-09-26T17:03:35.401521Z", - "iopub.status.idle": "2024-09-26T17:03:35.404204Z", - "shell.execute_reply": "2024-09-26T17:03:35.403751Z" + "iopub.execute_input": "2024-09-27T13:50:03.689686Z", + "iopub.status.busy": "2024-09-27T13:50:03.689509Z", + "iopub.status.idle": "2024-09-27T13:50:03.692058Z", + "shell.execute_reply": "2024-09-27T13:50:03.691626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.405738Z", - "iopub.status.busy": "2024-09-26T17:03:35.405571Z", - "iopub.status.idle": "2024-09-26T17:03:35.409161Z", - "shell.execute_reply": "2024-09-26T17:03:35.408696Z" + "iopub.execute_input": "2024-09-27T13:50:03.693849Z", + "iopub.status.busy": "2024-09-27T13:50:03.693409Z", + "iopub.status.idle": "2024-09-27T13:50:03.697114Z", + "shell.execute_reply": "2024-09-27T13:50:03.696549Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.410672Z", - "iopub.status.busy": "2024-09-26T17:03:35.410505Z", - "iopub.status.idle": "2024-09-26T17:03:35.413101Z", - "shell.execute_reply": "2024-09-26T17:03:35.412663Z" + "iopub.execute_input": "2024-09-27T13:50:03.698776Z", + "iopub.status.busy": "2024-09-27T13:50:03.698468Z", + "iopub.status.idle": "2024-09-27T13:50:03.701226Z", + "shell.execute_reply": "2024-09-27T13:50:03.700662Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.414705Z", - "iopub.status.busy": "2024-09-26T17:03:35.414538Z", - "iopub.status.idle": "2024-09-26T17:03:35.418607Z", - "shell.execute_reply": "2024-09-26T17:03:35.418062Z" + "iopub.execute_input": "2024-09-27T13:50:03.703170Z", + "iopub.status.busy": "2024-09-27T13:50:03.702730Z", + "iopub.status.idle": "2024-09-27T13:50:03.706827Z", + "shell.execute_reply": "2024-09-27T13:50:03.706370Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.420421Z", - "iopub.status.busy": "2024-09-26T17:03:35.420103Z", - "iopub.status.idle": "2024-09-26T17:03:35.449647Z", - "shell.execute_reply": "2024-09-26T17:03:35.449056Z" + "iopub.execute_input": "2024-09-27T13:50:03.708679Z", + "iopub.status.busy": "2024-09-27T13:50:03.708375Z", + "iopub.status.idle": "2024-09-27T13:50:03.737494Z", + "shell.execute_reply": "2024-09-27T13:50:03.736888Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.451503Z", - "iopub.status.busy": "2024-09-26T17:03:35.451157Z", - "iopub.status.idle": "2024-09-26T17:03:35.455545Z", - "shell.execute_reply": "2024-09-26T17:03:35.455091Z" + "iopub.execute_input": "2024-09-27T13:50:03.739537Z", + "iopub.status.busy": "2024-09-27T13:50:03.739354Z", + "iopub.status.idle": "2024-09-27T13:50:03.743924Z", + "shell.execute_reply": "2024-09-27T13:50:03.743478Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9ceb5596d..15ae19f22 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:38.235356Z", - "iopub.status.busy": "2024-09-26T17:03:38.235187Z", - "iopub.status.idle": "2024-09-26T17:03:39.464936Z", - "shell.execute_reply": "2024-09-26T17:03:39.464384Z" + "iopub.execute_input": "2024-09-27T13:50:06.725990Z", + "iopub.status.busy": "2024-09-27T13:50:06.725779Z", + "iopub.status.idle": "2024-09-27T13:50:07.973724Z", + "shell.execute_reply": "2024-09-27T13:50:07.973155Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.467094Z", - "iopub.status.busy": "2024-09-26T17:03:39.466633Z", - "iopub.status.idle": "2024-09-26T17:03:39.661808Z", - "shell.execute_reply": "2024-09-26T17:03:39.661225Z" + "iopub.execute_input": "2024-09-27T13:50:07.975731Z", + "iopub.status.busy": "2024-09-27T13:50:07.975460Z", + "iopub.status.idle": "2024-09-27T13:50:08.171427Z", + "shell.execute_reply": "2024-09-27T13:50:08.170874Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.663940Z", - "iopub.status.busy": "2024-09-26T17:03:39.663552Z", - "iopub.status.idle": "2024-09-26T17:03:39.676592Z", - "shell.execute_reply": "2024-09-26T17:03:39.676141Z" + "iopub.execute_input": "2024-09-27T13:50:08.173720Z", + "iopub.status.busy": "2024-09-27T13:50:08.173246Z", + "iopub.status.idle": "2024-09-27T13:50:08.186415Z", + "shell.execute_reply": "2024-09-27T13:50:08.185928Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.678430Z", - "iopub.status.busy": "2024-09-26T17:03:39.678069Z", - "iopub.status.idle": "2024-09-26T17:03:42.338055Z", - "shell.execute_reply": "2024-09-26T17:03:42.337536Z" + "iopub.execute_input": "2024-09-27T13:50:08.188193Z", + "iopub.status.busy": "2024-09-27T13:50:08.187863Z", + "iopub.status.idle": "2024-09-27T13:50:10.832960Z", + "shell.execute_reply": "2024-09-27T13:50:10.832424Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:42.339955Z", - "iopub.status.busy": "2024-09-26T17:03:42.339587Z", - "iopub.status.idle": "2024-09-26T17:03:43.681959Z", - "shell.execute_reply": "2024-09-26T17:03:43.681410Z" + "iopub.execute_input": "2024-09-27T13:50:10.834988Z", + "iopub.status.busy": "2024-09-27T13:50:10.834545Z", + "iopub.status.idle": "2024-09-27T13:50:12.182428Z", + "shell.execute_reply": "2024-09-27T13:50:12.181868Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.683980Z", - "iopub.status.busy": "2024-09-26T17:03:43.683614Z", - "iopub.status.idle": "2024-09-26T17:03:43.687775Z", - "shell.execute_reply": "2024-09-26T17:03:43.687305Z" + "iopub.execute_input": "2024-09-27T13:50:12.184478Z", + "iopub.status.busy": "2024-09-27T13:50:12.184103Z", + "iopub.status.idle": "2024-09-27T13:50:12.187833Z", + "shell.execute_reply": "2024-09-27T13:50:12.187391Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.689610Z", - "iopub.status.busy": "2024-09-26T17:03:43.689277Z", - "iopub.status.idle": "2024-09-26T17:03:45.722043Z", - "shell.execute_reply": "2024-09-26T17:03:45.721346Z" + "iopub.execute_input": "2024-09-27T13:50:12.189617Z", + "iopub.status.busy": "2024-09-27T13:50:12.189276Z", + "iopub.status.idle": "2024-09-27T13:50:14.250365Z", + "shell.execute_reply": "2024-09-27T13:50:14.249644Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.724606Z", - "iopub.status.busy": "2024-09-26T17:03:45.723934Z", - "iopub.status.idle": "2024-09-26T17:03:45.733795Z", - "shell.execute_reply": "2024-09-26T17:03:45.733323Z" + "iopub.execute_input": "2024-09-27T13:50:14.253014Z", + "iopub.status.busy": "2024-09-27T13:50:14.252227Z", + "iopub.status.idle": "2024-09-27T13:50:14.261829Z", + "shell.execute_reply": "2024-09-27T13:50:14.261366Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.735506Z", - "iopub.status.busy": "2024-09-26T17:03:45.735322Z", - "iopub.status.idle": "2024-09-26T17:03:48.302047Z", - "shell.execute_reply": "2024-09-26T17:03:48.301457Z" + "iopub.execute_input": "2024-09-27T13:50:14.263623Z", + "iopub.status.busy": "2024-09-27T13:50:14.263292Z", + "iopub.status.idle": "2024-09-27T13:50:16.825728Z", + "shell.execute_reply": "2024-09-27T13:50:16.825201Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.303862Z", - "iopub.status.busy": "2024-09-26T17:03:48.303674Z", - "iopub.status.idle": "2024-09-26T17:03:48.306897Z", - "shell.execute_reply": "2024-09-26T17:03:48.306449Z" + "iopub.execute_input": "2024-09-27T13:50:16.827773Z", + "iopub.status.busy": "2024-09-27T13:50:16.827410Z", + "iopub.status.idle": "2024-09-27T13:50:16.830659Z", + "shell.execute_reply": "2024-09-27T13:50:16.830226Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.308470Z", - "iopub.status.busy": "2024-09-26T17:03:48.308294Z", - "iopub.status.idle": "2024-09-26T17:03:48.311851Z", - "shell.execute_reply": "2024-09-26T17:03:48.311399Z" + "iopub.execute_input": "2024-09-27T13:50:16.832389Z", + "iopub.status.busy": "2024-09-27T13:50:16.832049Z", + "iopub.status.idle": "2024-09-27T13:50:16.835392Z", + "shell.execute_reply": "2024-09-27T13:50:16.834951Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.313429Z", - "iopub.status.busy": "2024-09-26T17:03:48.313238Z", - "iopub.status.idle": "2024-09-26T17:03:48.316359Z", - "shell.execute_reply": "2024-09-26T17:03:48.315904Z" + "iopub.execute_input": "2024-09-27T13:50:16.837072Z", + "iopub.status.busy": "2024-09-27T13:50:16.836730Z", + "iopub.status.idle": "2024-09-27T13:50:16.839731Z", + "shell.execute_reply": "2024-09-27T13:50:16.839294Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 4cf1baa9c..74581ae08 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:50.872695Z", - "iopub.status.busy": "2024-09-26T17:03:50.872527Z", - "iopub.status.idle": "2024-09-26T17:03:52.108435Z", - "shell.execute_reply": "2024-09-26T17:03:52.107922Z" + "iopub.execute_input": "2024-09-27T13:50:19.443579Z", + "iopub.status.busy": "2024-09-27T13:50:19.443403Z", + "iopub.status.idle": "2024-09-27T13:50:20.702879Z", + "shell.execute_reply": "2024-09-27T13:50:20.702310Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:52.110652Z", - "iopub.status.busy": "2024-09-26T17:03:52.110373Z", - "iopub.status.idle": "2024-09-26T17:03:53.718304Z", - "shell.execute_reply": "2024-09-26T17:03:53.717592Z" + "iopub.execute_input": "2024-09-27T13:50:20.705084Z", + "iopub.status.busy": "2024-09-27T13:50:20.704636Z", + "iopub.status.idle": "2024-09-27T13:50:22.822151Z", + "shell.execute_reply": "2024-09-27T13:50:22.821410Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.720333Z", - "iopub.status.busy": "2024-09-26T17:03:53.720131Z", - "iopub.status.idle": "2024-09-26T17:03:53.723716Z", - "shell.execute_reply": "2024-09-26T17:03:53.723249Z" + "iopub.execute_input": "2024-09-27T13:50:22.824450Z", + "iopub.status.busy": "2024-09-27T13:50:22.823982Z", + "iopub.status.idle": "2024-09-27T13:50:22.827315Z", + "shell.execute_reply": "2024-09-27T13:50:22.826864Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.725367Z", - "iopub.status.busy": "2024-09-26T17:03:53.725176Z", - "iopub.status.idle": "2024-09-26T17:03:53.731881Z", - "shell.execute_reply": "2024-09-26T17:03:53.731422Z" + "iopub.execute_input": "2024-09-27T13:50:22.829177Z", + "iopub.status.busy": "2024-09-27T13:50:22.828729Z", + "iopub.status.idle": "2024-09-27T13:50:22.835505Z", + "shell.execute_reply": "2024-09-27T13:50:22.835064Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.733470Z", - "iopub.status.busy": "2024-09-26T17:03:53.733289Z", - "iopub.status.idle": "2024-09-26T17:03:54.226908Z", - "shell.execute_reply": "2024-09-26T17:03:54.226298Z" + "iopub.execute_input": "2024-09-27T13:50:22.837239Z", + "iopub.status.busy": "2024-09-27T13:50:22.836893Z", + "iopub.status.idle": "2024-09-27T13:50:23.331183Z", + "shell.execute_reply": "2024-09-27T13:50:23.330607Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.228918Z", - "iopub.status.busy": "2024-09-26T17:03:54.228500Z", - "iopub.status.idle": "2024-09-26T17:03:54.233862Z", - "shell.execute_reply": "2024-09-26T17:03:54.233427Z" + "iopub.execute_input": "2024-09-27T13:50:23.333657Z", + "iopub.status.busy": "2024-09-27T13:50:23.333258Z", + "iopub.status.idle": "2024-09-27T13:50:23.338644Z", + "shell.execute_reply": "2024-09-27T13:50:23