From 1fa9fc1fc6fc7625491f974b6da86413f83ed591 Mon Sep 17 00:00:00 2001 From: elisno Date: Fri, 27 Sep 2024 13:55:55 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@58573e181a2e4beba7f8f4ed160356a7505ee223 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 266308 -> 266308 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../datalab/internal/adapter/imagelab.doctree | Bin 159126 -> 159126 bytes .../datalab/internal/adapter/index.doctree | Bin 3624 -> 3624 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4620 -> 4620 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 116536 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 17051379 -> 17051321 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1650 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1172 ++--- .../tutorials/datalab/datalab_advanced.ipynb | 360 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3888 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1173 ++--- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 522 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 518 ++- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 992 ++--- .../tutorials/token_classification.ipynb | 181 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333647 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145956 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454840 -> 454840 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 413674 -> 413680 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199351 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107897 -> 107891 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176637 -> 176583 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1650 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1172 ++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 360 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 40 +- master/tutorials/datalab/image.ipynb | 3888 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 440 +- master/tutorials/datalab/workflows.ipynb | 1173 ++--- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 522 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 518 ++- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 992 ++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 181 +- versioning.js | 2 +- 182 files changed, 12564 insertions(+), 12456 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 25d682b56..885ce1a12 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 723852b918cd46346e6ce9809699fb6f +config: 639e4c2905fdee1817826b3b5880f31d tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 392fa73885bf3ec1c7abdc2c6b8135613dd41a89..f6a95738ccef646646824caa46a054af9a62fee8 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^1SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW YWtvH<_^XHPBOG{axZ5D01DJ0u>b%7 diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index e1314192cc1377667440875d7b5dc9b9a9a8d511..138c9ce2c2e29575e0d25822a910f6e4ea3aefe4 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28Np_FtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KbpFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O0 z1Z2@$3pM)2IoT3*ThfgcKJJSjz2m|B{gAxgSo5!POd4JD+a4?{#$Yo~f*hJ&2fx@M zrQe7QwqlFkYWQ!&l=!K7zA9^aO^NJ{#zvfmJk$p8cbn97UhNIF7nC{ryL-$h?$+C} zGh!n>XW}nPG|-#)Rr+);ix_jC`;swjhq3VWzJzL(~tqJjPf9z21nThB`ho%Knj;9+gXP)WF)uz)e>Q@ivt1r;CdmHM(V zvG3tcX4U7Gr7Q~ElgO5c%llO+nO;4U#*Sky4SGyrnIyvWqW!StAc731p&2~ulBzHL zl@>t*5(cfQfOvaP=IGV?xQ&VxJ|-t@qYE251=9HCj6}RhMDil@aaU2Ll%LD%kvAi3 zYW0j_Zqa8`Wh?PQK8{=#O&bz6Cy{ZnUCLqFaPcS22`pzVRgZIi4RdHBu>=Qz>PZwZ iolxPrDBMCLdGZAn%dV05IIJs+Uu=HGllT*0*#7|pH~<&62YWqQ#OAQArtJR>YR#vw=-0n(;8mbP4oUU+{E259E zkAN(8d!bg_IBzn?4w*Cc6+Y%m9KGYg{C$wTL0|K)a!eXq^IIP-%X)tcPk|hoUx&Wf zAf;cA^tWM)-lqF+#^uDRTA^ZcYPDr1Z!A9S&`pCufWO?%Me(Il^6=!@ao^Bb5$Gl?ZQ08~$+ jfa#4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2|#XsTz delta 3571 zcmX@QLh$Gc!3~~_h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KdD74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0gQYD-K diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 76555c8e150a6a91a2757e5d876eaf4161489f9e..809530d572d811505e74af0e1907776d1d6c5e1d 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NS+7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEg7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMx758vNJ=5K4P9+ykhtgBOSZK!QYS0v1xZ3O z#E0=fFf_wNtcV@r1YtKtH8OMUN?KRl=#6w=MCZxBz^{M6=lA)2f6wonovB5mS~R}& z5NkXoUklk%vHAwP#c6414BErNkW)Txl|y!GFx({DWSi4&mqN}+W7yJUv9ep_2Y@M3 zpp`A^PM2-msG-WD&a7mNNq{b-yO?4!Zh=slSV)PwX}NXsl6=|uKPL+|&5Db%#g?!+FV*2nP}YMn?rP;2zM z2eqE-cca#$0|S7S71DoEqdeFG7!_?DY`5>}fOR0b5bGFPMs6mOyUN~;{6w;9=&8{g zNLCH?jYUwaZ#<1!uVm&>>ofHUYF&M#L($=E97RVb+t93usrRULVH){SR7x-tm8FuI)vc5`hO6z*iHQ$S63;fQ02c-P zbs$??AQ!=jtAaJ~Ki^0W{MuRpy=wk0;-6S1{!O%@=c3Ad6*z;lYvckb=X-yV{0_{k z?mtWoJVNON@`x3uWxc@2R(iJv?_dwl9-w957vv(sr(L*QuhzEEa-KX%>o+k2Jr`Aa zcS3Erx!F(i*v;-%1-p;;cG4>B=(@*et9ebBX0Y)8@zy9^Gi*FMm-^@!@c2{(=i{lH ibk4kSsoF9w;HM906xcT|;C^J+*8j+F=Z+cLP5%L#N*vVy delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vIhOSac-|VBBV(nwTW6A86@s~-KI^nk($h;A4n3C zA$u7w1jA*R#4KWmI6>G=QH{)8UPO=?t__TI*DKYINT^nJgr%-JmrDxCPPZgWlGEMgsI7H6B*iT&HLg&-E6i?@9{{Gx z!A7=ZIAbc_sH5tV!KNlHF@Vm;JD6&%8^^wXQ!hpy+t24@D=_O=#BsnfIu5aTfVeR`r!&b8k_r zHS-lk2VYzP4jm)eQPf!RDuAM<*Jpud#dO=)mp5(LI<&F$!eJ|PFL_x*t`oC*)rMRt zJMwuEdAyLUm-Xjm)ZCvhW0zNcmw=g<3m+{QsxB97%)VCO7_PNECssb5Ce1sr0$dab z*g>``PcDHI*92?kf4-3{__g%{M$PtJ#6P)80$XUq$VHWfa&QLcHpoR#&iDT!xm}o7 zJ9w0ud4$qwk&7w= zyP-CG+!mlY>}L0Af<3?o+G#m}qn2V3jFunPg;`lwxj}oNAh6mSkpWZl0K8 RnP!q|U}|8vxtyh&2LM(t5{Cc) delta 62 zcmZotYEs(Z#$sqvkY8MtZl0uXkd|VaXpm}>Y-Vh1l9Fg-VUlQKVq}qQU}|b)V3K5! Rm}F?2Vs4zextyh&2LMUf5)l9Z diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 8a49e119517e375b497f4de68893e9f149a201ea..5b78a1c31cd33275662f4b584e32888388dda471 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW Ti7A$8CaDId28Np(8KWx!>!%ei delta 64 zcmccfmGRD3#ti|Ch9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P TNfwDohQ=x8#;Kbd8KWx!-%u2| diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index c6a7b67793dad24abaebe9179710c672279f7121..2251ed559ac7bf0bddd14229deae31c6ca4e3a53 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltx~SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvH<~fW);s9+C5?ufQ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 9cd56cf90f68496fca745badbcae3e3d79c0175d..eccf5b7e990fcfcac74503ad45247d6fe7f3ff33 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1f|SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvH@q{G^3$OL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#><{rk?x&VXg6IcKM diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a229400c2ba16cf4ddc43f5e815bffc50838af75..c9c602f3c93a9c7105bfb0a44ba71add1277e938 100644 GIT binary patch delta 85 zcmX@IK;Xy%feopQM!984IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW li7A$8CaDId28Q~RV+E9(cQLl_Vgz9(AZFgai;<;^4*<4=8tDK4 delta 85 zcmX@IK;Xy%feopQMkWRM#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P lNfwDohQ=x8#;N*~V+E9(cQLl_Vgz9(AZFgai;<;^4*;Nl8gl>u diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 734d173c3143f144f77bdbf053faaa0fb084cd94..930f3a226228970daafd0d670ca0b9489f867359 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# U6H_eHOi~R@4GcH`VNLl201EpSumAu6 delta 64 zcmaFxf%(A)<_)J=4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp Uk}MLF42@IFjZ-)OVNLl20REL0IsgCw diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 8c033f94fea2b3831f7b945950a70a89d35818ad..b32aceccb70bf9af6464c4a7ed818c0946599a7e 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ{@SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW YWtvH<~qjhf@Ek*6TZ&~06`xj^#A|> diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree index e593f8d891594c015d1a35b35b5f58e2430ce6b5..c120f945ecb004806c46f0ec5dc5a84e71093857 100644 GIT binary patch delta 6027 zcmb_g{clrM7|vVh)^+O!ZD9t+)?~Vf4!e$Z&5Ys#f$))l30jo_DQ&m?FqbVMnF3LV z1fvjS8VCg$0Qb++JGc$3E9T;Q4r; z^S%NjVu!cOX9l=+_wH+<)g}$n~s)aQnUt=g-7p(RK!#+=_(HpD{*4Fua zo5FQXHH}r?Dv#)-nE;F>N}9yu(^gN*UNHr=G1XQ^NheBt?V-b?{W_t zslB-Ryb<-7w;vl5Jv!Ud3#Mn^E^5j;L}JksIUw}ZQm-9=_C`CID_|DUmoFj83NBoM z)yQG#$`-cnbu0g*p1kbz$b7LkXrBdFp>eH+(2PITPd4%9mQgH(h;VMdi}XxyG$JnT zJc#8N5x#fhNTX}2@!cCR)&2baFwGPbdluzESx3YaKZ{96#2Y=gfr3SEbP`qc$C7{| z(;~KgbRSjy>Ej_(HE`@Os(RtXuc&JKz&@=1J6SSbt&Lxym>OIKa)@Mn0=aXwJ17}1 z6GzXK=R(cg$pS-V;^4RW$fnoSHTY{IJ=iFztNX(oG5pJ78(=0QVeK|CSG|~eTF0Ke{vbKPpM3(Ub zmI_%|Mh&11sm}CrF`hv&-~AlTl3Sml&B$GlJ`Jf@E`vkC1Itv1u4UAM^n;ozonXas z8q0@*XlA!6^LcCo70HV)peK&Juq9j8ykC(0^E8n=D4&fz9RniS?&ND`= zygf{%+LKE9gVbuUEUQ#(;4|r8OL9gFUB~V~jl>~iTPTEl`RNDb;0kY+>SewOk3%Qn z6+5YrkM1C={OxV(`9J9VaKAYC)xDI<+jo&8wV>sicc=|-ADvDrx^vjwrk|Daw9=r7 z0-0bm2iy2uk2tc&a?c&w&QDH|nV&pB+vI{j$PJ7}hQ`8Y|4BCt_-MeevD6!0-khXH zpb<3thh_N`{SMr@Qh~n#nnxEM{);XG%SQw6`P6S(0(|47ut#1hFg=@n*6K%&*SNu(k~sACo{#rA z?|a^RZuj+q?&}2uE2-8S>Daujtv=+gX$|{=H7(xeMRj%FaM07>4SKzvhUOZd&r{aHD7STyF0T@e`wTk)ER!qxXF%7llmzXgq3pkzPY*904It?Ey{=tN+GgtL= zvD&@`bRYuGRhHbN+*2tDzF&kjI)W1Y+uFpJnrml0(J7p}kx zBCgICuVu^h|FoDlYHZ zkL4E?_3tE*M%PpmyEkI0AM*FZG*e9MSzG{R9Tijj3?>~FJ9_Q_1&iL;B&z6-rvOE! zMQr={0jhfClOa?!@Yx|$^}?}hsA^>31FZi$St{Yt#;;gR4K4>cL@F_X+_~BvluA^H zBd06#p=R!6fuRbq|NBB@(`)J){MC^jY?Rd1{ZXD6{^>azU_M#q=eH}Vlr@f5i3`8} zh(w>^5RK#Ktj0W8#K7G-NaJQas5&ena<97t_u-O#c{GMJ(nAw2t_W;$Q4u|XEaQhP zRkFB(nm`*;o$1w5JcClc`&pVLw>?dpk-H#s8d9-b1&4wMmZ%V2OQ;>`2Q^hX!O|CL ztPl#Kjoq#;lbAfR`jyNw=^$&l<7v zNSMmCCzbSvXp_ORtWvRo&!m4W$r#^_fkHOyho1of|e`arVhM)bULZ%zQgV|{j8LyWd=3|AOapdmmx1oethLK(pne{d5TlQkh5- z@TLSkBELL=b^U)?#s}#uWZh&~r1J6x(p6c4u2b~2p)?eMSz6DK1^JfK)~0)u=JLi?~~L5 zG=gUTkgS}dpMg79D)6^J^XQ_(_vs?Ad^GT$lYZ0lz&B1Bdw5-u>6zTKRzIrzEIygX pPcJvQrDK_?97rrfA{EJDY+%~tgSDn1CsaTyQ~$GNTf50^`WxKYVnF}^ diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree index e8001b40af72db2ea2630c9fdbfe6dc1c527c96e..a08e1e309949ad31800c3750b379dfc3955ac993 100644 GIT binary patch delta 62 zcmZ1>vqENrFQZ{@SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvHvqENrFQcJJL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#><~qhzJOEl;5_kXr diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 2d965ca7efa813e70ee6fd3f392b5e84b95692b2..19b54d55bfc9248354c0b03cb7131b913ef4b910 100644 GIT binary patch delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGub~B0E#%QH=ZLwl!LyJMIrfu4kZnkym8mcx{ zaXL1ft$rI1 z8{Cu**M%cuoaO*jY3**lS1^MJDyVhmT`Cbi<1nTy+~s9l?z*-VhF5ThdoO5SsaNo} z;=Kj1dL=*a?ZMS6dA08qP@Uc7VhLpYFgN)bgJ$^3vm;o&8U8rXhSi$k_gC*nRcC?+ zP}OTS4M3Z?wDvtL&q;0wuW&&#O^OSfi+H}?i?zvyKL&;4G54j{)`*5JpW+1KN@6GH zw(bM_CYl-x`F7JdHt3{?xBA34$!hVW`Ae(@j<8O6Eo_R=K7&8$p1{2qi&K53_&WIruEAmGY2C#$ zz30#r{NnTQjlq5$_=m#|9O6oSgrXAS=S?Ima+6kOzf zHu?P2b#NAZ^PTn(W}eS~^|>E|3deW?M0+24tXs{riod`67n-1_9A)Bz8iSAhS`5F` z9WM^g`un}$9EA6w$yJZeV0T5AFc(a&`(qCnBsLc&u?TmF-YUa-Jw`)({NKuD&_ErI zibBF}n><{;RYYT^hP=X;SylzLX>fF`qJWiarU&w%pSrPRI?Yf_L3wBeC9r`mA{kvt z`!$?M<>VP`H=Mc52We2J2!$`PCOT=GTvJ1LG(sv*g=k2}iNbqjHbPm{M6PXucTzyAly{=Bu#G5^pv>*S18z4{kxZf4{@=u0JCSB3 z9_#NQt(Di~6h#B})Q(3U>!jz3G^SJ4PNsDsL^ZOnn>Op%$upgZ&~|y`0JY(vHDqI& zS~T#M!Y{XcBlH{G7sKJWI7-;f(IIlxhV{h}DwWwol*aSokl5Et{$h~RM|DoExr|b5|^AiN5l9+I3$)LDY4X7 VpiypklY$;7k-Me(AN$kN{{V_Fx&r_J delta 5702 zcmbtYe`u6-80VS3x9Q#9-ENHS$h;{xXRf;2cIQr=Y_<(2E_ZBrh|}9{znV5Tb#2VK zb4F~ z52C79D(ZkXabe~ASe}zy7hdCnW||b|V|l!|*^9NwhW`x;$G5mIys|;mZT$=<5SJ6X zIJ0d(*f-HopUXEJCa^&#MZDQ3zD<^k$BkcMHE_K7I|G7t2=88xxHd4z{??m7+C*Vx zmVyt(ec0?BxV!yTta~cBr5%0Uxgt8W|Lq@gZm##f2Qqd$RNR0gsPmlC`A##j_hgrd1{ z(#3B~rqMvyMgr6J>)<(YZ`v=`HZ_UxsV=-M4ookAedXCRKjwnUvu6zc_w5yEAQW6= zelhvn%vEp}eB<5L5N4jweSO`JL4{*H0iwOPJ=PbEw2puH^*)-QCmcoM!wQ2>{GJcL z)EzGl&+~tFgL4qx+a{OYc@4WOI)u4oa`f(AFi31JO=A&m6WwKo_4*bXYSG|mTSoya(@1~Gm;Kaxx{PFa zEgjHsB9)V;u-$OxvKXWRogx&zz?y2O?Q%l}-O>oDJRPDz9VZI!mFX%(F~5rfQl-2djfHJQkpyLCCmwLSnTliv&G!E$7Fvlk zEAdzlg0xXyjZ-ZeuqSpr@-5hNqQ*Kya9;ZT?9-)3bFAj-)y<{&2IXkMe0?XLs z%orWTmth%`eG$ozCv>(V%jUBl22~7)rgXN#VUk-<(MEhLvLr6KaF&Mfg>XnLMN(j? WuRy)5ev^V8D3N=l`XBrA%Krc#B9Z9; diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 9f66cf5ce147d080356dd9e6bbfdf277c2dee8fb..881f738d0683ed1135b16f6abefd84c7f4e4edf1 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28Ns47@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kdz7?~IiNYyrZBBRFU2TVt}$kI9a0h7gK6TVtnYKD?UZMD#jaeSA1JJ8Qa;7uAzw9DoK0 zZ#L0xP@upC(PZikp6n~ZyE)$XIJsdLvH4nXGPzz4nJiZ+xcOUXD+ig*kJzjoznWaz zBR01s?qed`<}WGCmZpSZQ^mys7*lNIhbPF}#pF*&wf7?{WSHcx8SqRgbtvF)bhm8&qfY&Pzx z=O!z?PY>W=beilti)ZqwTdJFDXPA)}9bjWN`_7s}X5|J6Q`X537PD{eTY7?`(14io zdsVAASs?-qQ;;bvlj9F^ZPqz#N?tO1D1n%u_h}P(2^8uE-pT%D9Gj>8OX4KUC)di~w0yOP2ru diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 32ba51d9a8a9aa3312a7b97526aec20f61c51885..a606b90732d12dd161f6fa4dc2bda003dd86d838 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NsK7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{9wj%o=2 delta 1137 zcmZ4agL&l-<_*4#h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kd@7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{8e0AWV} diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 793cc7006b2edfd2c0b47bf87d70e6c1238635af..ece65229072a05c10f47dfb8e15e8c4403676549 100644 GIT binary patch delta 122 zcmeBC=~3C>&uEximXwoXR+g=AY;Is_U~H0Xo|>FunPg;`lwxj}oNAh6mSkpWZl0K8 fnP!q|U}|8vxq)#mvk}SK^d~2&uC~;kY8MtZl0uXkd|VaXpm}>Y-Vh1l9Fg-VUlQKVq}qQU}|b)V3K5! fm}F?2Vs4zexq)#mvk}SK^d~2`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}}n_gd`$ delta 1125 zcmeBu&(!;#X+t=pp-Dl0aaFo`lDc}2aq8v{MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0LhEkyb diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index c58d66451165b206fd8e2ac075feee2520bf5209..652ae51f5745c977c1664d7233a2e13383d07402 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYvSyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvH<}#*VTmX8l6GQ+2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 66dc5b741a328ef8626a522b5e9b01cbfb0ab356..9dae31e3b5d94ac6326ed05804419d6f2ac99dfb 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NS+81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0PvMN1poj5 delta 2628 zcmccdp5?}SmJQL2h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEg81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<053=*)+sz$!rtEM zx_(J+0SJ>5eSMo(E5D>H>{&NwYc`OVctEiaiayrOhqR9}kr@s!BjWUXD0Rg_!D6#+2na0qFvnMJ9++wX#eP4M2YQg zezz&Hoh3+*OxrgLgxsLS=F{P`$;-d9HXFtYa*>`)fQ5elWdAhY&HNc6++=FsP$Rhc zOK}xHdD=JYwM280r*(2d5AWu%K2|mgv};UFA=mZ~Uc8$l=T9Zqc98bn%go5N-9L?O z@`rUilTBiSrcW1VRNZW~@ep|lAbWEBdFjbI{ydxa@0mbGQ3Fgva3dz~-^03D{NNh$ z>fh|m@#h!ukQJLC7pQGMeCLw}S=#%j$MZ01;IHMGK0Z_6X*miru2mof~I^h5S delta 2632 zcmaERn&s_jmJNZ7wk8Gn#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;N)#`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OROxD31UD diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b84f36b67892ba3162c417f791d086524acf9a06..2c43680c4f5b47c4785b7699e7bb9d0e16af8250 100644 GIT binary patch delta 2562 zcmex0mF3q|mJNZ7Ho0Xwl1Tsi1U9 zY)=ijN2cwYAB2}uVzXt`H8O3U4D$Eq*m>keT7#a!=D6e#1zM zFptb2Y@57bjo{|!6@BCt8*Q5xtl7Xzy1zF!?h+tF8?f0iadYsAD;lKR2x+kZgX+ac lA#xiIp!A;bjbroS?}8KXXIA>z$VvrB~Hd0i~wduLOK8d delta 2563 zcmex0mF3q|mJNZ7wk8Gn#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;N)#`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q<}OAFVE|uO5)%Lb diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 0247773522022359046e05fb43366f91232adaea..f04e1e1d73e0527b295b6fc72af355031706245b 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28Nrv7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRoE*Izk delta 2506 zcmbRCjb++5mJN}Nh9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KdT7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NR9h6Q*4 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 5544cf6ef9099f2bf217057c0729c9ec83fc8f0d..93f263c9d4950cb96d5e2d2d4450c7007f4b2f8d 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28Nrf7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>i~5$)(xJFh9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KdD7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jh+Nl`; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index f7ae76885ef63397f269b1b3e7c1a39344de866b..338f89769d4bf9b64a046d390051dd75f66bc12a 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5^SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvHJOG8E6RQ9K delta 62 zcmaDV^HgR-Fr%SKL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#><`%|>JOFu06Ey$; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index b1e137ce5f98b9db4e1e8c7bcc7ccf1e64d49139..8f9b05fa8433ea69c1466be00977ea2aaf85d8b5 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28Nrf7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KdD7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~vD-z#0Gm delta 3021 zcmdmUn03!#)(zf_h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KcY7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~s~$srmo_ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 6e5974ad01d195526a102af30dd799e06351c06a..7c87606c8745cf99334804345e342986dd4a949d 100644 GIT binary patch delta 2688 zcmbuA%PT}-7{(jsjAJrJBn#pc8XL`wxtz|_45FA)Y>?!3=28r$j7yDNlCscfd}Ki` z8NUoCRvY-n3dd4{sPbZ0l$9F^S$5ueYY#>+ZA=RK~*(0CJ%b;V*#T@ zG)X3l)g$^mUP-Pp%U;p!@!4d%Y?nl_&nx+@K9kL4HnQ4uE88}3bfoIw%>U-uvtxj* zW#-apM!gEgXCN|6ciJp9gfiOI7h!cntVZByB;U@rm17n;0I_e1=AkUpLG$E*?%h3}pu#^h^WX~aS)~E+@ z{c0AKL|%~BUa>3qjX0INPL-+_W|Hdqext%149e19Jv!QbjH1JJRQClXh3`Pi>J`XL-r5Yl3?Wk delta 2688 zcmbuA-77<39LF0wb1XBFTo9+w+-S3Nj*T)zu~OV12|F`{3#(0J%S%!&G|fXU$jc4N zh0RamN@_Q5T%pL4Yi@)qc{}+FeD?=@`h367@A*B?^|JPQSsQ84SS9a>Z(_jaHe32V zvSR6zddo#o@+eljq)3w0-fNL%t3`6#6?d8Fv59?VR+}ubEfYtFnhvh)-#mM)9Ac}f znRJp;uYvJthz!wt}72hUZj xJvCfDA@dH$m+1X=77Z(83Ex&Zj6kW7jKB2X8q#&>s2XDe!TZ{sR?`Oq~D# diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index a0e52e55fc8acef383dc736b98a341549f57ce30..074709da2d1cac328eb91f57d6feea121a56070b 100644 GIT binary patch delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6KD?w! delta 2967 zcmaF)oaNOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kd@7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6ibsvJ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index dda71744d5c19e3d3eef83cbcc2ad3ce9b8a63e5..a3e8be9d126db51ee3f7d8f14144ada31c88352a 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5^SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvHJOG8E6RQ9K delta 62 zcmaDV^HgR-Fr%SKL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#><`%|>JOFu06Ey$; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index f50a1c658cf1137b14891c4845ed021f0936ce3c..909028a1dfb44d59d19b29b39fe81347dbb6b280 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIk@2Y^4)RkRT!