.338176Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.235629Z", - "iopub.status.busy": "2024-09-26T17:03:54.235308Z", - "iopub.status.idle": "2024-09-26T17:03:54.239163Z", - "shell.execute_reply": "2024-09-26T17:03:54.238723Z" + "iopub.execute_input": "2024-09-27T13:50:23.340282Z", + "iopub.status.busy": "2024-09-27T13:50:23.339946Z", + "iopub.status.idle": "2024-09-27T13:50:23.343951Z", + "shell.execute_reply": "2024-09-27T13:50:23.343382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.240884Z", - "iopub.status.busy": "2024-09-26T17:03:54.240539Z", - "iopub.status.idle": "2024-09-26T17:03:55.132461Z", - "shell.execute_reply": "2024-09-26T17:03:55.131884Z" + "iopub.execute_input": "2024-09-27T13:50:23.345634Z", + "iopub.status.busy": "2024-09-27T13:50:23.345444Z", + "iopub.status.idle": "2024-09-27T13:50:24.311351Z", + "shell.execute_reply": "2024-09-27T13:50:24.310678Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.134485Z", - "iopub.status.busy": "2024-09-26T17:03:55.134101Z", - "iopub.status.idle": "2024-09-26T17:03:55.344926Z", - "shell.execute_reply": "2024-09-26T17:03:55.344350Z" + "iopub.execute_input": "2024-09-27T13:50:24.313472Z", + "iopub.status.busy": "2024-09-27T13:50:24.313086Z", + "iopub.status.idle": "2024-09-27T13:50:24.522945Z", + "shell.execute_reply": "2024-09-27T13:50:24.522473Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.347039Z", - "iopub.status.busy": "2024-09-26T17:03:55.346617Z", - "iopub.status.idle": "2024-09-26T17:03:55.351223Z", - "shell.execute_reply": "2024-09-26T17:03:55.350673Z" + "iopub.execute_input": "2024-09-27T13:50:24.524988Z", + "iopub.status.busy": "2024-09-27T13:50:24.524624Z", + "iopub.status.idle": "2024-09-27T13:50:24.529040Z", + "shell.execute_reply": "2024-09-27T13:50:24.528463Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.353046Z", - "iopub.status.busy": "2024-09-26T17:03:55.352712Z", - "iopub.status.idle": "2024-09-26T17:03:55.808907Z", - "shell.execute_reply": "2024-09-26T17:03:55.808307Z" + "iopub.execute_input": "2024-09-27T13:50:24.530989Z", + "iopub.status.busy": "2024-09-27T13:50:24.530646Z", + "iopub.status.idle": "2024-09-27T13:50:24.991345Z", + "shell.execute_reply": "2024-09-27T13:50:24.990700Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.811591Z", - "iopub.status.busy": "2024-09-26T17:03:55.811241Z", - "iopub.status.idle": "2024-09-26T17:03:56.145507Z", - "shell.execute_reply": "2024-09-26T17:03:56.144909Z" + "iopub.execute_input": "2024-09-27T13:50:24.994317Z", + "iopub.status.busy": "2024-09-27T13:50:24.993692Z", + "iopub.status.idle": "2024-09-27T13:50:25.302482Z", + "shell.execute_reply": "2024-09-27T13:50:25.301826Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.147534Z", - "iopub.status.busy": "2024-09-26T17:03:56.147172Z", - "iopub.status.idle": "2024-09-26T17:03:56.522806Z", - "shell.execute_reply": "2024-09-26T17:03:56.522185Z" + "iopub.execute_input": "2024-09-27T13:50:25.304445Z", + "iopub.status.busy": "2024-09-27T13:50:25.304098Z", + "iopub.status.idle": "2024-09-27T13:50:25.672846Z", + "shell.execute_reply": "2024-09-27T13:50:25.672241Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.525094Z", - "iopub.status.busy": "2024-09-26T17:03:56.524803Z", - "iopub.status.idle": "2024-09-26T17:03:56.938146Z", - "shell.execute_reply": "2024-09-26T17:03:56.937571Z" + "iopub.execute_input": "2024-09-27T13:50:25.675532Z", + "iopub.status.busy": "2024-09-27T13:50:25.675160Z", + "iopub.status.idle": "2024-09-27T13:50:26.138514Z", + "shell.execute_reply": "2024-09-27T13:50:26.137926Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.942264Z", - "iopub.status.busy": "2024-09-26T17:03:56.941870Z", - "iopub.status.idle": "2024-09-26T17:03:57.370517Z", - "shell.execute_reply": "2024-09-26T17:03:57.369935Z" + "iopub.execute_input": "2024-09-27T13:50:26.142672Z", + "iopub.status.busy": "2024-09-27T13:50:26.142279Z", + "iopub.status.idle": "2024-09-27T13:50:26.594693Z", + "shell.execute_reply": "2024-09-27T13:50:26.594081Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.373172Z", - "iopub.status.busy": "2024-09-26T17:03:57.372782Z", - "iopub.status.idle": "2024-09-26T17:03:57.563441Z", - "shell.execute_reply": "2024-09-26T17:03:57.562843Z" + "iopub.execute_input": "2024-09-27T13:50:26.597306Z", + "iopub.status.busy": "2024-09-27T13:50:26.597107Z", + "iopub.status.idle": "2024-09-27T13:50:26.821495Z", + "shell.execute_reply": "2024-09-27T13:50:26.820944Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.565901Z", - "iopub.status.busy": "2024-09-26T17:03:57.565444Z", - "iopub.status.idle": "2024-09-26T17:03:57.769189Z", - "shell.execute_reply": "2024-09-26T17:03:57.768596Z" + "iopub.execute_input": "2024-09-27T13:50:26.823432Z", + "iopub.status.busy": "2024-09-27T13:50:26.823089Z", + "iopub.status.idle": "2024-09-27T13:50:27.023714Z", + "shell.execute_reply": "2024-09-27T13:50:27.023125Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.771705Z", - "iopub.status.busy": "2024-09-26T17:03:57.771376Z", - "iopub.status.idle": "2024-09-26T17:03:57.774381Z", - "shell.execute_reply": "2024-09-26T17:03:57.773929Z" + "iopub.execute_input": "2024-09-27T13:50:27.025739Z", + "iopub.status.busy": "2024-09-27T13:50:27.025301Z", + "iopub.status.idle": "2024-09-27T13:50:27.028302Z", + "shell.execute_reply": "2024-09-27T13:50:27.027862Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.775799Z", - "iopub.status.busy": "2024-09-26T17:03:57.775632Z", - "iopub.status.idle": "2024-09-26T17:03:58.717491Z", - "shell.execute_reply": "2024-09-26T17:03:58.716886Z" + "iopub.execute_input": "2024-09-27T13:50:27.030091Z", + "iopub.status.busy": "2024-09-27T13:50:27.029679Z", + "iopub.status.idle": "2024-09-27T13:50:28.012427Z", + "shell.execute_reply": "2024-09-27T13:50:28.011865Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.719646Z", - "iopub.status.busy": "2024-09-26T17:03:58.719200Z", - "iopub.status.idle": "2024-09-26T17:03:58.860617Z", - "shell.execute_reply": "2024-09-26T17:03:58.860127Z" + "iopub.execute_input": "2024-09-27T13:50:28.014834Z", + "iopub.status.busy": "2024-09-27T13:50:28.014455Z", + "iopub.status.idle": "2024-09-27T13:50:28.134002Z", + "shell.execute_reply": "2024-09-27T13:50:28.133439Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.862547Z", - "iopub.status.busy": "2024-09-26T17:03:58.862194Z", - "iopub.status.idle": "2024-09-26T17:03:58.994557Z", - "shell.execute_reply": "2024-09-26T17:03:58.994095Z" + "iopub.execute_input": "2024-09-27T13:50:28.136003Z", + "iopub.status.busy": "2024-09-27T13:50:28.135574Z", + "iopub.status.idle": "2024-09-27T13:50:28.317635Z", + "shell.execute_reply": "2024-09-27T13:50:28.317140Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.996401Z", - "iopub.status.busy": "2024-09-26T17:03:58.996000Z", - "iopub.status.idle": "2024-09-26T17:03:59.724120Z", - "shell.execute_reply": "2024-09-26T17:03:59.723503Z" + "iopub.execute_input": "2024-09-27T13:50:28.319646Z", + "iopub.status.busy": "2024-09-27T13:50:28.319301Z", + "iopub.status.idle": "2024-09-27T13:50:29.078487Z", + "shell.execute_reply": "2024-09-27T13:50:29.077858Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:59.725920Z", - "iopub.status.busy": "2024-09-26T17:03:59.725591Z", - "iopub.status.idle": "2024-09-26T17:03:59.729320Z", - "shell.execute_reply": "2024-09-26T17:03:59.728740Z" + "iopub.execute_input": "2024-09-27T13:50:29.080254Z", + "iopub.status.busy": "2024-09-27T13:50:29.080059Z", + "iopub.status.idle": "2024-09-27T13:50:29.083764Z", + "shell.execute_reply": "2024-09-27T13:50:29.083320Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 9a6a6b159..b51ab40eb 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -793,7 +793,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]
+100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]
 

-
+
@@ -1143,7 +1143,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 178f049b6..a22f47f5c 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:01.971300Z", - "iopub.status.busy": "2024-09-26T17:04:01.971121Z", - "iopub.status.idle": "2024-09-26T17:04:04.854776Z", - "shell.execute_reply": "2024-09-26T17:04:04.854218Z" + "iopub.execute_input": "2024-09-27T13:50:31.336559Z", + "iopub.status.busy": "2024-09-27T13:50:31.336374Z", + "iopub.status.idle": "2024-09-27T13:50:34.288125Z", + "shell.execute_reply": "2024-09-27T13:50:34.287547Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:04.856883Z", - "iopub.status.busy": "2024-09-26T17:04:04.856573Z", - "iopub.status.idle": "2024-09-26T17:04:05.177735Z", - "shell.execute_reply": "2024-09-26T17:04:05.177154Z" + "iopub.execute_input": "2024-09-27T13:50:34.290281Z", + "iopub.status.busy": "2024-09-27T13:50:34.289977Z", + "iopub.status.idle": "2024-09-27T13:50:34.624581Z", + "shell.execute_reply": "2024-09-27T13:50:34.624016Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.180049Z", - "iopub.status.busy": "2024-09-26T17:04:05.179567Z", - "iopub.status.idle": "2024-09-26T17:04:05.183627Z", - "shell.execute_reply": "2024-09-26T17:04:05.183194Z" + "iopub.execute_input": "2024-09-27T13:50:34.626906Z", + "iopub.status.busy": "2024-09-27T13:50:34.626293Z", + "iopub.status.idle": "2024-09-27T13:50:34.630537Z", + "shell.execute_reply": "2024-09-27T13:50:34.629977Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.185553Z", - "iopub.status.busy": "2024-09-26T17:04:05.185191Z", - "iopub.status.idle": "2024-09-26T17:04:09.811124Z", - "shell.execute_reply": "2024-09-26T17:04:09.810509Z" + "iopub.execute_input": "2024-09-27T13:50:34.632208Z", + "iopub.status.busy": "2024-09-27T13:50:34.631889Z", + "iopub.status.idle": "2024-09-27T13:50:40.167372Z", + "shell.execute_reply": "2024-09-27T13:50:40.166857Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 2064384/170498071 [00:00<00:08, 20630382.53it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17324553.72it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:03, 52270442.86it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:02, 56350581.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17498112/170498071 [00:00<00:02, 64734739.67it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:02, 58867112.24it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29163520/170498071 [00:00<00:01, 85142994.91it/s]" + " 14%|█▎ | 23298048/170498071 [00:00<00:02, 62722855.85it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40796160/170498071 [00:00<00:01, 96352842.59it/s]" + " 18%|█▊ | 29884416/170498071 [00:00<00:02, 63725820.45it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52461568/170498071 [00:00<00:01, 103238176.66it/s]" + " 21%|██▏ | 36569088/170498071 [00:00<00:02, 64687801.