|&-}5mi^8jcLOD#tlBo8>7R$ng=c2-fE|5|S zU&bz~v08;tu+@WmAtEn|t|WI8-7FeG7v020P#4AMyx!#PzWW0{&-eL$pXYfGr?PIY ztedm_%rT++E(V->xU<`(xwY;dzbohuxP4s?U%=(?2YY=^pVRGfoeQ|fdxBc8=Af&r z3}BpTGrZjttzJ-)OBNdil3ZWBB3usT=*`Y)BrA#TZTYhW zYC17t{-RV-At5-D^L*gd@(iknJ2CPU*ayD^q z6tOGOze7cItZzr=QB~(j6LtYP>NvfOs%FnrP_J?S9I9#>e+{ToIdl}g^5#p6Xu7u} z1)y1D^OL;qcmp4d*^DR3N`5_sH2=Shoqk>OAc=1-(K-FQHZyi=of)g43mS}Bkx6Ve z;hj5NLkGr0>@<1nN3A&wEoQ)hQl3*C@FdC%@?kTL-cQ$q_}R3LK0m3TxaLtwWFp%@ zb%`sl7AzpX=Z4BlYYJU?{}A~s$oPyBR9YKG4H)V3zK<&H`y{XkBNQ#Z!}dSIqs4<{ z`<7Lq_$1yIFE9(u|6FRoORN-FX+MM~#k~XU5IVVhxK1QBoL{|MFCIDBF*DTrEYCFU z7OO|tSL|>%_=LeLLiey|O?VTD@+cd|ak1+Z`>+G!6JMrSyI7fEIv9d53OvTvcUFqG bCcH7!{01*3Z?dTt$i4hEY81;4*vR&Ox%@)w delta 3483 zcmbuC-%C?r7{_^QXIjTiY^4)RkRT!|kK5VYP2tr*p&TY+Nz{I*i&5spU0B%A1yX9^ z%h*LVR;v&Swt8?cMC3)$mE>-sn?)n&qMO(V>Y^B(<4xY~yFcLbe4p?4d7k%hDx1d2 zrZL;gy40%^Q#0e;zD{K<;P5J=s^4k1s{yagrFvD>=JG2JhfPs^F0Zf49_Y4@(hMsD z7-z~HZ#P7%7u3lW*+K#7y8)wL%1b)|vK)NDQ++17-Z+8?mxDQavv(HBN=Fa2{Mi9D zog=C3t^}Y=NzP23Yj z?CR*>fg(EAw?m7ls`IP?yMP>ZoL@y%vll9;*SLQHRW*#g22`mWJc(X;^Oa>Z-P_>; z(5$xkN#1k1f%nHO+7o3aeyiS>W`U`No+Ua zSvX!p2iioeGLw0BY8zx@bkZ9`tL*%od$ETH`(#9ZaKue$Zd^FLaPXdcDOwr;yZ2!YNT0BaY zZ&?!*pN_Z13rwcPpDPV`iM0YN9ft6vxOapdLnoIH)rq8n^Xn7!;*pb`GD5x2^Gwrz zv3`Pm#SV9iPiVX(B5wAq32!1%9%h3$F7};cANF8;;>$E^7i*VU1PnoF1s-GTJFknk cCOk3J{1z`JZ?fqY$i4n+)F@UTu%X@m0O;*08vpsJ)00jNG6Sq_o;gB)QC#nbT-QlA|T9 z2O5?mNKlbl%bPg%r3N*M5SsWQl3qk93R!&*lFq6xeZBkxe)sQsu5&-(2^;Q*xz943ZV(0_z6jan>y1N=OXL0R>S%;OCrA@rXtRq#a zPXh-y3Xw?~62D-jrRYLs5Ib^;zVBMffdZ#!z9x)XJ$pCjg4W);G1R*5z<$6=5xay| z^tApQVB`^dinbg&fu1vPq!_h^8~ahK?$|6^)9mpPATT|0x95RdRMheb2`h%C_>h=S zIX<5nFpHsSYVW*?G@M0$`u6}e@hn=^(}!B0U)+aUHJ3ZEmZzz=?+RcgF;t5h{b2zx z{%LpY#(A{eV!jr&TB0IqJw3PzwRXo|A(u`JJ)!NxKakI=7>e_faRaIEXSC3zi{Gp* zp!vtK6&Ov;$=x8z6E8Q?o!3oZZtm#N)56TV<=~?quA$+}7LDAQQBmnv347#mu8bgO zW=8?mJpULpQQJ}_@?VtQ8U>dJ^VlyVsDIPHfiKLgkw=Qy6!yN4b7h8nwuEge1T(Z< z*UJHkk$xF`Q61|-mmpoOj?NuqD@QLm7&0Sb?}|R_X6vJG8(6;VY-A6SH_!i5(oO8W z0qEo36tf&?Wig~sWq_<4rfM4?R~GWtJ*JlDhFLwj(CKQGY#e6|ARld>U|QLcVBZRV E1EYhmw*UYD delta 3789 zcmbuB?MqW(7{+aC}j0LNZP6|eZBkxe)sQsu5&-$1`8FAZz96QFVdw+yG|H$~cXush&g05Sg9CHU3-C=cpk0p?MJQ8FYZUJipv44Zo!8A^Zte)EX>s=5O7O7{*U<1)OIq&C%Bb?I6?^0fo*O~V z?9LLbdHyk^Bmc4u`7g?EO%9iair6nLsDCrCi7(EslScJy8hhU-cy5MtuAFTt1vB`s ztEHfok$MHZzMgfXOOUCN$L0^Q)nk_&44DzNcgLRfu#K^|jjUL5HnE4uo9F*2nP&E0 z1N8B4ia`pVWpSj?+yE(enCk6-Jhzay?lHMEKf)T&h0fH-B<%!i1o>FYBvVR`B>PtS E8$6PfBLDyZ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 1f8e9054de39dc3d896de836b161dec6710de964..f7d951c2786d761c1e28c5dbb51282121746adcd 100644 GIT binary patch delta 4920 zcmb_gTS!v@80OT>xz$!pYhe~4f@Qh0E;}h*2m(bZ73ra=VAD;?8OF?_qO~rRCa(OY z*^PSZrJVYc1MyA~VlOig(=J#-SrSqPA(fqZB?;JKgrkWm8H60Yp zWtBE(v8A%qv_%qA#4THkBzsYDifyymRxFu|?AvS>n<@W{gXD~6!7Ch{DFbdp0-af9F_3AahP}x{pgO56d6@6ni0h@{ za29?y^)&{+$fjL6z*Teeo^EW}Rh+c995Y+R2ht`0vvLI;I-lB?6)Pmy`5Hk3G6Ux|IFa|693pn!TM`KI+%a!7M{#vf>H46I4?{a1^+bIW&J6IE-9L z2wwO!k|b*)CBJM14af|>q18erzZu?yw1n(}c~pb6M9}4+>}g%yWCWLtPa!LqV`!Ot zgB<-|eKlSE+6L_J9|A4?`j(E9@TaK_$idHfpiff<%1(>m;1Bcvpy~Pvet0;1O;JMP zW2;aB+6duIfqInyRfxO}h2Z)k0sP`{1Y`$kNFB_HucXB4eSxn!VFgGcUxnV+Xb?WY zahio|sqb2Ppf*N`#&1i1BT7*FvSWo2+)Idp@*6S&@o~aBq+^tf8vB26A2zGNvo!c0t1c8y1iuBM@(CH?X)?({|Mr&OtOq@=#QcnHJfmB{7BI;!YV%dc*P?kiLK}cn1J0s}PZ$0esyZrz8{_h+%`A#wUPSLeR z$Thild7A1i4x{L*E2t5jrdo4;zNxMz&uXeMnewc)VnIQkXmVI<9J%>*mV76-3Mv3b z-D|5kbH?@=(^rf_X>rOS2-!eBt)4fjI+PfkecD=V+y?f|zM6!oN~Y8KiGCPVj=`(a zE+(RWeZk>G)Zb(T5>d}uQh`3O`B|1^Z0kI>VjP`WVb+szrJ4gdBcM7d%v&+vv54y| z&k|YqW!no3ew2-c<-k>Q_u2t$*)67HY}5kG*F?T)qyPj zRBpj$ZsdWA$Dlfkb|mc7d7Q$)i-w?gr0l@J3-2O5OA?&z_szhS^WejA046E!qe~GLRYhI{R}x3_=f~TS zD~ZCZ@1>B%o=rJVdqD#dLvUoFP{J>ttwLHta>4vsjkH9>*!A`yK z9*$ECuAv8~*N0Ed7v|x&r8}D{sDfn~!YJ+~NVlVVnut#52@U}<1%l5C!uoMM?|WSEp%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeYLaYbY;2N}Xk=lMXkubyk!)aUYGh!N zWRaL;Xq;khoVvM&@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeB73=t&?mOMnev6~Teqj)8RP+J!ULF}r#g3c@X2b^zzz~}uuKfdq#9#`GRRrlLL zm-2MloV4Q8`D;;CXd)WRsM(CAnGwabR3($`G2>=jQ&q##aT&rdv^ZypUw~ac%=&2<;9iw%*R0_ff5&o?Q#oTJOJOh6pO>x9e)9q7{KlT delta 3077 zcmbuA-%C?r7{^)Dp_8Ugb|W+hj13HWcg~qR8JfY+Oj1sap*fVZUlN8nN*n`4kS;QU z@VSg&L?lwMK+qzH?WLMo4bY96n;C%Z7KJVxG@qOR-pyE8JI6n?K zLfZVJ$Ay_l@|wt|!=}h+sUB6;(x#$orlu)+N`%9T(2}~D45{gen&G_ThtobrMsSq& z8;cmpzg&J?>ZP~tIY4acS>9}UgNRLimXBK-8Ud>j9Ooy#-gXF`q~5@heUgpf_a^(8 zwbU%VFmA3Z%>XRNTU36c1} zXs^42)2Q|9@Kx0Mas;+MAH9QwuohpSqT=Ca_W}*}6UDW79q5%E6NkujYw-fFCAI(~ zN%Uwcfm%<^4glp)x&vEEf$K9W+UM?r0if8k5tSd_Mq&`kC0+K@V;N&qz3wK;`8bj% zI8cJ7evZ4gQb<((;Z!O&Q`gQF@-MmA^GSd+IBTR-{*B!4^GfQU xo49M|{{K{99RX&aE)IKmtpeHQ#g+Ktmmws95*K@IatoaQ2EKDK7JKj8{{qp;scZlM diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index f415a0eea87e90f2281e433242af2fea326d289e..fc540b64045651a73e62d7bcf8839dfbad2710d0 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1PSyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvHE~3zMNqL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#>=B-S}xB!lZ6QlqD diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 14b50b1f04f59fe5c399d1e2cc3ef83b40daae1e..3e15e3898110b8b61708725e0c74345cc63b3f84 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$`i^yN delta 1253 zcmdlng>AOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KF*7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$HE?V- diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 3bfb499f701a48855d46c94a9aeeede704f1fe82..e6122dc8920df70f3993a7397ca91be08de007cb 100644 GIT binary patch delta 13100 zcmbuG`BRl;6vyYh3wV*sWp!T~6dl~SfPk0@h>>H6qN13h$YP2pE`fyBeSSWTMYrXFY4GY5>)M=9|B%NeU z@K@YhFSQm7SV^sy$zGXanKG=cb-Ovl3zm-ql$7$WZIO)D@v#-&kUrbW6B3Y|DJ9#w zD>)NsF`IPvJoc$8b)iie^N>%5_ zq0~PYz`0iECZW{t7fnNRJ)1udm0nm@h)N%?NJMk3`*1i)J-ccWN-ZypL#f-=JwvG> zMT1eQVM8cNy;3q2rT$VHgHjJ~jz+1)pEjaY|7{s4wa4csRQmJIrKt4I?pbKAkM`uD zRNC){O08eP)QUqe_5H)}&Kdn}16tvmJQOX{(WCHeDm%U%rQSQW5tVj4dk&T6SHLG- z_W5-v)lzu{T~|XD+{0ZiUPY;;mo}lfR@6L4sZ+0PL#g80eU#e$<}8#NP#2F1OCtc{>ttd6?K@^&6+@ljHb;sXhQEG8RB}#qT2tOnK@ox=EO@0A)Q%v(ykjm9W zMzxw7twptcjMN|1J~q)qRJ+`V!qGY>`cW0iJ>G#*k=rBr($3{w zX${J~@fxj1^ELFK0+idk7i~ecQv#_7xu~<%YIT1ak8&58=?JR*F_iY8bvA`l48Y}r zL39pf)(xiF0MmAf#P{ByFHmluXc~cXO|cY)a&HZ%Sd@F_EgFYvzaB{?sP^V4LSG5E zdNiTWQ+#zS%>(wIhu<_!VJC6lJbE2Cjzqx*b&N<}N`B%+K3xUqHUpLhr7oaY#kgc8#v5g*#UfIb&UV22*uQ*g${%%yWl{i z*FCrdkx|NeWCiTIXvCXJ94ZzUW-6NKI$E|+x3`sixQ%T#ENwnPrlEb9NC#h0+e`od zJXo2bRHD(a^tuk8i1vykELJ=?I#*eX#$YcjOPj@h=zz1=G`?67PQ@Ukg9qnXlrufi zKu(`j3@x^aYq>HA?KhTQyNEXH3s++i- zqy~sAFLgKQ!qO!g_!*4jAz@5UwIezgg%o>oQ-FG~3mCi2!9@&+Rqr}uz@H6Qk9a!e za6L)&bfye0LOQtd@`-9~J7)qBAJ0>bqLC>;w9io=I%CDsYEn1MA;l4bC|1i`Z@_Zq z6I_MvCo}`Q?^Uk>_Ysbh-{v5sgEz0-uiik%g0R~xJEj`MlXA7W^<{V!3`>`+Ud}j( z+CZ(1SaDC)cv+o#8=Y2;oL+e~-B-7UIUARss4dbwIo4nE0e(H$qDnHZE&ZK}COSoH zFS_kjJw<(ymcpx(H8c9!U@sL*!{Fys)6mK_KN z$FjTcpvSGPHof`K8SRJ8AYS}cCyODkN2a62VCm3^K5RG^H|MUl+?f&>gmm!WRS&gh z_$|dYWY|c0U-)95nZpvCEf(?J!$EJrHjEkcavsV8?UfQ~eo|v(zQ? zrRRDxe4*9f)5U{R-CW|)6=&(t3HYml{eyx?$dos7HC`-h>>H8qN13hfZzo$fFvefl2TDiQ5Sv8 z(NZ%VHAix*Bi+#N&Sws_ypSSSu3+rxlk8Wx5vtnCJONIK4z z7_4|TUurArwUnAKlf5#*I$>Z7+g5Y9FDxGgC@FQSeUXf|(eV|2kbb6($0Q;-Q|e6H zj+88<#q83Z<9h&98>L=CiF4D20Ys}k*hv`!QR;xKJ*af)w2`PZf5uBRSJUjVC{@i% zK&gMufpe{zn~YMwpEn83^>kq_Dm}lb7?nO+l7!}3`{5vzdV1M7lv-Y#fKs=tdWKTN zSNB7yhP4qW_42xjDD{`pIFx#DV=PK7`Sb}&4c?N8QagQaLZv@%Ux-R?@0^b2`e0W9 zN~OJlsMPiqOszNoQ{O)b@0{V^)}s}^!2{4T9X<@trm~}3QRrrW&(`Qg=VFi5B z%{;pbrCQHjM%UF)3HNaO3s+ET>BS9bt`*hKQR>9YTTrUFdKaYz-I$J2Lu!YjRPW#S zqSWMD@JSa@w;82o--|(WO?Yq&rEdFsBuXu*KZjDEK7pSR|M<5WrKY@qyD6^mDM;li zqS0W9xk9CXP;Rn2`Jr0PlUAbIZbs^fY9E>CKB`^pPf=){lLDy{;MzQ5?YK zqG&pUGHd(M41j6BMB+RB=?j$GEtUqOTvI$*Q0~n^6pwOGy-lM~?bkzS9jd)CjL=sC zt{P70^AukhNx8uO6LIfS4$Dj25J1dQjC?4tL*L_d6CtQmJU)YrK*Ub5aSFW&iYIXO zbc%t+J7$sU(fpfod)Ud`y@1{Tjw4aDRvjTy7E+*iQAk$+y4`@KL8%)k7CFUa62|M= z6t4YAo5x{pn$1<|? z%7c609@7ml2_9Nb69WLTqjSxbWPy7p`;si*zCmgN_pPEb;4E=gPTG_qThFn38gG)P z__Bt61uEd^TxpPK1jWMqm^_*^P`igziuM3YukLX7U2UNK=;jqtY+(PFbRMolp}*3C zbBxL=I05M}1QFZ2SeVkti^sH4ywFzW--472a06R{m2JRRR_FMy?4y{Pw9r0_vI7o8 zdfkCb&^Ja|gRFpK7Y%+(NkGNo{4_-q9fr#m>iCXQ2)D7_hNaCX$TV~e6X_5jYP#tE zp9f1bm2+q`EWNJ5C!(VwiSre2j-9KlL}PFimZi=7Ky<)4YC5z;5iZ3bq=PpXSd~+q z(LhcfR}4+IiF>&cjrJQ$udc9o+8JdJS`1!)Rxx{nCE)l=N(_2VvRb3C86=AmKh;y* zN>)Qewy(MqbYbZd3;Ybm`H(Q8v)Troi$aQhxFJN{-yV$J?%*bR#jAC$81QF<)I&Zl zIb2IteOxJnn~)Bkym+iy)6$hd#K*a+Q9NM^5v_96`>t5Av>MkDb4YcDAWGEo<{Pk_ z`2<%X=$K|;uiffZ;6B26^4lGRbnxS)d)4dcSP%}IMMqSFcwDYFHopw7f??^B-Nh9L zQ4^|ph$VMajThCbx6ohvS1af8f`HO{yg0+SJpfXkt^f zR-)r>)ki#Bt)=qv6wQpjHaJSf((rkht08%d*mbfa!-BN{mT_%&DI_67avE~DRhtz$xvAb|7B-RV#}juSe3+Vz6|0flf_RZ2OK`l4T*4GX}#Vro& zg=o=)6dT$9q<#*4{NqU%^kR4lNU!EPthu_y906U(Op6bt#oTV;> zFFw~B;R~&vK5pKe=IJ&RU2&EUZGpcUI6f$d#4LFuSKZ#N*t7ZFYX64{%fFdi^ZgHP C*iWed diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 8307383b5d969bb3b64ee271bf1d5c82416110e3..837f84ff346ee248a228e50fccc61b21e7c7d642 100644 GIT binary patch delta 1675 zcmeDE&D8swX+tohO>S9IPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVfuVj%esZyXaeir0@?=9r<;j~Ej~bF}$mD~KL7RUub+D1Ab@Kb&{F6nv z3dzzPJb8kk(q?V$hpgmj-#kGunvp!MlRrqPZ=NQ+k%%eST7x#f-#w2J002}OTmS$7 delta 1676 zcmeDE&D8swX+tohtw}+CaaFo`lDc}2ajJewesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm906NYNKL7v# diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 589471c313ea46dde54a464770253436561ee128..62b182d15e54535455503debb429bda381f837ef 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^1SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW YWtvH<_<9YcP3cG6L_;z4Ga|wEAl*&UT~;WxR0PpOi;6;_;$}AiZD~Q=LqM7a zA_x+#i;h}QBxu1F)Q&I+rmfbXAg%OLy!Idno-8CPcyP8k5i+CCdCs;)l3?i9+P!Lm6K+VuIP%Us+SBcl`y3qNv02ACjztk z%PHE|aG=e7;x<|l^9?xEo{xm=&ZtOZp}|J9B248l;2VVL=H3J{oz6!VaLH+VyemdK zqc4#-9q+p3LoJz;e2^}5lO`NaHZ^Dm6If6#Df&Yt`@?Y=MVFQ3E)_I`TkK9FBHIePQ+ZNoiErt@%(Egprz z02Y4J3%?OVS4$o`4q_iNnfUTB?4D)(ljF_qIj8Vbdnw{$GX<~^H&k8l<1Vyg1?=m6 zxQd0h>vzn+VNZh46S(0?Fj0ivo&+Pa@ZOW4ItLo!d8=<>(`zUphP*C#MB%UCK6!yee6&fnh`%ojv+&&ZxA4JRS1%2CD7Tqb&!y4GK{;vAfDb@ zk%^xWVsF2LAGwkl#toCLxP8o!>>u#6=T$g?jjtJs|KNN(u7gF!_6QMjuLME1zDuYe zx4~jub7qJ84(!(vVHC4|oGY+>aiJJ?AIcxhG+7=JL}s2ARuK1qBVb(c0&(y-o3bln LfCVoKTW$XV90Un7 delta 3290 zcmbuB&1(}u7>9YcP3cG6L_;z4Ga|wEAl>Y4(nKhh)OTTYY&3pNg+|egR{*c=Y8`BJkRg9GxN@DVXdpM z*7eMQkey9L`X{xX(@gOHWM&w zw3_B4ZM%A$CvKoMx!6WSt%ZQk>JQ3X^^LWY6@DJ_1HFNtuW#3h>3kuuNJ}=X%z(=K zgHMS#&kS61k(SI(-pv;WSqBa0>yeCNU3?=o;q=wgic%COP7gc zZ21+9;g_++iqIcFDsXe|d^I9q}o;f87ozTbpissO*- zhDj>CQNM2%_O>MOJ%B4M39@C_+LGYx9K3ExP@jhw;dyIrVaIc*5Qe-dxX0nI)XFJ5 zk6;kzu7o!#@QLu~*!4?Hz%JZVg-*iHk!>)U@)bO6z7AgYr~(N*xe5xgjfukbk?{03 zie!I)4_|%*H*qCR6o#p8+CG{r{|DUoxDJP@@eM=yADrr?b;z-c+oS-yRRJ%qZjoxl zZOEa}9N*-;1OD76U7)O=;7YhdlgfVQq2j?b*vhyhW9pdnmT(W)0u+KLgo7v8v{jQm K=shR>>iG}FxA3+A diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index f2897356a826c202b681995631c3bc9e3a255438..83541b0e595f55527feb20f6bf21d0f20c509b8c 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^9bv3`iR#h%taBMUe<1DllL`5g}DujH1hk ziCUI%mYx)CSi}lS>vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~7K5jnZm?5OOh znCR#%TTEVLuElDJuy1AkfT}t;&EYRw449PH<$C$sFKfk^++O7$;OO*P3etsqh@;#0 zM@Y4tc~|+LmEgcb9CARR?7rMl9oz-T?A5{R?50(UW9sl2EMJ#AeB?YVXP4aagH~*@ z3LN{!ZbhXZ|FF-?{Ys0HWjc~0+c9dUJvnl?<8sU&5prC9w%wATI3~mwBXpPiHjuJQ z>1C(H-+Q1|XQe>uRgQsK_sx*B)UkJQ3ewnd`K6A^tTjkeJEf;=6Hux>Zyi8&#O0qy ziH>E^=5^+Ie8oW^Si4iIme^2f(5eA6*ZMX2D7B?@CQ3c`I-F}uSt?3x*;tI`diM=D z;Ky5jg;J+)n}g;$?U%2h)Yu)+VC3xK_?>Aeb>^-|Xs-X{vr+1`%E>6Te(y?@`ejud zO8raqT$FnDH(#SvTkUF;y1C9DmBt>bK&3xFnvdqX{rHaEZh*?emaw&s^|wn=?7q9R0jxfnR`#4isjL^i>h65~ zJCr)3FBZ-9+5TpfdSD;}q|#x=z5=lnr7(0%q)8gPg>wIFWN1g#o*KlE*BLQm(oz$f zhn6|d%nT?uD43biQhgS}_MqC35iAVVc80P6R9i8MMWJ;r8pAqJZr?bz1bfXXCFL1b ziE@)HtOCt<(P#D7U>8v4qXd=) zFrAkl^(Qgp0ZP}7d714)xh2VL0h;fc6lO)a^HW(W%AKFaUPQHt8EhY_<%<~dxq!q> z)r&IE{JQ=U0&T*Eel z4n zXB?@u9=Z_wQ_CJ!`_l4M(cHd@I$j;MS z@DIK07LfcCt&yML%*>~4QBvuhhwT0!)N6xL@}eP%)QL6%35OTp7ECfpXVGm;I|HS5 zU-uIyQN#ye#EWT6xRj2F^|oy<5q%RnQL@5q+iI0=0>hAN!_Sx^y#ajH>gxHcFG>Ei zaF+BK#tVmU;KUcEO79?b*LRE%8);L9^a|oIr&LO#>?~;y(x|$)JXfj&jye+JO~}3! zx>u>NOuCHRZ+gTRwn>N3bh!}w(cm4@FM{0PoV@3tl*frP6JM7lrBZo~^kX0p5;oSc z0N&Xy^xJ0XZKPB5UK3((`s52~3hF>x+N63QXV)HYyedueLldv~my`%!X+j)GD<4WZ z77)+V#>-bgExjKu&m9bii&w}C$o>;~C~~an;^?XJu@NAd-^q}D`1%EMCul&z;J67B z+bFV79t7k~BJUN*^s3jZpj;jcK)Eg+_NJT?3Z$!V%~ub|zI>ntDz<(w2!jUXP}Av0 zV+`I@e_Fl|kDa_>73y1}{baOhLn7g>P+XTgPoH(!<|nJK45j(!?l4-w5^vh>MD zZ;u=<%7zRp=s+Td`5Gv8mNS&<;tZ+Jc;H~9iXuY;a?d|m5F-~3!PNgVL+M0M0&&{- za?>e;7Y*BQX!1Cu|9Ne#GmH!OATDo;{oK%t-iUh7bKww59j%7O;b0(S={1zW6%pb< zO6W7(Lx%!a7Igy#=+Ra!F=R?gP9k8Zg`1m zhA9>3NkAWtQLOOt2ypOIAAI zzD)0ze8@as!EY4Z;YgZNIl=v{x$Bsk%9}SUEtr(XZ&7NKFfA`=RR(eKY-^(8&y?4I z0y={y;c^9--}J=0?#xsYyz4uc&EQ;Qt^*R z+X7V|bb6xUqg5NQ&aU?pA@(D4xatSI)zKWQx&e7Q`LtJENQ<6Rrv$s-TP*2Cnvm(+!D&Wo<7NiaFBP2CBTE8Eo;m^|{Diu_E&Rqdsn zD)Qa7OFa9Ax&hAl^)9spxG`Mhckigz;etinQ<2|3xX6besP_RfiQXO$r+e^`x*xde z_#9bVPTh}HWH2QmUIkng&N5~0?opN97gU87nY53=w7)Ys9jIMGBcV~FG#OYhJq>b< z)~XP4T!v=jH!a#V;OcN{DRYwcZ(t%9e;>5+qc$y!-+f*SC-$5M{!i8ALc(PykpK6> z2;fc0+ECZm#icK69{`K-eLoU@GmP$6mPBQ}fvL|)CsEXOpEGvsw+4Ey_CYtkX)@<`qOKwbbw8fSk6=%t|Sfb)`%~ora z*^(2Noii!g78||Pv6b}$s_M{mXP|7>VNzbV)F;q!Szm(59aVur&Q70vkS^pyoZbFE zLaOD;yDIRk1P31Gl!J<7&*jeQ&@Mpcs19A{Fs@ddQ-)8*@^#B2N6y1?cFWB_XvG$* z(7A8yR#f`&5Bq#Pue2yxmNUiDj#0B5DVE{R%ai|zkmCz-9OgvDIU%70p}Xa`ft1}! z9|tA<-V3!lD-}|&b`H$CZ-S(D=ibGsNMpwr*qxQxYmlaPNl)1(pj1cRI)LhoFF219 zoy(xj>&o-^ii1F~4wqCdwV~3G)dOg*^=k@HYKwg)N1Sc2wy_YFAU z$6J1dQm1d5gXTK*m#?7IX*;07$koFMJJV6>%w3PrT>r^uqtt7a(I~Zk?@E;VWmP;% z{Y&*+lzR3zU!zo8?Q1A?b6p@Ropz`KmHzx_0h;Uf<8PwW`V%3jwCn?zdi*3zEj)9rEfQ1LZzk__@*;`u@|Lgv|d5i^{X%89yYeO zq14?SwP>!luKx$6R@^v@Qg3#315_TdgspY1zimgc`|i#Lu-a%^*>eh|vR?SAyYuz$ zQ0k1nX=tv`_BW%{0|S{Ll@2rZ6^Nx6g`s02Md{fsl>27`Lp!SW)F6hu&WIV4@{MdB zTIM_x)1lmuP-a3)^;sC(gKEP@un1J!8O{b!ZN(@SgVwot4C_F-edE{?>@~+u$}_AI zIv!dMjX)F!p&QE7AqS~ZPwhz_vMGW~|Kw_rq zMVV)E*-BvV@tzH=kRK{$L3A~r#d_lqMh(kY66!!AhM%HhR{~*lWEFeLJBN*H*k;h7 zm}=ItVT$L^;3QUHE%0@NYvpp^-^vyPw-c`(CC%fDcd!utsDfSdJZQ~;guyu#6(8V? zBem8-7vex_*~5zcKs1DR2XIcd?zNf;3qgU@u^#sG`5TBV!7Fy!9wGvcH-fUjEJJ%9BjDUcS< zk{-i&;qVQd_`)>l9i;BsjuB!5ZOW8hK^*4TrF6>4mi8cxs)@^&N|nG-M?$;_*_T51 zDixJUmy!ETi}=De=@6PO7vcaKyhHj$i07M=_Z*b+IB{m=>$0UZDzA}#3#KE-kp_FR| z@jQLJdl@MHSw@F<U2SW=dO-H)12s^wwSz$zG$4nXMn5`P z=S%gc<@@m1sX0vhNbW#4IM*BweJcAS3-JFexNz|0%d#aC<+jMNPowK0q8Uu)KH1>w zmBU3@muUqZNW?H-4~kvo45zwyUD`8VI2fp+Sl58u^G_DUz=cC7_5Vy~pXf~>E*pPt zJf-uYVf%GWUWfEQudQ{uagkoc| zN(Fin(1&9bE4(~H97N@j%6ec*caL3fO;t{!cxp&c-b2SOx;I-H0r!It52p80ln%Hr zGx{YzGR;@;8%1+ClCD%v@O*3TI;N)a=FLhACZ+LPl-guW%L`kTL0mlB8mZ(nWff3B zSMVfUt^o6!mU#Ca#n&Cd-@BAeKoe*Y2$x;JNpRwrx&!EVfy|&rMSTeG^cRgP{_$vA zuARU45d6XBQ9KN{3n>KI^IOo^9)KcKaaFgG?qh5y#HtC*<{Pw|3KKwwv50FXp_INnmgOAkxz*WcR z$ol2f{a8f?Qxf9Uz*XTYQ`YVtRoQ((RcMh>|1p^McP6KU^_S2{Xw)dZ3@n(I202IT zs}OR0rrySHn)TO!tHY(GtSJ4zfr(uFebCB}+Vm0p?(_OcV$bQp|EaoNNVx0-^8a2K zLA)tNKh*tovHfNJ2f$){-;adf41?#DB~e*lVCr+xNfdS6IM10+B2S{fZP&+4#|<)g uYM9S1%Dbpf1Remt3nS}>K6a89VUP&pL$4w@`K(V~3=}~+iN9`tYx*x6D(kKQ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 37797b4400b322e12363185070f18d4067db59f7..dc5a88bf9d7c90b1524043e15b45cfa41165415a 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NrbG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7IE*j- delta 1022 zcmX>#f$7u)rVXi#h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kd9G4e4Qkg9F+LPniU%z`XrX`IAtGx=;A&*ZJ_g=FftoZKLzy7>V| zGb;rKXl_>IuO`pylbAs+(Apd=IE{${7iewXAQH$-kpTxJw8=JLbAt>Y8wIutZ8lX- zq9g!?HruIY8ItXS3&H}MeZv(5C^A4O!-4!TI3O*xnK56JgKQUo47gby!$+n8Hk;43 H)iMGAT!|_b diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index f3cb862b54df0fc43d34637677dc60196bff0276..491b01343026bd0eb77cf192ab40dd2decc1e020 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#KvD#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3hT&h& delta 1139 zcmeBrz}oeIb%Qsfp-Dl0aaFo`lDc}2aq8q6#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3hVEB` diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index c24bae8533af6b852dacf685642416463447a864..bc4ddc49c87f5ebe7d234b2925720037c6b1ad36 100644 GIT binary patch delta 117 zcmdm@yhV9~Kciu8SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW YWtvH<_5-YW-_$duvYK@03K2y`v3p{ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 23271a22ad09ee820bcff0cd0746aa1d27c9b6cc..c1fe4f190355c2c3209e66effc0a84df0ff189b5 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NrbF*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kd9F)}e4kg9F+LPm|vADC{Fr*rZLCX31OUObc2SqsUt+JNm43t2iR n8?eQ1Udg?iY~4PaIRsCzk!!cl<`Ri$L-KS318sA>S1}_1Mx&8X diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index a6bf3a212e66ff18a11a33513f0ae1461159fea3..17ccba0e4b5c49cb9ec67d222d6fec544778b97d 100644 GIT binary patch delta 1690 zcmaDdi}lGY)(z2&hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NS+7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6-Ob@jH delta 1690 zcmaDdi}lGY)(z2&h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEg7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi62@dC{N diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index a69e149f2d9cb731277cea05dce7fb0bdeccb619..03bf9d788e7c8dca32a281b73a073a7a3d190ec3 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NqwFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KcUFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$r2y79L70EXUpl^_gz;a+HSd+j!luh3oOE^^rIF0W%#fzMiKwdHy1 zJdJscbxm76Ec|^IyF(t>VisXxXBE##_(CvLJ$;{=*m+$8hVwH??K%u)edY}QE~Ns@^l@xR5edZzD*}?;pPJqrbxP_n2n3o6zZ)VmC6K|P%5bL_ayQgo*>Q?xhnN?WL z3jZ{FIqEtzrwepFzh*v2^6}Pw}IK>VW$DWxE;>fNjom!uwKygT)o{^OCk{Aj-0RQ+fJj zn*noXySfZ)sPijE^IcujCtxV6f28M2?$u+<>yP3U58kK8?#>$q?;x%XgXLVjP8=7z zBWoBe<+cwyG1pR_^YILFC~B?+U!V?a=#+0ufn5--_4)TLXsz8pegUp(ZvqLbuT`2W zS}92e%!O1qVg=SV>|D#*a>t2R1>~(h4t`ZJIhTg<>fTzCtoHbcP8=^IN>ZFEdU2_W zKw~3&F`6Y!^i-40rZ}^#i-Q*(0kRNzjEt5c1tzl3X4%#{@(Q_4{wQS$VPafUP&Cpmo?HuD>J!R7S{! znhDNWbd?R_@Bn!_7n?D^YBJODovE}H*sCLL&;(AUQk}?~NXxQfk0Io^J^>qWR2182 z`3%6ccQth<$Ihve3yS+rnmH|YSUYD$?OvJ=R2yYeTWHSY*nPFo8`$EaTrr?h2Vg!X R@GwG4v6oPlkiWyl^fwu7F7N;V delta 5860 zcmb`L-%pcQ9L94F6f1>x#YtOgf;gK+7p0{y3KuKHgm^Kx1O&!#+PsBsp-fw7Kt^Hn zWfT0hnC2MYG)A(;c(F->+etVqx(IsXk8F!s7GowM5H&H5%?q}RWn(*UF_7)9Pxl9W zp6B^~&-eVuxu3G!PgyRjeqWja@KxVK_gZ zH)g_6He+}2Cj~uV@HD<;ZKjwzpRq6C&Q9L>;%U%X26ysvj#qM_-~-ItWaC2{MzF4H z{K}?2tZt1z+T4QGtnpu8-h;X>Y?%aIFTA-8B>7tJ0Tgxl&!VNOl?6G_RA{`kx*3~@ z4sNUIv_q~P%vNLKu6h?