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64094208/170498071 [00:00<00:00, 107007260.86it/s]" + " 25%|██▌ | 43057152/170498071 [00:00<00:01, 64045274.16it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75857920/170498071 [00:00<00:00, 110372379.91it/s]" + " 29%|██▉ | 49479680/170498071 [00:00<00:01, 63636758.17it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87588864/170498071 [00:00<00:00, 112453756.10it/s]" + " 33%|███▎ | 55869440/170498071 [00:00<00:01, 63530849.98it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99287040/170498071 [00:01<00:00, 113788226.67it/s]" + " 37%|███▋ | 62324736/170498071 [00:01<00:01, 63773721.91it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 110952448/170498071 [00:01<00:00, 114500206.50it/s]" + " 40%|████ | 68714496/170498071 [00:01<00:01, 63611956.56it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122650624/170498071 [00:01<00:00, 115205361.57it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:01, 63340021.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134381568/170498071 [00:01<00:00, 115630678.67it/s]" + " 48%|████▊ | 81592320/170498071 [00:01<00:01, 63646571.47it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146079744/170498071 [00:01<00:00, 115905368.54it/s]" + " 52%|█████▏ | 88145920/170498071 [00:01<00:01, 64135061.04it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 157777920/170498071 [00:01<00:00, 116224092.07it/s]" + " 56%|█████▌ | 95059968/170498071 [00:01<00:01, 65506735.07it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 169443328/170498071 [00:01<00:00, 116343059.81it/s]" + " 60%|█████▉ | 101777408/170498071 [00:01<00:01, 65926861.28it/s]" ] }, { @@ -380,7 +380,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]" + " 64%|██████▎ | 108593152/170498071 [00:01<00:00, 66500282.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115245056/170498071 [00:01<00:00, 66172108.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 66238030.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▌ | 128581632/170498071 [00:02<00:00, 66297330.54it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135430144/170498071 [00:02<00:00, 66911084.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142147584/170498071 [00:02<00:00, 66229052.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148930560/170498071 [00:02<00:00, 66687006.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155615232/170498071 [00:02<00:00, 65733593.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162201600/170498071 [00:02<00:00, 65517357.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168787968/170498071 [00:02<00:00, 64819767.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]" ] }, { @@ -498,10 +578,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.813180Z", - "iopub.status.busy": "2024-09-26T17:04:09.812843Z", - "iopub.status.idle": "2024-09-26T17:04:09.817679Z", - "shell.execute_reply": "2024-09-26T17:04:09.817089Z" + "iopub.execute_input": "2024-09-27T13:50:40.169405Z", + "iopub.status.busy": "2024-09-27T13:50:40.168936Z", + "iopub.status.idle": "2024-09-27T13:50:40.173943Z", + "shell.execute_reply": "2024-09-27T13:50:40.173496Z" }, "nbsphinx": "hidden" }, @@ -552,10 +632,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.819327Z", - "iopub.status.busy": "2024-09-26T17:04:09.819007Z", - "iopub.status.idle": "2024-09-26T17:04:10.358798Z", - "shell.execute_reply": "2024-09-26T17:04:10.358317Z" + "iopub.execute_input": "2024-09-27T13:50:40.175648Z", + "iopub.status.busy": "2024-09-27T13:50:40.175466Z", + "iopub.status.idle": "2024-09-27T13:50:40.714706Z", + "shell.execute_reply": "2024-09-27T13:50:40.714068Z" } }, "outputs": [ @@ -588,10 +668,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.360475Z", - "iopub.status.busy": "2024-09-26T17:04:10.360295Z", - "iopub.status.idle": "2024-09-26T17:04:10.842081Z", - "shell.execute_reply": "2024-09-26T17:04:10.841507Z" + "iopub.execute_input": "2024-09-27T13:50:40.716536Z", + "iopub.status.busy": "2024-09-27T13:50:40.716348Z", + "iopub.status.idle": "2024-09-27T13:50:41.219660Z", + "shell.execute_reply": "2024-09-27T13:50:41.219126Z" } }, "outputs": [ @@ -629,10 +709,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.843865Z", - "iopub.status.busy": "2024-09-26T17:04:10.843673Z", - "iopub.status.idle": "2024-09-26T17:04:10.847312Z", - "shell.execute_reply": "2024-09-26T17:04:10.846740Z" + "iopub.execute_input": "2024-09-27T13:50:41.221397Z", + "iopub.status.busy": "2024-09-27T13:50:41.221191Z", + "iopub.status.idle": "2024-09-27T13:50:41.225060Z", + "shell.execute_reply": "2024-09-27T13:50:41.224590Z" } }, "outputs": [], @@ -655,17 +735,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.849081Z", - "iopub.status.busy": "2024-09-26T17:04:10.848761Z", - "iopub.status.idle": "2024-09-26T17:04:23.742842Z", - "shell.execute_reply": "2024-09-26T17:04:23.742223Z" + "iopub.execute_input": "2024-09-27T13:50:41.226609Z", + "iopub.status.busy": "2024-09-27T13:50:41.226428Z", + "iopub.status.idle": "2024-09-27T13:50:53.794332Z", + "shell.execute_reply": "2024-09-27T13:50:53.793704Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "481cf30bee6943db835bc9693b38b7d0", + "model_id": "8e59a7f076e448cbb05804524a137e75", "version_major": 2, "version_minor": 0 }, @@ -724,10 +804,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:23.745010Z", - "iopub.status.busy": "2024-09-26T17:04:23.744585Z", - "iopub.status.idle": "2024-09-26T17:04:25.839364Z", - "shell.execute_reply": "2024-09-26T17:04:25.838719Z" + "iopub.execute_input": "2024-09-27T13:50:53.796281Z", + "iopub.status.busy": "2024-09-27T13:50:53.796075Z", + "iopub.status.idle": "2024-09-27T13:50:55.839092Z", + "shell.execute_reply": "2024-09-27T13:50:55.838479Z" } }, "outputs": [ @@ -771,10 +851,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:25.841749Z", - "iopub.status.busy": "2024-09-26T17:04:25.841296Z", - "iopub.status.idle": "2024-09-26T17:04:26.096812Z", - "shell.execute_reply": "2024-09-26T17:04:26.096240Z" + "iopub.execute_input": "2024-09-27T13:50:55.841077Z", + "iopub.status.busy": "2024-09-27T13:50:55.840883Z", + "iopub.status.idle": "2024-09-27T13:50:56.068164Z", + "shell.execute_reply": "2024-09-27T13:50:56.067368Z" } }, "outputs": [ @@ -810,10 +890,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.099329Z", - "iopub.status.busy": "2024-09-26T17:04:26.098877Z", - "iopub.status.idle": "2024-09-26T17:04:26.766406Z", - "shell.execute_reply": "2024-09-26T17:04:26.765862Z" + "iopub.execute_input": "2024-09-27T13:50:56.070248Z", + "iopub.status.busy": "2024-09-27T13:50:56.070059Z", + "iopub.status.idle": "2024-09-27T13:50:56.719579Z", + "shell.execute_reply": "2024-09-27T13:50:56.718990Z" } }, "outputs": [ @@ -863,10 +943,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.768620Z", - "iopub.status.busy": "2024-09-26T17:04:26.768224Z", - "iopub.status.idle": "2024-09-26T17:04:27.108073Z", - "shell.execute_reply": "2024-09-26T17:04:27.107473Z" + "iopub.execute_input": "2024-09-27T13:50:56.722081Z", + "iopub.status.busy": "2024-09-27T13:50:56.721673Z", + "iopub.status.idle": "2024-09-27T13:50:57.069923Z", + "shell.execute_reply": "2024-09-27T13:50:57.069392Z" } }, "outputs": [ @@ -914,10 +994,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.109834Z", - "iopub.status.busy": "2024-09-26T17:04:27.109650Z", - "iopub.status.idle": "2024-09-26T17:04:27.351524Z", - "shell.execute_reply": "2024-09-26T17:04:27.350876Z" + "iopub.execute_input": "2024-09-27T13:50:57.071861Z", + "iopub.status.busy": "2024-09-27T13:50:57.071481Z", + "iopub.status.idle": "2024-09-27T13:50:57.316398Z", + "shell.execute_reply": "2024-09-27T13:50:57.315816Z" } }, "outputs": [ @@ -973,10 +1053,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.354053Z", - "iopub.status.busy": "2024-09-26T17:04:27.353600Z", - "iopub.status.idle": "2024-09-26T17:04:27.447892Z", - "shell.execute_reply": "2024-09-26T17:04:27.447384Z" + "iopub.execute_input": "2024-09-27T13:50:57.318975Z", + "iopub.status.busy": "2024-09-27T13:50:57.318496Z", + "iopub.status.idle": "2024-09-27T13:50:57.417331Z", + "shell.execute_reply": "2024-09-27T13:50:57.416812Z" } }, "outputs": [], @@ -997,10 +1077,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.449743Z", - "iopub.status.busy": "2024-09-26T17:04:27.449562Z", - "iopub.status.idle": "2024-09-26T17:04:38.184870Z", - "shell.execute_reply": "2024-09-26T17:04:38.184254Z" + "iopub.execute_input": "2024-09-27T13:50:57.419373Z", + "iopub.status.busy": "2024-09-27T13:50:57.419019Z", + "iopub.status.idle": "2024-09-27T13:51:08.254190Z", + "shell.execute_reply": "2024-09-27T13:51:08.253562Z" } }, "outputs": [ @@ -1037,10 +1117,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:38.186868Z", - "iopub.status.busy": "2024-09-26T17:04:38.186659Z", - "iopub.status.idle": "2024-09-26T17:04:40.383970Z", - "shell.execute_reply": "2024-09-26T17:04:40.383460Z" + "iopub.execute_input": "2024-09-27T13:51:08.256355Z", + "iopub.status.busy": "2024-09-27T13:51:08.255957Z", + "iopub.status.idle": "2024-09-27T13:51:10.500115Z", + "shell.execute_reply": "2024-09-27T13:51:10.499556Z" } }, "outputs": [ @@ -1071,10 +1151,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.386614Z", - "iopub.status.busy": "2024-09-26T17:04:40.385949Z", - "iopub.status.idle": "2024-09-26T17:04:40.607538Z", - "shell.execute_reply": "2024-09-26T17:04:40.607022Z" + "iopub.execute_input": "2024-09-27T13:51:10.502313Z", + "iopub.status.busy": "2024-09-27T13:51:10.501787Z", + "iopub.status.idle": "2024-09-27T13:51:10.707690Z", + "shell.execute_reply": "2024-09-27T13:51:10.707063Z" } }, "outputs": [], @@ -1088,10 +1168,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.609616Z", - "iopub.status.busy": "2024-09-26T17:04:40.609228Z", - "iopub.status.idle": "2024-09-26T17:04:40.612336Z", - "shell.execute_reply": "2024-09-26T17:04:40.611909Z" + "iopub.execute_input": "2024-09-27T13:51:10.709735Z", + "iopub.status.busy": "2024-09-27T13:51:10.709439Z", + "iopub.status.idle": "2024-09-27T13:51:10.712726Z", + "shell.execute_reply": "2024-09-27T13:51:10.712173Z" } }, "outputs": [], @@ -1129,10 +1209,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.614035Z", - "iopub.status.busy": "2024-09-26T17:04:40.613703Z", - "iopub.status.idle": "2024-09-26T17:04:40.622171Z", - "shell.execute_reply": "2024-09-26T17:04:40.621706Z" + "iopub.execute_input": "2024-09-27T13:51:10.714435Z", + "iopub.status.busy": "2024-09-27T13:51:10.714266Z", + "iopub.status.idle": "2024-09-27T13:51:10.722614Z", + "shell.execute_reply": "2024-09-27T13:51:10.722178Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1257,56 