%ZyIOY8m(-$VH^)26`CP>fP0&cVY^V{k=7xsYK@P+eI1xB zo(x(5OkNKfe)f^%`iPH-);U z`gFjRtBG9z#*DDx51>oPKqs`DXq~kmzmEn^jQCO4*zq{(dhyh2z&7V)$&U(vgGEh5 zc+KcW5M`y|4ZQf0&w@F#!AT2SnD`B&`QYTH7ci8?zBBV(w_@1xM$&lGou|c_yYsI3 z8;EPyd;=E`bJt|<$hzk1xbNqF%(ae}{c;{T6b)Bp5$dpkmi)dO*ahiY@BMKIt@X;E ze*>=ibPnm&AL`U2hAGJh%!O1q;RV(<8GMV4de(>s3VCeKg5Mh;pA})ee&is@*QX-H zBtEGpT3(haX7NP}fyPGmVkJwFm}({O*|N;CFAH9bcajR^F|tyI6j;Ze*=1X!yTK zXC6byalH#R;G_unXv0f@>2xCvgVeP#bJ#d%#la)A7^pVQ77o#}^_lw` eq4%@e9Ud{K(`vwcRp8qct;1eIEkgbd2k1XO5d&rb diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index e08e5da5701196494621230c29937f3bdda777e0..7f893bbcddfc402eeb5dadbd3b7ed18a42ff8831 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#Ku{j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl^#%$aG delta 1199 zcmey>$@Hs}X+u1tp-Dl0aaFo`lDc}2aq8p=j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmoEMueq diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 1764b6e2cf225b98ef7a500f16cef17123878b67..337f64aaac3b7bfb8029bac254db50309a158d64 100644 GIT binary patch delta 122 zcmX?Va@1slKciu8SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW fWtvH<_5;oJVqpI)1Ry$Aia48-&$?}{mUdT diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 82dc1e40edbc9d7116d17a9d05635e9c0500dfad..aaa41a61a44b060a4631232107d5dd5d2043cddd 100644 GIT binary patch delta 1927 zcmbRJif#5Qwhe)dHo0X~Gb@NtX89&E+nhWcYvcM^{N*(rujX$jcZz`CO6Q=557hWLS&PKcm!0k39Qh zCd(;GP2O6pzInzHKQi3_He++|vUq3m+>kzb!wdG!-LI6$h;&dGK=k{3I3h#3{o8^1 xf3lOV4`lD+?R;X4>T%?0uG#*mgfW!N5U<((q>PcphIE^u^&bEBrp=5q83FupRi^*| delta 1928 zcmbRJif#5Qwhe)dwk8Gn#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;N)#`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~w)MNeTb} diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 1f1cdb11e77aa58cda85437560e450b8ca31c6d5..0ca5f4b4f1b9d25d3e02b802ea5b0533fa70ba4c 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#K#F#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0M9c%1poj5 delta 1023 zcmZo!!_=~dX@fVTp-Dl0aaFo`lDc}2aq8w8#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ06`}0u kYW*hWCr*~u)%*mT?RlQ>d0PMz~DgXcg delta 527 zcmX@{m+{13#tq(#h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KcY7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0H?2<1ONa4 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index a24bf1a409ee0f7d60bae983f85ec613f67b39d9..9fae2d991226f09ef2fffd642fe3660299e44dd3 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NUC81IpxD_+!P^F^jPg=ATrGOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KF*81IpxD_+!P^F^jPg=ATrGHo0X-4ESjQo=q zuojY~y=(IsHa#}7wDxV@$y-UDqx&|0?bm81E!?@&B_X;WY`GS8ljv+uB|PqUF6z&PU9vsSxKRMv%hW_c@8e$ z?5lr3ge+ULC*N}x+`P-hm^_;y+Gn|a*Cx|;KQZ3TR>dad+78k#UK%G)rtR~k**8l} zRU+4RkoLRNbY;o3yoZJqq#x!~m4ZbF-%y%bR* N%l548z#@JgBLLuo3&8*Y delta 1705 zcmdlyhh_5|mJP*>wk8Gn#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;N)#`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dcR>|5E?} diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6fb8d6d3f47a0a30af9e27c4253868503f1c0592..b6876da626f725a1bc04a3d16fbc77415762c73e 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaH|PH*HT99GHG3=NSd)B8JRdhN@0URk!>LiC3B)= zOBOQtiZ^?~E!$YgUfA4aIm2KyPL{a@f;u$8sep;`2N4qIEQt`mEpvas!yoWGpXZ!= z&-vc8V~fVIMdS5+W^ZWr)%$as_pWz1Z7!Q5r^;Df<#+kA?LNQLURAxpm+Q-QIh~b$ zS4~c}ZG+9Ow6F<4HEqq4!(7KPsR-t3Oo~U_1j%cqSC?;rqz%%RxE1Nrw6#H|ByYv) z4M=_3PZ%{I+gEQvsWllTDD{oCI{>PjwhjR@W!f5$uFPRn`r&iksC2~Eib{WWTtubM zIIB_Vvm4vdGcDL80IIaOBLG?WOmDs9MWyGq>__Vyd}TXIJzvlUP-T&K1|@!5=m3b} z?q1lw52fBLhQ1Y{IX$%lxkcf?-|XB5)GCWgr_egb%PIh3IP6$OB}yIhb)nQH|1Ole zu)71Lrq^WyRC&1mK1zHT@BqZ{!F<$sUyo9|nh&7V3oW%M^~&1=D0QK&6Qx=Y ze+p2grF{@3`a5<5MD;q<$(kbtTIekpkcFMEqE!3w2dhBpm7X4q8jw?>1MRT()B;NF z?JYy8C(hnNsq^RRQ0hY8C6v0kAEtUQ_oLMAt1h(Gy6bUgc+pU))=HGsCx>R zE1sa1?l4vsk9mkQUS^~-iR@SG?A&1kp&DpOlfk}Ny^i-pTN%wa)8(tI3G4r|{bI;?LU(2GU~*V0lBe*rDxiOG$P z{6rLXt(1_-XNBBAqXqmRxVJ(kq?)8e!XXS){5n5|^9@v5&bv|l_`zrjRPhLKG?b7& z=;ue1!TPffrHbeKcpPQC%csyHR1@m_fae*o5VWa_A4Lza^L;bDe46{wWsuaz>p-nI zBDqO)L~=7l4{#kgOr*M80<}us$pji2;t#>i9Mo8=d*_;a4e2$gQ3uYc#C01=*8k!n>BW>I|DDIrPgMYqSV*c?*gcD);a>nlv%4^Zps`*r5`-oi%Q3A?Wpu;`vp|` zR9+1#eP(kfdZvY21VEJ*R|Fsno$1XNJgD^SwpO&x;g@!z)N_R$096)y=1}6dMRtG~ z>hAfS`%&tR66jkIoYPagkXsZA{LStiK&`U4YzD1!vb+)?hQdx%dQs{`RS!yC@$EsW zOLbi+HN7DRpvuFI_fX;kzZ)Qi4(7X-Vw8HTbpuN6dGi2DJ>OQ3QZK(Xgi@C}x>2h2 z@TUM(S~`bOqOYqCAgb4)LDn8A)Ix7Tzbxv08Kq_)zrO~gUheC|sD3#ky3h`5Pc5O; z{{C{5dg9}oD0T5{14>;QxQJ4>4#HH=r9qV1du0<^Ys0m_Q0c$21(g~JzQgX33WQo* z)-0W)CnKPtE0vXF@9HtBQaPrTP2=&gkldxbJ`*jqbM@G^Sd}mSHf09swsi*S4(Oi1 z<%&C?rQ3{^$73GijE5QNOd|UgJ3Cj%K&S><(qynN)`k2@<2UST=dzHo{EO~l@59!pat%xr?$I_pl3C0vD+UQ3=oixRmh%GhMpETCo1F>Q75H zh)(Ci-%KYKeqhleYJr*Q{$18@#7YrCD^jiWabXxJzZ4s(ZJwFX*$Acxnut9C^=hXt zFax&uUBP-%Mf*IniXR`cfAE@8sUpBi!$_gKk;&JG(~rJP{-n5bm&FRTAA0(O@fdIm zQgbAK8oaAQ)h1AinV$mPz=sp7c-9!DAP@ENoS)r7j==S~9_g0}SVqv!#4zh|ZwPjer-43Y+T1E>{8 zBsYn!NN%R+A+7_5iBy-1pjL67OrVhw{s7#}A-&^EejVfoUvU;uKh0yP{SI#e&p+fs zd++fMAcpYH@ltA>=3fClAXPjGK-FJuR$s8<&qW?1RJw(}{+)jUM0jjPs#PPHMd=?> zKaPbwp5`C&tLUdiHKC*xz7BnaW?D4K;+9DRzB5SGe*|V1%W0aV)lu{&YO=sKlIn6S O5n5tSQvVPBUjHB36m?Gk diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 6f9bb9cda3a905cb4403d9ce2eacc82954137333..86c5163839392bc1a781c4587805d65e68ecc449 100644 GIT binary patch delta 1782 zcmcb6gz4@PrVYW2Ho0Xu!F=)W%4@_R0Gf z@K656Qb@K5A)7hbLfFXG9&J^!w%uYR@ULIZjKGmF$$}xS7qMkdG4W_GaW} zlMjAAo3FW^;ULfU%^&>ElJ9TR%?_bEn8~vlnAS}vJA?{v?u(p7i3?W8oA6NJg4OZD zn@e-@$#;R?=7b`77P4KSH#wn5WHW#Hb@G#s-eiStxy=o2DipY4vqHCuDA}IS-MoLn GJVpS$EFW$F delta 1783 zcmcb6gz4@PrVYW2wk8Gn#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;N)#`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V@40EoaNDgXcg delta 117 zcmaE(_C{@kH>06RL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ YVv?b8in(#><{HMuY-DH);E>@409LpnJ^%m! diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index bff5490418c75c20396c75378bd398cc37c02b8e..bc637d39f33adfb7cfd613128b7ebfd9f1a58c17 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+d5^fZQ*CdJMYa8t8; z8OgMJS$E-j4NgkC9>IPx-w;K~{Uq5^#ugk83(#^i`{N$mDN`heDON|QEJfAmq%6gyu^w59@coc1MPyu+rMONy za6`HMI*VzS7p$b8zQK(cOHZ8A;-q9HRZQBcl`MWPBhRMOI2X2(szm~@(I;74Wck^z zr~M`zFi|okw7wVO?Aq%V#Qx5$72&}=@6PFw2$to2G?|2pEcT@qxfq#cc^DTXeloRI zL{6-JMZya;d+=?x5GD7~vz4GH*-Z^w__2s<|9=l1JN~;3H+wrCEW6oyNUjbYeQAbn zq(|BYHlmLm;2#gd4DKQLs4%JHl~rKH?ZUjlx&?-Dn=o%+ItIvO${Va$;R2F?iyrhK z%je@Y@CkYDPVe<60hxwAZc*T|)ZtehfDFNW+oMe|AVqN34R(nkte~A<$RYD-o?zgSc{snIZP-)-Ny856wFa-cIGl@ZqqU`af?`k6!Su? z5KeF`L?w`}vcUn*m6VkbSYSoug$Ug&w2KB^SftQ#uI_!$AMiZq^Su{){fZeSIRMqb8P@GP?q6Xc8pv@6-Il?Rsw={c~ zk%eXtYtP%L!bxe{V>n0_?NOB6M-mOiY{~H`2Q4?UKkkA367r(@@B46amS`x^?p?|j znt$f+T_!Hd&)oh}T&;fg;o{s;+^Iw#4Wg7jk{s6)C0@*Qu?g%I3k#;i!-$Cx9s5UM zWUfRMdCl1(jI8y}Ia!L@L9Z-D<=x}56sch?TBNrnxtq$R0#78FA z^U0~yS0ubpvxnbi^H6dxJzowwlHSs=r60?<_W$?LvXj4?aI?4T!O~leN95|z(w9bP zM|vbJU?IBLA^!0&%-|k^mkN^_US0ua+%C)-Y?xpOw+XWbB_{xxOj(09Gh9LvaM6PZ zvV1;P1)q@T?)F}H8jxw|xVVHs`pKpHtfVwsfj z_w}%e%MsCnN+=~w)Ix7J!doOn#$$cDlh>Vv6)cFTL{F`L(DKO^FyIn3v()rlxLn7D zqn8%ipok9ifu3x>>gO|E(1zX7J5F3Ub>l)Zi!wC`8ZM%eVz*-kL%0m%!ZPzh4D{H2 d$R{-^GhG>l7x-sl;KFFpfHLrK@zn(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%g634H(n delta 1709 zcmX@x#dWreYeO`np-Dl0aaFo`lDc}2aq8qA#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y&@){DuGk diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 1e1e5ddf0a4547b56edf26db797e308f504b9380..fd10612d873d2352226310c756e6c157acaaf024 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#K#lMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgS1NZnyvd delta 1200 zcmX@z%W}GxWrHuHp-Dl0aaFo`lDc}2aq8weMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgT*eWq<$x diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 3ee160d043097bd7357354db6745469e3dfb38a8..e4d746c17eb703934b18a45f779da15658721954 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#K#FMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFc}2aq8w8Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~ve{<(T delta 760 zcmaF+p6Ts-rVZ|lh9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kbt7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v9+ly` diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 106910f8e710d7a85b113c7e814a4b272a9e7e2e..dafb0be13cd126f1a017e960d6b4b90fa420f6a2 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NSs7&nrk%Yi3o@&=|wOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEQ7&nrk%Yi3o@&=|wyg_K&uEximXwoXR+g=AY;Is_U~H0Xo|>FunPg;`lwxj}oNAh6mSkpWZl0K8 XnP!q|U}|8vc>-fEIokY~_i+ONGaDlU delta 117 zcmeB?>yg_K&uC~;kY8MtZl0uXkd|VaXpm}>Y-Vh1l9Fg-VUlQKVq}qQU}|b)V3K5! Xm}F?2Vs4zec>-fEIokY~_i+ON0TUt? diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 177a84445e91384bea7f62283cf43a8131225aae..a91a8175a71e310ab3f1df3c9fe11d5a650aa1b3 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NR>7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^06BXIDF6Tf delta 1704 zcmdlyiF5NL&JFI2h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KDl7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0DZ6fG5`Po diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 12d2c808157455b07c6ddda66a6b9f3c1bd935c9..a04093a4d75f0bb2d39ef543e39b8911c9f812ac 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~#l$uFielo<=QSpTVUk$jDl5&MJ5t8d%*I!lg%Z+LS6Nt$ z%u1;jr(`E3J6j9Wh^6weuu`u41@rs?zvp?+dpe!X1Iy-tO7vpM7^TiiB-LmAD z+@6RWjc9(=6yYR{Z81!G(F`l3m7$v z*CDw^6~*5r5Z$1ws$FEg*}w+4=snPt59<`(O z9&J5sTR~ehj$^Pj)g^(F-ds_X7Ws-$deij=P|5~^dC+r9(qrE>(5PnvNg5p-Er42M z_KpL7loPel8^XXJMM)mo06P;g7c4C~iUtdZws&Bv6k@a(@9plEh$V48rvsvt_ zl>dOCW;SC3CpZeRMk8crm3+E~-C*B>!p)TY8gPQX1t#iS=}NAsOe@AhxET_*=5G1J z8cSE_?hMmKc-cN%Qgg@V^Hg+4cZ-o>LV+>dWA1+7n|*-0|4ZU#67R<*;bKtu0@rSs Lww_;%36s6QHV^wv delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQA}KO?{G6A43oqHS6S)anL$yMG$mhU7D`B0U1ec0 zGApHCoRXcC>})MeBbLg?!b-XF7tHeq{GR7M@9A_l4;-5Zj))n$?np(i`;+pp^9a)1c=TrN_=|pwUeFqBPJmkO8&M zlH4D0fHW|AI1EvZrsJ`EjGEK&YC69dX~H;dzrN&R)ZBh8C+Fu*1IDc(k%`>zViVX^ zY5xJeHEg^DoZu+Hs;q#E74ormc7uHj8n;u@OTh^`XP9Vi#S6J+uuwJ@!tD^tqZM9Z{2^m&jyS@AFZ}tK1{x6B!NxTc2go}RR3tYQp M+X{X$D2#Oc0xT-%-2eap diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 4265e3762f5aa0a4d8f4568cd9c16a5ed15bc293..c793c468eb547a99b411c2fce3444105915ac917 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+m|K>VlVVnut#52@U}<1%l5C!uoMM?|WSEpKByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQW+S6nJ delta 1486 zcmZo@W@~6>+u+M+Xi|`0T$OH~q;HUxVwz}>YLaYbY;2N}Xk=lMXkubyk!)aUYGh!N zWRaL;Xq;khoI1IV@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WO|fXGw; diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 60201648107a7d9dabcdbd18175b86b43194b2e0..5b0fb1e32a19b218e9e3ab6eb55a102bf23e74e5 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NR>7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DJ=|tY delta 2066 zcmZ4ggKhl}whiu#h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KDl7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Ddfiuy diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index d38f3dea0e38e4af30b079870195dbb6b45ddf63..4424ca6d204697b6793339f56ec15ca5e8d98818 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5^SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW cWtvHR delta 120 zcmbOwJ4<#$Fr%SKL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ eVv?b8in(#><`%|wMgvl{P3~tD+Z@R3$qfK$+ahxS diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index ec885c63ef57040fb2b86f34ecca843f676956bc..928c64d9dbc4ad406103c091a1f530b1cd6308b5 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tUQxChoO8*11+$|TNl!C9JQKetnot8gCh1| z23jNSVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bsxKj8O$YpuQZT6-_dWG~EQ zKWI{1p&tLSfV(GHRBY%Ty||>sXl)62{99fAfZ=LsE%m$oZjWI!2Rv;ht$L~M5+lkt z0E;@}<-EF4wMUn&w}~vv{sQyX|1`c7c0ssTBscw1LDc6;WPs?n;dFp#Rpnu<+}`NL zUT1W;(kAxq(lX7v^AkR{n?Eg5^M%d3bhCK@d0eR&+9C3Y;C;pt2n~zS;1~l@I@f`s z)5Fc!NrlDq`8L#bc9c+b&7}zx?T!TjR5;>40ZcYhSlqpCL(#e$9{^M|--aD+cU}XI z={!%}JAigkbmMx1?u`^4j$VTiCk?19Q`7D@y`rBU4Muk(Aqz1&5>Yp)$6T3i8-n zJP3`h{Y4^wC@civYb%@~!*b zV!mRjH*z;w+gK1d^Ay~~C%c(Ot2>z!7`SN#k_tf^5c~5SbthfzW8=UI=P8&=*iP>U zSYtL||L1$Lkv?8v{rVyl3duUf2CK{~kj$bV%)X9ZI@JI&iT@_fW#V@Fv{v<@^&|N` S%iCf;aXGHaN&d#;8NUIMuI>Q< delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tUTi!9ie1{{vYhf3K>%FAJI z@gOw1lFR%W7)0lo#`WzijYdkDiruNbrW7G5at*jxBpY=bFhP>-8KAj376E#jZ{!}bx3D(g%#&~fpX^~8t?puOVBn?{NGh~BfY_gBsXORu9~%c&I8VY{!cKZW z!0Iyr`#;}{jr8#X>(>{dkWcn0Hdtw0fn*l_VD>fi(yfM&N&Gi)E)#dsr?qMTtslwn SSw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KG07;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEQ7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO^1SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW fWtvHjdq#FcIHRFSL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ fVv?b8in(#><_^YMMkA87=}(@(BDUF=xt<#U;A119 diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index e9a8617612ef44d627b6c2f9bd8538aa91990cc3..72c26b129648a1d0e6bf9f28577b9bedfb08133e 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NR>7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-Appe!f%(t`<_+$Qh9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KDl7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A_OR4a diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 654a9ad86d1c87f3d1c55244f6a01844971d0a84..b2d62f47df6cb7797fca92ea008d6facfc90f289 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NUC7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20lNh{UjP6A delta 1026 zcmbO`n`Q27mJPm)h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KF*7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20qu%1{{R30 diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a482c17aa963f8cd2867c3957ccd044e3a31921d..45039d036feef057d657252d70fd4147a0823375 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NSs82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dd{Eme~LR delta 483 zcmX?gh4IuC#tq(#h9(91#Z~F%N%{t9DW-`AsV2#0#>OToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;KEQ82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dib%lPLfI diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index e17eb33da5b9ace82010cfbc4cb3926d90466d86..2f53ab1336099bc0b4f3ab2059eb58dec91b058f 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_B3SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW fWtvH<{6CZ8I4HRrayTfi`?ev%*VL_4Jstz diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 7ca190b7fdd0c1487c4b33a75fe158b2e8185c15..fed72cafa37a2f420b34367585b886313c1478c9 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVQyJcPKsGsw!X2sfu(`5NwRrra*Ab=kzrDbxnXjuX_8rznWedT zVv1#&NveUVf#Ku|#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OV9c)~Nsh delta 699 zcmZp_#@v35d4oHnp-Dl0aaFo`lDc}2aq8p>#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OQM{(IEf; diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 394657f4bb611a073d53a2f4f50b32784b77ce21..4e8a40761ae5028a6a973d55fdcd0f202adfdac4 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)hPh=)IVomk+4{!j29^fKCduZh$tjjeMutf#=7!0srb%W=W|rpW zi7A$8CaDId28NsK7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcOToiAEMCi6$mS7Rd&trbY%P zNfwDohQ=x8#;Kd@7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc)7oU*AzUvXn*nxW804F=5gcrDZVzdIx>@;4&o-XALPPZTB z%O2`(V#)#Lb+HO;H>aLu6H2neVovsANHKPMTnJF5702D1!M2E0Gs=_)%LR_|C}RPP zbb=n_e;Y4m8wV9*4>|PgpwKWT2-Mv3J_uDP2}-ZY2xKEl2C!Xwlwc1BM}p3GgCy*> zxYA4ww%LSWu(W?@AX~bFkxdQ>VRO1gGESg=RL6Q%xpH=Pq>Zo2Q_A%pu5 z?AeuaeWPJRESLL+dV0vYrmwf z-NJkHP8ytmoK+9(*(rL&OEGr&$YLxLZ;%Y`+AS$zF1XWaypCPoxdiIG1be%Ki7|q0 zVU+^df|63Ub}17(C%g=MB;LW40`D)Dh+s7dCQz`fgM?Kj6l1JNnMO9Fn1l%gcE28h z%v{iAZA~XQSgJWHN^r6*675J=>Xi4P?5`3A#=%}(;Xq6{z--G{2iqkKIZ!b{(j!Rs{zLi=X8VVm**qX(Uxk-sD(nc15S0W>r|~7c(mfKh zv*Wc$p;q=&=PH=@Ld!Zq>7)CcY*c3pQec&Tn(Ih+KVW{I$rEOtB!3pRyNY`Z;v1Xw!3hLq<2PjlmuBw%j3%46vMLk1`H z#x83BD$7R$JGN9Payl1|WX6mm-ylp#8O-(zDaj8nj1C-XKT4;ao31Df)gE03xJL|x zU@nZR2MJbCrrjQc07d0;ugQw1bV!a~Rmc!C`ZH6xaNh*YVNg$J)ZBY!8=} z@dT5YRd$Z#$1r~Q(fnPO_^yM|Y{9-oD$ed`M3F_}o{WNRdpSX^j^p*Lrk4Q~cm@ch z*uMqfYNw75Ep(kk4|_kZxLV=S*1)d)`nbnPU z6Uz(JK8ybIpJ~!bx5PdMrzCMVp~?)F66zzNynd<)^^{OQ7X%XO5uwfv*Ac3KP(R98 z3AKk%kD74QNkSEy!BL9{Rbw$nol7Gmdx#@*2=%(5gTNdkl*{BK)I&nuYRFNK36-54 zOv>&Ms>f-L+DxcQk&&eA5TV*%FHfiqgnHMy5}`hb(y;W|BRP^0V=CoUWm342R2}f0 zqiz!_Us#QlNww)F`0K=hw9)ZyzS zj?5&5Z$JZ5xP?$ z(tqnrsO^YKn7302T{E}^~=%BRCTLgf>xcN$0iB2?PM$AA z2(^|_?^VkP^_x&t`Yb2Z8A3(QUPGw$gnE2yEusD-RLSogwT4hLYi}TBUkOzs?cHWV zz9QsB`&L3-B-9_PvkAo#D(w_UT_e1r-cG1>gc2^`sBA*@pS_cm-5}Ka z%ex76iBL^5()JMYFG8N&xsOoK2-V^$N4+3aOr=Al>?WZOT;izbgmR`ICS~sl^?nUU zog&omj3cD%2cgodpC#0CLV4{yn?}h0kigSlH?vnmE9D0VEcnm3f~uJtt=F1*W8N9WivwUkg^cQ|Srp(d^TNXoJZP47@P`e1#>t)^I2B%Sy_=%7=tl6b;)w6`!{OD>K1ABQ;L*_GUT@c9L z`k-JhJo6UK%}CtME?*JC4j){W`N%3^wK+@mY`vkq*<-1}Z2O(V*{(T#*lY9k?CNwE zTRbI{&0Nx3n34FDZ91$KJ9ns&-L;_;>uW#j~ScsGCUn9$+_UHIChrKYeB=Zna?U~0! zV%%J%FiF`7i!~SvEizSX=IBtS0=s;ajeRvr&mJCK=708dcTy)dDAn%iY4bnPV$-^_ zmv`1<%cfb08iwwv#cogQ=Ba+@pVj}~IajqN(~)K7)n&Ji(X&q`*OKE24e2MnCfjUk zDNxWbM9WSeR~p#RtjVTkRA$BF8zPp+W`u*hnk8jyv-B!VMN&0?Z9ZO z9myg-1%Cq=FtM{oAzn!Jcp}9HwPx01*Q8@RVPpE@W-M0T%E=StczVS`VdhG4vdE{_ z_f)}h<2lz|h3Eg#%j8X*Jo3V{4(7b(mFb-yMN$6!Mqm=`9J?yd^R0%IPM= zhLh=ywAz$aq+8fV6QaB`67gjGUwX~i5W)VLsbVi|G_bZ!GPdW|+HBmC^4JVgJX^b^ zYB8(B-&KzN4-1C5#?v@Pt?j<&G_h$JmDtA{V%Z^kYO{|g*OubB9V5lfF|&SbUG`~q z5X;Po`NArlxLUzfHP}X~HFCq~FV0N+@xi-=i*`9s6s2*EmyNr#V=l6I0N%2wu zbu(vDBvTiOUV(jvB-@cz0|mu)HVMpP_Od^~AUU4+F~fS~^;$6NNqGr-Wxf$HTUUx# z0hrO>bL+D;vKmP7I-ro2u(z^mGhdK9mtpq12MX~*J9~A$fi%a9fx_x07B0$QKMrlf z#^oe2am2-IWJ%bDivkcwo7hH+tD>O;Iasa*4Ffp!&rC~`qv$My%I6}HBk;fh#t7PJ z+5AmS*h{;OWPHJDja#x5SrjiRuqaNp^hzE3e5sN-$ZpB5$c8U7GAr4}%UUznJs$FH zlM@YbDgqf>v1K6ZTpq$~{YNh-N~#mZRhchmhinRGgO&%e5i63JZ*1jVHja_q>z!x_ z!|M(#>HAd??BGoXa<>Bxv~1_?gTetXLoio8iU0LoWnz!5bb#!N9i{B0;bqynLmRO9 zs~qg0i5=M|t4m4oG6iEbORLZ34VSYcR%=j$Fs3!p*rnAPBq(0I{GTBu$-_~XYmv*K zKtS4373(DREk!QkRSj;`fdFk-8z@LGhZO~^9Xpwk$JJvuZI!WucOadh2*Ub#v$hse z{d$kikWVmwqVNl4*06uA3t_$zKb*3@3<>iK8^s{|d`}-%xX{VIURxVAeTCd25Jyuc z`(DOw-%y4)D2}Md8=6b;8VE~@X%xP4yb8h$MzDDsLrDA`*jNFfTq{&}{-#u<;0Rou zIm!*BTlDPxt!LOr8=A4!EupCTI`-_A@>0As!r=F}mSd}L?I*>HBaWVm)Tv@4wxH2} zTe24xT#naDxaUF>b)91(aXD!*aS>L9M%|0UBiW;=AxwK>$okuTiTk;h2Qz;WMc@hY z@Ada??}ylVhSV3qyznRyEA}ZH#B^s5ZEx*0Frnwbgh7LP_wUDU+hAea@A79q4Q_fZ+ui`NL(%m5_SnIP*cDF!6EXVQv_poH< zvKMz7kt^bb9add9yDitnzS!u4!T~SuFviy0aJ+a3T3(!ag90%S$22H7G1iN%x+j%6 z%HajwsZG0pZbR4-x&YnM%!k#%g0pw3yBVqFo zr?5?qjb$4h9mmETm$BE5rGUQLRdSN)?~6K#K{d`DlOu8OvZGEVfs89qEsCtvC4&8V zwhy6%6)|y&5C&Fox(B)HQ?6W>2%e8DBvcZ6{^VxnGQt=Q_G%IExYK_E+vkHQb0!7E zYCp(Nj*rNF;L+Zt=JgnX!?1O#r zZ2qOOY}ZREVB?xYXkfUQ3_A5cBx4_5dJgXTW7Lbu+K4Wtc~nsS>OM-?=xc-6YJZGoSKLfx zgKv%iqk5vk)7J)pa2=AX_0>UOX#mPpzy5(K&Dw7{JQX+6#?v)mkRty)*JLK-dw(8 z^W7#40{nh&hVsBAvpZho{CgC_){ZSN11Lm79CY5%;`MLQ zzwZ_|1z)EKtaCmr`}eJPT>Q{W%Isz?A0GmlQ(}a%&&&*=#rR}lR$)G}9L!-_42z2yi1jtQ7&Cwt<5+Q~Io6LZgprF7 zmLrTg@b9r8a;9h`4n%KxAb~5(>=ple925_OVM-;YgAB3KHJR~)&ucQXv7ScMWhh*f z;LWbbw8Jj?ssYmhr}Y~%dyx5{pc!)ki3~5bVxD5&bK5a5B`94L$9%%qvl5tGIvKiv zG21HogNjqS8KEYLiN6#8(h1DIcDVb4z}kqT96mQ7~qyY%r#my5ZuT^#MR-Aqf8XmyWup`88bZm zJktfIH!g8$r9Zed>lX7DzCQ0hGauWl)Fb968s=c=D`v4ArKdkJUod^>2h$kWQ!s)& zOrMtt{=mMs#!J9p1+7yF&S83}Mj)nDOm^hEFj&zlFnA%wZ2P6~2U)=a4X2p7A%a0d zN`({LqhW&PnDM}J0t*(Td?i79oX)N$@WlcwuPxYt(^icHZ}IgyF@is6EnzM9E(Bg_ zCFq6)A(7QMPH>5qeS&r^UJ!