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016906c40ec04434a96f0c6da6967bef": { + "1adbfa3fbfa54ba293de2b9b03f71b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb0db3b827c74f38b4b1991b101e964f", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7849ac70397848e496266851c5d956d1", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "28c0621e5d2b4951ab66ed9e5bc81fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5672ddb7d62c425e94757073a3500d04", + "placeholder": "​", + "style": "IPY_MODEL_bb17fd7956a84dbdb54505cd8cfb07c7", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "4d294500e0514c7e887575b26cc73e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,72 +1359,7 @@ "width": null } }, - "14c69cfacf3e48d2b95f46cd54e49c9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3972814dcab04892afc1ac1440552ac5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb5438c747049e5968c73417456b937", - "placeholder": "​", - "style": "IPY_MODEL_9362062e23974e61900f7a5522a0189b", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 129MB/s]" - } - }, - "481cf30bee6943db835bc9693b38b7d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_850360c1166847dfa53976aad59ff517", - "IPY_MODEL_8f07b9affc9c4c4a84fe88f43b488473", - "IPY_MODEL_3972814dcab04892afc1ac1440552ac5" - ], - "layout": "IPY_MODEL_adac6f450dbc46f989ade8c2425b2515", - "tabbable": null, - "tooltip": null - } - }, - "4bb5438c747049e5968c73417456b937": { + "5672ddb7d62c425e94757073a3500d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1348,90 +1412,65 @@ "width": null } }, - "6983437a251a418689409a3191804389": { + "5a69fbb1a7434f11b05d70b97ab05535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "850360c1166847dfa53976aad59ff517": { + "7849ac70397848e496266851c5d956d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_016906c40ec04434a96f0c6da6967bef", - "placeholder": "​", - "style": "IPY_MODEL_14c69cfacf3e48d2b95f46cd54e49c9b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f07b9affc9c4c4a84fe88f43b488473": { + "8e59a7f076e448cbb05804524a137e75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1c50b96b69e4282b9a88b0b784c08bf", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6983437a251a418689409a3191804389", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28c0621e5d2b4951ab66ed9e5bc81fc0", + "IPY_MODEL_1adbfa3fbfa54ba293de2b9b03f71b7b", + "IPY_MODEL_d63681a72bc34d61ad7e193ef1396969" + ], + "layout": "IPY_MODEL_4d294500e0514c7e887575b26cc73e59", "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "9362062e23974e61900f7a5522a0189b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "adac6f450dbc46f989ade8c2425b2515": { + "9de99fa1656b4220b4b86019adf6b18f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1523,48 @@ "width": null } }, - "b1c50b96b69e4282b9a88b0b784c08bf": { + "bb17fd7956a84dbdb54505cd8cfb07c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d63681a72bc34d61ad7e193ef1396969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9de99fa1656b4220b4b86019adf6b18f", + "placeholder": "​", + "style": "IPY_MODEL_5a69fbb1a7434f11b05d70b97ab05535", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "eb0db3b827c74f38b4b1991b101e964f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 4e0f503ec..a781c88d1 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:45.045613Z", - "iopub.status.busy": "2024-09-26T17:04:45.045449Z", - "iopub.status.idle": "2024-09-26T17:04:46.356026Z", - "shell.execute_reply": "2024-09-26T17:04:46.355424Z" + "iopub.execute_input": "2024-09-27T13:51:15.149161Z", + "iopub.status.busy": "2024-09-27T13:51:15.148999Z", + "iopub.status.idle": "2024-09-27T13:51:16.418985Z", + "shell.execute_reply": "2024-09-27T13:51:16.418425Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.358207Z", - "iopub.status.busy": "2024-09-26T17:04:46.357894Z", - "iopub.status.idle": "2024-09-26T17:04:46.377349Z", - "shell.execute_reply": "2024-09-26T17:04:46.376818Z" + "iopub.execute_input": "2024-09-27T13:51:16.420957Z", + "iopub.status.busy": "2024-09-27T13:51:16.420681Z", + "iopub.status.idle": "2024-09-27T13:51:16.439104Z", + "shell.execute_reply": "2024-09-27T13:51:16.438650Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.379468Z", - "iopub.status.busy": "2024-09-26T17:04:46.378978Z", - "iopub.status.idle": "2024-09-26T17:04:46.382061Z", - "shell.execute_reply": "2024-09-26T17:04:46.381595Z" + "iopub.execute_input": "2024-09-27T13:51:16.441018Z", + "iopub.status.busy": "2024-09-27T13:51:16.440605Z", + "iopub.status.idle": "2024-09-27T13:51:16.443577Z", + "shell.execute_reply": "2024-09-27T13:51:16.443113Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.383663Z", - "iopub.status.busy": "2024-09-26T17:04:46.383479Z", - "iopub.status.idle": "2024-09-26T17:04:46.481470Z", - "shell.execute_reply": "2024-09-26T17:04:46.480877Z" + "iopub.execute_input": "2024-09-27T13:51:16.445299Z", + "iopub.status.busy": "2024-09-27T13:51:16.444975Z", + "iopub.status.idle": "2024-09-27T13:51:16.552085Z", + "shell.execute_reply": "2024-09-27T13:51:16.551626Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.483670Z", - "iopub.status.busy": "2024-09-26T17:04:46.483192Z", - "iopub.status.idle": "2024-09-26T17:04:46.669376Z", - "shell.execute_reply": "2024-09-26T17:04:46.668677Z" + "iopub.execute_input": "2024-09-27T13:51:16.554009Z", + "iopub.status.busy": "2024-09-27T13:51:16.553632Z", + "iopub.status.idle": "2024-09-27T13:51:16.737330Z", + "shell.execute_reply": "2024-09-27T13:51:16.736689Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.671709Z", - "iopub.status.busy": "2024-09-26T17:04:46.671318Z", - "iopub.status.idle": "2024-09-26T17:04:46.889372Z", - "shell.execute_reply": "2024-09-26T17:04:46.888829Z" + "iopub.execute_input": "2024-09-27T13:51:16.739654Z", + "iopub.status.busy": "2024-09-27T13:51:16.739277Z", + "iopub.status.idle": "2024-09-27T13:51:16.985723Z", + "shell.execute_reply": "2024-09-27T13:51:16.985100Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.891445Z", - "iopub.status.busy": "2024-09-26T17:04:46.890916Z", - "iopub.status.idle": "2024-09-26T17:04:46.895690Z", - "shell.execute_reply": "2024-09-26T17:04:46.895219Z" + "iopub.execute_input": "2024-09-27T13:51:16.987526Z", + "iopub.status.busy": "2024-09-27T13:51:16.987225Z", + "iopub.status.idle": "2024-09-27T13:51:16.991621Z", + "shell.execute_reply": "2024-09-27T13:51:16.991153Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.897480Z", - "iopub.status.busy": "2024-09-26T17:04:46.897178Z", - "iopub.status.idle": "2024-09-26T17:04:46.903377Z", - "shell.execute_reply": "2024-09-26T17:04:46.902787Z" + "iopub.execute_input": "2024-09-27T13:51:16.993248Z", + "iopub.status.busy": "2024-09-27T13:51:16.992898Z", + "iopub.status.idle": "2024-09-27T13:51:16.998722Z", + "shell.execute_reply": "2024-09-27T13:51:16.998268Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.905000Z", - "iopub.status.busy": "2024-09-26T17:04:46.904823Z", - "iopub.status.idle": "2024-09-26T17:04:46.907722Z", - "shell.execute_reply": "2024-09-26T17:04:46.907293Z" + "iopub.execute_input": "2024-09-27T13:51:17.000381Z", + "iopub.status.busy": "2024-09-27T13:51:17.000114Z", + "iopub.status.idle": "2024-09-27T13:51:17.002650Z", + "shell.execute_reply": "2024-09-27T13:51:17.002204Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.909599Z", - "iopub.status.busy": "2024-09-26T17:04:46.909131Z", - "iopub.status.idle": "2024-09-26T17:04:55.883286Z", - "shell.execute_reply": "2024-09-26T17:04:55.882633Z" + "iopub.execute_input": "2024-09-27T13:51:17.004391Z", + "iopub.status.busy": "2024-09-27T13:51:17.003946Z", + "iopub.status.idle": "2024-09-27T13:51:26.067326Z", + "shell.execute_reply": "2024-09-27T13:51:26.066758Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.885851Z", - "iopub.status.busy": "2024-09-26T17:04:55.885210Z", - "iopub.status.idle": "2024-09-26T17:04:55.892917Z", - "shell.execute_reply": "2024-09-26T17:04:55.892454Z" + "iopub.execute_input": "2024-09-27T13:51:26.069894Z", + "iopub.status.busy": "2024-09-27T13:51:26.069345Z", + "iopub.status.idle": "2024-09-27T13:51:26.076338Z", + "shell.execute_reply": "2024-09-27T13:51:26.075881Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.894663Z", - "iopub.status.busy": "2024-09-26T17:04:55.894322Z", - "iopub.status.idle": "2024-09-26T17:04:55.897834Z", - "shell.execute_reply": "2024-09-26T17:04:55.897377Z" + "iopub.execute_input": "2024-09-27T13:51:26.078018Z", + "iopub.status.busy": "2024-09-27T13:51:26.077730Z", + "iopub.status.idle": "2024-09-27T13:51:26.081236Z", + "shell.execute_reply": "2024-09-27T13:51:26.080792Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.899532Z", - "iopub.status.busy": "2024-09-26T17:04:55.899211Z", - "iopub.status.idle": "2024-09-26T17:04:55.902535Z", - "shell.execute_reply": "2024-09-26T17:04:55.901994Z" + "iopub.execute_input": "2024-09-27T13:51:26.082932Z", + "iopub.status.busy": "2024-09-27T13:51:26.082598Z", + "iopub.status.idle": "2024-09-27T13:51:26.085987Z", + "shell.execute_reply": "2024-09-27T13:51:26.085516Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.904316Z", - "iopub.status.busy": "2024-09-26T17:04:55.903915Z", - "iopub.status.idle": "2024-09-26T17:04:55.906956Z", - "shell.execute_reply": "2024-09-26T17:04:55.906478Z" + "iopub.execute_input": "2024-09-27T13:51:26.087772Z", + "iopub.status.busy": "2024-09-27T13:51:26.087368Z", + "iopub.status.idle": "2024-09-27T13:51:26.090518Z", + "shell.execute_reply": "2024-09-27T13:51:26.090064Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.908409Z", - "iopub.status.busy": "2024-09-26T17:04:55.908236Z", - "iopub.status.idle": "2024-09-26T17:04:55.916410Z", - "shell.execute_reply": "2024-09-26T17:04:55.915860Z" + "iopub.execute_input": "2024-09-27T13:51:26.092191Z", + "iopub.status.busy": "2024-09-27T13:51:26.091860Z", + "iopub.status.idle": "2024-09-27T13:51:26.099609Z", + "shell.execute_reply": "2024-09-27T13:51:26.099158Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.918227Z", - "iopub.status.busy": "2024-09-26T17:04:55.917906Z", - "iopub.status.idle": "2024-09-26T17:04:55.920593Z", - "shell.execute_reply": "2024-09-26T17:04:55.920127Z" + "iopub.execute_input": "2024-09-27T13:51:26.101260Z", + "iopub.status.busy": "2024-09-27T13:51:26.100944Z", + "iopub.status.idle": "2024-09-27T13:51:26.103665Z", + "shell.execute_reply": "2024-09-27T13:51:26.103114Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.922554Z", - "iopub.status.busy": "2024-09-26T17:04:55.922044Z", - "iopub.status.idle": "2024-09-26T17:04:56.045940Z", - "shell.execute_reply": "2024-09-26T17:04:56.045422Z" + "iopub.execute_input": "2024-09-27T13:51:26.105327Z", + "iopub.status.busy": "2024-09-27T13:51:26.105016Z", + "iopub.status.idle": "2024-09-27T13:51:26.230588Z", + "shell.execute_reply": "2024-09-27T13:51:26.229994Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.047840Z", - "iopub.status.busy": "2024-09-26T17:04:56.047468Z", - "iopub.status.idle": "2024-09-26T17:04:56.167819Z", - "shell.execute_reply": "2024-09-26T17:04:56.167293Z" + "iopub.execute_input": "2024-09-27T13:51:26.232496Z", + "iopub.status.busy": "2024-09-27T13:51:26.232118Z", + "iopub.status.idle": "2024-09-27T13:51:26.342308Z", + "shell.execute_reply": "2024-09-27T13:51:26.341751Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.169945Z", - "iopub.status.busy": "2024-09-26T17:04:56.169503Z", - "iopub.status.idle": "2024-09-26T17:04:56.685934Z", - "shell.execute_reply": "2024-09-26T17:04:56.685296Z" + "iopub.execute_input": "2024-09-27T13:51:26.344213Z", + "iopub.status.busy": "2024-09-27T13:51:26.343885Z", + "iopub.status.idle": "2024-09-27T13:51:26.866342Z", + "shell.execute_reply": "2024-09-27T13:51:26.865682Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.688248Z", - "iopub.status.busy": "2024-09-26T17:04:56.687817Z", - "iopub.status.idle": "2024-09-26T17:04:56.783644Z", - "shell.execute_reply": "2024-09-26T17:04:56.783001Z" + "iopub.execute_input": "2024-09-27T13:51:26.868362Z", + "iopub.status.busy": "2024-09-27T13:51:26.868178Z", + "iopub.status.idle": "2024-09-27T13:51:26.964126Z", + "shell.execute_reply": "2024-09-27T13:51:26.963551Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.785728Z", - "iopub.status.busy": "2024-09-26T17:04:56.785306Z", - "iopub.status.idle": "2024-09-26T17:04:56.793844Z", - "shell.execute_reply": "2024-09-26T17:04:56.793274Z" + "iopub.execute_input": "2024-09-27T13:51:26.966053Z", + "iopub.status.busy": "2024-09-27T13:51:26.965821Z", + "iopub.status.idle": "2024-09-27T13:51:26.974429Z", + "shell.execute_reply": "2024-09-27T13:51:26.973838Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.795479Z", - "iopub.status.busy": "2024-09-26T17:04:56.795160Z", - "iopub.status.idle": "2024-09-26T17:04:56.797955Z", - "shell.execute_reply": "2024-09-26T17:04:56.797402Z" + "iopub.execute_input": "2024-09-27T13:51:26.976211Z", + "iopub.status.busy": "2024-09-27T13:51:26.975775Z", + "iopub.status.idle": "2024-09-27T13:51:26.978660Z", + "shell.execute_reply": "2024-09-27T13:51:26.978085Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.799958Z", - "iopub.status.busy": "2024-09-26T17:04:56.799621Z", - "iopub.status.idle": "2024-09-26T17:05:02.434662Z", - "shell.execute_reply": "2024-09-26T17:05:02.434117Z" + "iopub.execute_input": "2024-09-27T13:51:26.980464Z", + "iopub.status.busy": "2024-09-27T13:51:26.980130Z", + "iopub.status.idle": "2024-09-27T13:51:32.684948Z", + "shell.execute_reply": "2024-09-27T13:51:32.684334Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.436647Z", - "iopub.status.busy": "2024-09-26T17:05:02.436258Z", - "iopub.status.idle": "2024-09-26T17:05:02.444773Z", - "shell.execute_reply": "2024-09-26T17:05:02.444312Z" + "iopub.execute_input": "2024-09-27T13:51:32.686957Z", + "iopub.status.busy": "2024-09-27T13:51:32.686573Z", + "iopub.status.idle": "2024-09-27T13:51:32.695195Z", + "shell.execute_reply": "2024-09-27T13:51:32.694586Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.446489Z", - "iopub.status.busy": "2024-09-26T17:05:02.446154Z", - "iopub.status.idle": "2024-09-26T17:05:02.514195Z", - "shell.execute_reply": "2024-09-26T17:05:02.513712Z" + "iopub.execute_input": "2024-09-27T13:51:32.696968Z", + "iopub.status.busy": "2024-09-27T13:51:32.696618Z", + "iopub.status.idle": "2024-09-27T13:51:32.764496Z", + "shell.execute_reply": "2024-09-27T13:51:32.763852Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5a7767d24..ed49b4512 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -813,13 +813,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1209,7 +1209,7 @@

Get label quality scores -{"state": {"8748256d360d48058ef6b131aab916a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c88cab906e394a4a84904cc6c17850f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c95ca6d393b43da8b16aed149c46f65": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", "tabbable": null, "tooltip": null, "value": 30.0}}, "30b8f1a9ff53472095e7c2a925cb7b4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "adc4d154c7ff4de08c98e30f3e42eeb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61df8743d35a43c98e0022ff4bc97293": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", "placeholder": "\u200b", "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ead2da2da60e4805a2043cd58fc66569": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34abae56904c4b1bb3364dd32eb17639": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24272bf2500848a5bcf2d55525f3a0f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", "placeholder": "\u200b", "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007789.56it/s]"}}, "0517b037a82440458d02ea86105f06d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9433b8180b7c45728863cb9c40d5e567": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9"], "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", "tabbable": null, "tooltip": null}}, "17297470645a4db58aed91eed1a148be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "081848e4dbc24107bd57eb8c702bd684": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01cec593b4a8405da7b3c690d0e52a52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", "tabbable": null, "tooltip": null, "value": 30.0}}, "af9ecce7424246c7b19990283f91d514": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "010b8225b6d644ccabdfd571da8a8792": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5cb76de001c842278b1d786d5a645fac": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", "placeholder": "\u200b", "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "9ea0920685234045bf68210b35f9cadc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6dd9c9d112440f3bc8d3d30e256ab38": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b40d316ff104deb90302ab718996261": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", "placeholder": "\u200b", "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.15it/s]"}}, "761e7aa8f1fd44fc9b5324d18d7cc6f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "069caa427ad347c5bd1333db3bd5ec8b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5cb76de001c842278b1d786d5a645fac", "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", "IPY_MODEL_6b40d316ff104deb90302ab718996261"], "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", "tabbable": null, "tooltip": null}}, "a171038c0af1477c8a19cfa21eb51810": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41247db7415843a19203dea65c75a294": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "46241f4b5b034271b6b861ea2799165d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "9cc9bcba55184478a96ee6f5db50d92b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "192f38f69433493bbd3eeffe870e0abf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "daf32bd5ad8e47cbb62b30e0cc60714c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", "placeholder": "\u200b", "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", "tabbable": null, "tooltip": null, "value": "100%"}}, "26346b2762a446b3852dd6fc6794aee5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9cbc0159e8e401daeafe1258f07445e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b7aa1adb8d04265acda6569262d2b70": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", "placeholder": "\u200b", "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007150688.70it/s]"}}, "f68fd43ccb474f5d9dd542f446750d8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "419483351ddf440f89b247293c5dcdc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70"], "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", "tabbable": null, "tooltip": null}}, "8df337a907d546958dee64127541ca0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f22d093744347f3b34a78e1d9fddc5c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9c63f3dd112d4cd188297907c9dc0947": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", "tabbable": null, "tooltip": null, "value": 30.0}}, "a011a519ef08415e9947399082ef4823": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "704f533bc271466791f4aed2ff606b9f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "69bb131944b64f9999675a9ef28e496f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", "placeholder": "\u200b", "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "3c78a7ea81274c7ab75aad3c51051fca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2fcbf282272460dbb60c23ea7337738": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2414eb65ad8d4b00b3ea3d85c9bb9d16": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", "placeholder": "\u200b", "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.14it/s]"}}, "1b492cce44314110abd310d191addb69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5a1fa9574814a138f8b11ada26aa7ce": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_69bb131944b64f9999675a9ef28e496f", "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16"], "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"26ae1571806b4102a738df4d53c727cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6b9386ba4bd4ef382728a8509ff9733": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb81abffee574a08838324a05306fee5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", "tabbable": null, "tooltip": null, "value": 30.0}}, "7bc851f2a1a84711b61cce3293e573e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc7c8ce9cbda4e2ea98b9c02eba16a10": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a84d7163b7a34ae3a5db5e214e41505f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", "placeholder": "\u200b", "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "2350f154084b4431bc8dc7aa3d7b707d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b2a798493d54864b1c2c54e441dd6d1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f8b6a653a2f4f39afc4a68e4562f8c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", "placeholder": "\u200b", "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007796.57it/s]"}}, "b39e88ec9789404db8f52fe3fad91062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0cacd283386e42a5bdc7ef667a30ed27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", "IPY_MODEL_bb81abffee574a08838324a05306fee5", "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9"], "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null}}, "0203b35b408140bab3d7c2a3022596ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8793ef7a8f54cf1875b005a6c1f7124": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "780258fed6944d3cbee72b74d6ec1757": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, "value": 