%hrdTh*X`H_ABPfp9)F%sSU^}-PB6x$-`XdGR@%7*_ zf|@caeUUlxD%fcr-2nJc6J-B;5Hi0*pXmaB0Y&4BON3Ft7ACWTG3TYeFmHz7m4NvO zH)ROW^zsodTPirkpfqv0K!dN3UMbj)>4?<=sSu?V*KyYyZxFmIj_4|v1Z!}+hxY|~ zDN27l6I{dfFTW7n#%cB|fd#j_@K!LN!a|^s-9JAFM$*X}4X*j61c2E020xH-yp9;! zJ_$A318#%_;BH$I6W{@ z*a5dUj1dmQ_2-Nie#h5mOcdV5Y0_k2KE7UUx^OnexiCYRh4Fi{9R1fk;R9TLCrh}2 z(j>&+tN=w(XYk^LR9hu|A+<&!(x|TtIqHKo!o?JhI^a)XGPJG}zQN9}*eD!EixIR* z7?1PRx7_oz%k2yI)f6T`^D5Tgu28ccib_=&*j1~Ln`Pj2x_zBCh zHBY#dRv+&U3HM@*jYp~Z08>v0ec**-!YbIgy-x`D;`GEx;Vvv->RI7NTINol6PBQv z^@xV&E{-JySkk!3}8 zykuxyS#$$mkEklzi>LP2HATG@_w`UBIi<3+V_yYM8@L)=c& zPt+dc^-UI4!|BF>B6LUi5e^?LnnrOi?pYKKg83swfp~H9JWccnFN)626fMIX_MIy_ zg|Ao063xS$oLeShaC%`aC&~KtqVky2``biem?LG5=m$={p(p~URdYp6a5{CbNP^Rh z{i0hqP0AAuL3)P|kBID;79AIrlAyHgSy3b0UuwQckJI^AM0#9r`yZkQn4h_KL?M_y za9?y7w;TIN^cd4Uo{7+1@<%w}g{Y|*L2jaR4@xHbop;6xOA{ zR{4_*9M~H#0SC6mYcsdjNQ6UD#Zr$nyT`hvIWSKAoZ?ZnM@@x&`M{b}#0glgwbMDd z#?Ij6@|`0#W4XeBIE*sTVu1C)QwhAkSiBt}aih=Ll|_UD2u=#SZV)d)T<_Y#F@1BZ zI0hS|M2>h6W_n4kcop`u+K0pi_;*s!A}NETy%HB6QGVQ#~x zOBzwjjkuJ7S=UEuL4@qNRs$niVTOi5CRj+HmFec3k=C_FQ>-N9ki+KA<~S9+AM6-{`@W zFYG0~j>`x4=gP|t;L2|g0#WS*~pdWZQ{y%Z{f;I zW=r#N`Hx*(`QF`JdHf!(yx2bJ8$3z)9hC+a*)fAMXQOc_}oU?SKIhSO=axOXJyHti!D;`@z}?vISm9M|bFA!8;TkDBTY7gmVpmrWG|Stcz5-KNMoQJbLY zbWQ_DXUJyKGH`#U?7A2UkvmtGMvHNLo~%C#22g&1jOMi;QRd)QRLM_DWy z0N|akGPE<}Dct#87Kg6~{F0qfp!A`)d|&`dTRG%?aJ@stIC^$6-t*3l@mqu zNRbmoG#Dulm!Rt@W97%aQCee$9BpZO3K!0k3-vVJ5Am)DV&_*BL!Yhk@_240=4_KI z*HD?$4F?dM3?h-tn7f}xIVp}E=cHJBN*;vOf9{<8IyUc`eED}wFTX0^jm_BphTIpM zDe<9v5KiyDl6OFwhLu0c?^F-nx? zU-fE&W5WE@>kRgW7jHPF9C+t-6)R!xdoQ%SM@swXRRVic>YrYHX>OIf2KiJ08QpS& zfUlpo40PyFK?}ieuN3S!I6CG{@>YVydEQpo%-1`N=7!(X14KPs#E$bI(EBkq_;HuF z4afJh65hm7^1{52)7%H30XrPrKPA(_U*XEumZY)=<&qRou1-b9-*-MLhm;9U`0qkf{dp5o>KBD=muLo(4IcskTu3v8|A z26!;tJBVuB9OB&-4xQtzrr3Z75HIbZdZ~9k9CK}#dy_dNVx{*OJlJg8L0k8E-=Q(~KTNSq09PILUW4%)ANNkc2HAGS`!H7Q;G4uCyY6_Sml03l z#K+zZaC-igH+sW?iVM8A?Q#9MOrI1Q>mX091Z-ssjNn3!kAxeGhA#0LrFKVB z!=*laBt>TX1W>8O-33Hl$gqoD-_6-BH1B`Ib^zIKDr|JjXBYN*<^*TJdl!5xSi!%p zaf%MP%PD%`6Hd{(mp&aaFGJq?Y{Uw*fAYCUF`dBDzkGgphMh-0-OB3kuZX6ZFcDld ztZGth#XP;XE1uvH;!?0;e9?WJ)6>K-1<_O0a0PL6Lq)~^ild986vWXt)l?8iUlOZ0 zgLzMEqaZ8fYaJED(XH_c;^@bEDade>(pNzoy=i|1adhVZMKLUUqoE25l|#GZ8r~nR zKo4U131N4tf_LM)6BKufG~)pTECZci)s}$z+Z0L|Gg(2V)Z`fovL>rIOF`CThB*qd zCX32ckf~Omr65noJ}g$u!$ZxKWr`hmsHwVM;lL7i*`kxo5?dpMyOuG!kK2oIr`;Gwuhyvkkff(dHSNOorj}^Cs zz(<;-292I8Xm%?86A&Ok^!=^pXy5MS7YZT8WL3!Fu6K%YG*0K?DD#~{0~%+y^M}^= zirETK->+eRlh0NJ6= zl3+$#CCziCnpHIx5Ldat8+K}^l+!$jQLj+d0+r*HR#4TcQbAcqyr2Nn+Yj-Flhc%m0*)ua zIAs#8XfMVoOVh*<5ePL_g2v;O>dc-h9XNQnY$q5pRe4fG*n)zY%CiiYy*Ep_iqFoS ztz5)sYqFl~+qp_(09V(rQF#kJa6-z45~%Dh;j$z4D-WwFg#;cxLA!WmXOPvw*AJYD zS5ho20FfK{LkRqwugu~k1xv3gr_=IAoZ`qej@E25D;Jy%{XnvvpODf{x= z+zf(FX$5ehKI`&=}#d8zzNjbGh+*JImY)vzalulPS0olcTjoh2U%6}<; za{&(;34Ce%#trC%BZR(*Gzuz2m>}^T#w*B2?n@Klg;*85eBaPGPa(olAK!sIH}!pe zX(GH3YpBY%Own}HK-)QCev?+gweB z?4t_jm-XETsP^%)MhsGQ7IXYBO;Kg?73!s_?(y03lT_>Y?7MW;HXdx-Y*jCs=NyQ= zSh!%GDxXreSojL4GATW~GgK|3>KP)odj?PpzNlRj5Vcz+g5P$ls16SmBGlWfx=G1H zYV<*?pml}N~iPnT<|7BmAnVu=Hsdcxuh>)lXo=VlcszoW|L-RksR)d4Tg zt+HOImP@&8qzqLrf!Ta%AkWt{2g2g6vD!ln!<;{!q{iiCIRwUr= zzz0S%Y9sISBcy6~sMMFMgZQhXebrm|sHy6&-b?vp0c%kVmN?KL7kf)T9~#YS0VfFP zZdGeR!8N4;cCo1sPzDRZhX_BB=T#r<5$0)#I*`Ar3|Hs!X1gAt-oXOvbY>8IuV1BH+9K#7=Xs+JJuc@B3Qd6(bFf2f@yg1)l ztC#XJtZ(O$VNeH;41aZ2U#D61;LwFJ@#mLiB;QzUrO4 zik~K{_wl~7V~F}SA2jHzu$^c|Ze;K_+)LAS6Vy>+PVqmds)ZEZ0}e~vGuK28;Cq!w*Z)zc84Oac7mZ5q(>uT!a>eB_9nQD|8 z{4_gpwfsO0I&63n9@cBx;OYje=B<%g#J!b?t)j{M_o|0Tn9l-GAc$4N`ZY8 a1C z9Ss`5$kna&G%j!E9M{Q(c`6xjHrK5C_dNluHfU?1LFXpV!MmL_gGEaGt-ZvK(*OLY z)7D@F3ZA=c==g#pOf3R-6W;JD>Ah|(-0q&ci*%H9yz&;B#wS*|$vP6Tv zGnNBetk6^!pmfeEO%9(_6 z^MU8NZYp2YWaDey{n0)7(!Q^xi)QrhL&H#c8##9PG1ink|^l{7bVL zr*(d6TH-Y8m!>0XxATj3E$(iKNLvxZ{2|d2rJ-$#=u~bF6#8hd z&Vif#v}oUB4*aFpp2u+KjM^?J1>vK#7TDOVMIXz{fvHw4Ivbk<L@N9>$8G}S#QSfy_bcOzXhovmU~Kzwef=uQQMzxaAMw#qDSpQ= zPOTAs30VAfV>teLkMm2#^`B4ldyVT~o#j^+r}8YnQrP?zm-`LHF{fQ(=mVIr(C@g&-^~) zdi!7at-$Jzd+RqE_jC8X-&)+yB!NGXyMf4mAilm=>i@|brP*5lw^(0G1N;x;_T6;; z>6m_J@c)46hbDh?;1R{7-CvEb&vE*H#MdVU`G*FgbVpVH*H~}M>ibVdwpPA&3&iCiQ=KcI%VfLyI z^q+ynJv)M9^Ux%JIlg{os((c+z9`e5sCj&r|9Pz5<}3Z*;Pz3g{SV;s-`o5d><-L9 zeAM&q{uP2=I?~3_3@rQpCT<-V8e=5dZ^4#C3MCqO{oEk=d_4mQor~Tzm2IiQb z{ztJI`~(5S-JS{qn&S46>HzdX0c0*s0NMqDMq>W}9Zm}Z1IPfrR39M4^jc#88G(hC zfXA4AZVNz52^1BM0JI}F2X1r)pdIQt&?h8d1vbmp$bdz-UXuy|ahTuDH3KGKe#+Dh zKs$PoJkbGYUri4D5EGD#^|+}`z(}lz;I08Daryh+0fTV;guVee__|?Oz*$`XSxP_y zj2kgBAOrJ%Xi7j7#uu;w!*DucaR70fugd};ZkN3wfSCR8rhw1be!F)Be8YO$emEcv z^IPUbfUgFnwQdBo!R;433UFdKKJYx?C&u6RB_I~z>{J9cz){><8+Z(}WeN-w;p%pK z;B(BbSBb!W4MDf0Pz$h~ooImBg91e~x1eOv`F5li)Q$+u5rMd!p=x+NHL#43%NoZ8 z&gHXt69Y>LxU0V>2bScsRi*{j;Iq@y1H1CspECo|Qvd>XAR`d+S0}N7%XzShAh0rj zb$nJ}KRzp1rE6@h1Ygpf6X@%+^#>jFFSS?`U3Q~2zv&4Io7 ztR>rndvBYEowYfE%XqN1yFKiz+~Z-#vES3|(E$%TGx7p2@VI@C1fr+uM9k&j)_uE6%(WIFr8`b~W%RpLJai+`^0d=tf`;pIvv$(`)lP zflK(S%)P+He0J;oz&Z@->eB;{2D&~DoXK^y>v>=>4`1n}$4XOQ2cF@tCcFzg$#Yfx zqeq)NJ_k1DEBJm5j1Y4|#r_ODz;|l>9f*Dg=Ge~ux^{fM8v@-`zVM((=Z6aC_19V8 z2eIy(lxzM&p>w-b4YkhgQjh&~ZkKWf>fA2XMXz(a)K;U;ZO#T3T`dF*wg&0!5G{$S z@*RG&>9+FOT!(HApG|h@s$<2V+C6wCiv{c4-gmvE&h359Qo8nhg_#jLx6{Uy(Yal& zR5_j7<-9BD+%7k!iq7rpAF6qp?Wm!1`})XQI=6F$*7Ni>tbwPuhmAbVRyNUX;d$s5 zqvNdynHD;?`6{>aXk=O&U5td&>B~+!^nqleYEZ44P6~T>@i29(t1ga*Y!a{Q$k426Q_E?3SE@&VLunqlr;hVzxymGu+>@qw zV*^=SFgJa=cX)qGF0fCZl3?k@6ZdDb#dZ#P$XdaJwI(@e6~ zqvd1kJz9?6?9uY#tsW`gY|{;vf?9228-T5$&QNeQS2vX6W={Pi$OZ}$3Z$S<@#fwj zBDZ2|DB7!&$(e^xaa6YfeQ6t{UKth$FC5oZq<9_$E1uPbG0bD`wsZ42-6}dJi)Z#O z@B{nL>wZ$SAE4Lw0OzmhB(P1s?mo@)Ba8qM!ekMMYUNUc9yfG{DH(wWZ|Y1G&x8Px z0yVb4j61p;0*;Xp_jPM2836?A+5_Deng_RTZURACd&_$0e4=9+!V*03RJViAPJgc3 z&S#@v>S#XFjinw6vkPVb>6S80Y?QX(|16KBA^X=)drFXGQ84 zPzV6tXX(d)JN5K3P%Y9p8TPKCzre`@n?~uc@ivRBt*6<-}6uK&vGDYT7#2%p{FL0^l{isSTDhhW?SSi#J9y3U|sg5FHw zx(Fqc+rL(`hyJdF8^j{|>QB&NErG}T>05G=fs%vt$7o>=4%UazxG9on353J+*}Qk8 zjL>hR<>Bi{{SQjV0Nk{bkfwJ}JMyu5$h*YFaeDNA5Kq)_{setGKXa6uraw)~>G|pU z7;0_3o~eJpYwPZ8{a#ugda?Qkl-gPXb(#7*JP(pA{hoi%14M?WI?hiV=J{g%9=`h> z%k(?`efM~%S^~?h&{J(qB#q0j)}P{eP_5JF((*8Wy`Jh+KjL8wxO-4c)#*$urM3}0$l2A|*37ZZYa z_niLFc~Ae9?5JEYZMA`SbcRPXp71|Wec))TLCI@zk<)QJ!vo$^1+@(5@epC{NNoe!*+jB)q79>YhHb43 z0W>?C+}a5Q2kTgMpi|CZ^rgu%re-j`G(ba$+MG9{0|P%~7olYjC0w)1u$R)>BOqe43(W+M zbVs`9Z=>4mF({)FL(%?}^wadeZ-PJ@@i#$L4;j|eMJV7NyzD$|=uT<8u^?ttIdt=^ zH*(`4D1X{;je8(~a=Znj&lrYMDvsczMZ$RlIx$B)?Q6cF8qMys_g@XEpj@PJ794cL z5Uk=nIQxa+IPY7NUmIvn4H4Lv@6bqc`Hi6$jc>UTXwKiFwhJNp)u;k~#A)`~u$jUY z5X?$=>5Jhl1^*B=Zo_xq?uUWuRv34G_oty4jT55oC&E1<<4|sn0ndcU70Gj`fl?#Y zz=;t-?zjjgtmS2NKa6^=FfQhoLYW$)jb?%-Ylzq><&3axps^~2s>yN(UQkOmqIZtM6g3?WOwtV1Z8U)X}-LG0A_#~tv!Hy7`3*RaSA_xM%6d&q=*_fpaouR zV5B-sS%?tW#E7<(V^e|>F~%cB;^tJWu`TZaWm+1SP}~ea#MnL`ZW!Ou&K*y`dl)Ct z4C4rF9{0uk3jK|05OG=O3rC0Abpmj%pV0(tZ53+pduU=Ycst1m_`8V-1C6Ws+oZ~) zjOf4*@$!IFqtu(rmYQlz5g9|M1`f+1vemQ5kU_8hB&5ujQoxGY3UopDhU`@PcTuw7Y zqu$8dM=QL2#~8;jcet--OuT1YPT}b2g>7-5iqgw7hZK0>pR_i>jrWaJMWFGkKHl)d zW8*{-vzdF_dhmsD5p53pN&*6MM-1rSL0{_Vqo@nBgJpLL4?tkMscL?*1wF?P~Y<& zm?*mDWH$>;9chB9bahi_ut{s;Czvua(=Q>?LTMip`|qs?+-Md!Kwz2qp*OkP}3M%0THSa)(kWCrL{Oj2*oKIcL7~aK9j*85hi=l5O$U^ zougE27f_>uNerg7HyL2*N~T|wJ~s$7?rbUrm}(}9&x5T+PD}HY5H)K7@|u|Z0P>6e zuws1^+HK4`M~#M@bL?wO>l`g0f*wn07{ZqU-itQ9rPL@v@BtC6Oy1yEgsBWz(A@Nv z&dvW01M8iSDu%{l_&2q zoy6BG?KWL>qSX7g2_0hC4Da7DZKfS+q56TT7G|>L6O$(S5V&u{K=f@Gst0!nD+UzAn8hHhqFDyt2Al88-Qhg1 zgqaU#RatW#9L}xEnMc#6eA~BRW~PNrypC(yacDV`sUG; zPG88N75tK*`?94?%ru+V+zM5L)VA&zcr($gW#F`Eb5E?q53%M|MNlFEM&G?`Zhll0 zCGs$Tv^0|&y#{T}tBb-EMAD8git5#%T1VeVc)XK&Nzue2!C5EHoI3G zOdsuKnP-(+t+NMW+ZB**$Z|`F*lU(Aqn@Unm1z~>OIy>IY7q%f;wZIc@(vH z7y%#zC0IVeO!H)&s2QPngMRbSfB%RSbiQvh7&z5T^M>+&;#%N^X+;Q>fADC5J!Y8E zxpwqGVwQOWZM6IsWR2P8{?u{f#_|EBE|@F9)J*f@q8OE!gZsSKt}JtUQT$ei-M=h| zx?`5WPOFL#(?~>uB?c&z8pB6x%r|IWP`Nz=eOMw7O?IR9qscCMo4KYZvQ|MZvYPKH zQe+k4qj%7I&HajEjzX-W#JU*Rj+=`E^v>50aud;ugJ$#{fX$%8;UWbY0S3Z7*8Og9njj=?uZ!&=JAYX+(WzX- z2Usn#WYEgEZl25n?~5&~X>Mi_Go!h2puUe~2+z$qUklB%b%d1)^2T+NL9^P@l2WZb zL0F7M21ZCCwct)uYa*Pfvuwf+MIMgFm@VjY!9-<$SS>Vr{}7X;3nhGEvrwICPz+h8DM=<2A&)5<)HLcn!%Wma_bkbJ^h)Ek-`Ox~3<4v61B{ z&2u3)HKEa-3p(bn0H7IX-O zWaoCapcm{U+ab>Kfs0$vIl)5nW)5}1Gr6OOh3W`IA;QAmmYuvSc1^OZDU!;I1A0zvO=s?<1HU)CS8Ou2bgCYqT#wpmKwZ2f1PYWzvF;i8(d7c(A;Vl zG8Q`1LUo)5A@l^ScJN&NYBhC9JcW++*r;{bzM_hM3vl!j-!KW`RXNw{g*AGM=i#718 zx~U&5=$Hu+qV*>WI%Yz$>EA8rml`)#RC>yViugB~I$p?X}2b%OxV_t0e4%Z%Hr z1HG*8(dSdJDfAkviDnf}lpgm+e*|Wjtqh3(wbpZ&B7uZe`!E zX{|@A2#9dq@iVi5wJzlvw-fMfWilg{Xs)7AR zdagbjZLP^ys5Hi!E##VgA8%by6gE!Ju@0=9OMNnf7pDPCo?_ifSki#f=~jwgCwC(O zgyjBBw;9$06p`gY%A01D!*{H8kcj9C44QAH*vS14IDp`I?k;Cp&rwXh{}T?zEwWzc zEDIVgwNgAg{-2oKQI|c-tk?fnSmfZ^ue72MbzyG><=0p#zF+%)<8#egtA_XIQyZ*i ziZK5NGR)X!eS=P*;;@=|(OR4{KRkZb+K<$|swg5KSFt6{c5yaH~Funj57SY}&dm4NIuRzLhfc61E7Lj^Txwc4tO)yCSs2{;2c zo?xrZbqAJCwoyEE@~H41z44!azdXgJaQH%LZIcV!a7`}hVHji8xcHEXlvBCguaGD2xsBI#sm~Z3v;ru#n z`+?O7ew?>0r!WkLg9vUF#c+z{7zop@+gS7wSTRuhqMxmAdk>8$%kpgo*z&%uF|ok% zhqjS)oTb2Hk8F)89;rga*%Tjav@;)V;lx%y{$v;%}sp# z9?Xu^M*`I+n;)2e)8P-QeX@DOLqBX)C^a$_95{s>v(j&ywo3Xz>g6L=ZXzh~vitn= ztQs0Xtuhox2c-5jM7=${>@*L={sC`+x4rFDC)fT9#@p9^n{f3)Z9hn7bWUi94(JUf z) zrft0a7|B?B*pCq8$NlX;h$lZBY!9Ot&^d+VrPz(&DKwUaUx(X^(M&AF;sgf&NDM?L z(LNH3WWl&|Vo$}>mIS{+Y?hA^|v(udV+}6dB3X<9=m2iHhoodgP2LV*f zveWFhK>+i?g~#Y5E7=AB7uangkpE$n8a!WOe@qd6Za@p%vCQ6@W&k7z2lt@gMK_ml zYT=u8_Oc34dhaNIaAO17w4SljVSwFs+0g-F!e?}@o#JK*;9el=h3Xp)ZWfhj2Zdb? zN*!{jz_K&SQgGRR`}(5DOaO~!$GFSkesJjtyI9QWXXjZv#m}w~{b0wiz>eqb3Ysyl z&=X=W+7Iy7vRa(Lk@wUKxj@{!u>f7$Qx3Of1Aeuz#%Zb0G~4wFcyd_>`l&NVuoYOhh75+YT%I0s zig|iS3w9Kzd7XoMfT)M%dmw*RaMYlM%&huco#}@bv{hF*55o7gJuC;*a~$QB z@~XZA?Y+PzggY8~dQENYxmvHOLrBX2i0 z&q%=ieH`eEGepjy{*JobxC2KHa*Uz5VIVG{`iXA1B5pg4@bz%Va3RO(h|!KYd_U%~ z4iSBj@!&G}dz|AE?-vgzIxg_WIy~9Yk3y+9Qj$S7<4S=IGaPLxb(#!pQdc=RY@Q>5 zm-Wqj$9`U?dlx&*DZGpr3`1(MP6_Z7_{E8UPU(o6NC_O;bO1^F4^Nq=Gn6z zbaa(*?9D#mcqZktQ!hBs_5#9mi;E7l1&L%0mmTPbNJ%#OrlUWPaQ?1iGoMX=-AiBCUpOP7X zm?3yH_e5?>g}^Q~ozFx_E%oa;&(Ly0EcLFw^C-1$2tr09XN~}|Qn#t|G$kt#0X;7o z7i=@*9NV=UF;k?1ozhIH}(DAT{iUV6gKfW*}}D zJp=y3oiqe%_v9G1t8Djkb#VpVw2&`$xc6{2Ka8O^E89f zJ=2}#Xl@aZNV9;d+w;HQA~cxCVRr%?c5s$6gk~X4u=Cq;OL>Tv@|Q8kstqc^Y?eW3Lk(W6y;f_j90w4mw{_M&2xt*7>;) z_k2A$&M^g^IqtlUV~}k0-+ji}o^o{Ifzji21$=eh`BZ}Vy>!(%hnCOG2TmV|R`mz5 zi(=+L{aa2gh-&Rb-w1mpp<34{$_Vbm-5Y!|xK`2J8(_9D0)KDNJ=BFxkmtfH5v~C;l-8@{`csP1 z>NQ>H2Q71)A9LaOSl51>)@2F70xN3mQiTgM?$TgK3^T6>S z2M4!o1P6C?lxqd0=aMzL6_%Ljk}zQ6-tG-R$|Tnsin#&ZF_Z_kWd%MUD7Ru)a8u_j z4Qz@aFBmq(HIQbuzIY&LFbK#GvVy(4T%AGjc`hvog)W*i&k09Bzu&d5NLJi&z(sZ6;pWH!TOC3p2yrRXQ5Vf4*+QtD$6TkW4Te1Z1II_L zGp<8LQp$s~E~p1hv4Q_gz$9;QR+~7I^28>jtN-6Hi_H=}gD51!JGPG&Bpl|Kh00E7xg` zqvCIi$Wit?*9}Ui{=2FNeQ=%RIBN3Q1&g91><$s{=9m+K_W z4Ge;r2gWQ$PdoGGI7J|PVljVUYgEP$sPw_r;Rsn!4&{`W0kV6&(*V^9gt~Nd$rL!+ zFK7}y)*Tc-u}4dyM~->unAH7VlAf@cEeQRVFqy30I)XYdqh@|tn;lv!qzgt{74?lqfyXcR_k6MWnlxq9Shy>2cD|LO0)0? zY~JI*^AuG{Fjt=hJ|-9qlQ^(pQ9({H@sGd<_AGR%pASscpONU|UC>bth>|<>X*FDRgZdN-p-`lR!AzT}@RH*1? zY|thmH^|io-K2DaxO%Y6{lF<9Xo)Q=YV7C9b|wXFAQE95D=j&QG|nhzb0;-uhb_zR zifq0&1yQzWmSY(*f(}Shaa%X3!+T?03x)vm+R7~W>iC2EuUEP zZ4vZ0Q6sByLLtl<{%#fYqtM9dwn3DeOi`ZI(58LR8!{2T!6@O2AY5JNF2=4CnTV{G zxt)V3>mQQuTg{3i!<`|nThRA{&HElflv|iM7ME;t&!8xxC!WDqL;zPr=E`g!eozqZ znv&E6jzfa3Qkr*UHVzhz3c~x|IZmrFR!HTzpd>0Jix?S%SF~&mcVVTsLu<;rvGz_4 z!u?)6n>*93*=(E{lugd2YEF>*OjWRhG-&aWH&88JDCHtK891~!=tmp2=shOqEe*o$ zB0TT*%dL5bmjvOqD*p73l|e%(@#?q&)!$p}75>;_h1?C+JV$L0YEJ3=N$8R;?E!a# ztP#pJPSG|bi3_k5bg%!YM%8+kdbWaMJ*$|XHKq{3BSJ!x??MI zF0)a%k##${Q;;hhv{MWcQWrWYaB~Y*@`O(RcL-;HH=4@`hIH54vY zWzxk8g`P|r5xrq-hywSCae9^23fw2glY<*5aGw}Y_DNFUJ~5t5OjcMbzJ01fnmLi& zr7lZ>`^0#1d#(caiScB=PZhXNj3-w#QQ$r?o}AP|@fESuc<0|APIXXpbz*17)%9bg zDrF&C(@jAbg-8cLW7w%pWiCvyJ+?JG@2*%*X=Z!wRCHxk>MH%&@yCi*tX~g>7kj)S zm@?agP$jUUmjbW+4w-}}FADoAej@ZSr<_vEgZupy$0>$}9EP$sSxP79HcTYTQ=prtz}Wke(!gek0`D;6 z$xBNWc!wEJj$ba>El(DfC|=;HXX)L>s}x%WLY?*2&t7h@epa%{`dRnQil^eU?w}Y; zICROZdSEDphh#6k*pn5(gmw}TYMLxC^Vz3ZPqmUMKPpHoFWkiH9aPMdHNs9FR!}bR zj4nvG{t}N?A7NK7$A>l|N8|6rHjvDzPh9! zjlTHDm48uSAQ;YJ_7zh7wDMW zb%Iwf_h3rR`3KI~6w%Yw26v@QE+fn+z*9d*DSa5up)54Gn!NBeAUv29 zahb#Ph!6IK6T0AiRAqo6IrxR6%`$nvT}EcGH`xpk3HQTYc6WfloZu>=uaQy^j5n_G zu7uyG!K*~_a>L-gBDuP8Fa{yxFLZAbyjr#r2x%US0sHvVHf^m4@$Ib$uR2%}j(lN7 zn9$LRkkKVLM{rnP6x@w6eB&BE^%i@potL;*hHHI;yV_bb)n-62X^>ft*~PW9EA$y0 z+)0T1WN2_tGRx~@gE2_K`KVf;9TmLS&cd?FxL`bh#ML-+VlZil$q8HF9p%l59VP|i zV3WfpPYuSwCQsI#9{iMGhJZP2r7Rd?2M;5QN=KF)R|YqrEEsYGeq_mIZ7?2L;$jTn z5R9Wzp3K`4jH6PXjNcxdLl92t(0&QHsqhJ9xlrbZI}!m;D`Bv5&ZO~$U>tz*P@eqp&tM#Y^5paP!8icr z$zLidBZ#J0%!&s+6)T5fm6fDz!DtX)ONWtaGhF;D0G)^O8IjE}R$NQz%v{^4I)k}} zvL40PV!6MQOb*zSiVzJ z505rfZr>896 zi&EuLB_^hZ=GwBVO_h$Yu89&COt{*G=rX4{EnmQij?8Ksnr6xl^#3(N4L$ z!e$rOK}i{S|AW=zFO)wER+l;{_g9$J*Iks9eUJZOwYaRx2 z!RqE$$_0Yel>SP>8ODF$MGjQ{CLB@VP~{I5mh#XruM}Du2CiK0e3;-42Cz`^fJyyiZdzBu9!FM@j%K%&~;+{HY z<^B5!Y>H&wKb=zIaxE8O>KSX^Ezen>23}A;BTPwZv@)jR#Fz& zxLgSMwLAd-^qz9D>;=I7u@Z;cT!f2HtjX`nlsM|;;5S^gMU|^6Q8;Msk}qz zbX)Y>@1INYEo?$8b}_tC2riQI3>(>pw4;_HcDXX;;olkekOIQ+k8|ZHdV1jmCsd9ok`$AdgM^V1L<5Ax(s%|dWI$dg&ELvTFElTIB%a6HJ94LXJ3 zc#tOpx`pIaz!-X2$AmT6qz?7R!nNKZZo=f=eHCJZ{>R&MNAEA+1MA=`=2aB50On(P8VIWwfLD1_#7tYsHC&#IG0 z^F!jOLk!Gklst7)Wl;!D-Ef`UUlM{-H#~V{S;#D+f9AtSz~Q5>4O^m8X0U$iLnzU5 zrLpYH;~|c$=s=l0jNK4IX))Q2qh%3nQRmP^me57z&*Jxl^wI-8fT|S^x@--P^maeV|D@#N6R+4EB+#j;I z0yJf4KC7x z>~u9`t$3=q9x~Qmeqrxz>kE_aT9YmBTi^A4h`vsKw|`m4FS0VB!^;pYWd_e;Kn0Lv zAFB4`8Yr1uJyev@;##4Uxg;wpyOQ*Y8#vbvZB6hDR*e>L7}m0Os0XX_DzpaMvoE?O ztn&-S?MafwgSKAiGoh2%;81K=_*2`E&{B~+8ybq+2>8=)!b00R$jR5yp{e4t99?Kl zf`j>2iWB;T_G0sog%J8(R=h9efFC%a@l@36i5a1k7|52Q=mBn7p_Ca6E2SQ=Bqwx{ zEms};G%u90s#wnEY~#WxP6ti6`A+4or}WyazIHiw#p;>~uP z&6Jj*l%3q=Y^t>mrOZ@(z-C?B&=G=7a)(gLdS*GB9iN9D67FDHr_eP-mkrqH#R*e> z)IF54XSkeFr=n2Gq=c-XvdN*n<=XZ1tI$<~(yD><+J%6Fpuyl!(gHabiX&7XX0@Oj z!$T=YB+9XRj0}B9_PCsl_M6bn!h+t8sUVxN<3cIZAJ*a;1OXF6F~%gXUB6AD+aOA| zk=$9pk6T(p@OXW2%JkT*(EjAM15pc^`=U_y^0TWDu_SZ_Vbp2WSK-WI;^->iF7U?{ zf`X*&p}#va|JzC*$lM#6Nth-o=fx0AEWx+hABww|iz2NjlkBXQQFLe1p0N{au zD9Qq}#UaMZ(+riKqlYEBXK73lD@Vty@+uVP8Mu%m{tU%=2A<4+AByt~Jeg2Q)r>5< zln+EyRz0ssZxxwZ!{9vdRpCqnC)OoEg)K0;;b5iX2U;Y zKKUxLVZF+pE%`+02PeC!o>sB}*wa&`p?IUZ%T%42dq0&wtnH&B^|LGplw*?k?G*Vc zgW~?GH7ExQ8?3rW&CK!iyk@*`QjYq71_TKaP~l<n zRitqiC$N5#YNJG;?H1KuDuG8^$yI(f4Bf68C=qzGLq!>Gav=unQelKXV7k53+BF+? z>{IQRFp3YVwo?^R>9C44ghC+(vErXq_2ePc$m6QPSR-bhp;ibE76Q}Gsz^~uEp$Sl z?FALatp!%?vWl>;g1aq1xoQxb6d_0VE2?=C3zzHE;uS!%Z>UH|hRYSw@s?_hM8)SW zSs_wEhroCDR97h73QlFwW0f1=VHDQ+Pbl7J*@@WCP^D{AlRs!C@Fr6d*?()`DDerC&d-I&)Eo z1CRIvgJZ&4NY=z@K5h`!S89zr#D$UKiSlw3_*Eb&Aq+!_0#q@CVJK06N6BIB$gFpF zi*RBaYSp)AEvx&6Lrg{(Y3hM9v|y#dy{xcLL9Fb?6&%$i55n3)XsetlSFX&|1=;xyg6%QAMU~0eC}2g zChrQv?XzXeoIF_nys>>S05<*HOxkEw!I!kSk|)U1ejA#!t|;YfFXbzE4m%#!6tMK7q<{x`K@A#v|v*A z(v}x-QNCYI_~lMml)YTUeviTk=OW9cmF$KW@v_HZl(EmhAjOr1Ewh!`l|2t5OqTx( z=2tJ#tya{O+2p??-N5Tr*j_>J_M0%mF#2EU6}=6kjGaD4!rco-HyH3P46kzM)whvN zICayh)nItp-n0!rQW5O|TFEU7DW`Bk^r4R><)p4Thf`*F{sn1ZmGEx_JCCa2gjKMA z!JO)GrGKjn8^^n^#|@Lq&Yb2-$>*J0KOOZ{O<)9_y_1UGruYfmtJ9zL=Pz3FMeBEAZD zg3-OgTN70eh5_NO73h7nV0(s!%hzOpa(MV@M^@RhvJX@p8=g~vN+MACm^NfWI4&4U zCJJ?@g;P$VmKWi|uyAo2wa4u6IrcJFzlGt$WbX;WvCO2p&n??S3MtkFx^E0WNi{_r8W`juVcxFrB&xsXD12Dh za$h(uB611O9tg)pM4nvyQ#dXn^5nNC!W&cNma~zr*}HW$ma5o&+ z5jnTr55sXCktZWwhT}RSPX_-Lj_Zg#`TXy2Tu0=|?eD`?;)OpP)VPkwpZ0Z8<2oWw zYTVVhj>wbkebl&)$dfrW)scj;X1Rr3t*geF87cnla)0%o6@o(F_~9zzp&+#lwPd(O z7EOFAj&!K+1 zWu>1eyYojKN7$tdj!kf106hb>GeY}7N<>DuO8J_f2 zvf{;R4`w(W(HORLRwuaH%;mGItY%lW7b|LqLGv{I)p+)obFMc?O_;K$8x#50rp!munwId8(q{iU5 zk_gPaRK1^8nRddvWopV4h$QGvSYM((C^&qxN=-NtE5m5ls3{X2fE*UdMaOP#R3D+L zVAl6)%0!0D{fDh;yyTo0!>aA-!&DBfcc>{712PBi-RhNs!|_rzWhVeH&3^mTkA*tF zI;bWbQJ2}&J*<8%VCo-J6HctkFsF~JNejX#$^vGn9$bar4+B_jjtEz;zeKGj<$!+h z>azMQ*>72R`N5CBs&UZI?PmQo^#PjQe8{WY4fVYW@q&n3>eqsj?(YAB(yM!F$~1sf z{vS%V`l0%g;5GdT)h-2Ko7ixFFqf%2P@Ovzzf!lOthI8Xigzl5KG>* zot2(=EBz2Cbc@(a7-z|9zJ6V)0Owi}cN{Iv{U0?VL~|cmFCtDfjY9$>Y{}Mzd3ej` zY&$9M`t^|K(mLBul~!5j*75wir}KjR}PBW7WGQ$u{@ z(|`98Bk=Se?V!O^;{ z_Rxq391e3%8KWa`ILwnjOp3taFi&n`5jY&?$-%QDEWNwbxe>UnmOt&cBm#%SJo#!x z1P+IJa?9!n91ip3tql=49OlX6nS7nJ0cQ@+CzU;Rp|`F_C>5C zBji_8@-^VjQ1ny8CZffTWa?89b!J|TaAa2x`g()g*$8iouYd+WN4zGEfMndQS0l~~ zo!_|;fd>@1`n%kTxGj=xA4Y5y1sMDyq6%fNB^C3h;~Tn9 zJuIuqHh&gL*}>@XL*xW@t$CzBWHyZ?-HK;HpiHpfw?E4B8pB&g*0*EVS5)#~TiZsy zA?Osbj>78pk%bg*fgi7BZAL|kUEF_kiEQD?ng-kXz?VZKt5%YUjUFCJnK-auyMgb> z$S)~f5eWg1-S31MKxWC_pS^1y*@|tL6j_I+-5=%k$McgTf3uera%5)Y2^!W>m^Let zG4yNBQeYtx0b{Ok;kbV92Z4WM(>hJkHYaKkvQhy94;)6JWJ)Uyd;t|gy$SC ztct8AjPvick(a3)&a97oPqa(a!=^}`;81;QWpJ2# z_aaG`*z%8UA4Ot>M{XWLPw5;So<*imI+2`1{_m05g2S5EkvFM&nE5BoQ*aLR|BiH& zIn3A+b%sh|l5G^pS#b(8?W10an!3P=!T}Iw2BnY7vrlx5!jNv<65`yWj!{)m)iY`+ zWoU&Qw*TvuY8{hc8Q<73xm^@)?2yb0Mt6#$gsNhk=!UzIUJz9jHN}<<9%1hTmwH9b zA=Bev9r{Lj%2gjm4~W7jb)00=LDppGkSGk{!=K(C8ubTZ2ailW?{TCjoSJ}qxsGAj zq^QG0r@0QVMUC`i2<8Na=}|6%e+yBR-Vue-__&V!cSYfXB2S*#9kp2`S!vYwBH4Uj)O?Y2-XHY~ zMW88nqV~xrULKr}%5s!VDf3E{UhbU0^czt)?Zr8?`Yj5ly?8S4c2pdtABee47jkMJ zMB#iVN2~TIsySsm$Q|3iU3q=%WmIE|3&EaQKY8Xe#U^?PrC-Gn_>Q1?4$(OC$>sB` z9F0?-JbB$M8mB&a^0;U8Y)bneXCX~}_Nf(pfKuib1hEsyT@{T}pPbW_h-jSpMRT|kuBXMU!H~pj!HX zVQaLP9n(K)=>r{qh#n|3^kQc;;a+h-#2v%}8p!7V6z#!^c1OEIjlI$C=(*5>L3c2E zJF$9k#0eEBXK{B!+0kfcbe`v1dNP-j6)dW@r=m%_9=HY1J0HE86Y*e8E=N;>ib^mH zVSHi3&(X)o6h>fH0Xu*P<6vmCXV9^~^yxqL)ybC$6B+??z9R*?`l7 z=$Ayh>B_EMjCN-J&!QdJ+jvblTzC?_l&mWW3lPi6R<306FQV&G1!MuQ5vK zBf1iSaMVK+K-80rz!0Ij)I1X|fstH&JGNndv?rYO)^rfnHm!z+vN&SJVu&R|<*u)( z*(gwZ*3m4Z>RMv>0qP|`4b?xP&NLcd$UmkDwSl}q&3Iu64;6HoB}9gZLgv;=4QV-q z>+c^}PeV211jBLRni8u1%2D&<8acx|wdOdnc60sJhJji-!ptrAYr`M$njos#bAY3X z8iS4OtO5+0WV$%DH5hyk?&E+aU1QG-Pc#~qVbVMxtJ;DGh?gWYWIpMb$)Z?v7;Q5( zohjovZX89qni_1@GR**Zny>K^ZHU*Wn!^-CkIywjVO%qfLiDQ+w$exoaZ-nTV_TA2 zM8vP*eLKw!Lcs!lynyf>!|!IugOlLN8gKm``UYo2>Ikk9K}yq7`i}@aheNc1Vicl%IxG+jXk`btoej! z>wTF70|=8MykF3CO(vPslS*$YL%Y#}x z_XQ=MfIJnHg7}DtpX?1E9Kj|hz*|F{s%gi{E^0j4uDw{j1Fki$$=-Qu*2Cpp8a(gM z+lZo4dWT7Z282E-ywLmu^sb?WrXScHsz9$0VIt-2OS$zm7)EE%ackGG`l$*@s)O;T zX`Yc6D-zRz?>TEXaO(wfHxLlZkzAATV_!Bvt7!+0*EC%z9>*e&7khFCCpB@@s$tD< zYaSEayA=u$DpPo!oO|?sAOt+oB$DeMejLEi|9!#wm1)k&{-w<`4XcQY1b zO)%FvCfXK%PrAfV?lfgRYs3_?`JOTUY_eMnW&5K90LQAv^dHM z#mq%ru(8!+2$5O#Xvv4r}YhoO4G?8{fI& z^{I7ZJXx70#+jA%wef%-qhpL%WXxF`Gnh~Zd3Lk5)^Y>?1~JVgph3Er;tBv&g_-)8 z6noUb<)oN(k}-`*iBU+u8`5H4pxweUQ_Oq*n-SB@4*!0i6H{B#Snd3nF4Es)8pdpv zzE5Ztqb6;FkTm$ZeGJhInuFixF~3L_@Mp&u%47#uDPq)Ne3~(@bIcQpPb!CLb4%q6 zPrJqpmx`xnj~L3lPB|JU^;1#IuVm{)*&JEk;20;CP}6q?T<8~5D)}QGKXLVd7!P9I zZO$ZMK;Wg4IlLGavsN;P#b3v~qfD=IiOa^tc<^wEtn=6y%Iceh0*Hdw&u?PSCMbMZ z#<-8_--3xTQzUDRm=?2MqI;diV5r1RaC~mea~GQ(^4ekUh=3p#wvz6pOW(xUZ~ZQ& zjjhcNXuCRw5+{${cpQ_<9#SlV5Nebx+W4Fi9F3xxy^C??@5i7wFQ|)lp=2mTccvBjq@WK+R zdoE@imK0laA!Zm&*`ESJ7f{>=3dMQ3vE6Q357ug=)*ZgT97DT>;X|yE6)rP=?tJ5& znCf<@n z6(CUU&zR8?fdzlXP$pz}jk*7K%wDPnw&ZAgOZk`DYL`<>z|l^-otS?IXyl+BD-pQn zL?;kbSzDjdcn+_p?Jw_}aCFxeNtK|#x0bTDia^D1#7ApOX=(Y#gKKC9NNV__mX^}R z;TYMqwTWZ`dVg&%iNM;r+NJ;95C94ME`8oFP}~2%f6h4nMM2uz62>=5dLdj4(Uwwd zkrT)W(>9X`ELCeM%h?>`MTGVp(H7gm*A28=D8o?9xgqRM(w0y^W=SS&mi|oFW>N;% zJp04B+B-zeH)Qy+8-rPOe4ufG7Ow=^A$MLoHq_3v$M*YuQ|$$;o^YX+_HXQ8z`1tX zp_C~&i73k{dFllZx@k!Z>E#HY6>0Snx2a!g?I}u&9IZ95Q=yF$!8BOAhN3wOf;-Cz zZ=4OghiX#@%lUvXK@_)v-{rCGbG1J3Xsp(rVtHJE_0zOfp!*cn^LKb))gi#){^3mSP>W^IKZDvwY4OR^!ZLpn(5$h*Bp`1 zg7p<3Bq1qfRYR+=e_uz zcBz!N@u8NmF%?HV+AZX~KYyzIO3M3}XWB_r#XG;yHl;K>sI+`Gaa1Q?c=tw|=Z!3+ zX(INWYXdJ9k=&pbOmb^5oieGwfm?P>b7Bhzq&YBC{RX%x%(Fpz%mV5w8XS`W~AO^5;Uy&5=C&JG}X85j__P9##i zTG9aTV|fBAzH6{qqTC!BY^;L6uKOGGs*JzICmNKX$ARGU4R%WJ-M-MEiVOZeztNzE z^q$L;27R3IxA;{9klu@Z*TCR}zXKd%7kE-dPptf`Hk)MdcZNkZV-1pKZ-m8OAPa1P zbAW{CSmuLp=QCo9&?SH=H&#uwu4vY#3_Ek3mbm+}8Cw`SJG;TKqS!~iNVe;Q*vpcNP19mWIO6Y-IkD$`X)3n5*F!env&e7i zXE6V5vC9cq9#>tfvC<6&H|FmDtcui*+$Eqqn{8;!MqhLFhLRs*$59Fd5qhvi9rUf3 zdS5Ihu0dO)E+3BXi&a-*lN;9cV6F#aDFajqh9OKfwjtf*3{u)YgyNKfPsNTTDA$U`5KC;gDLfq;NKvx|%ZY88Ri_sCUW)yt67#$s-~%qd#vUO` z+K|0_5$nYCdvm+5=nvb-3in@lUqUQjt$N1BG? z0(=po>nk`sR_UfvIn)c+{Y=)w!U$cV;9wiAn@HslrO_QEnpQ8E8>?$AIJm^o%OWve zcaG9M!RkC6 z#vS2}ME^ovFRDdN{8Wc$8#qko#=7xTm|36cu97uUvze}u;4rL(j&ih#+t#|4I?^m1 z|F}ULD~I{*bl+0-aH75L1i5k~eW}Y9dYIdZq=)1PeQ!A0S+|E=7Gd3Vodk!H9&~5< zYmx2*nS;5vE?;n1_Z8h)UhS(pN-m3>fw~@o!?D41J=hG@-6C@sGh8=9aPa+F$EY^h zXq4^`a#=hXts5#h3>l}JLFKSzyzT*64=IzZ98OQ6b8wzk0S+@~TI=TXS){tj-Avs% zy2E5WOqg%27mpXxeYNl63i!!oOLdmcd6N}%o19vryCKZ#>s7iQRI{47T4yhJz}cF0 z^tSZsdQy81&o=7pMD`9_=!TiNRrdwiDAKp@#5vEcCQ5#21R9;zSJ^(S+PI-%<$IKU}-qw(mpjuefPdzg;rbl(XM z^)BiNli%>{qK-6$&$B=Gvu=^de$*AZf7o+XM>@yNIfUQP?GhaR`b|d(iNImvZ|km+ z+s)l~b%z9pnGbY}spk0e!wU4Pn?KQ=5**^6>6TJCjCfuFbA0y_J3#XI;>9an36(>_ z8y)44Ambh4eQ&KC;GK?gL{GAZEq405WY6$zCH*9!hHwWxWgiYV$)1k-!2;%;v!2{+ zy1VE<5$#r*o1U_FnX?&QRsSQog534cTPnyNZ#{9|wHG*4(>Ef{YW9M6wXLPHz+X>p zJ1++4eaV(F;}iX8QKVr(dU7ZKONIWXfN2(@??bI;Jwx?>3du@3hC-cJ6ZGT$yB-*q!X-(6n@~fbZnFM? z$i8-(o;+=uXVgcKRZuTO-$Za2pQR^HS?&Y`in+x>IgeaXF z>Io5mWHtjD=`RSFHcj;8xw3DY>gn@T)m!Ml5*+5Y(odlp=IPe@EXu~7$dURMtaT5) z97BkGHq>+-HhrPDOqE1+(o?1gEU13atFwNa@IP_gN#0Px0%Ukdz%=Mhabv8UQr|xM z83Lq>AD zoS*v}le=Vd9bo1;{boBkpXQhK)d^O|HOCOK8aV%|51@3|IHzmxO>r#$ZJa%Oa8pm& zbznhph1R$9%uyD~@sa)~8##INvEJlC&=}ULMzHR^ej;I)s;rzz%5--)<`g%CtX@Q@ z2G?EUj?3)>>~@R$Rfx6PJkbbPJ6SQkM|`v5%{qyyPx9l1-vVX ze<+;opKIbRy{fzG;(e+Ts?El~;~TT<*D~T@_wIPgV2D`|@Gy!^x(|DDBZGn8-uP0X z)2GMd4+-rZIvJ0_{<-=Go{rxok{M^?HI$v&Jl`F69X#?!Bj0x^th!V+l%Fbf0r<48(?rcwb zLOA&QB`AqJ8UwAWOPTffzksg5_9Xl!jAQ)XgzvRk)`<7kl2JM#h0w~na-YF?V2?Ks%9n5 zrA*SHJmoNs%rG(2fvxD0$j731wzzlJ3mfQInCL6&$n?(=EiS2R)5O(6oZuFTmO5Xp zRbrHQ+O$pL2BDi;?Gi1WPeaGV>OxH&`zD?hy2%-s__z41*^tEBBDegJiA4n601CC5 zSd;t7<(f4uF