30.0}}, "fdddcd906c904034b566400adef66822": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "128282009133450bb17bacece244696d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f50700f58f74bcf874d2f107ce9d245": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "\u200b", "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "bac053573d6d41a1a54925af41d6af17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68adef88f65c4a45bd1410adbc35fdf8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "097e65cda3524af0905ade254303944d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", "placeholder": "\u200b", "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.13it/s]"}}, "4775464e0f1042de98b0e5962d567596": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4644996a967241dfa8d773a9ca551092": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", "IPY_MODEL_097e65cda3524af0905ade254303944d"], "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", "tabbable": null, "tooltip": null}}, "5948a70e11d04859b1e2b8b837fb140f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53c5265699634e29a6682fe80468d7c3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c336c8b7a3b4cb59ec5f9f24031e6ee": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "fa32975e7754475ba3d7e3d4cae1cee7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c4c694a56634ea0a695dac6f2a36795": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5e463cc2461436bbdd695f021b40430": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", "placeholder": "\u200b", "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, "value": "100%"}}, "ee0e7b61c689421686d277113f1ec067": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f6962414e7246219b6d8d7d1e22b96e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b49455ea450540e083563000c3fff983": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", "placeholder": "\u200b", "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:33<00:00,\u2007147202.41it/s]"}}, "5fbe8a5f1e7f4dfeb36f47d3f14ece88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba6bd71b6bee41189f78a1c572677822": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5e463cc2461436bbdd695f021b40430", "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", "IPY_MODEL_b49455ea450540e083563000c3fff983"], "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", "tabbable": null, "tooltip": null}}, "d8d7e1a536fa4ed695fd3e65770925ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99eeb655b5874902944d39a1906553c3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eaf56531a9604d9b8b406e1e02d9f203": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", "tabbable": null, "tooltip": null, "value": 30.0}}, "b03044509d8e445ba8aede58ad56b8ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74279ce0a6444b85a63f9df791957b87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84fbc4b7384b4f32ad612456874e559c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "\u200b", "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "1f59ad6477954ccdb68838abe6de8461": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b5b1e2e2b08468b89e5133045604b4b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3122d5a201ad446fa1be25d4b21acc06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "\u200b", "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.64it/s]"}}, "af09b1cee1824c9dbea2ba4a3df827b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5ee6722fdee41c9a5f051d5f4bc9eff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06"], "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 0c953a37d..9dca2eb7d 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:05.717015Z", - "iopub.status.busy": "2024-09-26T17:05:05.716843Z", - "iopub.status.idle": "2024-09-26T17:05:08.037778Z", - "shell.execute_reply": "2024-09-26T17:05:08.037084Z" + "iopub.execute_input": "2024-09-27T13:51:35.933316Z", + "iopub.status.busy": "2024-09-27T13:51:35.933122Z", + "iopub.status.idle": "2024-09-27T13:51:38.270090Z", + "shell.execute_reply": "2024-09-27T13:51:38.269373Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:08.040304Z", - "iopub.status.busy": "2024-09-26T17:05:08.039827Z", - "iopub.status.idle": "2024-09-26T17:06:15.788536Z", - "shell.execute_reply": "2024-09-26T17:06:15.787814Z" + "iopub.execute_input": "2024-09-27T13:51:38.272195Z", + "iopub.status.busy": "2024-09-27T13:51:38.271991Z", + "iopub.status.idle": "2024-09-27T13:52:43.930890Z", + "shell.execute_reply": "2024-09-27T13:52:43.930121Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:15.791492Z", - "iopub.status.busy": "2024-09-26T17:06:15.790929Z", - "iopub.status.idle": "2024-09-26T17:06:17.030438Z", - "shell.execute_reply": "2024-09-26T17:06:17.029934Z" + "iopub.execute_input": "2024-09-27T13:52:43.933175Z", + "iopub.status.busy": "2024-09-27T13:52:43.932718Z", + "iopub.status.idle": "2024-09-27T13:52:45.152829Z", + "shell.execute_reply": "2024-09-27T13:52:45.152260Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.032578Z", - "iopub.status.busy": "2024-09-26T17:06:17.032181Z", - "iopub.status.idle": "2024-09-26T17:06:17.035397Z", - "shell.execute_reply": "2024-09-26T17:06:17.034940Z" + "iopub.execute_input": "2024-09-27T13:52:45.154808Z", + "iopub.status.busy": "2024-09-27T13:52:45.154531Z", + "iopub.status.idle": "2024-09-27T13:52:45.158007Z", + "shell.execute_reply": "2024-09-27T13:52:45.157435Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.037239Z", - "iopub.status.busy": "2024-09-26T17:06:17.036895Z", - "iopub.status.idle": "2024-09-26T17:06:17.040814Z", - "shell.execute_reply": "2024-09-26T17:06:17.040350Z" + "iopub.execute_input": "2024-09-27T13:52:45.159874Z", + "iopub.status.busy": "2024-09-27T13:52:45.159484Z", + "iopub.status.idle": "2024-09-27T13:52:45.163392Z", + "shell.execute_reply": "2024-09-27T13:52:45.162836Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.042465Z", - "iopub.status.busy": "2024-09-26T17:06:17.042192Z", - "iopub.status.idle": "2024-09-26T17:06:17.045640Z", - "shell.execute_reply": "2024-09-26T17:06:17.045177Z" + "iopub.execute_input": "2024-09-27T13:52:45.165264Z", + "iopub.status.busy": "2024-09-27T13:52:45.164843Z", + "iopub.status.idle": "2024-09-27T13:52:45.168434Z", + "shell.execute_reply": "2024-09-27T13:52:45.168001Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.047315Z", - "iopub.status.busy": "2024-09-26T17:06:17.046980Z", - "iopub.status.idle": "2024-09-26T17:06:17.049687Z", - "shell.execute_reply": "2024-09-26T17:06:17.049193Z" + "iopub.execute_input": "2024-09-27T13:52:45.170026Z", + "iopub.status.busy": "2024-09-27T13:52:45.169831Z", + "iopub.status.idle": "2024-09-27T13:52:45.172854Z", + "shell.execute_reply": "2024-09-27T13:52:45.172440Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.051353Z", - "iopub.status.busy": "2024-09-26T17:06:17.051011Z", - "iopub.status.idle": "2024-09-26T17:06:55.164616Z", - "shell.execute_reply": "2024-09-26T17:06:55.163984Z" + "iopub.execute_input": "2024-09-27T13:52:45.174469Z", + "iopub.status.busy": "2024-09-27T13:52:45.174131Z", + "iopub.status.idle": "2024-09-27T13:53:23.240572Z", + "shell.execute_reply": "2024-09-27T13:53:23.239851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9433b8180b7c45728863cb9c40d5e567", + "model_id": "0cacd283386e42a5bdc7ef667a30ed27", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "069caa427ad347c5bd1333db3bd5ec8b", + "model_id": "4644996a967241dfa8d773a9ca551092", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.166835Z", - "iopub.status.busy": "2024-09-26T17:06:55.166581Z", - "iopub.status.idle": "2024-09-26T17:06:55.838631Z", - "shell.execute_reply": "2024-09-26T17:06:55.838008Z" + "iopub.execute_input": "2024-09-27T13:53:23.243096Z", + "iopub.status.busy": "2024-09-27T13:53:23.242875Z", + "iopub.status.idle": "2024-09-27T13:53:23.927697Z", + "shell.execute_reply": "2024-09-27T13:53:23.927078Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.840661Z", - "iopub.status.busy": "2024-09-26T17:06:55.840128Z", - "iopub.status.idle": "2024-09-26T17:06:58.654558Z", - "shell.execute_reply": "2024-09-26T17:06:58.653954Z" + "iopub.execute_input": "2024-09-27T13:53:23.929799Z", + "iopub.status.busy": "2024-09-27T13:53:23.929338Z", + "iopub.status.idle": "2024-09-27T13:53:26.776889Z", + "shell.execute_reply": "2024-09-27T13:53:26.776303Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:58.656660Z", - "iopub.status.busy": "2024-09-26T17:06:58.656193Z", - "iopub.status.idle": "2024-09-26T17:07:31.282511Z", - "shell.execute_reply": "2024-09-26T17:07:31.282022Z" + "iopub.execute_input": "2024-09-27T13:53:26.778857Z", + "iopub.status.busy": "2024-09-27T13:53:26.778501Z", + "iopub.status.idle": "2024-09-27T13:54:00.727701Z", + "shell.execute_reply": "2024-09-27T13:54:00.727143Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "419483351ddf440f89b247293c5dcdc0", + "model_id": "ba6bd71b6bee41189f78a1c572677822", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:31.284330Z", - "iopub.status.busy": "2024-09-26T17:07:31.283976Z", - "iopub.status.idle": "2024-09-26T17:07:47.118288Z", - "shell.execute_reply": "2024-09-26T17:07:47.117716Z" + "iopub.execute_input": "2024-09-27T13:54:00.729587Z", + "iopub.status.busy": "2024-09-27T13:54:00.729293Z", + "iopub.status.idle": "2024-09-27T13:54:16.723181Z", + "shell.execute_reply": "2024-09-27T13:54:16.722543Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:47.120299Z", - "iopub.status.busy": "2024-09-26T17:07:47.119974Z", - "iopub.status.idle": "2024-09-26T17:07:50.977077Z", - "shell.execute_reply": "2024-09-26T17:07:50.976571Z" + "iopub.execute_input": "2024-09-27T13:54:16.725370Z", + "iopub.status.busy": "2024-09-27T13:54:16.725011Z", + "iopub.status.idle": "2024-09-27T13:54:20.576835Z", + "shell.execute_reply": "2024-09-27T13:54:20.576292Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:50.978894Z", - "iopub.status.busy": "2024-09-26T17:07:50.978599Z", - "iopub.status.idle": "2024-09-26T17:07:52.469581Z", - "shell.execute_reply": "2024-09-26T17:07:52.468926Z" + "iopub.execute_input": "2024-09-27T13:54:20.578749Z", + "iopub.status.busy": "2024-09-27T13:54:20.578398Z", + "iopub.status.idle": "2024-09-27T13:54:22.071673Z", + "shell.execute_reply": "2024-09-27T13:54:22.071167Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5a1fa9574814a138f8b11ada26aa7ce", + "model_id": "d5ee6722fdee41c9a5f051d5f4bc9eff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.471634Z", - "iopub.status.busy": "2024-09-26T17:07:52.471286Z", - "iopub.status.idle": "2024-09-26T17:07:52.502859Z", - "shell.execute_reply": "2024-09-26T17:07:52.502297Z" + "iopub.execute_input": "2024-09-27T13:54:22.073573Z", + "iopub.status.busy": "2024-09-27T13:54:22.073206Z", + "iopub.status.idle": "2024-09-27T13:54:22.104042Z", + "shell.execute_reply": "2024-09-27T13:54:22.103489Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.505051Z", - "iopub.status.busy": "2024-09-26T17:07:52.504670Z", - "iopub.status.idle": "2024-09-26T17:07:58.645124Z", - "shell.execute_reply": "2024-09-26T17:07:58.644610Z" + "iopub.execute_input": "2024-09-27T13:54:22.106225Z", + "iopub.status.busy": "2024-09-27T13:54:22.105837Z", + "iopub.status.idle": "2024-09-27T13:54:28.273568Z", + "shell.execute_reply": "2024-09-27T13:54:28.273000Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:58.646914Z", - "iopub.status.busy": "2024-09-26T17:07:58.646726Z", - "iopub.status.idle": "2024-09-26T17:07:58.703002Z", - "shell.execute_reply": "2024-09-26T17:07:58.702503Z" + "iopub.execute_input": "2024-09-27T13:54:28.275502Z", + "iopub.status.busy": "2024-09-27T13:54:28.275151Z", + "iopub.status.idle": "2024-09-27T13:54:28.331073Z", + "shell.execute_reply": "2024-09-27T13:54:28.330504Z" }, "nbsphinx": "hidden" }, @@ -1038,51 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010b8225b6d644ccabdfd571da8a8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "01cec593b4a8405da7b3c690d0e52a52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0517b037a82440458d02ea86105f06d8": { + "0203b35b408140bab3d7c2a3022596ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1135,7 +1091,48 @@ "width": null } }, - "069caa427ad347c5bd1333db3bd5ec8b": { + "097e65cda3524af0905ade254303944d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", + "placeholder": "​", + "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.13it/s]" + } + }, + "0b5b1e2e2b08468b89e5133045604b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0cacd283386e42a5bdc7ef667a30ed27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1150,32 +1147,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5cb76de001c842278b1d786d5a645fac", - "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", - "IPY_MODEL_6b40d316ff104deb90302ab718996261" + "IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", + "IPY_MODEL_bb81abffee574a08838324a05306fee5", + "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9" ], - "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", + "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null } }, - "081848e4dbc24107bd57eb8c702bd684": { + "0f8b6a653a2f4f39afc4a68e4562f8c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", + "placeholder": "​", + "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 796.57it/s]" + } + }, + "128282009133450bb17bacece244696d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "17297470645a4db58aed91eed1a148be": { + "1f59ad6477954ccdb68838abe6de8461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,25 +1250,60 @@ "width": null } }, - "192f38f69433493bbd3eeffe870e0abf": { - "model_module": "@jupyter-widgets/controls", + "2350f154084b4431bc8dc7aa3d7b707d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1b492cce44314110abd310d191addb69": { + "26ae1571806b4102a738df4d53c727cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1299,7 +1356,7 @@ "width": null } }, - "2414eb65ad8d4b00b3ea3d85c9bb9d16": { + "3122d5a201ad446fa1be25d4b21acc06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1314,38 +1371,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", + "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "​", - "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", + "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.14it/s]" + "value": " 30/30 [00:01<00:00, 20.64it/s]" } }, - "24272bf2500848a5bcf2d55525f3a0f9": { + "3c336c8b7a3b4cb59ec5f9f24031e6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", - "placeholder": "​", - "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", + "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 789.56it/s]" + "value": 4997683.0 + } + }, + "4644996a967241dfa8d773a9ca551092": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", + "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", + "IPY_MODEL_097e65cda3524af0905ade254303944d" + ], + "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", + "tabbable": null, + "tooltip": null } }, - "26346b2762a446b3852dd6fc6794aee5": { + "4775464e0f1042de98b0e5962d567596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1398,7 +1482,23 @@ "width": null } }, - "30b8f1a9ff53472095e7c2a925cb7b4f": { + "53c5265699634e29a6682fe80468d7c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5948a70e11d04859b1e2b8b837fb140f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1451,7 +1551,7 @@ "width": null } }, - "34abae56904c4b1bb3364dd32eb17639": { + "5c4c694a56634ea0a695dac6f2a36795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1469,7 +1569,7 @@ "text_color": null } }, - "3c78a7ea81274c7ab75aad3c51051fca": { + "5fbe8a5f1e7f4dfeb36f47d3f14ece88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1522,47 +1622,43 @@ "width": null } }, - "41247db7415843a19203dea65c75a294": { + "68adef88f65c4a45bd1410adbc35fdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "419483351ddf440f89b247293c5dcdc0": { + "74279ce0a6444b85a63f9df791957b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", - "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", - "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70" - ], - "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "46241f4b5b034271b6b861ea2799165d": { + "780258fed6944d3cbee72b74d6ec1757": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,56 +1674,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", - "max": 4997683.0, + "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", + "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "4f22d093744347f3b34a78e1d9fddc5c": { + "7b2a798493d54864b1c2c54e441dd6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5cb76de001c842278b1d786d5a645fac": { - "model_module": "@jupyter-widgets/controls", + "7bc851f2a1a84711b61cce3293e573e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", - "placeholder": "​", - "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "61df8743d35a43c98e0022ff4bc97293": { + "7f50700f58f74bcf874d2f107ce9d245": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1642,15 +1770,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", + "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "​", - "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", + "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "69bb131944b64f9999675a9ef28e496f": { + "84fbc4b7384b4f32ad612456874e559c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1665,79 +1793,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", + "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "​", - "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", + "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "6b40d316ff104deb90302ab718996261": { + "99eeb655b5874902944d39a1906553c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", - "placeholder": "​", - "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.15it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b7aa1adb8d04265acda6569262d2b70": { + "9f6962414e7246219b6d8d7d1e22b96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", - "placeholder": "​", - "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150688.70it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "704f533bc271466791f4aed2ff606b9f": { + "a6b9386ba4bd4ef382728a8509ff9733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "761e7aa8f1fd44fc9b5324d18d7cc6f0": { + "a84d7163b7a34ae3a5db5e214e41505f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", + "placeholder": "​", + "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "af09b1cee1824c9dbea2ba4a3df827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1927,7 @@ "width": null } }, - "8748256d360d48058ef6b131aab916a1": { + "b03044509d8e445ba8aede58ad56b8ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,33 +1980,7 @@ "width": null } }, - "8c95ca6d393b43da8b16aed149c46f65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8df337a907d546958dee64127541ca0c": { + "b39e88ec9789404db8f52fe3fad91062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,110 +2033,77 @@ "width": null } }, - "9433b8180b7c45728863cb9c40d5e567": { + "b49455ea450540e083563000c3fff983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", - "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", - "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9" - ], - "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", + "placeholder": "​", + "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:33<00:00, 147202.41it/s]" } }, - "9c63f3dd112d4cd188297907c9dc0947": { + "b5e463cc2461436bbdd695f021b40430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", + "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", + "placeholder": "​", + "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "100%" } }, - "9cc9bcba55184478a96ee6f5db50d92b": { - "model_module": "@jupyter-widgets/base", + "ba6bd71b6bee41189f78a1c572677822": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5e463cc2461436bbdd695f021b40430", + "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", + "IPY_MODEL_b49455ea450540e083563000c3fff983" + ], + "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", + "tabbable": null, + "tooltip": null } }, - "9ea0920685234045bf68210b35f9cadc": { + "bac053573d6d41a1a54925af41d6af17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,60 +2156,57 @@ "width": null } }, - "a011a519ef08415e9947399082ef4823": { - "model_module": "@jupyter-widgets/base", + "bb81abffee574a08838324a05306fee5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "d5ee6722fdee41c9a5f051d5f4bc9eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", + "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", + "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06" + ], + "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", + "tabbable": null, + "tooltip": null } }, - "a171038c0af1477c8a19cfa21eb51810": { + "d8d7e1a536fa4ed695fd3e65770925ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2184,7 +2259,7 @@ "width": null } }, - "adc4d154c7ff4de08c98e30f3e42eeb6": { + "dc7c8ce9cbda4e2ea98b9c02eba16a10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,7 +2277,33 @@ "text_color": null } }, - "af9ecce7424246c7b19990283f91d514": { + "eaf56531a9604d9b8b406e1e02d9f203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ee0e7b61c689421686d277113f1ec067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2255,7 +2356,7 @@ "width": null } }, - "c88cab906e394a4a84904cc6c17850f0": { + "f8793ef7a8f54cf1875b005a6c1f7124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2271,90 +2372,7 @@ "description_width": "" } }, - "d5a1fa9574814a138f8b11ada26aa7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69bb131944b64f9999675a9ef28e496f", - "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", - "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16" - ], - "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", - "tabbable": null, - "tooltip": null - } - }, - "d6dd9c9d112440f3bc8d3d30e256ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "daf32bd5ad8e47cbb62b30e0cc60714c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", - "placeholder": "​", - "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e2fcbf282272460dbb60c23ea7337738": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ead2da2da60e4805a2043cd58fc66569": { + "fa32975e7754475ba3d7e3d4cae1cee7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2425,7 @@ "width": null } }, - "f68fd43ccb474f5d9dd542f446750d8c": { + "fdddcd906c904034b566400adef66822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,24 +2477,6 @@ "visibility": null, "width": null } - }, - "f9cbc0159e8e401daeafe1258f07445e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index c8a7ae83c..df34a08a4 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -723,16 +723,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index d173b02c1..77eaf7ec4 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:01.172227Z", - "iopub.status.busy": "2024-09-26T17:08:01.172043Z", - "iopub.status.idle": "2024-09-26T17:08:03.693417Z", - "shell.execute_reply": "2024-09-26T17:08:03.692836Z" + "iopub.execute_input": "2024-09-27T13:54:30.682391Z", + "iopub.status.busy": "2024-09-27T13:54:30.682226Z", + "iopub.status.idle": "2024-09-27T13:54:32.499916Z", + "shell.execute_reply": "2024-09-27T13:54:32.499221Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-27 13:54:30-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.105, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.105|:443... connected.\r\n", + "185.93.1.244, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.72MB/s in 0.2s \r\n", "\r\n", - "2024-09-26 17:08:01 (95.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-27 13:54:31 (5.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,16 +131,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.64, 3.5.16.102, 3.5.29.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.64|:443... " + "--2024-09-27 13:54:31-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.1.185, 3.5.27.97, 3.5.28.23, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.1.185|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -161,7 +160,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 391.92K 1.81MB/s " + "pred_probs.npz 10%[=> ] 1.67M 8.13MB/s " ] }, { @@ -169,7 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 6%[> ] 1.02M 2.40MB/s " + "pred_probs.npz 30%[=====> ] 4.95M 12.0MB/s " ] }, { @@ -177,7 +176,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 12%[=> ] 1.98M 3.12MB/s " + "pred_probs.npz 63%[===========> ] 10.30M 16.7MB/s " ] }, { @@ -185,41 +184,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 21%[===> ] 3.50M 4.13MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 36%[======> ] 5.85M 5.49MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 58%[==========> ] 9.48M 7.48MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 89%[================> ] 14.59M 9.94MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 10.7MB/s in 1.5s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 21.2MB/s in 0.8s \r\n", "\r\n", - "2024-09-26 17:08:03 (10.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-27 13:54:32 (21.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -236,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:03.695462Z", - "iopub.status.busy": "2024-09-26T17:08:03.695082Z", - "iopub.status.idle": "2024-09-26T17:08:05.014993Z", - "shell.execute_reply": "2024-09-26T17:08:05.014477Z" + "iopub.execute_input": "2024-09-27T13:54:32.502093Z", + "iopub.status.busy": "2024-09-27T13:54:32.501871Z", + "iopub.status.idle": "2024-09-27T13:54:33.874271Z", + "shell.execute_reply": "2024-09-27T13:54:33.873712Z" }, "nbsphinx": "hidden" }, @@ -250,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -276,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.017376Z", - "iopub.status.busy": "2024-09-26T17:08:05.016785Z", - "iopub.status.idle": "2024-09-26T17:08:05.020348Z", - "shell.execute_reply": "2024-09-26T17:08:05.019888Z" + "iopub.execute_input": "2024-09-27T13:54:33.876182Z", + "iopub.status.busy": "2024-09-27T13:54:33.875906Z", + "iopub.status.idle": "2024-09-27T13:54:33.879350Z", + "shell.execute_reply": "2024-09-27T13:54:33.878885Z" } }, "outputs": [], @@ -329,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.022091Z", - "iopub.status.busy": "2024-09-26T17:08:05.021753Z", - "iopub.status.idle": "2024-09-26T17:08:05.024810Z", - "shell.execute_reply": "2024-09-26T17:08:05.024352Z" + "iopub.execute_input": "2024-09-27T13:54:33.880907Z", + "iopub.status.busy": "2024-09-27T13:54:33.880727Z", + "iopub.status.idle": "2024-09-27T13:54:33.883843Z", + "shell.execute_reply": "2024-09-27T13:54:33.883277Z" }, "nbsphinx": "hidden" }, @@ -350,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.026456Z", - "iopub.status.busy": "2024-09-26T17:08:05.026117Z", - "iopub.status.idle": "2024-09-26T17:08:14.109789Z", - "shell.execute_reply": "2024-09-26T17:08:14.109088Z" + "iopub.execute_input": "2024-09-27T13:54:33.885688Z", + "iopub.status.busy": "2024-09-27T13:54:33.885271Z", + "iopub.status.idle": "2024-09-27T13:54:43.002666Z", + "shell.execute_reply": "2024-09-27T13:54:43.002108Z" } }, "outputs": [], @@ -427,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.112027Z", - "iopub.status.busy": "2024-09-26T17:08:14.111813Z", - "iopub.status.idle": "2024-09-26T17:08:14.117508Z", - "shell.execute_reply": "2024-09-26T17:08:14.117014Z" + "iopub.execute_input": "2024-09-27T13:54:43.004773Z", + "iopub.status.busy": "2024-09-27T13:54:43.004417Z", + "iopub.status.idle": "2024-09-27T13:54:43.010152Z", + "shell.execute_reply": "2024-09-27T13:54:43.009564Z" }, "nbsphinx": "hidden" }, @@ -470,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.119321Z", - "iopub.status.busy": "2024-09-26T17:08:14.118911Z", - "iopub.status.idle": "2024-09-26T17:08:14.502060Z", - "shell.execute_reply": "2024-09-26T17:08:14.501537Z" + "iopub.execute_input": "2024-09-27T13:54:43.011857Z", + "iopub.status.busy": "2024-09-27T13:54:43.011526Z", + "iopub.status.idle": "2024-09-27T13:54:43.353802Z", + "shell.execute_reply": "2024-09-27T13:54:43.353253Z" } }, "outputs": [], @@ -510,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.504135Z", - "iopub.status.busy": "2024-09-26T17:08:14.503821Z", - "iopub.status.idle": "2024-09-26T17:08:14.508644Z", - "shell.execute_reply": "2024-09-26T17:08:14.508165Z" + "iopub.execute_input": "2024-09-27T13:54:43.355704Z", + "iopub.status.busy": "2024-09-27T13:54:43.355518Z", + "iopub.status.idle": "2024-09-27T13:54:43.359631Z", + "shell.execute_reply": "2024-09-27T13:54:43.359167Z" } }, "outputs": [ @@ -585,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.510434Z", - "iopub.status.busy": "2024-09-26T17:08:14.510026Z", - "iopub.status.idle": "2024-09-26T17:08:17.327713Z", - "shell.execute_reply": "2024-09-26T17:08:17.326897Z" + "iopub.execute_input": "2024-09-27T13:54:43.361213Z", + "iopub.status.busy": "2024-09-27T13:54:43.361042Z", + "iopub.status.idle": "2024-09-27T13:54:45.990197Z", + "shell.execute_reply": "2024-09-27T13:54:45.989515Z" } }, "outputs": [], @@ -610,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.330466Z", - "iopub.status.busy": "2024-09-26T17:08:17.329827Z", - "iopub.status.idle": "2024-09-26T17:08:17.334402Z", - "shell.execute_reply": "2024-09-26T17:08:17.333930Z" + "iopub.execute_input": "2024-09-27T13:54:45.992775Z", + "iopub.status.busy": "2024-09-27T13:54:45.992168Z", + "iopub.status.idle": "2024-09-27T13:54:45.996546Z", + "shell.execute_reply": "2024-09-27T13:54:45.995970Z" } }, "outputs": [ @@ -649,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.335919Z", - "iopub.status.busy": "2024-09-26T17:08:17.335751Z", - "iopub.status.idle": "2024-09-26T17:08:17.341503Z", - "shell.execute_reply": "2024-09-26T17:08:17.341006Z" + "iopub.execute_input": "2024-09-27T13:54:45.998310Z", + "iopub.status.busy": "2024-09-27T13:54:45.998135Z", + "iopub.status.idle": "2024-09-27T13:54:46.003376Z", + "shell.execute_reply": "2024-09-27T13:54:46.002924Z" } }, "outputs": [ @@ -830,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.343180Z", - "iopub.status.busy": "2024-09-26T17:08:17.342845Z", - "iopub.status.idle": "2024-09-26T17:08:17.369375Z", - "shell.execute_reply": "2024-09-26T17:08:17.368871Z" + "iopub.execute_input": "2024-09-27T13:54:46.004939Z", + "iopub.status.busy": "2024-09-27T13:54:46.004762Z", + "iopub.status.idle": "2024-09-27T13:54:46.031322Z", + "shell.execute_reply": "2024-09-27T13:54:46.030837Z" } }, "outputs": [ @@ -935,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.371259Z", - "iopub.status.busy": "2024-09-26T17:08:17.370906Z", - "iopub.status.idle": "2024-09-26T17:08:17.375750Z", - "shell.execute_reply": "2024-09-26T17:08:17.375279Z" + "iopub.execute_input": "2024-09-27T13:54:46.032945Z", + "iopub.status.busy": "2024-09-27T13:54:46.032771Z", + "iopub.status.idle": "2024-09-27T13:54:46.036702Z", + "shell.execute_reply": "2024-09-27T13:54:46.036275Z" } }, "outputs": [ @@ -1012,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.377603Z", - "iopub.status.busy": "2024-09-26T17:08:17.377268Z", - "iopub.status.idle": "2024-09-26T17:08:18.815313Z", - "shell.execute_reply": "2024-09-26T17:08:18.814781Z" + "iopub.execute_input": "2024-09-27T13:54:46.038328Z", + "iopub.status.busy": "2024-09-27T13:54:46.038152Z", + "iopub.status.idle": "2024-09-27T13:54:47.420865Z", + "shell.execute_reply": "2024-09-27T13:54:47.420360Z" } }, "outputs": [ @@ -1187,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:18.817270Z", - "iopub.status.busy": "2024-09-26T17:08:18.816826Z", - "iopub.status.idle": "2024-09-26T17:08:18.820963Z", - "shell.execute_reply": "2024-09-26T17:08:18.820481Z" + "iopub.execute_input": "2024-09-27T13:54:47.422597Z", + "iopub.status.busy": "2024-09-27T13:54:47.422413Z", + "iopub.status.idle": "2024-09-27T13:54:47.426601Z", + "shell.execute_reply": "2024-09-27T13:54:47.426150Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 605e05247..f86b4064e 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.7.0", - commit_hash: "4a1a1fc4e03d74f176fb1a05e67805e9548be4ff", + commit_hash: "58573e181a2e4beba7f8f4ed160356a7505ee223", }; \ No newline at end of file