YGAmK+qXy5pi4TQDZu6}YX_h923yFGfOvKX?yb)`?CDBzRhipr{ zFTnckCP~B=A4?p_y4Oqk3LFn7b|UnT01>>rWoiemC;Bj zbjr0_sQ*IvQ=Qa^sP96CAA7@{n5286np|s;bW=1;XX2AAo$3?GNnI&D=^I5!1#Ds8 z>`9Pan6y>cn&)Rpl!3Yhs~X@y9b>5TO1r&T(rrq0kia0ILy}px1UB@`B+61a=Y%j` zFtuY6-u5bU>XP(|U{!!%t0)GA-?d>2n#cRFF|)Ap?CG848X_~fGC%1FbrcFYYm=%` z=I-l8*~6sYg*CP; zOFAiftO;+De5g|o?5ZYbGPJL1*iC6~xNL~v4x6eO_6aFQ)ieZ&j?vBl!x&0E=D1D` zb0$JzxFL#QJo3Z=BDk_1O>-QeMzp~)aavt#uuPoZYhb|pc)5{6oM9T}5;4wnQlX&= z`)P;Ci-nsFp72+WVY;Z>iwg{t<$DPg5cQ}qfi4XVcPU+1&hDGhIn&^awg&QS4#a$6 z*d_E-sk31Xxe7%LFl5MMXf}43ff6x+3xqHpB{Pc+f>OyyLxixmd*cj`D6XGR_3!Tf zz!}<4F;FHs0T1`i@?nebuBpTJsFb1X^m@Ze!oXHKs||l$mJ?-%oKuFAWZ{pUF>H|tj5u#tK_zhcf}s{!1IsQOx=RGS zel<`wCvq(|yJ8@n#Nr=czGmnr5h%E6AVe`?9AoZphRGBkGUcVAGuu9^ju%|MZzyrH z`4NUcH&8ZY10wxe3BT|D+Tdh|zy1E=zgvovdr5!3uuDEE{r>2jeA5PhSGXkqEd365 zP2MW~##T+NSlxV5D%uQZH@s=X0 zi0ibnPP~AryE=4Rp4`&L<_|c!B6+rh%`Q1Aa(8`qM;0>hPE|JfNoVZc zR8DbVC)XyEyqbk6GboayJ@WS@FYUAJ%Doaz}~|?9#q~jvJCM+p@B& z)jgo_`{b^Kbr0r&ILt+r;>OIElSi;tdy}ie%iYP|l$tAH!NMPtr`T~$EctNqGNNb< zVem57eooFX_eip_k_`ClSn`O907Aft=ik{HgTT8nZEMJJ0Dx7Wjz*CILSY07%>LfrEdoO$KB zU3i(|Q;8K%s^JNLze;&0z^eRdrEc?A3Qp(ncdz`Ng2!c~DeAU#hBI)Fn`bxauUMRI7IdkjwaT zn{MpOW~q2%!R6#uY-QV2ueb>p>6b*HyBNqe?0)JElNYA$lxr+&S(3VyraBpmA(n{T zR<<&Aoh&z7zb19U{|L3lx>TJ&ZMQL%)MdBGEprXX#G7ItZAx7$P*-hD{rZ2z)n!|% zXfRpp9jP1sN2rf>rtT43cb2A7&U0By{)5u0zt5`I?gvuW{g1f5IhguhaCJUPt(5=A zvbr8iohnx@R`qo1_KI`G``4Xe#hKJp(wx`F_QY>uKXg77&w+BEw)0Zz#)>oKR}y9Y zoa#pG7IPg|W0RYvIe`DoRH$U}z7KDwRu#H*c~GHR%F(Mphli;ya*;#vlhkU$OP0Jy z4IxsWz)DN~yjYW)sXk2KFvmkm6+n%@Qa`Z@k^esRtuV6|mC^{+7qCi96|6Tqrs3V0 zyn+4FB@Neld9uBG+9+b*b|5SBPIH^-+QfxDNpWb)T&t&Dv8exj^|abT{i@n&B(1q%oiQ@)Px18AF=^qVgFkgrTCjNG z==8K96tQ|PN$W39nA^=ubF;IErC5|!li-a3;X;M^tX-bAU#NdXN!l(7Idlu@L)9?(VA|eFtW6z_2W$6J8l@9y0rZ1CN7D{c)dNWBimgoKuTyD+P(rMn zNb;F9BT>tp*@kNt-DF=%!|o;5jq|T*l%NDii39pU-W9TLIs;N-LN`rrri~`_OUjAN z`Yo*qp-urJd{c?J7&Jbx^Klv}A}K=jV%IO=4IAlYX?j_+F!e=RphzD6BdsH$*r4rS zX^UlQTdErm65J0%gh4X1NtKKiWbvG? zED@#2e2j!{j}_Jpc2+Ycld2pN10+_D`mrPxcSfyPr&o zaHqqKl&LIKcro}!7)gtd{NpuIM!ZCvSNhZ#BV|Jchxt}(Bn6S?AHR+@;>;B1FfGnF zk5btJjimU|ocr&& z#sPxEumZX{9w{_Z;zvuhyco=ljJ<8yqPBS3{h80`9BMZ;(p3;I+a3g8g64yh^uZjm_>W(&FF)D6==$b95AjBqG%4&t@G<6*g2$D@wvy0Qv`>E zlSWE-Qm)Q#PZ>!;r1{4sXN?;LhfWvhdf0x^ND3m&IXwT_xJ7W-cEz}as!o?{Mp6)I z&Ovh%1(0p>_$_+NQR|M86hxYHSa#2d5tMno==IRJlB$QJk1EiLXFWA;796TRr+5mu z@!Xh0t`b*&H{w+>Tm_}CjU`kS)cDg#*|RK{@%En$YD#FiPEi>DGaM* z!u2<HO?d4BFNQj`P2{dzk2RJ=I#q8L?L<$|vIcW5zxuP_$ z$J31>D$#_Yqq%JbCYvZnXE~d!6qB2s4AaSEBCQrkGaK8|O&Cp^gY zwlI+*Npk`Av^I4W9OB!V$n%z8w>Oa@NplXbKDU-dQAZPbjtDxLFp@MktFB#5l%uGe z&A4tR+_1=DMirUJ6J|$yn&>lD?fRI;3J!nuH4!d~mJKYUzljt{`gHB|_UzpVQyqE7 zJVuhnjnZ5rM~9mz^8^wgARxx;lVE0!CV4~)tw3lt#)OA-IiuhSB!5_e;@`@_rY$gHZG2<(sBMuKzs?K(1D#~2A^fAMat1yf+{Vk|$)BQ1ymZX^$&go}uY-T}(OL`F@78+p9^B`NL6l9uV zkm(NaOHjI+RPm*nfiSG$kDaO>?6CjOlUY8i@g-d%%jU^n(I-NNzgSHXAZ2 z+BCyx(+&_)ke*Cc9$?7nw^V@uqfKMb4z8G_cImSy!6>-eTl7qi5cPF_-wNmiaoiw% zKze(UI;393!U-lCdV4qy!O!W}8n=#~>+O$*QU8 zVq^j_Gt$NMGqj$Sj?tz03+eOIZ%|1C#)f88zDx=%%`mXE19RMfh4A#d^l-r`d|f&v z<`A!tObRj0FvN5R@ZFrgO(5RdMz;|_#BL<>kX#K$iJk;D`_m(+RYpSagu{o^G0rqE zvBM|QM^FL=@p^-Crboy+VeRgxQ- zB(k2QIMY(7GzWO`KE0~oroXM1G0Rt0QG>*c#?-Q77$3R_ zMl{UWB#heFG=tt4NWrEV2Af80HP47Ao3|8k8ZhGYBdVSN5yZ#`-gV7*Lv0b56la=Y zoayf%en`f6XRdE{>6;9~yrb+$5U>s#KOv(EyZ1%Bj$NCO5ymF>h<9R*zl;xHBgbT% zmdo_>u^AYNn%4ktd|MhE^?opM>Fqm|l)aAZIG<^v`M57Knl3^n}Ptu7DOZQ84Dnm($p~t<)_4jCY z7?Qdzv9sF{JG=1?Qc!C-BsE}2>Ta&G+PXf?z!0HagK5t)FlsSRzIvX42UdCVz{`vb zN;GOKb5BD?BnSA~f~N#0b?~1f5T2 zO-iH&iwIuqujTRKP$MAo6KV-SY2D1Zlwj2o2e_V;*_)a(!;h;;!JpT_oRmyEQS9sU ztU4QAVAYxa(@YFj&2{G6C^N^KT1*&kI#C)bysZF$9IzTNVD%O!nbM3tnHaa0vm4nr zb01-R#*&+5V{rG^7&h4&uv(76*>Y^AfwKN%1q1~ATKKZkNtqb1niG9AEfWJ)^W@pt zna?OgU27IhidqdAwK|hx3m?JEhcinvpSj4y&aKbH(AAvd-ZSf7Z|n%ZEWLqq5wk zSioLPX`eU-t^{Y*q0A6`B(4)6Duxl@JSS_iFp@P-j!MnKNY*^*Q;>C8i1)r>7Dlq> zPpdY`!bsLUd9;02uZoFRl$p2?I(N(3NSO*Omj_{L$;Ef1ca~a|ne(75i%-8XI17Uu zaL)6GWm!DH_~BU?xtc#cF)|AySM%hgQCS$dnkTo6&%(&nJb7hy7Dle-$-VQlFmg3d zo?MiLk*j&~z>2JK71o6tD;t+snYr61)&#c=Sq&;y*HJ6wfDUq)>sMQ|Fw8Y)oVPPe z>?VahyR$INHGjIJ)GGdsgIO5nnm-LVpM_zrd9upoEDUqalOexmVVG;4tbenj;$JJv zsw)S)KJzeZ7^NF#wFf|~ALK&~u*xo5A@@w-rfYU!MT*GhgV5J?t7nT@apqn-o6_O6 zu=Rzyb+X0wX7CNjP9ax?MK(z@U_el|imW_Ds3DK%vO=@RiBi5Do{gcec_}ZA%f`^x zJeiu5O`4Lji0vqauucarV>apLjE`VGjD+1RJ$ru@LZ1NvJ2SV4q-D^uQTF!)4FVz* z3cs+dMK%V(=6Ygnv+-awPfq(H`x|Np9v1Y?ZXwq-<}x^&Jd1!ZViuw9kZen5W9zW& z_mqmkJGcHFlKQh*W3s(i`t)pnxHUHW2U!bj{e*1F^1cPt8xBp(#+cY#cTXl~yHF|y z@B0p&ncarc-{DN~V|N}M8!$Td#t@lK){oh?)S_e<+gi&U&t{WHic)ZFhQYCi!JBj0 zR|KWI@3S!mJ6G0qn;eXg&6AFHIT#_ECo4PTV1#U*tm>2##+{-kXmbl@xSrz# z`n@?}zVdSZ;9qkrd(7O}Yi>I;ga{7s6sf~HLNcOci4;9tT-pTx%hg=?S zYMK{`qFGhfyk8`TDa{i^vUa3-lSp2RHLnuMIR^6#ku+qOUyEdBzBP+Wh2|f;WgVA% zX})4FCuesvM?3H&bLegMVvDkkwZN^9*^S~!K2jbfas~nnVQtQ;y}^E<*-aj!u=>Sj z%4R3T8U;ne&HIUFFbW=wG!K)@hYkFO!U2#&Bg#@1=bkgp+>2-L$xcl$e@m+gqrm%H zGi3`oOqp!PC~}gEV6&&0r%|)NIo*7bTmn6qSQ;x86nB?!w7#fKesd=rLvR{tFELdmWMpkE) zO=ioXgeRNL%c(`0xz&7#zyXrCn=!~CSHZZQX38c#u7Yd3%u6Ya=8d1sJ!VdED262m z%orI<3Vgvn-*54|PY;{-66y*d>T}Vi+&W?LS76xi%|uw((#A zryLX5C%4S!;{ zVum)?PIkD^GB&pkMFG4-^Lm=y*sdKN9NF&m9lRhSG53ZjnV_^>(iLz>fB4p{+&wV_ z&xzlThJMAlU4*lEG14mg<59WSs>}84%KY36QMt5BbJq#w{Jt!AmPjsGk-JeO+pNsp zAf}S*uD8B>eS`Jgv74;#W^c}2C*G~R!}{)#oz{1I?Y6$FDb3v^-hFk@`tH`l)^}U~ zWPP{pvD}NIyX$-|cR!`9B&D+an~q*=LtNe}i2o&5Pg#cK`VD_$)$gjmtomK{E;qJ@ ztl!7g@=QX%X|?k#`mN-bXVLE(|2&I+yVuQIBlHj&Y<>5E()#YSQ0u#m!t$;OJs4y1 zR#Zq2fO;q;r~ps}mZoS~%REcXTF^T0y|Auz{qhV#`uBsa673#pmFUZ2t3=8Xd2@vH z=f+syoi@(;Zu|u6yYD9EofXpGoRK$*GCPBjq?!N*RO?vHW{n)yZPDhu9|-kKy0VGk zl})ZJpx{|e7BJqnH4ECBM>x6y&$i~Zpp+zj*O^^?Zi~^_cji%sVhGTI74Odrmd9h} z-FZjx0<$1&mX$x|?IS2f0t5s!QJl7gO$3ZTl(zwIm6M3%{FFzDQc{lf-O;?Ucw?A^ zm3lI722m(UOA#>tR35rjj#cwq-V!1fD^Q*J#Fch!W zu9F|>!RaxjU%uCjqI|snpf3`55uT4>-lbgG=TZ68(gw^)y2erxX{$E>YhvZ>!1B-J z)ntpxzUl-83Hb}{Wrfl0CfWk zwQQiivp4K&nm?7Yoe2^0;ADsV>7=T6xge4S^v+kxPSdt?zRBKZI?L>lPdQBbOrS-= zz@q##lG{WCKt88!k;U_`@=5N}%A!ucd?TgfUM|P)1M~lusJs}Gzn)OKN-EviF6?hvs;w! z#oUkO*Mfz6@|}rA&e5IZV9LsU`L`Twri0s&d@X7oj7RgosD!_3PUN?6!e8f$`G;)q z_w=Rw&s^|Vc`HB46@Obi%fBxDKjF{(MPB%O)wN)&^xX`Pg7HE4TQ|1gCYm(Fj_7tevTt46I>3_q1x0p9 z$LmRfmqbhPqTr=e{I&lqSdH1hVY|Zdk{L8~EIc7S|HQ3uu2dX*suglE^tB7O5|(lR zy{5el`~3Y#af4d-pu%N@3SM_{6My#E!hrhljiRs>K^4;?CwM`ys<4rb&2ktTRv74L zvqwZ|))Z2@@)DzI?n*D_q%C~)-zAdx@XzO@7iwWbgTh2Yo&E@f{WPx7pY_!j5|#o# z1Tw>nxWZp6v6eITd9V>lg?lO{oEdH#3R@965*AK?8mjJqrN#Z=>zqOyi+3xm1ux8n zlrVZ0Scb5Tpj&?7NLMZ@*t9CdP1};xaI$sbC3`u!?ejv6`NyA{Iu_#YXr6r2sj#*9 ztW&?jdg9%Ag9{Ic7kUjXJW6OpJ|w4=3KW>fwy+F#WPIU<|6UA?+o+*`Rd#7Y;iLcl zy~KtU2Yi|Y>E9MEBJ{wm0Ic(@Lc$=|@_hzOo?STCVP@5E4;H_ua2H*a3>L7bP=oh( z6;}Iyti5GmR5|-T{7&7KA_dyw?owFX9ZEaX>9nJrsk=|za9ErMS=_y7aEdz=hlRy< zVPSzS#ho|F$sE}I|GwqM_?HQ!6r244FNFR@YHO*#d(}ye-RA$NKq_~q|FSA)-(Bnv*=F}& zrlsulA1jcuJ>WmN3ZyXcsRw}J-oN-9KIT7B;G;b0515(x7u=dt{`CRlobMymp$@CCMeCoFUb8}jn@QHi= z&#YPK=wtuKLTLXB|DzHXH}fT_Wmzclwf`m|)a0%I{3>O@=2iagSo_(3m|)?KvH-}| zMc=ifc!=QH2)(Zf<^fo+&CfdExL{Ee=YV}e=ymk~ZriDv0o=C5o&k`zE0h5ymBBk} zmQ#32(}2cRD85>OzOqHYZh?N|HUawu$zQh(cxl11;a#VIq0|sJ9MB`6uMLY^H6S1f zurb1S0Y@k*YolJ804p?q6*(sRdO*NV!6bAuIDk9fg^++#RWNQaq7T93Ax8z{s_6s9 z2|2PpI^cKK+~CDY0bK=?o@55Bvt-7t$Pah`7@~;Al`Idi!*yl^%(E9V>GUrIxeE2q z&gB6g1h#hT0v-sVFQozX1m10S2OJc#?AxAz%|htlzJO&yDEUCZDk0RYETF3+voGab zzz!j<>xF=~f;PP`2UHi3BW?zi3n~r1AK)S=67?uxIAC-jDuP_%pIYDn6#>XnsA1;* zZOUY?H{gOGw2BOR*rxz`t9Lz?Ks;@UNob_5LFO@{QM9UX6E z-A-DD3>*6lK`!m3d;fdR(vDk0?9)MN1DT)glOR=N+)>&RP&N>~8OeY0cR~feQa~d_ z0gy1s^|*`F-x{?&*~b+P>n%M8kbz(=#*h0*uK{IPjHmXO9y1d-7zRlpb8U>nrNL5f zpqh*Ep<&VsoWs(Q(&bPcs`*J>00Uo|A&c>Asgx|PVR>;)E`^N18O%_H6trUmyE$Je zB`cd52Y-!pDO86eTIm3AUfj@&9M*?R0eyBs&Ki-@qhJo}W2C#d4yo}F4w%R(1I#H= z?uBUac&QEc%aD#Ed(wRC=YgM&kwS(Y3=9*nB*7M3Z<5p;=%2CZw?R^Se0HjI9_nm;Z4%xJUFjZN?xGR!h%O)X|#n9JhfN4ADHnPwB(S~3mqR8 z>WN1lm0qwEWQsasl1Xz~3fg3w$waYn$~h@Hbck_&eL-3b)_j_(vJQGO$iEiueobn$ z5Hvsat27x{J-XR6CyTM(7XYRiuO zcQYtZI&N842AR?kZhqt~%P}Ja^z~(s-V`ISrhzOJ;(hGqEsbUCC;??N8K4`32}UNw zSug%1%NMdBzMbs2B_YtsSGEa|1q5h3UeHBm2~c1)x!IgN`ce-WWQ{g^bfaD}&~D}I z=AC_HC#m@P{bd`Vw*Njr_A|uxrGuI6%ZAAyT}MX$({Nb>z@rhn`PwL%Jr)0fzYH(| zEnvu{G8;(yO$bDxmMJnDG;C~3^8RB$P&m#~%52;TANE@0iBd-9o7TuY@zDg?NSa0N z$uiIvsN_kQJgE@U5i`+rLQ_*@_0aThb(*2YX|i&dt1ychlq;=0)kx7Nup0Vy7*vH4 zYP|eL7-j2e73!WV+XW*w9vA1yoWYJXv`}`4=8(e}8RW$ybH==}GT3HZwDuV>LH3Fg z=rdV%6so}fDY6ns?}WL?l3bY!{xVaRN$b&!xiZMH2ONQ^@gS>?P zH$8^ccD-yirFU$jZ2SL+UZ2gfasR8#owik0Na?xm_@8C&q@A)daGm)t-*ek7bh4)H z1@(ac15iWM9EZ zFD5>%i@g7qS)&iWp4HIwE5o92qldC16!=MnEFbVzO7P?YB(p_-zmZv?ztZHbaj(}h z2XMYpEKIPP(~6EZ)VS3rnXeV07$ymv5126*C~ALxYKxcI1wIB7V+gGr1Dn$x4I>uo z5_p-g#J#Hry3(tE?ZDcknZ)tlfzJRd84wxybi!pV0<9ormfnoW%|3W|>%bcjolFQW zc)oAoONdS)0wM^`X!nB79_ZP`&K+^^Pl0tHow)CSn`d=)K=Cs=x5kb825zbvIf69` z&+8x93(^{kl<>%*fuQ3SLHLFeK4?eM@}z-mT;mY99^#5V&1vmlC)>V+e`lLe-d zT0n5?0&QSNS|#j=4qReGu7N3mN2z<)&I~*&A=k%Qfs1MUgyO&sG=ATNz=xzv;AK++ zheG_0(a>}!6EC@Q0z*wSP}9YMynkMAN#J_0eGFK&EN~&E_-SR}R$4+gtqWX3uky`; z36r-6-T?XMn?OCf{ac_7{Z2NhPG3Y5@{)0_`HMKiQnd0;uce!Lhs5>#(-mVo6-i1NdBcLS4X zt(x;7a2r%5g2B7A_kRyu1Zg7)l~gqBZvx|2=~)erd=j{UlKS*4a6ODvDkf-i0A(8! zDhBGW>F)!{irLM$=SLxjoIeL%qQ4(}3EW4oi@yaf1r#})WFwEE13ESkuI3=;1@ywhF2kCv^Jn(~_TI;D<00#deEwNU!2+yx~lD z57XauXUosi67Xz}oNQ3A8LJk{YmmRMPFpSqtR|tIe8J3kK56 ze3Azdqjq!)Y5>lYUQa4KQTfR@HP$)?Z6G-s+6P(FtP1EHw2h{-?iI8RG7?}emlsiK zher+wl7cgeA|Qfbi+c?UVpRkiT#gzVKDiz_d~#XPK!|tJo6)U43U4%Seux@9 zuC8$JHl?&pYFr}y7ndFyYv`OF)24%O+pcXpbkzHX=?z^&+qVlf__ouBbqehq+PSN* zug=glykl6~PHo#Ef)|16;-Kon8@0++L9H!OVnQcZ)OJGU8gB+|FFv5>%WAG}-6K{SJ^afH^30N8)`Yfni5FEFt2qNESQ>r^F zgLVobeBx!08dA{{3FLU=`=DADf)2Mn2kD?Vh~T*4Yi5d_=7M|+trXihKb?(YIS+c+ zDXMdQyE`e)@?b4@#ZS-&m+X6Lj~~@kG!-%v1=Ut?&Hd^qnnAjeR2GKnP*2gBGYn{? zFsbd?M6rQebG@lz1b3WHtrZ7(tYurpA|Bk{PSKtxc-L7$zA0l)cC3qnXCj{elVT5G zAWiEPRt=w#lncvb{_d+-0jL(*6^As%Px~oeNhIa??f^xG1-Z(HDkhtg>+d5Jx9PQP zv|O;CtH@xkrsGzDmx?f(IF*r>Q|Ch*&wt$-|m{y#u1a}`>Ef1-at zVV45MubkSaA_ZjEzklEfuc1ebQ8cYOHJ|Yca&QCluG@DwI|%C-L1w3UY7=bvlfX zC}vm+LB%Nr*%gMx)<2^lONUv|?4n`^k3D%wv5yDmT%ipiOVIzCVw#N*{Ns+Ih6Oqh zqj$rOzbghpdVfR)70S<2)WKi=QWOAX;0R5gD^6JoGIV)qlA--8#d9u0+mDLLocUR^ zV3Q&%EP{JF3--Kn4{l%~1e??hjsbk?Mk^vE_HG;u+60&0jL6O2sMT|Y2gXfvpmUDaFcNdK)?-^{$*5v-drflstFxZr>wTB0rvi1ImU{khk8Wn8HR@La> zMcf4(3kQ-e=&l3Qm5CvoZ>=LL`Av9lKj{{om1!z90ES_y=0 zwgr!K9bTVh3CZHq#5ip!Ol|kWMjq zWDc(B8?q2s+Hz1ph;MD2+cm_>MlgPEpOA5!YMa3!hq$Ve5g`Y8@Z#u@QZD;UdB|aI zOPC^LBM&wR32DR;6uOWDJhrJmglxUQ?EY#9nZXk*i3xebaaSdVdFlog#dQ3!ldKv3Gvk=bEOoOj}3vm3!(Soig6*a7Q_POJALlVph(BRo2%YZ3jJ(V$m%NbX}u<7A*9=45~&7`+#E96 zRqGyHh z?fmjChk#aj6N{C&^|g=%1Q?&b8B$670q?s*Di(4rx)(y$i!8yT9)ys$2utvqMU6YAbDNKBP2KGK7DBEU9yV#`Jy=P4e=HcNRFd8w3pP+I$+>?l*iNVXg>3ps)82_zZUuBJ@Sz0dS0Hyi4oFcp zA@g(e`I9r0x0?$=<1*#v27r2!$RWkVS;$$I4HonnjHVq(X^DECQ36_bw%ZbNX{@p? zNw2g(&S#ak{yU*rhgQ`^FUplou;!eyBS0h(01*HyF{3-Pb9aID8 z^?X-VEqZ<2OVxv38xK^Sl#px1Ak{r;TKNdo&wy6QByJPY{cE90nQAUtzOVma)Zovj zbd1dDR+P}sLMi{-paOlB^c~?$gleOiz-D5!3ba21 zWmC|uwJm-YqXK=T^_|V3c-2DACLu`$8GU`nx{$284fGnWZc>^mo3r_np#oIvKjf4= zQ}v>1Y#eh`Q#hM-c`C^M!Bm@_1u6-!5O7sa6sgEbP|SbR$EqNo#eUDD>*G}208IiK zJyn&9%ciIxCv9SKGdV8qwA%m=G+`R4eDCd1dE$CARZA?HRrnH8(H_}~fo^!-Jk?SQ zA$Hgz)m?KT*ln5WB&3f??2f^U*Q%xf9U%shn?2C^sVWa#xn4EFk{N-gZc$Zm>QgbL zPV)v!cdMH4*eM4{RWHPbm8rY|ZSaC#kho`-BN=4qVvILvXsK^W?3#!hk zFb_7mpjyI%*UD9PmZ;pD2=(%+>L6F=@J*F9WW5(v2Wb*jj%b{=s3TtWNHrL&6NSO( zv1&P&Xw=`Th1|d|uT)+<*z$vD>*tT6t?NIl$eU+ocH~!8SD~uLTP@TQ?g>Y2)Cxc+ zfK~=ED8Z<*L5GVQcf@bp)t$fwQW$*RL*3Xy@Bv#-^<{3=b8ofD2e#Eyzv85EV=*?j zsd_ZG>TYW>c4b?&J5PJ6qq;j}kr*>@QLf4!9q6UDLc{ezt?|7cYG1IG6bln9GV@Q1 zD}LKg-PD?U?=Ura(a&<}%WyGxW~AEW)06$wC-VeZ{AZ!0N!w6aUZiUU{^@_s3z+@S&{hgSv?lWVReJAYAA&rCpAXS zV6?dgTruQYXzZXAa7$~=JkH^otp?zcc!r$@GL0uVW3;1YDSvz&7tKUqCg7p2nk(RX z>4>{#2j?)cx(4iw2Wx0R!(Ub)dV6Z-at=@Gz;&qMrFjO{VU3SwJm=860h~j8LyZ^M z9ose0jO83oG}DZO`oqiS8qfw{EHBoz(r7t{+HEz3P!4_CX{Waad9G(o+tm7P3 z4ADRi0%sm|d#DDqCXwBIa)c(Ha~R|YZzWPjYyJefLLABu_Ns;*q?$PrmLYhnOtZm4 z$eV;<&6NM{8ba;AB&3R*5aHy9C#p3AII+7LO(rK6Wq_C6XJeb4w1kE_kVOTP}9!*ctfR;!z1GMQHa&kK>z>-XO0dA9}@dfK(pDS|M zkPqkZYk{T{n8WsBje+aXY#h8U_aCnT?T*dz!g`8kCg-qjs%9#*!2UL^3gu$OOidBz z;5$bH9(Y8QXhuS&dx#E!xcgE~t_6CQo$P_nuhg6X4x$2aopl<6P|x5Qn>1tsm%2ID zm1@Xr7z@_hsv$=yvEY?$npHeFd57jBzpZ4CrlzHk;NU?`ZOEj&?t!L1Dt%Sqh?U1Q z4a}KY=;{fLJL-K|?THVagcaWJuoKQ`hH;L6l#5nwza(0jdPTId$u-f+JJ&Vd{5GfG zH1z?dVZuRWCm0mn-BvpQUE)YP5?RxJW7Ca}(2 z?nEE$eePKe7R(eAnAB$$XKt(j1mabBvnHNal# zbGJi<^R;AQISZaG);{B9;?#KU8J=L}M6jRtM!(I`*2lTiw7qz3 z6foT+&exgRc%Yy6#sqd3XS!;hb`NKov_NaBZrd%?>bO*6)q zM&Q!>Y`eBP9=b_OKJcJT2U@*Ru&Op*u~mBm*sJb^3G7jB)uCP5Q=I97J=$z;N|S?P ztmKe(gOgy&feTt!h$*BV?2UV0)spuP%!*w%OnI~7rgl9fZx~|PZEcE;z^wm6?N(0R z`Y&xCDn!j$em3z>ve(Uodd(jZ9H^tJm_CbXUBtab#?7{aC1Ffdmen*NOvBxRFH631LQ78cYFdoP~rfc zHSW<$muty%!57-=9zZG$rbeR6GY@(snk5?CLf0B6`06?U*$qG@EPlM&psu>@oT5uF z-Ct0OII*8j59icR=f-5iM7A-Uj_ojASBP6u|3{nZXU!t8#eE)e(9>PA@!W#x}B9dD${!*%xn>S2QTjk|hfoNh0#toA49$Ol%e zh8>rrTgijnQ*>m>0*if~N@7cHCAr}h>0;72qwX~S``|3y1s-ggBi?m0SHzl@uQPRC z6ouk#9gB4%AiA*rh2Q%MYcz4X&K~WlY~hZpPt=ibXxNy*XQ~dglcorZ3G7N1N(K**>`4+Bd$@V%NK^Hc=ci3JxKM$+@SYyojbNWp&JD#Wx`;AA>2Nx z^A)Nm6m`yIrR==-Vn3_Psf6+Zb%8wxZA{+J|-qtMKAOMNQOX zgl#Rns7q)k?%U0Jn237x3@wM)&vK4pf8tYNtLlh4*NB zMuk=bi)li%!nfl@jzNhqj?`*gkrqmp1F})asdST$=d(i}f^{T_)p3skN{=ohzGcu>aT@ngVeKq4X1Me0xvmA}i#Vlj4qlJ`{R{tF1c{`j%I)ktafb;%aX@ z8%lbeB&{2seLnOG;4=)`QuoAU&Dszf$y!wJZfM1SZ;NrCd!bH{d|E2k55=eNhl1X- z)0lK zI_b%-#cNTntNwrBP33O-$&jxZOr#u;Pb)otkznbmuj53Rv9H8;dFsi>6@P{D4`}sG z^{uN?lpHX5P7<*j&upX5hE)8NF`nK@A57~=_6^{-9(o1XK?ss3e$z)EMLB8u>$^ia zp;0}aIpbDC^|t0FV#7x0L2n3HrcgLU;H>eMQ3AW#{(2dJ9VT#HM6v$X=+8smClHWG zEQ=DD9E{O72QZ;^`!Lk|ONA>=Ptt#;-p?{{e5$?|utagVfDHXoB0GMQrN1E|*Yi30 z4Ho2@U8w(yUc<-fM?wkXwo~*i#5_%$rtb&lN|5SdznS`el(-h&vwr=v z1}guix5CS|>zhd=@9^0j`rVe2Rl-KXh9xx^pJiXz;21Hp*y~HSifE(S%t?R)%%;1>#ryD`@G2&{i$!@ z3Is(2)CnCt8s>`5)eBQ2<9<@Lj#Pv}79J3i2H|Uj=#Tn1YVD1$dITdDyTidyMvO$~ z%neWoEU`4Srx+b=41nep6ML2rEATQ$Lj#D@llw=apBox%@bGGed>cZ9)hzew7$VHb zkHOxC9GEx^)d`RGG1Q~xr8F==K9;2PFroLtirARf!azE=t8jWd!*jwE8-6lK>2-Hs z!%)bm!DPD=nm*J3SvR*-Zb%TEseG7W8+E2Jeg;^l#E^k6jW&SRO%oOwc%;;jO*8Ct zAcO#E>I|T@W$f8ggAH=}>_qu5+S1u+I#`Wr%DfzenMeS%wEhF&u~p2)Q<& zXE;o+&*vMO)2g!OQo~L9`{gpjV!|EITxmd%nfTGC4S~3HvmwpeB*0JD@CGtyph$=y zIpL#w4at?+hV0{;6T2*s?pk7Fzbyw~&?{ z6F_n((<rKyBNE)e{o*JA0B`}CdyG#roZTX9EUkki zt-(|KKAq`qOG9ss3+@AVI(H9aaAR7Dn72ZxP^w7&w25n=to8GCO8 z8R4-GK{vlJ7qRZs286YP5<+)X&m4pffnsS`O>|H7%nqH&Guokops*Xz++v`n{sAKW zg9scI97YFB_@Xilv`U1zlaJ<^1>O)E)|GY=SabF2PYQFi)`O?fftuu$c@%rM<#z(A2f$zs;u&saUg|J%f*j zSA~JTL1MfqFeboRl(Owcf%0#g1jqdhVV|mmviqK)0597e zW}uY_^S#>p!kPi5un-wmcV|;Jm`vGBvyi+O=B-Ljg_QyrvU#hrF42~#^n8RJ`sH-k zuK<*#=OcQf#p9(``1zTz-Q*qQj9jwi{DrWQ)r4U6Kf>NXw(T+DIwAY_k*;V#Wf-L2 zK~Ts7&D!DZg?`7Smtlj*GEG7eHUAg}*%!eC_!Cb46b3q$^gF_YuVEGB#W`g&K@z?c zCO$LoCw$W^JPOh~|IX&6WjOtwkFr^B6F##_Y@XYOL(ZH*-`R|G48LPW9K4lFIHZU8 z9cY4Uctq8NSzJvNCa6aEv?>XMYKH5fY%uX-y3m5=P?T3VWZ$^&vTXDY59fuoVT154 zkb07VO*ebtgGvHpwnlKc+)fDQ8^S-3H6=85VpRA8ZdFcPxRKvxnHEmJrJxDQ)5Gg}3c;__!<`+4 zpx2^s`Z+#LuzgARAhMvJ1|3$17xUO9Yr_YTH5D}W{U$MX%9ilWJa#x15gzOg&mx77nJa%iE7(37yQNm-N=ZXl$1rdcj)?=KQcI||S z6FjzXYD8a7^2(eDlgRT?gh^!8yom1H*VZkI_|RC;d;6(~eSp3(CZ(dOouKla8xd!K zD(i)lL$5!G@R@UPtQC&B9nsc9AhxbjRJ!0*L_G%~cI&r@9o&_S7LkbS?_(c%kH@;Y zL=NP!k<}yVDlO_&J!(dpvd!HyvXqyoD-9!eazz%jjx<90t3(E}*KgNIJM>qF2v78; zOJpOoCr9dt204ef$4$CMYHbCPe(4)I2`G~A0K9KNWE)=KK93O1xil)Wgxip*h>YOQ zP^pgW!=0gDcw`|LQB5LzARRlYf9+|}x49|^h&TED7`H}V3y=<6J=;X9Wvh2Y-+!I&KjqCxGYyhILh``$5{R<*Z zE>pZjG*z)Iaurv|WnCmWJcs$ohOLn+d2HyO$RRwq?@(l@J*-aZgQuU1oM|rjfbYe~ zO^~q*ak4&$;50<{u64G;g;yiH^5Ssjeq;?!^3~(WY@SQ`e@8k3otgDZMiwj}!p-n}-w3G(|83E5}d)B*P_nN?{oY)j{Lp{5&J;2u>E9sd{^_1~qPHF{lZ zJoQs#D!}dNy=ZFZX!)F7QGmWSyZ!5xsIDcM-)f?fHKX{Uu#RR?(=CZ+i>#w=!3;t_ zqLLFeY@;B%6#PH@yzo$msBdP3+EC}H{r>}MuK1)&lnPKX{|{=f+@oGlYJXIZ0xUQD z2OuVSvEYBh3fGRhL|IMpirQX9!SLVSQQHCC&VQJO_FuB8jpLd`dD;+GY;65Yo2Z~F z8%toxr$jehtnk+MQC?P(r}$!*D787cw(TC3V?nMPdq=s^YgzxO2lTppNK`E0fL;8f zKG5HG@~E@)dOaknxh=Vxg+*QTu7YH!tSG7ho;o(F$eEy#*IW~-VkARD>e&9)WGD3g zRw(V4sCu|)ZqzwD0`9jw>VpHh4lRw6HH1;dq{O}=SVERq-HWOLc(Z59X)V6}FiJu* z;m*@2a(4PtEU%23Ru$JlqwPrUVg)LmCj6rFk(MULj!9p#BH+eJSD%nq6; zcV$n&F^Jw=&pbw_5%VQ5?x_NsH`3y4XDC@0BSrkdJ zx1!hd7tue{^cJt8f1~Liyp2{-oZg?J1L)spo5wt_2J?<+T&Gryvq@Fl+c#!DpeCZ3 z8;uB313b593|ZfF5fASdGly#PV0erdwMin6si5(dAu%oK)k_KPonJf@spd#sGvMXzsH#q6io?Q3E#((AZ&G27|2+lH8(^!jq6@b}Wq zF%^{ml07kX8pAYZH4Lj7)=FmaJ)a-M90!1jJ?vR8npq;Bxs_HZu8F^G$(wu^yx{kk zKVYp=LsaWseto3<7*h*7{}t0+g3j#F+vC8eF=1AcYXV`PZ~2W;vzIZ@8XA!r+OyNqh31_!#vRyv|siOd5ly<^GYUsQZ-+bnjZxe$zO85=8P34Yi% z)`|x|cZ|J97IM?p{{of?lxQ2?DE zV^U6wden*`dn1j`utc4$V!e?vBH9uET^Ji+C#V@XCAQdJ;QSYgb>M1RFNht+CDbpD zC0pPyqq;1Q?amb%TgoML#kIG^lCLsZf)+bt$Mf5c?1_EH1vpa{I}>u$uE_@9f0pF6 zlA}NLBx{t%g6pXlQ{r4_^=@W`o|eZhffVBFvHr;EQY>W2Kq0@^3X|UGQAlsigy4;? zUW)}xdSC)D(gKyb7rCN)w_*XWVez5cv2_5wJ4BvrK)oMl+M~p}elBS962IQ~+#j)e zJIPVpt|GP_sLJ7(eDG`eCibu!GY;Rdjw9RuQ9JP(+cjCD=*U2yLx%VH{vK0cEmHPxBS9sa(H7hQ_ z8eJHnaz#b+&p8H=AThhids!5l8GiX(?H zFdcTRjRSm&f*1$u^>LtMRN2kDH^v?0943~=K^8tRnCn~OHi32Mwj+*gK+klL?20Ra z`ooCbaWB9eUhRuJ$~l}o2+;u(9aciBYjR%%TJj<-3j3alTjYS|l4BzAUsvNKkfAsO zORU@92{pV;&b0OJ7w>|%-i*8F%H+k%pVG>jDveW~)5@9!>sQdqngt)ei2G_O1Yf_6 zyJ#TFU)c)@o;4H^3Yx^v<{TQeiYMDyGlb3U;>#cdYNE&}T+t=|nw6mJuf5_y zZ@4KAA~>Gx1uS;z7k`tJd_OookV~Q&6+f59+Q{Muaq3z{yf=ipZb5<^sg^vej_YdU zOPvM&4-(?DAzm(mAp&MC7-5qV-@{puH?T;|t7c>3*YFH_FjmaA8RO$kP9mKc|BYK| zm=;gobg~R8m@Og%l*Di32(EME-*a(17stQliqu;XPxb?2xBa~`K8+_x-5|#H*%Uv? zR!DFgi@2M2$8X}d#qW)eYcC{t_B`I?orfyo$^K9bSNS@AC1fcb)5+yiyc^ZY6YuyE zKZz?ZbxddmDU<&|w8mbp387r{89oW70%EA2U=qDJ=_2`14Ow@NUH zzPG)IFtuZXN%Y~J6HKDZdL)=cSN2UXiQcS#LL3);^-wW3b$G&9F1lTyi2Iv7!6f=G ziUgDBo>LM`qF4N!ki|vMnwhW@AUY-z?Q#?RyY;4oD4@#mf>(FnnqbWZmL3w#XmUgp z_})=b;AzK2f&EX40*9U#1Ckzn%bzB@PFuPJ0id z(2@gjwa^CtL>rvnKXDVUB>N6aY#{gtN*|rL5Y{3K*qC6GJ(*dVTqI3Q=FLPsdEy=J zfi7y%sE3+FtXff0!&Z*35jc!10HGCr|7x4KqJVpqt>pIH69BkPJ@o(Ez;rV-uywyCCsq74Ee{^Bd$BOvBc!1) zQSe5c#wJ2Wz69V;TjZltx}uxY5_bVCIkYNq5*|Jyu@!_rySd}+#G7UU2QQQenSNj} znR63!!5p?MNZiXgeIdhH`iGsa}kfR@%DaZFE zg8HuPW{7!x>P!!eI8DP23OZP?MS|mbG<= zv~})i+0LX|Xk-6GN3^J3a$}r(C9#2>78BsHVuIN5Nh^7R`V*6m^QV27nnV_=vfD09 zPa@rE7F;${)Gu{*66i}}reE1y;v#{GojtK~LDJt2Ttuu{le8Kv9mT{e*C);7atz)o zN;d|J(*3?a>1R8^n8K5y9HUQ*a#)>B+R3dwcP@$S5zP!o7sLd^FD5PKv7av`wd7Ch zdNb(+k9ED3M79ZJw>`XV3Yw`dqa+m85m($vssk)!G8D2Zu{PfDFiB=XBx|=B*;Q6#4>~dcYmG~&du5ON))f+ebOWzJL#L~6k190d2VDc^JJ5&cvvQP z1Q)8ZrIp_JZ^vY3dsCqrTr-&$s$R8{-$7=J1#ct3hyYt5bwo!i{Acat3EZH9`pKr^ zwXaDs_5jr0> zPvpNxmb?gZ+%x5m?--JuYM5C2W}8^I&Pl!qW=$|%aY=si91Ec=bRUyUJ_caL!faeJ z+3B4H&yPcr$RHbSt$%w$uQ^LAD;8Md$bS_po6 zAjTg3BiVt+-hV10Y=172)K?^vW9J!yPh~P$63>DsJ|?e#ydYxUb$0hNvgY}!))Tjv zq;$3A`GgDXQb32{e8()mt#!n^ol-742`m@ZO)<5fao#B=+3VCxG0A?neoAXDrB}0* zCp>3swoW0#XJ+T~HYrWGJdJ!)zM2cM9lNEF*GnwHuf0=DIlHlMib?j+{wXHeTMSGg zJA1LTi${ob5=M!1yhf*(1is~;LbiryX_rgI1pa|3^LXrMdCGbI;9IJcaL7C|Q!7EA zQU_g)_4LGF!crQL9KiJwQpSLb28F|el2c6e>I0)_=+-RJ4qc9@d&4|Ycl{Vqchy8u z_x6*y?ru0{X37_?duB<>aqfVAOTB^qe$T zv;n265x$s0PKW;)d^$WP$gj;Mm(Y$gDUg9Nxjh))JDYL@(m5bE_eTeBr`TYhD=D2V z2@AG1JLYCes2TZj{#FWP?=y;u3F=-*%gb)AxRdhHLUIZJ^?S-)pj`uSucs-+Kn4SF zm**)9?FoZx?^F6hHXCHh5;MH1mjI@1N{*zCL{rwM^5wGSb5nN^LD0B`sQ@Q2fqCI0 zi&7yULw^T2zBDzRx<-!`sembz?>MO|Qz1v2dp*>LcPG!XR$O&iHb$XcE zlU_$WPesI7{IDYRCMl)(;G0zPtcuU@+QLEzJgxuu8ipnvw3B#?44@ zOFIrIIusWZ-1AO^TW*827SxutEz@?=lBDgDR>PHCjYHCyEiS{;o&m}>dB%V_Woed( z9Og_W$pg|Hta&!zCBbR+0jnrYh^q;rBO%x`HtjtX-8U`Gks2@{FHJ?BftQa>Ti^_A zcfL0rm^2*=%#mx1_h7^ppYEEM23~oRHb3pme`kb~7NoVYKy53%UGbL1X|E+haOcuA zGC|5>i&mtOqZ3&$cmokt2>x7}Hkv1>*qYW6;OB@uxjlMuKBE>|ydw=zEh5S7v=Cw0 z%ATERN39q!G;M#{xc@E##nR)o2hu75t}fi%`cT?FK@s%nNE&3z0mi}WSeiFPO?LCe z6KScOL*VJOT&NBaXVP5Aci**q+|b1HX`xV<{0nI^?oSWP(;k`&8FcGPS^*TX;%XXb zPbel%{Ef6jT%6vw(x(4+4w%4z4vJ)tH@};9hClx9{WQp49Sp|u_cV8~e{6V|MkbnR zSw>qPrvchZ!PW0SNgD#FuIbGKFj-HNM9$BR^YK8&O47*m{yohT2YgC93@mwMGZnI^ z2G9GFcHRcPu=R1nnO5m)TcMhI?40iHCcIrSk22HS0yC2%)^JU5 zMB#bq^>BPaMi&YGoSVMaL9plKr1Ty_rHHG~NRMz5Vy7-nzg0sBX5n;lOckry9rmQJ z;xZgLD8|YTr;~$vS%MxX)30!G>Yq!`=C^ISkba0KD7Y#LdFj{mwL)RXQ|_eq1T@3c zQ(B=f&M#ciuQ;z3_WwOyO^ypBK7)@vNtXjUYTps@wZhG!-GRD zGFot3$Ju0z17>+EJFKlz?oBgx^H{6a8Du3ti@nk&!<5aFJ7tXF&ALyIjF&vvU_izQep}(tj1*uY zZ-+|H$-GhTf(&b%Gdg1+Il_=yeO;DO7wGNZ5gpNh;0%+u-%@1Q+6bn-(PfaGMwpeq zL}WDKGF*wvFct5{DH+AUtZavttgft&TV-bWaZ_gIX0!mC!od0zWJsL_zN@B*)JM#r z)M?9$$1TX{%?-M~Bx5O<`q>p3ErhIaSe>Ef{PWjm3<2{uAv&T)rD9g>-JEfXi#}(k zXixWjVpgOc7PI2`iHs8v*E01OpQDcP#e-3=E^XQ)d3gr7%e?tkhW#v`HkL@$wT(0T zz^vcJj0J##Im>mn$E<1F>~WjR86zcW;Ci%hA&xa?o-QX*=@=K_*@qO{fX4F zgcmyNZX6Gz6)Bv8^SYW5v_~%C;7?9bFt*mC9gO<{K1OqakTn{;5y?^)yseY*BBT%viodK~YlLm-EEFbhoV3Asl5-ilxoTWymm2R^$#*@s8Iw4dUv?NF-=l~U zU*BnTs8SwH*li?Vy|QxTyRT}#o4Mb(rb=9nml>CHE?Gy6fY$=7?!-%uRxy7XpAhT0 z(o*(Hip3coOo8-Gu0jSA8?? z75bGp*&_2K?~V+!%DgEAS9h|>v}0L;2fAgFH6%1wuv@jvQ#|<0Ba@DoY3!aFnPi0$ z3(l*R87%ZButojM8$9-TgUstZc(qaHQXU-NB$I4Y$Zo6EI&+X9Hco1r+0R~xJ=QJr z3{ShXN9G)!c2NIJQ}3zzz)VlxE9)~Pb2ztW(Fid?+^Ec8-YdHiD8{Z1%5*2QKa~0z zL*{axAU`&m)gR(OdIh}5KnJOM!TaY;b@}W8rot((fxxyAXYAtKw*;6y)Ero2X zF*~yXurU@8@d=cf!4(*_K+KzF3p0zk82guI{=tJ=S7mxY`kIWt_kl-b#J$jR0=~H+ zvnA*6xiu4XtmHost#RXBnRF(JDj&K}^u=xmOumR4m1XWCgM6Cc?_;7f?m3ZJ#@%D` zDbX1fXGCZ0axPQBoo3l((UtP9W|Cb~8Q8_!nUDB`Pu|Z2t#Tly#GfCJkUJrIL~4?>nw9_P-Dj|Q=$Fll*J1ze&Uj4$4jk6 z?JQHNEw7Vh5^AYemZ{Vx_+*(%?a2CB)3_vmHxqGBw8%0Qw31d?WT6k!taqC%vMh@Q zRh_e3EJ|D=-EjU-S^K$=BYI_##VhRZ?FMFjnkCQHp7chZ0%`(-%3)g3n?F?9g zkz2AncrbNmRzA2+@!OLnScTU9)U6ucurI5>xsXxU_L6L58P&clYd5e@5r9k&aKt4? zvflITS$ra^8aMCgxh%3pAhW5~l`Jc6Q`?(a&XC!7s%yz_S@y^;*lIqCypsjlWZ*{- zOFZFjRx^np$@M!XNnYK{+76l9CsP{3QCWmlK3@J;))q*vnGjmyFE6rQNF-12-!HS` z?8sI5C94qPizY;O94E=%0m*0)0TF~csI<*UD}2Qw`*&UfPg-UF%w0U(KHGxVso9R% zJs|=ty_`J|w{_2c3-J$nGa@&;A#I7372Z)ZJD0m;zdG6ZoY`fsY*UTVw_$cTq}xao z$-sUsvU~Ua@11!}Zhp*J?Mcdh!d2X!l6{xF4x@GUipkm2c|jR4Bb$8U$zm;LWzXfo zjkB}Kjz=sup(MMUmoLACVp`|LV%l9x#I#w<#Izx6#k8L5#k5B@h-t@e%BBk$D4pOP zV%l0*OnZ2jn0Cyb?0r1#=tE*!mm^}@-ABc=*~hbQ@&+sHe6~HnLomtYNkHca68vJ% zjqJl@vzT!fgG$$5OQ(Rx9k}1 zAz#gMOdj&yBIiB#5J}yf4kiz&pCfum!yM5=8s&%{(j-UD6~Ep(r!J&gBU7RMF`2`c zTS|UKhq~u{`0rjXY?wpebD$+xGAzjA|D4|dD3TF5gVB6RK{cG!D`%AjTB0|);&%OW zBFu!~+JQOi%!Qy~XihAowj+i}J zMQv1mGR^{#P2XDMAVrQZWR(67tOz_NBqz`sWqru>SX~jCLo$&FzcW53(Mk}zFg3?o zFnskqV~(8=xvnV3+)@Z07@zYeQ9r<}|cGFPi(hqNdAo*8F!YObiQ$d}~kcQ-0ry3_EYksqciEB>Q^cfqQch zq@p(=@{P!hWjU+JXZOT3+~$0at&0#Gawo^nUI?yxl0!b&UZFD{5ecv<|xH*sCvUFgGu=xi1!?N#Rjp#ucFHGR+xmHb0?N+P#(Dmj?1BQ?>5$y~ z2=>h3XtQr#BVl1ckEVIk$;kQldameB%e>W90BnWZw9fN`RI$VoMyVBU)-G=?86s0Q zzjw%kbY8z>d3DOG24#bZKqokn@jvB3>c#Iw4s^?tLq_-v;hTFN=`Hjwv_yAso(C$Z z>-Q6W+c$5nE4mt1-vhnxlSjVj-j?Ty%cXe@q2{9RPw9Eng`7w#&m+6W(QLp*RUSD? zgav1W$_TD?9+BNRyeHF?mZu}^ZG*?WDaew7C;!^CZ$h*&DH@(hNlXnAD*SgM$`9DEgD<+6jtru?CzD<6rm7wnIPWg|)zAS)s&EH9;FQ}Q9y61;*gL?MOH#xI> zXuiprw++w#!mT(oI^QI3y}*3Z8(;{VgY!vmfCZ1L^AQim>htGw+!|5&TS4cDHO`Ac zVQKlxBumBJtU%yKzw%L|~czRaJBj!ljmjIO-O-}m1$9Upp~Zv!dfo0IqXepZqL z;y@F!P>nEYK@O^jLOYfQxuI-Hf#;l!1={~^5~9>*`E0O83C;y=>2~$C@J30&NnlC( zClo)!!p^1u^1A6qW*VX2r?o90N5J2^)6NyCoC@|K}oXH43(n@Ae2D_NrY#HqmCmi**YufVF~{Aw%d#R#w8)=GyuND}Xh_ z4|r@_<-kS-dS?_pt-S|6-?4z4Zovp=_bm902crfT3~&)*4+a&`6M?C5lY$GLG!lYi z3JMyKlOk#CuCWDQ`E4hr6_7C}i~VIr0qIDwVA!mJyJV>cO)HyUKt3p9!J|tGeujL? z`(swNL(?k?-Aek!bBVmS6a-XNA`z2()z;n59o6X?-xo)1E4X391VcBr6_78qZx(ps z;(Z1ExCYk`73|>}EIU)Mf;)r!LIK&mj9II_S`cS11n=Av1zr1~K*D49J})3ECRo~# zHw9#C6c%jou7GTX!-6l~7qk=->}XZEj+`}0^?Ynom;qVj@S}*V{`g+#U6G}C;an7U zuI6Bru)cmv7D#^s5PhlmXpj|vssKoL03qgG}dNU$7TcJC_ zjcicQhK2l89&O`7$ow(EQ=x*6g$;#ztzVPEZKQ+dR?8Jxw=Bdk>lk25Y;0AihO|*8 zN-gp9wuQUMkcqNUbSQ*u>PWFLF|TLUh!}kf7n-5O9iDEe$xnr|t0YTWx57J+I+V%c zVpHgh$#`}xq)HGGzK@8pU%$duuBfF~Ef4geUm>Xl`jWkEU!+T1@j+?fbuu+W#K)_Z zg{OJ2$WRy~WC{KnUU)|E75r;VA?ZW0wCmyu>0rsNmKzRED163mlV=o?8kZ%gpII0| z78X+6`D4Y{uyAPh8E(;_VPD}L$h%V_Te{GZt#Q0?B0zXd5ZY7|L>_eOA0qd?UD$<; zw<*2Je~4y>JQ7W@dn}rL;z{9WZuXT*F&F$^i@DJ9gNX3?qlmEnbKyyT+Zc-?Q!b3M zDk>qPX8Pc_u43#V_oAyjZ&v#hnUu|{UnFFyD{j`XsFEw&qD@f>8NgA5%^izO*`ME; zrtSU4(+#)jQna4u&C{+$oj8YfeToM044F8n$cD!*8(B06^0J+|bbe@&2cDuW3IpT~ zq6nBE_*n`WR6U|dCmHEtC932LpBR#q~uN05!4I#-i-{sMq@tS3L7V(PN1aoP4q9q>~Ud+$$n$ zWLbicKa0poS1kDIX%RULoCQlNie6X{8ZX`!^}#1!7d0`H{DsMncybjYmwYJd#UWmN zEBc#5R9Fo~<;y^pIzbw$jI@azu$D??InSkB3X7OMioatFC<-vD#iZ}3wZ}%x~ zU?bl7tZDHvbMe>lmc`?2O}|iJr{cP3`iCMHJhgLiLvO-yo2=MhLatWwVmC{|HLsO_ z4ct~)yxg2bUeOdkrGG5b6_cYfD})hOPJHqE|K60~l?lb2og@|bc5d-=f`v~{Dt>Q4 zu1BU7-?Apx#i-cDo?J_p6}woH>!H=f$7%e8&BaH}$#ulGVjG%15El=l*JXQ)chGb} zhl-!lzxO{@Y)0b;ohts!exECTO@DX2RQ#U)Zhx(~wiUUKyj}d4gvQ_b|Ji#JI4i0< z@7t@0f}o=8O5Y2LxL{NJqDIB2F(xReNsJrR>Mr1daYfX&MeWvB;IM=i6T5Li#YsXX zZY-K)%p?jkSv4^%Nt;EDCX;QF==(iYw=b6tshaVb=Y8I1-s>lqoLgPD&Z)Ehm*4;Y zyUiLczWn&DW5n8thaDl3Ki#(Bzy4ZcT1)!~aj(&`kJ$L<+vbS1-fe@EGyg;O<*VtO zeBjkT?2*j>;I?BvjElPW;roh>-+XUS>tO?KPYxT=lYW+<9shrS&pe_^m#^K6UtpZG<>FUFL_mTNjE zh~KVl87aok={!I@d`;(g@zS-Olf=Kj&@x8+?%K`+#r^AAY;ns2cMS&6)%n@~s-LYU`*$53o_k+L;t=KSp-;HhCiFG})HOn(pvA+Ku^D6~6MOh2I zraPV=Sa#IVcNIgkbU!jw$9HWl2m{-&Ts=^ALu@*9%lt~gP1RR^|FAp0II!ZFc5FGC z9owdAxLW8$hGEiNI>NSHPs`r9@UHZo=b3lBI=%)06%H%u7Y_4dLV_KROd5UTqff0L_7pSJ~XnNpko@-S1ks$}Q`s^bG zH)s3Er^mOlj}+Z1_YraIA+7J1wa|3p*os3tRE@whUC%N@lM8b1l}%iENSo?EBJn&2++ zQMa|+M5jfu&J1PV8m4V~zO4kR;wrjrSz5B`^BuGLm3`OqP0ceyP4x_3#(>1^9WOgo|Vph=e1>|T1pq^r&!chgObt!=ofq1mo)GgU0+jiYjq>dYC( zwjy6oydig9(XU*vw~8$RlW+Csm)=#HYv&G=CMVR#r+#+&l+#Z<>66n7W~#sA-35JT zjXQs0MVx&3wqfOh*Ag>kv>nb+IId+FRupRtZQ%O8ADBw4n33w5o|4RSTW9twTNaDV zH-(W@u<(?1m1~kL@EJIGp7P8}D1CBMWLxdnh~PEDHhR&BZ4)6}5mR zCzNYi2R7MC7^#65I7mtcCz7X`z7tz^Wk@BQh*U2_4&a3`_SsHd7}y11mI;Q5>;l*3yy5)G_VdrAmIi zMs=CxS8OQRGCSzz)-g?it45I-v8|~bTZ-qp7DL76rCX5`S4T!cc2#^!MXY9P@lDQm zCsIw?%<1QZ^{dR~pz{Ncxxla(>cH`Iy2*$%j`_&avUizrNc$tD1M_MYV{d5F%0>02 z%j~|cj{QV)YwP$U>Q6Y|3r(aYDJ-%pxH{X18klSWs;XO#kqJX=hv)Tc$``$b_iRV+ zn&Un42Fl!V&4u~1)Y$Rvf{rt*Yi@YC=*?zZZR5o)U2VIU9p7?7MTr78vJH=+^${T> zHL@a8QFJpI+m9`@$zksdS)HD4AfhQ6Bj*{Bjs%HJrYGwMtX@$ntBP(ZYRnSj&~Pow zaaDxpIEYaTf;h~M!&J7c6x14v4;HnaS;?<8j-)&}so69%!_+Okdc;|l;sw5@*^VvG z1kJHsD-NPSO1z=%XD?KCHDqYSdQLtK9mc~-5SW4Dnt`FAEeS-%k;yGxtt%0ky_f}S zAcoqZ;qkaI#=O9>$r<5BT6PjE2vw`R^E~ot>c;;%MM*z(Ly~k*&R#- zd&Tn6HmxAiw1nLO5z}*2I|w}_M$I;2wvfogacu1sS?FTAeB_#b#=o) zqES3ARt(SNV7C$elX***yih9VR>-a(-=L^Q;U#V4#Jjw`zj*A?)Q^SMXM{ zN3sRiq@$Yoh7y^mK}M{hRQrL-Ip?AdyPi-VWs=9aIif4V?uk$-)W{An&12hHju*ZfxnXUlqYD%~O0%VKmpk2oVr{!wxv_ zU9O?tWK*;W^$Nu$WpZ_zs_uu4tue+ zT#lT8N>y}v77&Iz&(d5rI6tz>Oc=e=}oCD~VVH6<;YmVWvU&zL~zG~@KsQI24 zvRC`CWb>dqA1^g2Xr3_}WsLEGQw;GV+2OJK_PRRJlrhW*O zO%_%ieRuUzb%NnkPc;?IfRQs|(_|m#^tDu1j-%Ae4OdJ%c*C${-Qad+ zsG_i_d`vn<%pQxfs$)uY(y8buQ8MJ^Wot|2z>HN*ZnzGbtIcboH1XMGar@6(CzNA5!nhggcErL*tan3C#llG^vNCiK^X5~ zH7Te+6z?6dL>-e`wYcw$R#nV8aLJxx**h#Xw^?!OY$htZv|%zxZiqDRMSkF7-@^9H z-i*>M=i97)V{$E@;=V_g4X^5N1;Z5YxO568XCGOzpx>m$M4WW_wh>MFuOuFtu=?;O z>>@GNV4Hm#p-WX*^Oh5!N*kzVwwQek(=!vKeGVlIvr?=vbVWsWL0Q*Xnilx(PiZ=HsbD!86^7cdFSXR zS2`0Slfwz?b*x306Q~&5q8G-Nmu&vQVq`}QQ6?5s&I0Kc@M6zLDlt8*shBJAWTeK} z%si>fkMUIWdq+BUKit)Om8%E6WxJmk*t&AQs`)SYOd z$7_T^h|YpIVFefhTrI$uYd8cN4uOV4U}vtYhC=`sT*D#Ia0u*(MKDvFc<(vaa0oOU0(~734TnI@o=XgCBK4uOV4 zV7o7(;Si{Ir2MBH0&51&U)`@<5KNG~y7&B(b}jv_F1F~Ja~BNTO`Q5~@9mX5H*)?& z;`XoGHaK}@di~XvA0kjtMthaza|gGs8$F-TU3~6N){VYro>uxra>A5*c6(*lH&=WgyAEuGk5< zCfxIu1CYiuBocww)>I##rw*VwuskP<&1A^Z4&3tvwN`N>(nXn5V>O^**=ucM%eDo` zT_Xa*H*p36IJ3a0dodVw{s8&=8CtJLgyhcH-SzJch&#y6aex_*ZRomJQJ;JDS%A0+1Gl<$|}W;i@$cpE)jRlj&rb_(W}h68saY zF7V+nd;2Ev7%`D4cv4m3jF^9(sRLh#xIf_K3AO2kz?ekU;PnM#0>A_uvIA;F^}`UX z89)qABJ-*dM3sW7O>xWb+Rm)xS1luM?gmj^`B>XNO_ml}wyOcm0)0j3jp1v74j#v| zEI0BK0C5Z?9%>C7uY}fta|E#&fHg^R^g$fxx?GIC*bxauh-73OkZeLjJ)h;vW)!lT zBUY}2_4b0QiAu<;8@M#sk*0#Gf!(TN^xxXXmw~n`I+!D(XTY(iU7CFFu$^b#ax#VndC zmZzXXLJU)2XKsbAcn?sL1a|HrCiQPWLx>`f)mF^AW=-Z#vX$&pI>I{ta48)@j?Z|~ z#l>v{n?m+tzvdNzAA;s2WER{n!88^qORgDW^Q@(#s&NbX6)P#KQyY_CZ!g+^ zkXTf1pHMbzFSG+9)?(SJAaW@azUmUiWH@d$K&S~I9C&|MvwaT?kEXZ`p3fElgvp5P zG=M3M!5Bl^kwQShvm}EUgn7il7crAf4nr~TEF#^i@p<|6W)VU~^>&=H@(_vV*-xxG zw0**nwyD=0YPJR7g~0)g50;uRizu=bfPu&g21u;l#YRY$Vkxm112G~-%^}c)4z$x~ z6Dz2X6=EjljFa0ZZXthqx_v;`L2k!6Zf&s@yj69vu`Gzk^?@#Vpv{Q%B}!DHiV5ge zi4{$@{D5BD{fKrWD$WH4 zDK{sD*iNk~WqxVNk4okInhi0}X+N`^UvnrSb16`3FHyOtZJ%;PTmd+3#y2J`6j-Ee ztyFRtjoPaaxKv;Dq)HXOYD8<6$HOgT?NGiQ{NRq#(AK zNUUVjrZy>R=~fIjjmrSNEz@-so7jBd+DuJCMzSLydli)-Gb4lbi|ob#6NH)`8WQyB zsba>n9lg6pLDgAEY*T*KVwM2iNknY(k%+-{M;n-ZVsJTnkz5T$4_!`W53!1P48|kK zW?UKMDe<6EYzKZTg+zj|J;KmKg@aAU5nqiG;%LhqAw}KstTOZGXCHK0ewVp&u~kLL zg0~Xu-&lNj8L3$Z$*KpOQU;r;D^Y}@>c1*jv4cy?CPA#TAoLjbH& zkezjG}tDsu(?s7!Og<<=+ zGR@K~V9+!`C+s}(P-v_G1Hq$VW)SG=829kz> zq+uXQt#X@9AIX+s@^<YW(AWuNq|D%x3w5}gBfGnA~$Tg;4ZPgb<3z^Q2Tx7{j~|(aE#GA2(hb?DHZFs zgi1uD3nIgmlWdeJ0Lm&>H()NLKfo2{lCp@9a}$GJg!7hcB6XfXQn})p(n*v`{vuMu zf)mjqMaLr?MXnW^wX{muOLJ>hT=CQUJ5H+E3X z1MF2k0VlK@eo4)qa{7Kmd15?mjy}1I1R|?*WBsU}P zJXaj|M8{_u%dD}?8p~`)x5R(nGAj+7e_?Xn#*V3blzv`!?EdKo9qNb7NELsJ^5B*S{_V0#Ozvq?S(6$F7ca>r9db31wn+sx6L>nAKeKH8*3<=L z*)F1=)-uvw%#rvCA4NQVF7ks(jgo69M1(ysveb3&E{hvB}!F#)w zme=(SsM--9vTw@bmR|wJeKTC}QMbt@GZ%R?9g^oF5&&J%$#{*s4__-eX0pWXQT|O) zLK5?T9atfSFL+p-)F4ugfO8DssSRe!1&c!p9@5IlwD*N~r5Vw`_}GFc2Ua-a@C$-< zCI2(&<;YSR=_dF{iT)%ZDT!U=6ASN3pQx^pPxK;>eEhLX_7+mslPglesS41Q%={z= zwDnBbPKh79K7-x2_*7R?J;ETKwjMg-7q~9xK`P+=W9+^?w?%_j%K=_AZUCII3ba zlRa8YJ8$8)if%YYY&`LW3TR14WfBM45b}NH5 z!~^RB+y*$KAWV5ca6E;?eGy2FC?f+wM zkITCG-*1=Q?2t{IeEt$qDKoADEo2#!ua^A)$g5lBUC6(w+RZo5m)#slsFAIb&>JWV z@~{sW5dbVVX%@8!|r zz^;YPPHs!M?c~z-KiKl8Y5#VvTzKr?U$0JF|B;3Ny8VyaE2V3%{|DE{CCuD4yH!}n z5!s>x(__|#poS&3TLqy+ivx!a zZ1S0{V6&+d+(brmxe7j5yYMF`R{(l~fIvY4re=_K-2g z&+V~jpPAz755$Dzw{sRyr`+_Ib4;}x!6*&>VoGKZ_9=F8&4^SHY19$8#+55)`b6DvLawGs7R5_Sf(zl_xf|t~QQ&s5$*yX{Un82n$o07T&)Jgyp(Ibnz zRAyw7u4+QKCLj79omp#wBx5xIZ~Yw7!ayfDidZB!sOE;YW%g)^>2_^$ zFA^jG29G53J~ADNZL48QS30vr;JN)wt+QhE{w1`1hQ$&^V@8Ny{6(Uh*UqPkOC zO{Jh}OKdr0>8HzVVGaOkRgDQA0Hfy6O0r$5pyLS&gGC}uxJzDBfVqkzX`kTFfWg4$ zM>@8%ln1JAyJ#X|st?K#P<}|3R-nD)1ShnE70YNlLV1~Ns41YgDZgg%5b+!3qKero zY%ycX;t9>V)x5(p1BZu66KkacexKL?va0)Lz-+-f7OBZCpKW8N4q`a5X#g<9!hc^KahbqY;w>maA0`Ed#&N{?Q(DjfDrWc%u z5fKg`63Ampj&vg3kO+tnumTGsurBexBo9rNwUx%e%;fkoR7C!d)UYHFrV|5H6ha28 zhh7SS&9B%Me?4yL8E{(VSG*l?zWn&5dzTqOS3wE_pUu&11O4P+4SgWbTBJw4_<2Vm z1vf#CCV4((@DUL+1XKA0Q4u{BCo`UFTSxF7c}zXx>IhDZh{g&%1#msUdw~3`Ms}af zKT=R5R11$UR-1AwBpOR*mFEmQgkTm!MnXc6LF#x^F@U(F7B_7WxnxUss`~_yP%eER zafY!@ zC@OHU1tYYh2?_ZuZ)Wz10zrSs={UO%j92hh+oKgp!p?BPOGbb!`GI8?ZWmfF_resLMyEbR_5-b5Z9jxRdC4mneHtf9Ohc*^(#x&}Z#Y%HX_W*Ok7 zA{0PSWtDAinp9!HF@nNS5cZ;c(2Qr9tPi>1H%BB|8ef1h7#e*_6DsSeiBZD zWaB2zfePVosH~_#gli(%bAm~*IVgH0N{xuC#CwP+<}$;>nC zE$D8LCS$L6hnEB=#InRvEn`uV=^2cAfD4b*@;I(V5VKCq7%9lgP7ndn25>2n zEE@d_9)Q5%H!LKCoG|k_Rf9Ybxd;XFpu$6~gZBsv2K)!;c#=X)&w@PC_(kZs@~X$b z`R3wj6?~9+RfnQLMc4`m-yn{ifJ0)F75shtBS{pYBdcT5!mI>EBGFSY z7s)^mqW|!MA%+nW3_(%0jItGnhC{$U6tXc#Ob{{l#3~T*Pf!*LX*FaiTXFgIBWug4 z3Rhxo-Ja-pe6d$SMT8K;mWl7#yZApyU?9shnV3>6*OSsZ$^Qr^58-35z0fi&95^Lm z?IS-o%vs3IRdx-coNXCQLGo|57j{3*g3Jv`fWkCU-i1%aMq(2nLRfrN&!c?7_ zm*y6XOds`2sscIlvJZ?Qzsn4zcb!$xtMXop&@Y07o5(8RNq@7BphJ9^PHOf5UpNy= z5`!cUod6+N*@j&Ru40)Wo={pJeOhC*U^7LPMa7fU2fdn_?PAR*<`^gdN}nR1N60;r zOW>;nsb*qiw#f3UjzrtarPGS5K7%!OE9jK|!!JFrgsA$PjiSXc0cKd!T@&9G)4^63RQwNGh~2gv9Hdj*`pOk{R9u zPKN5CmW3_m*B**#T}#w*Zp9d=SzwdJ<*zI*!-fIt2xl=X9MT-P<;a6z!zdZEMs(G# z<`u9w8l8+}(j0FN`(~PQQ4q_CA<`o z0+K4?!ZMlTz&vk>nEGPth^k4XU~u}JW(5Hva+eR?*7Fb$&hRiXvx6RNcLH2O;tQe<_Wi*tz>jBI8D%w;8X z(hemf-E#e_J}CjD0gEED!C=MkAI%eFTzP0g;G4 z%CwPGc~qfja|xn{4wzd*3)3&sKIS{5c_R$7^Q*#8;ub}2ws158En*{utc-Q)$3)vh zB9*C{1yypeN^Yq98Z%WhB`|CI)skVN@*j)$+XFijY&>?hx^SRMyRC)7z-nSDFgFOv zM*k(J543ryme!Q-6cqEiAfQ-%iVRlF9U!9*qXhOoq>q0%C;M1Jiu!GPuwubWrApdZ z$qbAofRJ^9<(Zaj?hwiWOT%U-^A;HyD_xT>4GYj?ML4Yp1xMy*@q}owSWU<%vz=6_ z$wl4ez>8rH13QMP0WulVo{)fr1TR6=uAg5gd1&7quw=@Z+)Bl7Rxj1WJp-2vfP)%+ zgyWJxU&*f)0Y6hQ*Tn&uiU?h=?)WL|uO!_h%>`gDpM#0jWy_5O>PzwhRN1~@AyU~_ zanfTth35?Q4n&qO4Jw#^Oay9q6xTAz3(%Okc!$be-^Xc_<)1nX2&C zY#o`b7_<11Qd5+!#uzn~NLbEdOnLwjfZXDw!abU;$*(VAP3G5JB_S%PnY>PNo!z|u zl7VG3WR+NS#4MHMAQ+!G#ZZIMD3DQITblKyqs7E1N%|0kS4{QfL4w>D1St+@36@E= zoV`uLM`2Qz37|Nb@f~A8A%hla?PMAt4=p(}-(@Dpf?6|^J~=`1YOUpM>MveBcFEXD zmeOoGb*qiOV>5@+iSt&MInDCNsL%P7KR=B= zrjLT2Gir;iDgUK}*Rm7`n!U7t6UkQ)_$9y^5y~R{o6H2mf1sw=Ni$t0RY{xJ)xnBO ztE56UBn)ma!$+(xvPyWNCuU#6R-2Jeg9OIgW-{_6WoI|K0#L?8zE<1 zUd>^;-ij)nb|deBX>KoZ%;_vQ6AuC|3U*2+7RCv{1c*r_aKOGzMzdZ9gLA<-vtXE^ z99y{4Z45fLf_} zcq$$f1V?5M`Eu9~Q-C^o&}bD##;EGZD8c~MQ*-7IRiAS%%%7%x9B>6)x1E}^;H{)| zU1gs}Rwi!=qv`4R69ef1B`q8{I~>~BAFEATlBGT8iVF=i0oXj! z3CiSJ<$#1@a;G6F5Ss|6JLY{IAPGAm>lDi2?MW6jDY%6UoyGzrKZ90GU`aOij> zpv>NaQ!lStBem%?71Ww~uCo&kLx^6#&`92d?~nZ)i4xNi`i3h3FJVkFOEXR~n)7_r zTjqhutosE+(??+o^XFwB>av0k(|WCrC>^;kB~Sh8IwR7C%^SxW-ccjKLXCBiy)?uk z%s7PA*O&1}5JAFLj2+AiQ3@o@G5%8a#vslzrd5tuiAxO}MTh_j<2X0sd&ULJ9As=m zmYkKHGMP+SP;;Egl=(HIAk;FZrH7nUuA~oJk@?w>nPhG;d`%7p95#{a6y>zVYk+&2 z9HFFr^(7ih>PJjKei>FJF+@2mesP5EiBF$68d3`3;^t@uNJb*3)RngHCl-?|Ex%Sn zW&qX3K+L0z{ zoaz>u0%bC3Bi#tY62dQi9YxX@D$^vA)fwFp8+QS~vKo<8Ff@H^j&c5+?6byly9`G8 z>KYpXe{0U`Xo4N5y2McPG5(NV3~wlKIlNUUE^vJV;U`OSib2Eh7%TWXScuYfV&J2J znAvqB(rcnsVWX@X9>It}>W&pp1}1uVS;?bH;xz@UI8Gq^TIBmngYU96R#3H?uCd~( zQ&RV~flKxr!_=oHyb0vGGeCIz7IB9NfPnn5*&lyt`|zqo0hcYgK) z4KLGm95kSkP&3gxVdvH?O2qt0bevgD$O_~aQ$0ryS+bd}2#>gTNwrqHng$rB{vtS8NDY*uq}7gUQTD-Yv>S~Gx%x8#V4hE}(28+kX!(QE#}O9g&PBh^Qp5~?2yds?7vb&!_i8N2YzpurX5piXm6KzU|y}NH0#r{yh_FFGf0{I z;18D!0(S?6ISIx|@Qj<*f@&ET7-mOo9ylP7V{6>f6);r*91;H*a1?S0C&X(ijo+9Q zF^(kbN3TRc1Q`isz0E}6MbW%us&=3WINIcL)0447mVmIxueL@mom*p;e=t3{z@#9f zB2Qva0+6l&1i*p9>LpJw=&-dIp~_AX$+^XnC}#nMlRi@vjLXtU-voAoddoD!r7 zmTpIc8X1nn^5!5#FVnFPi>Ie88@A?yt@vH?5%|>;3~x>D0PTpqDwvXew6TI->*a4B zUdewY3u$fSo#%+kZ~9YfXkhmHL?SdW`wh%~1G8TjOVY^Cs`_zV6%prVh_9{X)xFi9WeNCUH94HRf#_8XY}ods1iF#9A2$c+F+L7ieJi8<_oS3h@SJzc=4i z0YJKe+21irpn=){pN-j1dcM2tlmVqqNka26G3SkCYt+l<_?Ly&oJ%L^#9|V=McO42 zZTK4LB?v(#GrdJVK$~<)gyKe|?S*ckrM)a(efYWlV#PBf_ZIj4beUi3On&#%Wnb-I zT3SbM^IFfc13omp&Fa6rH&`4t;P$;+XS}l!zwnfUh5otDFNxB1o#Vu&>v{5;4K4eN zgRbL!OB-4Y@zD(}2kaeOK|csrB^1oDD5Uf5_jq{_Xls zJ`W~;yMD!qBPwtin2|}k0TM}*fFbq?aVI1{f}n!*_+cPtVE^3;Z_DQ1sf$*uEW9;g z?mg6RLQ%yFE;;JK8r#&n%T~O$YiV=ca{P1Wit>k^gfsU1?LMv7KC*((L&>#|e1VL? z?(FUft>1g&3(5E1_~L5@S+=_;B;Viv;oEl;oj358c_SW9=8fq3{*iM@%i#Faubg?U zGCi1inKH3*&{@-Wyr%BtnzoZ``cAGHJGo}oUzq z$$jayKKB{&zP;++Sj;%Nt9keI<;A2MyQcK%8>hbA)n?l}xz^{tw26K0ORx30FKyxu z_t7`$#XdKt?cU+Wnb)S*`rK#A_v>?CdaciW)=utAug&dqqrH>3e5-vG1Kb8y9tlftg!f8S38;4a2{)p;31> zHrd6#)$eR{)NFVvHw>&)d@m5^e!NSo&d0I-T|?Q`y9SBV=GHF$^5b2nRR39=)_tG}q;(R=%UaC`Nc2cFjTk!taR?Zp+_ zi#OlibyW3+v8Q((n-v$ebbYFN@rBd7P99Kel$do{*GTd1)UJNwu&MQJQbpRPTc*+4 zOQ&{Ks=vN(YS(eq;;cKmPO280rgfcAEtXolKC=BKR5AI|t`XVuzd5aIbX~=>ujs9~ z{~2B7>aPz!qt?#KoweS5^^Dp(4>_~5J2*2Z_vsT$kto-HR>Mzg#bk|9Btr_wttx13Q%};lYtKRd@r)xc+e5N+O zGe1)sjMLj{jT(G**T=TkXJoT(-}d^sMW!e@;VS3Qyl2nuYO2=q#@V&!z0h78+{->& z8{E_Ht*wrS?yWUr^S$*0VTeg*^gjEMbGppxvv0ny)>X~t)?Q}TxwRUncGN$`%!c#$ z`)T3G^J>HSMo0Z{!fqpnlbf{dFKo&wmtNdm{N=p*@r2k%j%WJJqt365=LP52y6&sz z*XG=V4|IKW`$Mg)!}gs)b1uE0_S1VWs5O7)f?9`-ncmxBixzfGseee?vh*R}pWZdP z+A|#s>tEc;y6@eEweFp?sMe@AX4E%|?5pW03L15?S3k)}U@j+FMRZN5RTVh>N>U*{inis)}sP2(e-XjahnetuYro*mc4VcQKIFyN&WVh9erunG1cOYmv&9A7B6_Hc9u0=Ryz$Zy{tBqr+s1jt6o<7 z*&AP|)!u&j4z-iAUM|Rczu2W$t2p9{TE&-LQG3E^57#Q*duFZTb7$5np4`=SeBE2Y zB_X?E>MS~I(5zZFyxLW3$lO^wG(^i9a!YruAqUQ`HRSx+wT2wGveu9fW_NwO+UO}) zcAZpLdv!BE{wn(PYgg8e!Z)t0J!ah_wT8^PYKMlvs+De0^0%*FRU41NSJzr|+SRqk zD38@z^X}EP)*O4y4y~!~-N!%Pbx5_juU=Do!qbn}8sg2_p&>@KA&=9LZ_lYUm>j7jA>9=PmtwKL>}&()r?;>lWLre3$hJ5)FB z^taDlS8L2W*VP&`>H6AZhOF*7Lwxi4u8DnAiaO<^rh+xptxOf|D=_awS=gCezcaCZ z2dTa))c?Iq-%z)D^__;g)ljz@>Q-tMtDeHBRt?mZ*L z$zSezv;N|c=k6J?aPu95#kpVUI;+ng4iZ29O4m~ZYL5^L)^s`Bzb4;X(>46y(yqx{ zuXQ=Y#glJ*VM6kW_qq-(m&fh8%Pz;vx-vR;;E_jau#O$6xJPPsMb(co+@qi(T0N}$ zQ)2Y~-GdKSoMzR;qee(sGnB;5s;cz8po&lI-+f&F>`u|~`nDk?;;#FiA{$b=zJ8w>MM1_J#ksH$HlJ_ldhIj+i&R z`%gQ4(bH3J_WuhNZ5=g)!TjGgjI+d)5#1C2{uQ@0b-UtE2X+tsKT>@{^_MhNB%u>Y zc6k^OBcNX9EUgv_5$q~nPfALW9)cy}oNPZu8pEyw5 z^haFPGiG-mJ5U__Ue|==>o;_tI#8T5f*Y(my1%Z887svIF=N=>{l#Ct+C5bKbXoUt zV%Dey!^P!a>)uz~bIRSL#N1WOhlp9fqG{gaqeSPr?)}BO5qFOepLmwPPW-~7 z2Z+0$?H(dF4(ysNe)4She)6v)#X0L`ZSt>6*7MgHzxd)v@r1mVw(3{wv!{$)w1G=+ z@6|;EoQH-bKYFhFuG0Uw*Al!I$dfhC_7fX#e|*p6iVfYz?Y95LS4|JSD=(dX@l{t{ z6ICj*EaqMN&@eImBlqq(P=P$#R$XhLD%30P9maPRZgR~Xi1n231Nb}1oE>MN82j=A z!{zNHv$mCiM*8PH`3?;L`{;Y!s}2;$U-rd*;`vv)_Ylc3U)qP8ZC59!I?vv+$CrkQ zeMfW+6zWY6$y!L2U|RAo_uczt`Q5R|f-PGydFn&Mc&rPEN!LaBJKdwi8~@A`*Y$sP zusG$L-TVB{c%j$DjDuG68zM*Jyd8#Svh{`G{~bfKSMSgaY;J}depQqB{6$|JP*TOy z$9ze4_|SZG7&huDe#R$j0XiYL;z$5x8Y2KxJe7MB-tr%K$8uLCZ{X;`#l(r-~xsX zFoLzr4B_jo5(rm`1M;gj#BnQS8uDwUb<&}lqEy-L5kxg;(V>QcJBR2jCUi;ydRP3UWFRR@u5kM zVIzRWMfV`jfHXmedpqTtncCU66RHsxkFJ#vta3lUj>@bu>M_OgMbdgw^cah8MxRp zT^BA%-VCzg$jk`jQ!3V`{HjwD?n<0rbNVWlm_B*s!IK~_wbVK`0on(bLIC#_uNG^r z3#lt)dlLLeTKAOj9yYst$t|JlJ0-Vb?f~@(m5cJ{r@CWO^nwm^YGgPC?~|s@D?<&> zB7mI3(HI!r^;sA!6$lY^*i%vpKgf*`NdvOfOEf5K1B&8F;#y6Q)DSM}$j-(yqY-d* zAk3aj*AGP~R5I{GsHDPYLMzPtSTa!dGENoL?PQCspl&Z+Y=>=MY>@+%BCI#iT)-6q zb%DkrvIDjem?9i&hX7U>omgj{L9s3FUocT&J~){YzwI}zDa6!c;VrZfm>09 zpG-r{VjaUc0gqHhXFB7M_LZe_e*GEyR5`!ql*GD9vgks5raOuWtCY=(gXJE!HfARv zcEgOFDsP9P(A_WzhXzzq&{H|&uCgH|mqdyXL)N`Y#nl4IUqujn2qzei@L&-Rpr>Iq zL(bAm8(dJYDjtFdvQkiQ`XcFiJ7|*S>dmHEx8PXuu&>gspzkGN3bhB&yem-axu~ee zOUA4;WkFd(LxNrpA`3}34VAkBCZ3}~hup$e{RECWR-KzaMtu@?6--on$5mIo6yI`$TSIc4Rkjq|Q?-ZjphHiRt5iyKi#&BP;*3`-h9zJ3u~RKk>_O z!JyVxpIpi35k8Odd5q8F$*WJUI_1bR{M0%Ow^&&t)EAhXk(V^fuwi3@gxEBg8$2{dTXkQxfgHRX08dGb-%ygmJl2jCUZ=(jg6wp~HeE5mG0oYIiQWE44ef zKl#KBdsQHZvQl0#$mGz%A!iJ2i*Q9(H(d|@Ug3RY{rqylO|6@rc_P{L%#*jY_y2S$ zH4#j6o;XCz`nS83#LDRmAddJ~gG{vos2b-~8&S0c99?6-`x56RFa`K-mCNk#=X?o3Q*QvN<|&RZfZcP&2Md90ftnJ0xnb4!P6WonE;Y;^c7ScijG5;ss*)XeAFA= z)#o+^aA32_LyVjuq{N=<**=TN4dJAZ)#RZQS}{}UT7W4dW}dPjLl@TV$PPlwhBzJ~ zc(MKhbnDErfu)fcUr6j@jIB`pc~CsE?l3%h5qnhPt=S5vc7COim0AO!U(Bo3sgu}(Bro02e#~ykkI!9wYDsLqZrkAG)w5T>-0#EL1V*%O zK7Tczr}_L7pD*$GGM}#`o6leK=h3A%YFhUG$$;zD9Qa|i?Bw!W*BmlJe9gFJFY(%e zdkjn-S+YhuT6}fzGZR`%-&?~c;q%p`^u4boj(F|6YbGQ=9sJC$dIidB!&GexhH6x& z5ZZJ+qygp$6em=^C@D>ThEyv>w`HkTes$tAE6WA9irIf$J5s#AdDXz=Ur%~wRlmYV zC!ME0bIafl+5Jg;_A~SQm!7V5^L_~ypHUySo5k_pcy9MaN8GlLcr#qEck4qJJ;UeO zVsK5QkeRFWM3jpwgvs*oN^4IR9EHV$D`gMHjJoiL6y8<)3Z z^rm9EuIG7DF%{jMjnNCgcz$K^t!XNz?q5ECf4>Puk6m!d>az#za+T;9GjBvP=bh)r z?N<7?T2G|2deCl(^5^GIsII2)rZt1p3tujM*g>86m*;PsF3#V!c0%i`=e&@-dd}L( zdyCyW*G@?6i`On6D~4{Q_?NrZ4%}b(zo$5{bFH$!=(=*hUpwtU@!h-lS!us@UmhS{8^YBeA0UfgIe=m^e%_zWbwSGx%%xZ*B!KH>6Ka^Fy(GoH~7QO264pA>-J8kTXOI1 z>)v%ryCkP?KkTl z7wxZi9VrfbcinMAwPSYjob}CH4i(mqi|#o+b0P8C6ln-zc`cyKb0x z_uX~<#R0!r*R=DeKfV5m{r?O1C+)vo_vkp$wrKr??W&OJc0#(J_ zXUB>yt$mwg->7?+rS$0J7Os*!~qvk|3KR_Hy7rj)_w{bWIB@!DAi0 zCKPN?e(dSMF+9`oJM0IY#J*J{^yNGIRorE;c#DQWJ{i z1Xw&(3_+T2V0iO<%ZfsmqZZNtc)>v(g)i&%IPPb z^vUV}{i|(q^4Vz{q(8IZ2u$Al)P|$?Ev?Jsv5&_aR)0vbQ~d4lp~I3-U$|k9X7TPr z6NV&LEZi`8yy&nmspcSk(x3UlOW*j=dh<;$zSMfti(lvS4L;xG^Ur)<=JPE+|H9|ne7?iy z6+W->*~n)TpMT}^Z+yPX=X-p<&*ukxe#qxXd|u=8I-ei&`3avl`1~}v>BY@vR8|5H z;3m!>2O$zTH*Od^ipk*Y=?XA!vFXq)^D6~65xF8`qV7Lzi}X$7TteADJS zBo#LxtFEfJRo`^cP3Z&QHn%Ko5;HE{G9h{LtSvY0CVnw>E3)s|TVCEvoHT{v=Vb zd3TA!&*tH`?zfeC&fSkH#}D7yvYTisSPZT-!DO;N-0Fb$EoCylVyE(pGEQIkIUj?qbOcBMHb&5Msc5MvN$@V z75{YB)~?-vZQ?>QSvCryma1r;t)oHX`_ls(Q8*K|D)bIsGu-+>6O0JyShGR?J0{+` z80DK}c^_-tKgrO=zK^)&$8iKo8AG4r=#Gw(p_n>Ox+sO=_M(dmDv!mzXKtHPT=|ff zw>o7TiPThM%~O$QZKOd<4S?Dsche3%syghMuK_?>H}LTTN5mz7@OJ|R(*e?^rwZiR zk;%KquExuaRBWp_OPSk-7vWb#M2UK|*nh4NxrTI>Y%0&s5aiVZyqcw*kUplYd!;IH39 ztiEdNxJj8!ETeXE@u8isl()q zR=lGmTrfrZxb~I&4wRCxc=+n};gy0nV>6S^dPP%oVl8~e7*H*UcE&c)*g!SSbgd}a zw5bi{CI*m?l45)Gju8;5ftDb_B^Fo`aN}a^ip9N}CZH6}lwmd&>7YYmXCk5%aD@{y z5UA+&+u{60b&GkoZ9T29>e+(vJ^tmb1Ik2ugkWD3D{z67=-{<1Ks^c}B%BEVi)Nol zAi=u9z%H6JLWKwbz=^G+|48K%j8GK7!)r(_Y{*{i!;;N|?tF|T6`P7Jv4c*G*FK;l z&@W;YofNE%W@KoY)$c3@#-Cq3o3@0%tNB%ja`m-{sUx=y97B`Xrr0i6L59jsViL3j zY=AXodCBU@D`)pBTaJ7^$BBVL7@olqNcaq|jCyItVHN#?+kRE4$t58?8Z~-1`(F(D zNe0&t+^J(fFi`8|JEtK)<=l#6a=fOnpMsi)Z0r~>?(6EQTqRXKEN8kV-(OX|5+{avWhQBe=~D zvZHRzFPGj^0_CAw0iY94hQ5JSi~F#~ z8KaWs+GZq26U&Y-&xS}34T54|OQ;@nO-#;!{lH^I@)`trSpd1bz~X?^Ej!sfYw5aD znF9^NC!k=!k%*H4$-y3iAOiIQJF}iycZw>^CTD(qZq+I>a@p{56e*D{PiMmG3{558 z2MiJiwjL9Fr1T=|fIl)bK_SV=D=bj15Bf8-L&gj%nw8MGYfBYuQUPq6jhm>(gig}V)B7YZ1Ih+ZXI=^zTK#N-ZkuMV2q$B)S8X@ST)R; zk%L$Vlofd@jtGy54LjsD4fZ`JQD5$mX1IL8vwo=+j8-3OkDfm}qdq5MK}Ys3wQ|8* zi7nS}J-jSODq{EKjghj_ITh;cg*HKJ?5C;ibIk{AG-Wr6d<&$P$u92_G9?c%*HbxC zu;5h}TareImc7_ShylQ5NwgFT*B}&3jT8-D5ROy{1bqttWp2%WCQ-UY)us|9rdkD1 zC#WriB{q7`@uDy?*@ZDnI=u(AO;!kr?ey3)Q;-=DNH>gaS9ML>M;n!PRD{Wx@H{}I zQm%`2&BGE&Y?#GsM)lVZAx)|p=Y^*! zSQ9zAG1B@RX+X6#@TEaLrj7v9ysE`|r&Vt%s29W)31hC>y04h|`qrTnEu-!@lP4-t zZxpGHW(02NN6=3bpQ?w%$k~1}`=hI8_ZyR|KuO4BF9I!pgxp}q^%51##vSk0^E=Iw ztLvo8w+&~G=f0ENMbFEusDIkJ_0)#))==KIdoLQwTWVkEBXKsAw;lDyhVs@>-fCxF zLwRc`Z_={RP~IBK8!Bl-dGi{|TapGuHI%oSYyQ7edGksGk{@5b?bba?->!2Hw_USs z{D*aniyuGq+tFhBH=f%&88>&^H%=@cy8Ay$ziJvs>5AC&+O~5lBwQuai`tC!ePRWJ zrE-+1MaoesFeE8C72O)qa7+~|z7Gu|l86+?b^SA9;} z+Fbb5;WwOjSvd3Rt8Plu@ctKP#rq?>KO<&r+;;8%`m8uv{Q3vm;?e(jYKUWpcaIhq zys_<+-P4-{m48ak4_i$C(Y90ntCQp--`#dzqhGSb%yKsLE*|>j^bD-5y|(R+QA62I z`X&IbO`Z?Ak-Yf7K3o2)d&rey`H!{@`mfHBO+VX4G{{f44gUXiHzah!u=(Pzm;J0+ zoWAkK-S?Y*@x;m}4x2G!!NQ~Vkf|Vc*`@V}D}I(7amCM_Ka_qY!m#IirQeI$vwFsf zE#^c$$BVx%?>R_3*WJ@3{wTlx{w}_r6Zf1a#xJDwqqyfx@oWpF(=X)OuseGW z7O!5|bC&qkEUuMj_KXx4T*S}LUB=fx{nL;`#py%e>@R*JukCgN*PblDd9avsF<;-G z-*eES_j~pf$Dgs^-r_eG_na(Fe1JQe29MlR%($fIv*M+zdY}34m+*sD`TJKc>=`C5 zyOghgn90{yFYWoXP-T1G*mA%=;xm`=lx5fQb=_q>XNb;=D9!rIo1?^Om-CC|m+|%K z%X?lCr!S#&)`VY-7SCP5ANIVC*Qm_w`HZ+(zAmqJpjb1LKYYA{uN$ZSVuVm;@pZ~= zeEse$zCI?u?mCyRr~Pa^soZDx^cRQD=GuOj*IheV{PhaHo_U-m_wS+f{ACjdiQiqt%dCm{I!68FFfse;p5sg3%7*LM zjo0ocdama02gz5Yg7bte?|kK&9;jO9Q95f*&$;3}`PldSnR|=PbGZ2u!Pg5O-FuMu z)U|w_bTMDkG5h|twBhNi`TF*NDf@`c*S^(Xoc1}c&6Vx9zUmAS8$QP`{;-Iz%Isf_ z6d%2gzkcaHzJ7E0-g)}F5&CCTYoi9oOC^ZRp<1K7Z*JEt5M=b`E^aiUq3kU z*JH)UZs4nNDPLdR_3feJ1^KnVeAF=q|6;hXZ{+KM&-3+->z{!+{zl%zl}&59spq^! z*E3R`H}!bp=6ktx+`M0x#pIj$!BcbidhUv|M~dferYSvgCcX3guZN4H=knKcZ{=&} zTn6|Y`3653f5hJ6kXyJ-MS2eh1-Y37Vl5-*b?Vjy?{k{Bc z^Qv197Yo~I-`R3UdcVEr7IBJf_)q?HTUo5Tmp^<>cH;7>Z=Wizx{sf&yo0Z&SuID3 zdl$1D2Xt_4x?D|{b@a>?ZFf?ddF9*3h*R(94?S{?JaK=I5EsqPZW$@&KG1Wac>F@X zu6X~=-NoJudd?AV%CWqALC;e0mvrrZ^X-p_mW4dvuKW4Jfsd`2C{{c`ZKD@)t-P3P zH!bS9PPEIe8zp+CiC@btq)qhPFV1Bc7tMI*OtElr&okl>xl8SS$unn&mzMN=QtT?b z{;N;EbF#Q@DNp)9&VU~;rQK8HCV2C*p1VblZ0MLbc);AxbIUVw8chB9JC+!^oUapQ zm)@|vXPz+SGAwuYES~%Oe!J{)$&!}`>~hIhWvN@1ekV&`lBFJ5S|>}}Wa&Gy^sX$u zCQHxA(wnmM&$9IIvh;abDt(L6cVuaAS^Bap9Ux0zm!(5xX{#)m-&Ly!aDY zI$f5YkfrlvX}v66EK85c(i~a(tt{OpOC@BQOYW1U$K|!!z9dTz${&> zE|)wdi;BGXXIc7)ENzsfQ)TIWS^A7Dt&pWqmcA!Tvt?XEd5oM9+jnsWND2o?INe%i?Z~BytYx6-j=1G$kMN5=~uG!8(I3JEIlVn z{a&H;sw@qmH20Dp$YPVc_%~TPLY6kjk|Rq$m!*?rX}K(&AxoXIG+maK%F_SC)^!I) zRXl$$Kzb)YDhUvJfPhFZLAs%YUIY@FNCXlD6huf=Ku%gz$V6#Dsz{0iSURByLPUbn zYf#AbdlwNz>hH7j-VyTk_s{Ll&g|^&?Ck99zW3&)$lNKJn5Bt=!+;_14?S(s3G3XDZQ&=#F)I&H#8o(-x|F{{*R^mbu{1AmLh%EaC%Ts+Kc+T z*`meRU8OV7BR5+B#rYY$>FuTtzdd_O^VBj?C`zAb=H5&U?lee%RDE&u+OWw0+b)t?|3Zr$C44$IZ;nGtYI)5}+`kyb2proCZLqtMh zX|aZh`^(@hIvy*1p~2@8L3!wmq*Sco;;R$?50A7mYaOxYWa$~LPSJAkSo?EnB^Pyk zl7|3~=NjHo$L1VR8>J@wn$y>fp8sR@6xGj`7XEL$!v9?9pIV{pwm`QVx{&`Vh!lr_ zs&wG@(q5Ux5TpO5(yF5Vh0@tNfPvKEIp*}>#Zr?B&TnD%q64vxC@TEG-HmM5OFhN? z%cXl5D-K*Ob*Q;R*GtRPT;a`9FBfJNHym|~ZkGDdvT^$wh{zJmHzN|4nY~2RAEnh* zxwNrRUYMX5nb)+G+Qi zqR?DAOGjsySX0zfK%o_i({8y{8)l5H^h2G514#}{6xvHy>S);^YpOg21<@4;$Q?g9 z$-9-6PSr^`P#piO^oW`z*_v4Ycd1c>{an#{+*4C!I`SAivajI_?3y=x-6^3xCg;k- z(tR3X{$p(HWB%~1N+16T#rpG6=>d&9Fb`khPT(F)CGRwGrH?)Q+^Kkq2~vMry6ZnQ zo!9$Uq0UBM4_bdE$5Z_M+{u#sADR4i7aQ(rRpJ5+btwIB932jQZuHz!$$<4G2Sycp zpZUD12c5f(A1Jq{@Ty`ss?o`5paYN5ucSCE{W$k(Zj^D_=qaMz411l8_*%W__TL6~ zay+YAO;q>qVT8;iO>Vz{VDfL| z=cW?Q^)Wa{&co}U8%tu0Vk+l5*zH`b(t@TScvHq+=v;l(go&J%1uO8w2Q z>A=w-Lk*pT1BJPoAw|tn(uao1BBh3*yM{U$Y)I9zy+REzIb7jvn4wI|7Dq^ejBb`z zRN`iMog5EvPR@%oyhq`^EoxKLDavq?nmxCsR5&NQ(u!J!UaPh^*WQy_hEN^AK&oHI z@VoA;cv8pkL@jWyXSj}nyY&pu)q>0Eh9;s`Lqi`Oo%tF|*?HIw!B=61UR1aeCUSCP zLld3M28gXOhA~>UdQ-y(T6S$S!$d7xwYg!VmOa(N@Qaq+)Y5QT%g%3QIICqxwJ}(< z?C^Gmtyw_gxKvbgqk`hKPtWEYi4ihl71*hyKJfbtS8`x;6$(#HJ_Ld)JyFqCLiD6LA*S5$Kq&jw0m z=c>(GTB?Y%gAI2y`XfUP*;+PrxZ#499Wv4Yd&>Q+H_D)>S^8(JAtdw9?`nvlV+>zw z=*Ni$tCj`&Z!Psi2-#2`umB!69e5PeD%z9ax_@QC3R{Ci6OM;~z89vrZLq0ZO zE9Zf3oo85}Wjmx9^lEnNrF4S}g$0>jU07B6T2j<&oczzAa>acu(IR|-Aw);%Lo9)! z=R(71HA{OIVeo&5Pd=B6Mj~l}-f$izL%%RQ)zR1lV~V^0s!o@ef>E;p#%R%XnE?hm za*Q!hz-0KkaF*hhz&w=fG6j&Mbx33S_eVp3==P|{N{$Z(fawYJ@v8-*d4ic*tdp$Ox+ZOoha=q(9H7%P3an}MzsT- zhG}e~dMF;W_L~rY)%LxyUalF*hSqO3^dz9YDBRN+AU@b&_)TkI@_r@{G*|@)vaSpo}rsoC$f<#TonIkxU5m$jx>f-s!LcbeY6nW zuD(m^D-TGDPGTBT|0kiIq&y9EC+}U@w+8Jo^wh?KcAjhGw_Hu(lpToa@o)IhNBAEw z*i?-0J7hSdwGIyuopl5UP{)~$2+^R>FjGex7Gt;O>%Y)rhJKW$w?@;_V}^X)P0{hV z)b`gOKmoJAu@0o$g??Vt^e3!_9I91TT1RC61Oi>os(jo^7B>rz5W`PF2*94NV+j{E zPa7UHkY^63uuFzeDrq0?O`ThZR}o1?kO2q_515)z)cvp^TG1)oU+B+58&Le?eOpz! zZ8n8wJ_(DUqL!6BMNF|FOV-#BW^97eY7{#p+>`pAhBDUv&2T`Xny*zGs!#dD(MG)s zhASu*FD@FgD=?)5UAV^e?g7=6Fg+-@a)dYCG#LWLqCXA0K_G=ElI|JC zN=DOvv*X|CVyzzHmO<^ohBI)$A-wA3=pO;s%YmAT341=M$6myE{qLjM)Z~a@VY3)| zNhY7nLoxh-Fe;oC;Yvv%;cnt1yJ4-YGJUHmqUsd4F~WoB>#b2D z`#Pncs_7+QL!52M6-&jfL!&5t$3u@-9Ip}HMtDHXBi7g0SmQBf5|&u@r!`|JNgv`v zZDwFq|L*VX7s*vEiUW=A8o8ehLoaeOHl)ICk^Ypo4c3p3J)Nr=ySy?00q<KnW6HQtt34fQ4QKs> z)>7ik!grLZF{O@D+EVQM4c#bpJ$MwgHNt6rnwS052hm%YvZ_i z09t$|&iJdwZtWa2zZ>MtIxIJa&vR z2LC!(y8)#qDsCdXr_?pZjM!+1pj1cg4wQPdnHv>vL|+}fjVJ$8G4=J@RYX)DBb+#{ zXrHU~N+k9(;yPgXB#0FcUJ|L_yO8Lh0aBvK2GCoDpe!*|kEXmoBi&Syb{!-|%4qbh zKgE4s$D7jMFa?NlLyXvu7?W+nRD4wjPuJH%rMC@}5@ZBq6+>~;jCj&B+=#!?ECKrQ z2qX4xMkkGd{ImDeX+wACLEZyLN&S!*fwtPYs6?{=nK$Y*r<519G#9~`B&U#B@Z=^a zby~hMg>A-5aWk3+pERjXG$l}roOfljDf|2X>5FWR5_+(vo%0Ay*JA{2aP3m^NUf4>rqhd3S$1Mvw9c7HJD`J;QrAj*l&$Ik_-NEHpuze20{cNzp7_F1p02-ZP zyhTw*EPmpxFO4`%aN(e@jd#_;9xILTMRiYL#mX5S%><+L8qgiS3u!{e_u;SBfKvzC z+lU-HBSR@Y73)l0|KAu_sc3<_sz?{66tJuCIk^%na3e}TQZI`9?>6>gl@VC=&^ktA zfN)2R0iopAr=CAfH}G}$Y%s!^m1qGMDM(`kL)nn>N7fCe*w5-!AuPA5!exsQhZ$z% z^b;c~Ul$!l|DzEx+l)BGFw5uPzwFzKljs|hcUontDKd8$alU76PD}%upNxg~ORn6Y z7*pPj{xQ*R1alD}9_CAZ`>7d@+^I_q1Jp;PV+)MEbemMi>}-MYLmhxV>*1Ib9Wb_{ z!an})V*PI8CRyCB&^QQ-603!m`7U8RhT_aj_y+KNBk|dD{YI)KE!~HOq}wF&4j6m5 zpyq~YruGzjsy_Y@vO|MVvZla1&O8hi0}Z%#kTiWK8QW9p%m$4q;jdQO3b7x<5(Dnm zGh=(fRt)wUytVhU`%6I0E0$aj-!XbGQzHaWAJ-4Mee*Xd!o{PY(|DpBOgk??3zJ4$ zqN(OZW4`W=ICs&A%h$#QAmAs^XD%CiW$uEyx4L5dSchByJwGY!L1>84<@&~7}T zmcb^2-=apbuSn{oE0ER;WZD`MvS0L#$lIgdIiF2#g^{Yvv`nNb)e<)_B0JYDnpW8^hW3G`Z6Ho~V=K zWjdsx&mDqC>FCwC0b&N2u=R7h<#qhC8&?qyKNB`kwZqa3F}IYdjon04py`Q@V#Be) z^J@;7L8gA>5rJLay_yN9HDs{~A21;r(ZZN$QC!`$T`P=wAGhlz0VWtmTTCr=<(q;{ zus~cV!OMh)v6)S9GWe;Xr@GAthe^Rmv~Yx*>bt0v<&0u)##E!YdQH5j@E;gxzO-Bv zX~KrXEd4Xh-qN7F0bdH{?m#UQE^!&tc?mFlrI3FlCYp{+jnypM-8yonnC8|RI0e(1 z)O%&ukEmCHw*YTkQZRLX7Bsi;-veEM#7nl3F(~2>(|m;Juy|Yojj_)W5qiLVVxbbWE#V-c=q+>ThtRc-y)jFGbHS zu)b%s#?8WdzouTQtLxU!ggukd|HA^k&^F-K2~uI1CcaSXq(~TOa&f`SJ$Q;XO?@-t z_rX{dFE-*)TK6HQeBBxGaEP4Haa9ek?wDo6Ouclg)g5#6aMPzc-D*)X!W7|xLfv@N zyRU4KpN+yC0i7_$G*qIWuEsu?zM)x@SIl?wu_hdbR|`}fB5BsN$F>ty(yWVmLby56 zbY7zKCYeUOL^BI%y9M_B>p;_vKTu08_G_S7k84w~Do_=>FLq%kO?+$%)hl^-y6Lp6 zx*Z21Dn1?i#w*slV1{XstkQcU?xg&SV>^h{51>>i;cYtmYo)fxo^8TKWO4!40p5VB zLwO&WdQsFd=VAz(Yg(j}aG)so*c9fXW=rOq`fJ%PpO^+~*{z?MlC*5dBGXhYo3+?9 zLCq4XjTI?NOmGe*N3yIijir1;bNCWltKrPL%!ES?w*^eHR)5l0&idl!N(fga=tibt zS~lk!6K)Z?n$H>&j&aNzHUcyqODiC@-Vbke0QCIp6ey#>aX4`Z{H|ZRsKGJLR6i zEF?z2i27^Q*-~Y9YFS&v2{}@gNInI`MQ1eSXDjIIKB$9=$*3-GHqu+x5&j2FIFE1- zu{lL)cx2-!;p3M6G`Gm)Dc&xWwwHP0-jQoI&it&UJM|a9E;%OGE@Rajlk}F+l>Hr+ z?Zf-_08wzlglkhq6s_yVrKbAB^T)5&ZA;Yqf)yhFpCw>i|0dgtHH(W)BOC}sLxVHUw9OQw)b=Xtf9P_>H_$yL>)^@{X3%^5n>KaT`NpI(kOWW(F zWJJvCjT@J={uVqNyfEE1m$>+c++n#oo_kgmg?DAY7{;v`t}%04`H-Q(b5mmcY1Wn$Z=Ot=cOuJrb2VJa684X&w zi)yx)9VmbLnde%DIf`oKCaNj0qAJ_Yd0>nC&6*TfsZ}7YsXN_Mv@bL5eFZIm#>p=( z5{A9}>Epn`rj%FS#q@cI8Ll2C=XzlV!! zJWV!BAp0WjUYB^5)p+F~lk(g&UPt%pL4{i3#m-d&&HX68q2}rCK4DJLNia}8rmjsZ zPPXx*?E)@)x{G!(1`c;o?ciO=wzS$NJc>h}HDFz0a zp%*H;C(yYs+WFIjJ>~#0q56MWiiBV@R){1Q%|e}{5ReoeY%&wP6;O|?quP3lF*VIl ze=dBcLysY^F!CMH-c5{%GDH0t!@9U)3^2A_oPI7HL&G1`Hs`;>O^k^)!?|K|7D`$k zo)JZ+Vgz4Y9PcUS*ZY4Ylm1nES24B0%XYY;e?BTUC_)p98<}x9XO@0))WB30X))$Y zS|O_~rYVdul$Wn~(v)+kxTEPyas3a?GfA`bJZKKaI{Pmm4X0orqk1$lyR8@HT*QR! zX<4xc#XrJJi@ejxO%%2=!zGk`6D!)7vB`2b%Ueq=z@(?|ZtJd2;H`FM+-HCW_m01t zeJJ)>hal>FuY(6g-9l#^9sZvVgM}*{ItmGPE-?r0>HKn{l-~{T zz0I&WT!`(7`lWP~6RhGe& zu0SG=FFJWp`Xh{~=|IT$d4DsuY$n7m$l4bzd&1|8nxocni%Iv1zFR)kXv$TgvZ(w}^5w)3Vnt$MiAp{MA{bnh&A#HsrYIHjfn&AhJ=fV{8&R5!y z<|teonP$d?;kE|Y>+rgJ5~Vh@M~hw4%^%{Gk>=RpoD0{N63)hXiliCl5)A{d$%_*1 zLVgK%;=Jfc?XqC8Y?fSFToF5zmq`E6j3Y3^<>Hp)B7cqDUzLXV-=10+dphS>}c!>T@h_ z02?xKM`yi>A;-mZt%ld3lt3{`Z-$S4i0`^Y{1QkLz@65XhLR>)tX_sa0VRF&@USjr zg*ggnk@2Oul_bLzTR5RkZA!1+tu{G+Jrp3?ti;059omy=?jlKW7zh_*vdj&b?QVE; zOdor-Ya^k2%QONHQ(=K;Z8lApUm=Vo#~yfD#p}&WA;CSSK$25Imxi9d$~)gjbZ%>tUswBvX@SMs!Qkg_3#qz zxpEaU25UH2c0HIzyxHAHU?Y5$$DW9E{XncQiB!zg_Q#+4K$rB*1Xk<%RoOn4A%^!tIQ&H(!z{1p1ua#sI$IIYJwI)R`2}38Ts&%4 zMR48RiV`n&cN5qdr6H0UDAiv;{VO?%VBrKToQDSEL=#N;zbLioS5tRyitP?NalDib z6)!Vwo2yId*}eT$2gG2M+Z?z@h$6GOhQ>&~-z#2N&3L-Y4dcN9o-LcPQ#sBmftgl} z1sfpLPkAY2T!xmD{AU+DSN3ucxGKW3x^E8Ec$ZIUg1I|h$qC0&^vebFjt^fhBW!a} z(JDP^QDStw2Vrsp#iU1aW99Dg6^~;9v@xn-kCs$#Akdp1ztl!4TWJ;R((+b4stat2 zMgN)1zU_PXkzabeJ7H7w6qe_58)oL^s$Sf$N62og<*J4#*V5uXJv{03WwctSk_GNB z*K=-6kj01|p(3n`1gs$0LU!a)qYaf z5-A>pS#V0^!g86&>a?b1UynUCEl%r>qhBNOJkp{nB!aSPXA(F-Z(4#xrP>y!b;5fb zjf8i!MO%~tHScRply@$&!Anj!a0CngMi$%$aX(~B6!~6XchNNFr3}lBbHbLsk(9cv zuRBE@#6yKaO)Cl?eGeD?V=Yee&ohE9)*#2CzCLuTpVd>Ow6NraiW1G8Yg7E^HVjpLU3jaTcd3 zfN7~maaUn^lHx4xV)>gEcu{?~;93qJ{!J$D9Nfso4X_1?W!){abrQw~cOCPZ)Gi^2 zjvVhFqF%wj(^HOJMZ?;t{uI+>yqiPYY5fJ}o68!u`di0qgS~rpc5-e>f=>mq`x}T+$P8J7<`TZ>q)GTEro4rNG z0I5|HMbm=uHh$69dx9zBmqU0LWssB=W9GF0<=P<@IQk5aT8~E*2L_k5ro)vI-S!N( zOx01-1bAULMp(w+6-8S#jTs4*-Yopyw!rtwy$KJ~`JH1J1&>B2y-S=|DhoziaIFbg z`&6Q4qGcQE#NuuMA47)IfUzJC$9oRyo&TY+mPI-V2NDhsL3r{wFqq;F46H`CvIn|n z4#zQl+jz@yjfCwJIC@d)hJn>7f6G8T+;Y;LohXMWS&8+NEY)39t}N%GVP#R&cSKpJ z@J@coEM+y?OFBHT7KOUO1BjYpDbSi>zuhs_lBJ^opPEzU$D6e%Bo!TxU2E1lzA)AD z1s(~lH3yQk`6A|hOMr_Cv+uR!14~UR?m0M;4*!TjY?vvRq$C&VA6UXQO1@ZQ%Iu?q z@dpFL2jg>trdSlNbL3iQ?)-F)X;zFb3&S6pNu_3tQyLzWUplz4=s55H!KAMkT#ZVm z4USN|F*QwUm|I`WF1|yZM1S_hGpsY8Sa3!_Hh^%4hHHS&Y}nlwhg`L_|!uTS#H4* zgWK`7L0g$;DhP4D4=mzX=mjpnSgdx=9|$%$t^VBSvr zywY+-gG+AWkrx!kg9`5{jYV0e1=qez>30cV(r}B}E>A0b{vug+&XSQWlz7G(3QMoW{xJ!EOtj1IA)W22tvr z;SH#f3qD8++-t!JR>f>Kd(n;tR(yYP1Ql~04ado4|8O_qv)=+Q`hRE~Q6s{I*Fnon z9qr!%!S?FJeD!t>vHp?; zM?1!_^b^*-jsMiUVmbF8MvilD`%<2w_z67Xgk(E@g|CC~iFs8zcLUOM{~B*rwZADb z$OeeQTb8XlYLRB1Mosb;q($C$j;>%c7{mP!D`PHmWYIxCBYXM#HUd z`=?y4Op`bg%hO5YPPalvhlsd)vK`wxFvqv-4Jh6K=BZnqc2^iAx}>!wf{KNlpybiG z@c*#PhkPfDb`$9)xsE}uZ9iiy(rhuz?rHq&vS><79qmK*>7(5#Ee0LhYm**`T1Vcd z@x&L;DZ{Javq$^NM`WJjs3LakOOPWr?uWDk{hQtW*>Po7wCi^PTeB;)2Y=@~FA`zz32D4m1_{7s02QM?5f{xrsw zB4#HAiPn{^7c>m361V%y!!d|bFadHJ?`nmI!xi!Qk=8Bit|UJ($ldzi4tKto6u>S8 z@8Xj^tp~Kq=s*Y+2PL{vp?jhaJsJixGt=9;UquVt5@FlmX5g#`QAzd0`phEJ-$_HD zf#2D6tdCe8XvG;t?UXP0=G00Iq})1*?qXe#6{^4(zL@*Cy7i9ML`tyLtf3CaqEf;m z+$xr|M2`-)O4L4L+ZbxajLYf*Vs>ccXgCCaMLV{t$gF9-s1>s1lfue;D-kb5${Usw zQP#a0wtNbG{Kf^)h-KJGPS>_#wR7LtcZaiq+uwh&bDSHQ7^1Sc5^aTvWE%80gc8Rm zdWs|UtZ<3B5H~ko0(R4;!F>6KLHd&a{KU%C>9OLi+S+@KUX@!2jh>Sjs=68Wn2H!w z45XAf5FWe`+_3QIA)$Y?Cdw^l_O@{mRC7h5n|RT}ibIRqP3ci(JW)bLl{c(drPp`E zKqKx%aAs?3FDf~zUFC@>t*tO-fVE4>u=dtkl<{nwt7zQT`n!q|IQzM|s6?!cAPN)x zJ6dr@moHm(ukz4)*Kz(xho$G zYT+<^DWf~O`RhGmvKi1a}cJ#ELWDON;+hN3%{8- zI)}UHKf#L4^M5dogA?7vw0Epe@Nm`x(naKv2^8V$6l~ID>tdaRwY$X7;)$(k-q$Xk zqQ`qy>}iZ)$GB0SNo~o`#rP zy0WY>9eMV3fSCQUoHvOU3G=OZu+NmzlNQU;p;pv87h1;$yuweRPg8e0H~E;)q`Cpd zu;ur`=q*0^ScJuq^v_hd9rE*3*M(BgC5^yk4kq8HJGK_YVSy04L*^Ux)_mI0!|Er- zePMkMFI%SI-3bnP(r+mm^TRPkJ$db4Dn|uaeN0bs6s!EF)Kxd>?B!ORR2hqA@ZT>< zQyNf{&$0Pm%dlcYTU!^irjFq&ux%RSoVu8=<(dGjeZ+8mU0J~T!bv)vb`X8KQdS@L zA^MAWFz--my0#zEaDs5Q36Cr(gh?gNZddvi{BQi>>~_kxvfF?og!dY`ks%vMe5-?| zs*}=YT2)Gv6FPdG6s`Ffypw$ufNc?(~&#fl^3>J)d8{+;y?jZ)q?ZB5%`eT7hf za1-9DzJVTbz?T!-(4)Lt=uzANd>hmJd+U4{z+31BZYjLPFWap+S~JWaydB6c!w$15 zwI)4Xm+CHJbEIS?T6pKlMZ}bRmO~Hm8sX7YZ%W((@ zU3tG1?kd;g3rEz0c8{MCCPEHMqh7fdt|vG|PrzZw;c_jkka>r#I6)#CAgUC~1uCih;hRK-J>NxI|VTun1{TC6Sse}R&i0`><8$!*DV~4(i}K^{yGCrjAm(0^N3l#2+5O;>$n}0)ZZIZ^{_y8W3Y550};uxp$>S zVhrm{QW@&Va1N?Txlk&1a7OdOKt)8%`go3JaUL11I5999CbuaaT=7wL5n+*gnJg42 ztcI6CQV@bkHYpJO;m=oE6KD+|dvSf%a%P{O?&?qd+hGy>dS4q`#8zN5Lf(xex6B4} z{WU17&&-Hj}HRku`N!BXiT;N%NKHwtkloQK~2m29wafFr2Ug85BU zDTY;%kN+NygT?5LI* zG+(`TRQtCi&;|#bNpSf0CP_j~fBqzh@&@6YvNp(uwZUkPA_8<>ky+h_75{A^#>BRM zSuh$*DRSE4e}knQ07r=Bp|UZbEmPXsA>S*9nSR@um zt$OHR$!^#lexZ0-Jt-By5URX%k7{6hq`|xn&|)bKw;za?e;BwqwqQwy=GoWpiG)0-m$ z8&(E~0@23e=zLcQApeQeq3GDn))2ne6F3XAyW3!KI9sWwZK9U_sF!W5mbLY^VKp$p z{CJyQN7g2gPRdflz?b36TxoS*@UPk0Y0cdFLA~vrZGPfpKij+58w$}8L^u124*i5j zHMlnKsFPW|7c!YK@ zOz2j5sI(5F(UX>hi-~QcZH;s?8$ink+TIYsiMF9CEYgys&P$YtA7_J+W2&K6dsi`W zf^DRRDxPSAx9J%SlZ~)zoyqlGu)Y|Ko6+~*wKdntY=GD`S&E0V-QKgU(6V=@*l-r- z(tXq9?8+?FJYs7rcBRT**ZMhLeB$L+99Vqs+9k=i2Zc0B7^(*qK=4^vyws*8__HwzDWGPKMZfht8 zWY}Q;8Rj{f|CJnV>r9v?$dKdG)u-7j(Tnw2P8)Z3rR)XZKteA%i{wmcF(oW+lbn6d zF8;>$jh20VwGG=ImsVM8!-0ykC)U||YT1ZvTcVn!v_e~y$lYLTsiFS<&IUh;EBI`- zb<;}6Z?R$bl%?u0zTIYPtf4M{Z^LPXE8P9T)=SHF%CX_Vz@>xoq%=5Nly6gXG}wWM zL>zXnX#os=R2klU-&J7C*R2y1cS&*m?gy1ZAij~bX^)hIKUB(JNNq({)7JF8w*D$C zO7_|IXejd#+a%$8P^zdT6>|>RR%%%&m$SnBLfbg4g7;=y9T9Yl`z?8=ZnHHKbX-mn zw*?*VAWr-wC+TDov?T46Z6N|tI2EM9&$3s55uRh9t)<91E!U8Q_Y~O#qe2ZdR7Y&BAYm2StWlxwNt4pKbZT+;WUtF-^=A2QiIi;6mr*?k^QI&@# z{QZiQmtM0oqVrW-XADG-gJ;Gy+xu!(_Oyx!xgjOZs0}x5Uu)SOw{4rX?6VTtG!u;e z!!`|*DcRh-Ym3)P+m*_#mrH*!*gn^?6HT^nwQPXJhPPdrpodMGPR<^(OB2r7sSdel zIUD{LPn2xp*nL)HnVtH;)B3$cri$4pQ548yVx_d?2O8G$eTO2($y|iNA~D}o82k4c^-Cb%v|c` zWuLBPzwowe{Su+RcC8;`ub&-nJ}~W_0Q(?~wntU_$6EG6kR7Is2|lTAho$1|kzhNv z8JSfF-73^RTBF(=_Oc^QBJ9s~^kpLU5Co)bOTS0jd(pXx&dscIl)Wi*Xd-r#v|9GB zv}~O^_E@NsES*@_zFjR<_l;5Y?a-{>Uclo(Sjzxv(9qs%RW@#^S2nc63P;t(!?-Jr z?67v6T^eIQtYt?vwI5frw63GwRkV(^!%{MpOA9-W@SHvIx*bO|&aQsL?u+jqB*z1- z?RKs7KwJAQE&D@z`yDL{j@Pv87oF|D;)~M>W_%;i#SXKVJ`UNCuJ#4G%=fV%5QB3d zjp+_CtjBlUs#9~OyImTPd6-1kp7z07c1kZhJT)%;tG7K<%YGYg->GHC^tBJiY{+Uq z_qXS1rTPK(M6LAkAp3r;^yCnGftFn|%-&BUu#B)@)k-hDZQrA1*NwK{*U_*@TMFWY zuBNCc*tjD}a;A_C5YNZjVYoQEalF(A&X!EHch#~j-?gvM2rf*v|EiT1OtHg9VA?s; z>=vzb)^wf*$+zD?uqSHSO3UppG=i!ba>}@gzrM7O(g+e)Nr}l)VoRGy_KB6L z&o!tX$4gzf#y*%18J*tlvo&_?gn+f3@UwOHF)A$XueV>+ve!09O_EgN+D52^noZp- zWzVH;w%U8U$ZU{U^}QV~8<)oZVE;tR9^YYKgd_JA_#lYWx}3ILg%6UPXK$yI*#NOS z-wrd$+4pwZVee#?{Qj}G75#VFYig+ZyQNf_Dn{6gw5+)mnSsjz5w%8ttui4vnu+u@sW)^^6eO3SYN#r{moZv53gM@LWphIfLn zwDEMQ7`@1-?3|7_&r5v;94J2h&AwdA*1lj*(Xtya+VLd~6Fj(VpQvT0T(f_#5~%iO z+zmO_+dI(;Lf)>X+yhR}=f*92EM9^*08gi8i8Q91J$T2yOv}Fgr<|ycpJJjA9(O+d zy2yD*{p+4w?trzOd7MGoaE9SX$BO$#Id%z)1!ntEEj!F=&(*Ru?Dnl%7W*x>x0GSf zN<`i5LT-QAdu5KtbK0c8z!W)c7To@}4^_eRBy6!WAK1TOP+$&5sk!-&ASYQv)O-wE z%(-Jv?DIHBn41_e@0tBK9Ecm?aE8dfJy%sxa5n3xoy~SnS1|Da0|h32jhZFd9HF@u zVpAmr6EE?^6W^nX0tqtxVpnCOmhI@Sz-V%*(L=#Wh_im)%6B>rBpk2fD8lis96~tW zkK+f&dvoyMco&Ww93Q}8gX7hh!SQY!Fc|e@wBY#494a`zImZbGi3}2qLKz@9z6M7J z2Bi!Q93R4Qf#ZESC~$n0zzVZDzfG?`c=)Dl04BZQoBQkN}puMOk zBlgC-bF^N_LWb%EYZ<2(lnBzBCXq5kFG^*6UR0F9c`?uzGI8Uuyzx;SlNXQ-$cu_H z8ZQPTL-C?ehT%nZ8G{$~WB^`}$mqL(WawS+lyP@aD1+{zf{eHu@5$kI(@;?c+eI&A zq+QU+FuM@jHJP|@d|f0mxGr!qvM!j)u(}wwjHwHp45$m7jHU~m45bU4jH4Ux!9jE( z85uzrBr<$1nwOz-Q7Gf)#;3V*)Lf9tkhw@?yj)C>43>);GEy#jD#PR=kuh@P8*zYK zbX!Kpg%D(DTui!*iyI%zF>z5(2E;`L84VYS4228UG7c`9mqBpRLm2@#-pzyK-(vK? z&@O+aYug7X9lbJnjN5Ckjb-H?jTpGKYv>RR8b1?RwPn%DStvRoe@^0OV)9Lj4N%^6 z`K~h6yIlGdm*KAirdX_(Z@H3GoSeC!J0!7{APY?V|GI;*Vo0k(PA!&0mcm^dTCp05@ zu%Qy;q?O1>9$En!UI7|e0UA{if~+LZ&C)DoB#(IsN+_uUG_C?Pp#t5KPYFqTl)-vh z4oQV|LTMSSu@aPK2@OJZ%b`CPsE{;E8Oir5K!ysC)NWZ%YI_E&c{wEYy&U@Gt_ndU zuVthqpVPqg09l7Kl7D-ZBKhKf39kIN==y()ZvD6D&i@u+{CEGiEF;*fIKTeJ{2JU3Q*Mw zP>2%}w?mZvI^BJ07N)dCGFc{Bv{6lNs!5G-6q;y&nk)%dy6BFGv*F4)ov*fM#q*xE zm$uhb>VeDon#v$uDb`Wj#poUF?Z0sNM&@J{fyy1g1{cLMuntJ z2eeB~eo_-@v{C2-t35XPE(Jy@bKP&MWjVAeN?E8oN@2B>e!A_HTuW){qN_sR)>6XU zrB8=?H|UT=?j!HoNKVq*wUyrP(yjw%r5%6}4C!HQWstkHuPDr<0d-KAORMXkf*`Ym zh+0M~!`;uQB&%sV0@16U z5~kA~rwR3y#=g>8qop1&!ef&U(c1cGAxjwQD_`q$J7{i0uvtl24V8Meq-zJtelQMW z*};?2yap(F2fVL|$s6f*L#46q3VAhx1D;168Yy#i|I*$@N-bY?Ur+7<13EVOIT<8H zHU&3UY6V?nwhfZ!EyQjgw@B{xTd8kjrH1YWO>7K?Mf7E3Wt;AMY8Qk4N^6T=gs~^E zg=WNH@Q>&eP&y0Uk5OtRN*_>mEqn|-fS!r?>HeN{15~#mxgCu0SauC1(SGSZ+?#`+ zgmg(HeMMQ`c_E4d7L~gd$t_`;$HIH08BLT%x~sIViPBE@8(nPznLeQ>O_W$)X{OP) z5ZLLl$tG&sR2kk!`jC?0gAd?C^q(z#2>E{vvZ&L?C~7&6{Sme1#Rama^e`oU$U@+M zUWA`2D=4{Lfp ztLgcurstEIp8vW<&&M=9pVIWnH>8iG=R=yF&uDsf)AW2o)AIpM&%TnLk7s&5o$2{- zrsuPno_!}hpUm`pFw^t7OwWJ0qUS@Ip3h`@{+AU!pUCulAk*VK1|Lb!=P^AW$Mk#} z)AM0W&u1|`uT(vs#Poa+)AKoOF(1S9dz#Mg04v6uF$NkB_wJfK-Em1#)swp5al^nU}C_i5T2*w^k; z{u@enBoE(!LB3CMt*|}br;JugPb61b!RpC1M?n@BFSgLNw&{dfajm&*HP&f#ecZe0b6Wx`fcdO%$1+4OwKC- zcw(XFYYnjN&gh6M9S7xiL{$g<-4TOwP=`)RFC+`q{mP3`zX@(x%f>3TIl#IzGP(yH>8`ke_*8f0Jt`cpRB^Af z1jOTTy_fp6MjSUP)SuQ>akztSa}VV`Bmq4!5qD`?PvspX7kerrk;L{=#v=Kumof%P zSubTGl3~5MPe*$*uFhM^RBnb=y`_8zv`;)V?=DS`$B=XI@(SddL)YV>7dh0d50os2 z()uVPkX-Gf#3QNOR~d}tqrOT4lA^w7Ifv@?Q{ugIq^R!yfZm7YQfyzP83*Bx{TN}t z3;RJ@IdrNYR|@XWm1gu;I;)i$=c1BcQ1gCDj2dzK<4%e@D!k~={dp@vi37AG0a}|w zR}z%INa_v1eCE)U0nq3iIy?ZnpF;ryxp3G(F8qEV7d{<`!NC(7gz87>-9Z@KQ93vX zoj6K027~e_O&$z&I7&wbL!(hRgp-sZ5adz%bqE&jQEECAi}NV09SV6KCAVS9Xe1Md zalHe>(86}QHVm@aPR)jMvS2tSU^|(ID-)3PAE69(=l}S+X2V;K?vCozXGAr8*z8-Y zR*+L!89!5jG&cQ9B|Q;1jzcxSSfRK}=du4tWs*$yj#MIaH|WwxWs3I=DfOODQ010C z9hs~&m*I{PdiOI3@CF@x8?$_aT8>gaM)Kn*sOb%AHd>jFBzLqj8%g~!${Zvc)FdoX znE_};qB0$cE=if8ws64@mp5WsbZ;N!PEclg?~?;LSQE_*i=sPUqZtm} zYyVR51<6+v;m7Wy7ZWiF`)JxbN(z!&@1WU}^z0qwT_o>J0?(6leG*zYN&Vl&uujtH zce$|BWMvkhU6aw5lhhwR)%TRCNIrQFZJeaC z_moto4O7~Iws(6M&4N|$2vD_PR{CTLRK-dqQ((ER6hBp&>@EM3Em`RXqBY&s@i?R0 zBIxlftOqMaPeT({S~(4C&`OV{L0_yiCIxHSNy@{4h zSKdZqnhvRNq5dwG`H__@D$|P@jF`PUz2|Z~%LG6i*_L}MHa0A8r zGaU_)|?~d<^q4PXn)RxcgCU`PS5zlE{=z zwUuyppV#Qe9x#`&HKN|2lIc*#Ogi@=<~x&m&Q?A^a(FhhGLzcR;lhGBP>@V&_7SEi zleT>X<;kS5xk@UMrE?j2F&FB{O*CJKCblkA6`ljC$`GfSOQ4OJWc?W8$tACOn8#e2 zGY=~@moCr4y3NJkXJUZ4w0%DGD3?OgFj4Y~Jo#EC7|zV1;uI(z2NZ2~wXrWXn}CVR zC3_mP8kLSY$)!{2Skbu@^9jU~ODjHM=+)E_7c6^%68`5#xSd z1Y0hs(dTH2sQ2eEPek8;jwvJjM=f{~r7wouh{_f#?|YN%#-KuUqqLA5OO(D8JFBU? zo2t4*MS5r-QL`_&{^~EFK1A+IpqWIomoRj133@@)XDPZ(^y5;7f|o(<(9$yWVl}N_ zh6Y!Y|8h*}YFf4&bGe#4Rw$n!S+ar)-7{c)R@0&kB^`;|m&!cv)v{}6Z=!4O-li@S zAo}u1icJ?nWmeO(FO^v;-Ql~S3%;k($!Lm)7bzYfv3v!USxpnZhRs?{m%dh}MKR+5 zGb-fRoND@-0#F_GZkn)C`3R@v+bfktNZwh6v-)nbu2PmDnVqS8i3I=Rk%eRfQ8YHC%(;Gv*iGqcA*~Cv zel2#^3#6>YMsb0?1bY(@10RIn8u#Q}P;m2thc!R_K!bBIt^!({!-e;9 zxPJ|E;awNdv|ObJlHIvVAC+C31z>k(0d?62cJ1;MZ(w`oVblfmRUSrNKvw{%wC^nj z?d&hePc|*1nNecCQWYdK@_9f<)x_^drJGt|#Fwbh?JIJ~3QK=fyg-}vBX`pHBlj+L zC)b?66LVKUXH_Vy0MlDQQwq2nq5zI_0r~FYdSiCM@hPBPyP%0E+>M>6fRcAZl?v$0 zZs=tJHQB?I^Y*|AE1=>%P+b%XZsB9WxL*Vmp@2g6atjmo;sjAZTlccu9D8}#t@g3N z=I&$h9odKDPXT%CS9(S9G)%vUp%vjrRo3_`099o@PSf{;`*AwFUm5Jf|3A9>Ca`;M zRiXjMFuxqJYRb8|YBc%)7Q}IycmO>;PJ0ia8^`I%0knUdx*SxRN6A~Us{a9fVChME@Sdf<8q34q-tbqOFIpzz&i7VTkGwjX8`h=MbGe3?q7oS{%VX zbcj|T;d(BGFkOdeW+99|B0?2H?uV$^Q7Cp6^*f3+lSSD_;jd=VlcVxNj=CS?LOKSM zkwwZeWuUiw{+jG)j{CPoE$G}Sr8S38q7}z6wk)FK5O@|Dj$?>f)b0dVUwQ(wmqn!~ zxUlU{T)5;Xs6rN9{RtD5MGa1(FIhC_Bqkrb<4G=zJcVIq(aclK^Mne8{LIW|{LEb{ zLZWtQbuV=3c|6_u9m*HGy}NHU=L+N=`}P6)-#(QoEgy3tBLTTV5(xwX02LCvp0-aANt z4Pw|qx2|EA*+CtzLq%88sOzx&D{0MjtkIQJa$V_&q~;AQ+?6!`228_BI&wp4f~UH+ z8>n!Eyl*PQqmD?0{Q=iS$$N0ms5W^Ir+KZ(jkMqj<+w;`5|ly)0zuh6>NnBpr`xdb|Kg%V3J{a5Hn33TELMcu(*uh9HEV0MKrt4Zu1 zsFz3m|A650@HsRn^GNq6%vT;w_!AnEN9X^97UWUmyPPb%3od!|=UwPa9>v|`!f)>> z!@cw5Xs$NErFG|q5diW$qJJEa&|9(6Qe9`fi*12_MN zfw^@sqW5`3MtER(=oK9KL>~jjVqM_$B-l`<}JeU0~9E<)go=}A{ZYucP6@dqwi|;u_ z+Mwdk>3y5B0Lec#2<17Aw1ZzZ&9S57*>u(p<;tdT1s%wy_Z2QYset4n-BX~A7pb`e z&{j%t0JoJkIh1};TV>0qzeLNQuBxKV`>;%asxf^*fo0(Lg5E8|&|lEeGOWKB6#N(Z z{(>g|1^s(LhyQ{$zM$&&m6~ovlHZ0O=&S`o$5-$*HK7+#`hBIVH>2n72mj#*DfSU) z@Y%c1OPWf5LwAd)>)+s8L|K1h?G+)CFlMWW>Oa8vis*v}xFjl~y$_(?MfCK6(nDps z>KvHH{!S^9X>8-MK~($@%esj44>4Osbon86kRposhm-ODU|T7oE&pJ36w%#(aHUa1 zbss66kW6^QB-`utz6@YBDT*CO(Jth}kVUb_^n?>4Bd&wH$d z0-N=i`P_QU%p;#*){7|liPAHQrLfV8Dwpg|p}RQ%szU#s&Od><`JQS%#jJl%)1PAG z-&3KQ_&q~UzNg{O827_7JY4yQEo{nC+Evp7O2H|%r|2}c_0UDQmLy@f4ITDaK)TE1xqb8o`B)K>SBiZfZ z7>%TAB}YFb<0?6ZA=zKa5s$>RGU`2|VU-;<-CB3=GZH??Y^0MKp^oOTo2%b8%@k0AoX_Xgb zca^MOj^RkUdpq7nvca24{_%G71k~BbF#*XYAIAtJ&wbF--|+deqZ5)*zL=BWXtS^5 zO(aHNM>ix*{6O-A`uL&n39ayhl%LRbKSx_6)%+bDkPP(4%ss(p0vPWTviqa;C)6{* z(M)Hc4+Bu$M417Ou1Ky0pc5vl9SANanilBjjbv{iI%p!_s+e38jjxKyHPKNui3|cy zPzEu{i6F2xQA9N^oKg*HW5PegFyvR=F(gX9p_Tl@bUeSBhzD!xUJ~;mKy{+7(SquZ zzESewTXH`&j?a4GiHlEvw<^kK|?zbow;a z4@Tir>Jbc)J*5@Fj=o541_Sq$>W2WgfqH~E1|s<;#L>3Cd=!_Qjt6nCXwVV)Bu;Je zusH2_kFufJ(7=UC=D7e|^K&T@DL4^>S-9OARK+U}qhGuQFE6mXv zj})w7jtD$2@C^Syy3R5@ilu481Wkb8?!he(+#$HTJHc5jxU=}dg9Iu80>Oe4+}+&| z?(WP?aQ&XHo+&t7@AqeG`|j%MYM-6$>4Au%oDeOaD!ZFUMT^$8c-P{(I-aRNy3b5g zcij1gybIyqv3x&X$MOyJ>$p?@JGRY)xK7%K6t41lO#75rN4J$YNMDs$O{vlwrOG&W zIsY(VeZ>t*ZJuvf_C@%&`P+%{%Us9qq#5a9=@_k7;x(O7Vi~+uk)C;os&jPm@?)@|z(1JC;{` zo%R>i^FcnRsh1L~XsQyQXtfd%bONH~XJ!6y`q+OMXiyu|p*G;m_kYBOsDJx)tl9wJ zN{jIC%->IyYM)L1nUT*`YNNyv8m`1jng^j~59P**lgzrQUUv&8--6`LC2 z-?1&?V}$G6zo}S1gn!4j#vrs~pOIe{?_y5~K zRIr%;u3`rw{5y6f_5j%C)!qQtH*5^}9lPas=Fwu2PgWxxrkb)@k>49?mDTu#YqnO| zjM11@?q)N}K%~nK6%M7LhS{;)?4S+VG4Jo7AK8t;5Cd}v$FtIJxlm{XrpU;(2t#I^#k@su(Yg#D-FE@-recvuk5 zKBdxySaWhAqfQ#0Xp>z=HLH(*f~Usn(0f3y{@B|}Rw1K)9DAyz#jl?xrPhUw%=lAu zRADS?kLYS)_;;Jksqk-n10yMpb2Q>piaiF-yQrPe6PwJbaS>cX7&N5_Ryu=j7BQOX zzdLikL5BFCgT;+X-dzLwwe1nmzEcnU>1p6UVN|6-Z?&jZ3@fKW%eDAf%xH^Ho8q`! zFlcLWw5CBxN}$pW8d$<;0dcW}(H){pNz|`FD@(HGFNk!!F68mXM6Nzi)Hodj`UfE6 zVAn(HQwkSWC#YvRBOiH{HVWZ;nbPq31Whf?F&|4CJrU|y2If!Dg)&Ajh;n7ov?u7I zzmeYC^&uHdpHMwEZX$Y6%E%GN6`n*P`dQY<>d7&oN$`A%nK&I)DQ9FyO5|4-Vr@C2 zI0W*@N#6cOGJMbMkF}ID%1&ebjgNz_Cl^QOgTxZh4qw z)YRiF&8&!KDNw=4itkM-808@jR5a4l)(W`vIZK}_8rdjiMWd`I@Ahq!$^-YMlVqgf z6_Goq&Zkop)5;Y+wovIxMqh}?N~qH<6uUC|>=x=#*%%99ROYzbEsTsbrV6s#LPx5g zA-7P8mT;tORYs$#qK&rDt*S;Fh?3RNIk(XKYDNIW4=vhOXS354j zFSLTgt!m)wSbybGb0Q3c;U+F<0S zt!@;iRke(S06S};$+l3Y+D0FUHErI~ zQO6kUsW#5JcHqHD_qya&D6%dW$E=GBoh?+cp3zY&G_2=AK5vp|q;vIfExv{D{^Y#W zq@GcO619I8J3epGan-En5p8N(D&U(UEuE~7vAcy5G{A(hgp4CdP9Ul zXzMHR$lJyDDN|9-MqJ!sjf{R!c-M%l{zZEfWnyFeir7NF9ng^~)<&s|G%?Zu^y#1@ z3)AW*MmlZoOH(|z^(93Hy59`dJh>h!?S9&n@uR!8P_3qh8>!AT#RR#9=5;iDX>1t- z$A8s9TSnF~V$s@WMiN9l=!j-|*8~}*uZs&n-{wsHn{%H)f5}B}nsf7^)A&%f7DhHC zLYMKQVJ(bI_>O*)hmN;Er`tm4JiZWdTN?Qw&~KDLmr0#8VY_x+x()2qOHUK++F>K3 zY9gF@){?EGC#6s9-Fra)9^E?i&D5=5zX6?;3VK#r@@|E}!`&+bRcyr>p^v4deyxnu z;OJ--Ake-1A<(l*L!eWsW zBt|6qOe!i8zy+!ifaPHe4GO?d7w$M19s#)e=H8QyyxSXT|LQ{3+OxmtLOCd?J=X;K zQC2z&RU|`aQX?MyND1_wihuQ)n;keubdWC$RyNnur=pMBp&>sp@ zhfYROY)-*Mo17v$!MTTYt`n;1A?@jmc_~L{^o@s9yEEG1Ax-a$uD~(bAs%(cG{!J3 zB^zXg*IstN5|IHiCyq><}qFDVhn|-)z$b%?_8-e91}1;Xk)OE3CUFK zux`dOh)gbH2E;~}u?nJPcViyJ$L>Zb#Ec%sENy^yv*3dg-C_eRXjMl)R`{U$yI9ko%Js$q`IrKF<8tINJ?d>tgy<1yjEArSjj0gsKI}xIz8n|Y z*9fK=^Dw*$_A?eD`eHw0GDNHXXq3k^xIb$14jt=nR7$P3>2@vdIy)mSuVeuo0|NVZ z>KlxQRGMqtJm^HP%tgK}LUwA%id#uA}>dFwd-` zdV^VW&tPMK-qkWiZH1Y#hUyP9YSY=FM*JATE|?g?+FnChd%#d*0Mfo1ig|q?GURmlr9G58T=-P0jD}?_DEC%an@d%>_M1ql+ z$=A{FkqqyQWLU#(^i0imQy+$1^?_A9rdq|7y$fz=9i%d&j4JUC>gw^H88;fW{e(3s zaGc=}{|}Ne3LYP%&ZCXt5RXP<3Oz_o#~6bk&W|yMKvW;g;_z5w6hf88q4^Hdv2kcA zXpT3gKs*|c3GyIyn84|7O+a_%oKsWMf8g?J>i>^XHtuTeMgEz1zvV=ueXPDif?caA z%S6oAt7+~;Op>c9%_L(CMA#(E)2nI6Bx3b-Hawx{uPI?#0aWm%`OAsnN-&hWDb3TVgEP$^&DNPuL-%i>Z zW-QPfY24ZItJaO<$s>&Xlqp@7xU`6HAK~sD!wY)GLR{0cACvG?J7@*mS-%MG9HZxp zjM)&w!(sgxWn7G$kI})!@ctNeTf#8@Qe!DX8niD8dJLChBs6^)}lzSDQqoT<~5aF zhZ?~~pLNC@h=J=3f=Cc)gg~r_MD6popE=cGY)*Am`+l=WP4cF9kw#Stn`I=>@hNK} zK4s0n;(IMH62Q!;jchd4Cd{_WX!a(|%**KZCiI+T)OIs|T`ePXvoXV)x8m$>155ZI za}ln*FKjY!7V-|GJoSEvS#}wv-fAp@*twOH)!YU@m(k;G=yJPaJy+nooW1;b+UQUAX*vK>K%NJ>}mqqn6~# zObfE)ikD73w}4qT-YlMF3o zrN~1ZYI@jM=`nZi5n~EFNMvb`Yb`pH_n-y2BQTgVc#e0r_9XAT8*B)nu zQv73BTh`N@V@5DU?&BCA>uKL{taIzB*$IYkP8f6aHllGMaBN%%CA?+icPv$*yFs|( zSWoFr8FQ%JK`c+(P8m~l0`CP#;JtwA?fNsp!eHF3UQZWJ8$l55&KNW3*I}glaK=au z5brD&vhCFTEH2TvQ}|iTrQ0dfIb%9R@jSzJ7hq^R85fL65JNAb z#kZ69C5B;_jDHZycA4WMFB_9n^F6dw+u)h{P-{f50X=#IyS7tb70HRF) zqH3`9=wEbLqViV_oE|~fuVO|b8gLCOFj2DW$ct#jb>u}<>;`L|zkz;8)b%Dt7E#Pw z916R|ntr#jP7ocu&7nqjjM?eojCTDYOw1P#kh<0;uLkfi{H7YXzyJt z1JCICU6|zV*)Xo!3WW9zNBjEE#~2BEW^}_!HlMoQN9USPX&zukpHHVB7~AwdqnS65 z)65&Rejhp)v|aRb31))%RQQpx3F6r!V=F}1V-D4Og1(7uN>8v#%%_!4In?->u}&MC z^#sOdJ)sT3+E^XRf59((bY#E!IVR5eRObaQ1h!JSPq_HI^8)uCwo;ataBM66`_ec7 zG53|RAEL=?<0wSBH^ym*=WmQl5WC;9%J6r_afB)vEaIESMTG8}#zBa1%QynjDT+fm z-W$6Sdi37d2@&>zL(M-Ldk{+T2^Y=m$!OgBJopJe6|YeI&qg4`h|l;XbA>*B#<;mc z{l4Ii54JC9(fzA24k1H}0pGAJU!gDG&{3|?(C?USuh8f3xHoi#+&@^v{)tPtD>U^d zrnD=R@E04K@=IBnlgLz`b4+C;wTG!}%=0iaLBOG6v|%#dap@n!j7dK{Oi$dKjUC-A z9dDCv;?%QowNjv_kz#gW8@$=TR`pE~%ui3a%4EZR+A`UwPfXKCV)J?R?G)I%FK*au zBJUVxPnaAQ!%Ph^Cx)rEGyNOGEDn(%rr8vtb4;@v#D$nVq3&g*%&CU>|;{+Nqwj>)<2+M_h8pcchi1$8K8A5*EW?fpBz>JI79SPV#x`bwTgeE5Bly4F;te?nK z`+_zmGTT8UNsP+aOal_5GB(rQ#0<+N;XERem;r#ENjcOzDI2?$l)b5(j74NJPLL=$ z+YC(3Dz}q!M*b;SWpxVE1uMx@a>$($4YQeEr!+h3ZC=%vpw93?8}s9&_8IBSQj}*} z^@Pwlmdfm|byh8h4n8Q**U{PiZ}kMwS(e%y0Ffq*IS67_8gm##g0$vHh-qorn=fh2 zUI=wfXAXvVkdD2nm7e2vq~~J$WZ)7`%wV>G%CihyU9~cD>DOoE5+=;VCG4FEooqAx zn~7CQ`k3huYU+btc9{12nEoDz=Vpej!_+0S*$3iAW@LVts%0^IL+r=`BZnzfR@C`n z8kW^e4}oN&*LMN$%aE(zh^bG;CrTQFwSTs{)gC;4Sj7dCC+Y6hFFjt1>H-j za+q$2kR0Ye5SenC!y&?QnsXou!ph?yvN2EUvnr#{d{P_5Zav&B?}?n{74)^%k!IkAyWC7 z{UN6Lp`0P~!;fKL0kesDq@s`(7}paMTIMwy>e#IVX1EZ#SCd<@el5=KfEM{{W6}y)*XIR;`yEA+zal&3X%=yh7#8Wyip&NeKTwZS;&akv9sat#Ms$rV@opwCEC>3 zn=W)Qb5gqiGjYPUZ9DYt)jyzHuYPUY;@L9t=zwmIKQlY9jn5s>{*lzDBSustz3zy5 zi=;-K(9a_AmQXkfuR5bsL{emD^wvnq)P>W{>%s|=cg1`bNz1#kl?>h3=c(N=+9D~1 z%ghRaLiNMHrjahR?ic#(LQnoe9lK*-eW4rO(aXP3g&r){^uSE}h0gat2e?2Pdzxiw z-6#CE?by>yqCpCp*3)c;e_i+WLGSv})69$SxqF#iv7a-;AP~l9^fi5{-NKeBakU&y+xnS((y~&$F;G$;s(1G6)W2`H4oaay ze+=<|X;pu-jHmiH7#AA@>D~aWE=I{#i73?o^xA)^&H!A;tf0jM%%Tw22Vf#yLDdGL z|E-{P1I@vnztjM@IR}4DKErFUY7R1sVV~F7L1?94^lOkg8e;TdOn<+~V+dO57Y!SN z-uR2Y3_%_IqM<`g-@j~}9g1;(n!JZ$y*o{1hnX!PLWiL@o+e|MSs$XpaCmi^<_t&I zI88r>o6RAbjxby3tyam8p~T6LQQL`T>baxwLa^I&+NuAmla0g*d78S7WLpPDalRf1FtY8(eoLL4BSk-%+eKVU*bz+P6nxfB}v+8$yg8ZPwRm z58g)FgST~B_41JDNSb#HCaBXCG={T%ItCYTD8g8_FncTpEXp;O%~l!5nJm)c^EkF% zYrNSSDyzqvEmHs97N+)wsjJWd_=T?gOFseiw2J&EnOSK51Y8lXqOB8geuhPboggqeZa+7-8=OSz`v>yv@{4EA6`zHU{TVlYFr#wfQEKzqY_lrF#Mu~_uPA;nE{tAL zSTL@ZUQwPoxUPCdo9AG9zDU{Unw24X%*8x(k)F-P#CVbV6UsE3>WAPBLLUkBGMjRQ zn7K3>?|D^~Vdvo3RDK@bX)xv7-i)#P_QQgCl~RXdpj;&iH7BQLt-3hkz@LdizSD!n|Z#;yV=SvFpH`E z5`z|)E+ro=FuN#OE6nVxk`~b5J_orSa<(%A`I} zra1iu^z0d+ZW_O#3rpepB}%ajKdLTKrDZ73C7QMjqvR4jT87E^5*1pGCcZ@DmzyQA zjqSj4EM4E|`Eo4L->6^&G{4cr2(u!@nFw5~exsx-FaW=iYXt_`H#)om9pD>fUx|u) zMjcj~B_P69!t@Jzvl3I#3-Vos1TSdZD)iA8^l%jh#|x^o8eQcDEnAI_^MVqs!Lsy% zhOI#@TL%ThRd)Q|WDHJ)Hbb9@}wQ6}ipK zqXM_LnOST&0DD#jZAV4#qb=J}Q~N0A4kX-1p*v80+}g=0^-i?)8>+e!Ys?$kz7rQn zZz%sRsK245yO7;WO1sZ2;GMr)ua2Dt=i^cGk}~f$vmvJ1ZY)qQ$-Nsb_LA=GGmBG# zJ!VaOZ?Oj#K`-h49(2x^)Oar|%shZ~?$};4CD7fyaExu2foQ(ZEC>NZnP}}k3|F=` z3<8Gg(2D(xV67A-J%Fk2B~?Da`M_j$k1(od;VR(#0kf9JJ4$yDllwawa?q^qsgCAw z4SErW-c@>&h29)A3n9km5PIu7>V62F{T*#Qgc^QF=Z~1hsMcXDzih#u4jnc#|CK)B z5zO$M-iK-&F%#fBjHIT%M{rrfmeSLbBe)b{a|1l~(9WY~HgX+>k9%n5QH&KvQ{$ai ze$D(AC)(7~6i~~;Tb)jsd2zSF%L~rfay{YOaE4e%{;yk>CP;0AHhd7cjorLUWJfbn2H`fW}_L(#v{n zsK_NW^EO&QR%u##3H%3@xoVc9UoXvMRO7Pg4bbc|y44Sgyo{lO|AemMlDEhetaCpo z=!&@(qV&IJXdHC}iz_@A1%5*ndtOCR*i<(Nq%1KD&i2`zmCy(h^pVfTy}`o-Y|!Gs`Fi3!}8%Jw_B&<#q&2Yp&X*r z_sr^ZZ($ufM5FHEDm?HO{5?cB?xCywyoKT)qE@%fP>4PE&C=BWA(qYX>t;e~eaFlX zI_(aA2y%9%spwt&7~sr`QpjC1?O!=wyNd;hbLa(V$BPq125rL82P-y zG#W<3U!i-2QNkz`y2@+ZBn+cIQD#2c{u-B|VHE!j`eGQhdv7+TcyHNEt+(hiVHEKe zEfq#@-=jPF(FJ?FdW|TD$ufMVi#!!2N&VEC$m`7>8<7#0Z1%BrQ_rBvo zkBzmUy+1I=aH=Ad{->GBQyq=u${Xg1XZYTvrY1iz9UP~2F|0E5>?hXdwE@g0?f*Nl2tMgPjAN_49nqVLDF za#3V-t6CiPq1qzdv3+A$1rZAuX0h>h)G(%100cRdrh_r93_5K;kNXsw$|^_`Vp-Yn zeQhkO3q-Qm)m=*bDmZJgrAqy6Jnv4)!*~Js;c6vJt;8$lH61&uGIuFdDB^?=xSU} zlP#V#3}|sYYYK#Kd}}hq-t<;pdK}+sjPE7AtqBkZy{*|0W(KPUElObJio=$hY$Ct3 z7Ots55SuBXHAZLIZnGzak64<9jwH15s&omhaS#hLT7DFf$jXWD=Mz~&wDO?so>V^i z+uSrXu~iE(#}iuvAj%}MI%$QGyFJOL=(3bl@ii9qM2W4$^dgCs9y+;vtlU%}sZ|Q! zdnV;NJCoGvj*#htthy$%s^fdL%vJ$R&}8W-PFgE7zN12XscBj+7aA`og{8G}X-}jDKc}?{ zK@~0783K)0luoAO)M!CpN}Zl-0_{+R=BKxOpo6wlJqZm^hMH%vvg142vH)$&fF8{a z+Ck?bO*SwimkMpwOvgz3KupK+}|_%UQVWXrHoFIjfZh z94(?62943*^PcMJ@9twN-moG+)yjqp?or=tR-?JKaXEDVq9>V|-sYr_*{s?$3W$Pp zq8LN6TWz6tBfAw0(JP15;V(m;Ij!6tcgdqRhHWSH{T|K8X$^+($_3wUQSV&n&bM&B zpH&+oaUnEGy4+Sxd>>iJDv!d@T0 zR(X7%SHvnt34JksZ_x-}>kUNreAZcrJ;khwG(5jGRNI>I(Ub0#eA}5i`mwFVCD7tO z{j7dEdgvEVIyW=2EnP2QRYmGd1>x~63N2`rgt$`BDh&ZwdqBX;iGMlRq%it8J6MHo z6}BqkJG>kU0SAL1;9CcpRusdO9UMhti&@3-9bT^d%fU;<*%lmJ_LpzzN@DV2-%8S? zlIU5tXmd$xg~wNFS;`s-akG@w9HLoe^z4ArRwaB7uZ$shy0ld>u{s0K_07X8+SC*U z^JS{nw-bdQ$2?i63`WLR@~>i5r3YouwqL1yS?ef7^Qu;7?0v?J`;~rFwW?8if6PfR zSIAEc^et7o!TQp4}S`0nhyDM-{6jzQetx5b$gX1e{t20e?n7z?GR0 zZE9F&AmGI)2sn_Ij@PtYo_AGMlrG^#{vl7R)0kQqzISPLEetL0w{D2hwPE2d9dBz@ zqNa7M4)|WbomGqC)U}%7d%L>US_toY)+vbi?X9*{tiI*K_Z{s~BOmHpL-4(K1M37t z@rKq#h`5ccO%QtM2)S<@z|R+1<){^C}8B!piDhc z;a+X5TDsVUQS8MRa8)&>jaBWhn#kJL%7+vvdr_Ly)+&SVsDMcjDEk-)6uUen55U0X zvNxjb0cd)zfHe>(`x1zj9jq-7i8^xr$2wvm(UrWG7Zp(N zw>aF($`*ZNOnTYNYN4Z?3+Z9Kt@mZmjBEI*G>x;+F7e<9#$dr8HWJrF zp>%Pi75JAAX@l5@iz2>Z;MjKaqx$;D@7Z|;acZ1eH~}@ zhH#C?;%&@7R^h*LjQR)D`5BtA z81qw)iMZZ;Pi+>W{Oc!LzS?SWN;V1eAe(Nht(MmYM|+-A-hZ0tMdtVeD z)3F4fqnp#MrVudWN9}`fUBI@=(v=`I78{%m0b5(+98limno50UW8vR16IVb7=-y1M zEC;B>EG%jV=yotJ)*jBnG;o0YW}{RGsQYYd{(n=p2*wJbEPs~TcTFSFbb7b2_@^kEt1YBpMxhAv07bHc)O zeYsWQuhb1Au<~;1+!P*xpKxrV2mUlGv%<>2N87q;;6UpM!LCu$@dV)qdq9tN5T|kng3}#GsJ0{DdV=_xrN@QXXEWpl` z6o^t@l*q~&^BlllEO0`ur@1(Kp@3v18H5X{Uk69aqNGcN1lD7fWdb%gU=Sf7ZW9J8 z1;lR6V6}jWZ5XT-;L(=BdI3G#G1vg$)pcqoG%0_^J8 zt-w=NKk7kkly08`xPA^eAy@T@h;|3N4heAwae^ZPy3Jv5Ou)r?3{D70yNtmp0i9Pd zI3wWI1_tK@q}j#b0t2^lH1-iDmqaD>6oV@Q)Kics%2fe&*={Hx&z(c#wgb4Zcb$++ zofC`b`wH-*;*S$WSHS&95qUNp5;%ZsFp(2-g(v3d zqyhqydGPp4A!Grb%!Gy10xl(GkWN5XokvCiFEse`F;7mSAM#Xw9@P0>g(>YP9`{ta z~44R&8JN34pIEO#uP6tAz#Ft`-wuyIN9!?P?hXu>A--ep0yEs=q_H#ws`= z#B+3I1^9u`R;d_Na{%kta6+zpcykV%tSz922K59q(gqqj!0ob4HgSk!q`3gwNGk>S zvA0hxIGeTt;(+&C%eV06dYa zvUw~Z8Hz#d0g1=!;#hX8vV%52HdFxG@Xcasup8Q$c_|YAOq`M@=;WJZf0_-Fq z3Sd7iUT-pxCxH15U@yX)5TEpqf-VxE9)Jc|JVRZ7v4#0#nJg8REaMm~7vLVxV1)&uft|2Qq`j&vQs~Fr75Te070oOHn zz<|e}|7uS2NK{M>o(QP9hBclEP)~uQ94`c@HzWYO5|C>hgEs=kYVc0LVE{G$Od;xx z2>?+7GHqkML^Eo48947w}-(G0sA!grGT3&IdUJXc;LBkUF);< zGl(Ie@&N|11Qb2QAdUd_+&Mh+5@5Gnd*FNo+nu&wSaNw7^D@j>pX+>0?uAwkWmA*{^YvM#79)p{mUSWfc94zWD~IO z8iO1HmR@I&OTgG04DtxDOP@~x^#r_Y!YydDz)u>7aMv#6gj{j%v4tW6GCpNcOhB&} z3`z*t{E|T_1~hZ0mEX;Wiw(x{VQ8Bwit{mUtG}>fbq8?PHJy;F|2vMZEnr#{gSrAf zd}dHzfNimn0)PC#ce|Q8g!5?bg!tta@TsMMJ<<4%Kx+YGJQ%bUFeo~M00BK>Fz6s) zS4;+-1h@;vV$wy(nb-`v2}tb8pu2!QUJQB)h>o{pz}4OY)N3;U`Uq&D?`HH8Ux)9;nELwLaqWyIDV*rf+-mc7w}nwkpkYNVvSJ(N~K{iMu2x(2IB;bN#|xV zLCEp+3?>RtujYWGlLd6i#9*p`b=eq97oZLyK#~~(V&z~kOMqSaIWyJoOFj?afmR7o zDhhCQ%yUAnWjWcx0s&d_F<2;Ixd!0^n&fAVB?8`SuuMSV0?~PXjSw=VAg5U=K)omg zMOiK2-@**m3P_7H44|=IfI9jBV1od4$^pP80d`rpD!{LIbp_yUt5DgY$P%aYyPS|K zhmPJW0EZta{R0Z{$pb4jI4l}=l4AnwBq#q$;&z>J2v_+zCxk;0IFAbga^a;W$n=r` z^_CNWD+1P5W^h$Nw<-*-3)o(j!A$|~N!6I#7LpK$D8TAn0qRr*fcpZ}F$w?=1q`mm z;IRO|It-pFuuKiNc8wUkZ~&L}6+&(upQSO!zj5MSC2+t3@^~jeowxvC3h2?6L6m^F zc-0CtJ_u0nUIF+dpj1Z&Uj(G=q{rVkA^khE$`1kAx-j@9;6hgh9ynY<`FGa#E7 z0!C>NOMp7S0UB`>P|wA?)}Lb#ca|D|>a+%z)tia8QqjjZAVESWaiQfC~dzKdpedgBZBe3z;&QNk#!ThA{9Epw53lrdb3$AI>0~fY~D% zG@b;txj1pymF8B`L`ejbA=0@N`R zNK#Ee!^I402ypM!q?V8zOIW3j0K4?{72qQxmf&;{In08-$T8a-X~WHZkJTwx1T=$U$Tq^k&Cl!^q46!~*@TH*js zu*?a$MqJ<=BLuX$&S0g0`x>kkpw9L{7Hb9MzsX=dk3Y`z-7O{?L?s>GPlPm^1gIAl z0c;U4_#T680@SODps_Nx6zT#etc{&4}9J~22cpwVXrrv=3N!r&}`Tj#M`NWfzao(QO;E9{v7 zy9Qq>a79&VnuKiQ4X=NSaGk!B_)m#A-W2dLDT62h!;>-iAmEni7K*A>~uE$}a&cHSoX@C))GUX;>qMfCT9o#1b$;gE#`-Xy7HF5nc_2Y~v~5 z=K4@CivsZ$m0dmz5(+4onL%O!p&BF=pxz$^8_5OOm7GcebySP%t}kn(b%3gLw=2C9 z+a)Gy8&MFjLM$)K2kdZieY5b#=qQUa!yW{om#A<@e)DJNjC2IU2)6Jt<6 z6$RLZt)jqNReE(oIW(#}fJ}1R0QJr; z80jM5fd<_KsMBho(Op2AVGMc-NIqPTzurQwj$oBO0tSy{&`&^+uCM_D&W~b^K>~J+ zW-vrRnXwFp2~aQnf@dQXaB~&j)Py?&gEbRaWwfLT{D;9<0qSjFFfv}i#K{c)5wLp- zgGmCOPGc}d0A3Kr|L;!|(r6Z|1PQn?o54&0BSIL=7GQ=lm?NOw0tO`DRv3d&0UH)E zm=ECAeMp_ngVKbFN~&cH770)%^FU*o{0;Uo*eIa*eg>Nb1RP|rRlxW|47LmCdzit_+3NQfH+byhOm>UP z*)t6G3V3vm!F~bJFEThNpvff$hXvfa%;2a1_1ZL4;&B0K+2;L&{E z3AviyWD6GssF$lj|FVE%cNzREAmko{YXV&N8Qf67&6yfcnA{Q-^|}ODy{o`SHOX|v zYu5lCIDp-H(P)K3B^E`u)us>EmTO@Mp4HZbEMTY~gQNlm7hsTFfO-iX znkc1!xdj=d7VxbQgR}z97s33GH0gz?^P2!N3Yb!yfsX*+5)85ks8o_cHUZ;GF~}jH zXK4nx1XyJlek8A8rSth=sq7Hz9Bl!iiE6<>SfNT{Q6cUiBB7-6V%2Z}hOh8~2 z1|Y2gX+Pm z|8oU&YQdzYsQhfjptgXsZ5Y%Q(54-O`T~Y`V9-#&xULKu3mDvkK~n+lOo2?A3u)Dl zK}!KK2Qp|aAmJbeZGVFy3<3na(V&BX6vJ7glYo*V7<6$9$uW{iHvzjxGw3d0%s&iz z3Q&h+q2hZB*gl0p9|7^EG3X~?#&iY)9N>1T*95}IAcwdXYA{4V3fy;q#xMcPH5ehF zFq#k=zYB9%gVCbVAe1%63V5J_d%Tdqd93n}fL|I+5^xm1l#$I80TmW7m?l7-+69du z0e)c&W(t_C!E75~{CVS!H`2@zl?_W7kbnmGlL{K40s%>vxf&M?_3q^mZ$LxEtG$DOmRvD*Qh$6hDoDsh3M_X|jWk-1*OMSJU)6hY;-Qc-{{+;u{(HBp?weF61xT>$-u0uFv=@L0g*Zw#Ia81{?7 za{*stxnn6KFNLUAB>}uq;JR|F6yBBuU^sx?vYe2ssy9c!7Z5!mgO37|CSveefL{^@ zUm0Nii{`4Dl*xBdsgjJrPXUq18AO}&ms>Fuh*UN{reKZO4q!h$oses08jg-DU`{3m z?)XBM`7lW!U~^^$i3A+V!XSwNbvPR;Cz*g8IT)l6a9D#>0y^MbnMjhx1{nY9?U^9y zM5T2u1{nkl_GOSsKrcTAnFT}@VvtopYz8fY~(|6c%8&OECq$sD?^khc!xSfc*vBQl%xnLOqTzD`0zl2L1vv zHe^siK%>SCDhaUjsHy;_hiI;j%~_*{131rG2)X|gUsuKdR0)pi1PvU(2^u*eoJ7a= znh03dnn5!G>K&tK)fNImIx=V_prQ)^`|H{WxzU4F+6fpmkU@I^wp*PP2T&$xq1UjgdvX8;2fP)FSH3(o)sJAgAC z>V#b7Cb0f+1+XsRs9(GS4f<{eu>NQc@%SG-o#V$k@%)-pBp9y%<}5xLPg$7g0JbpM z3Awt3uz{%p8qH%cT|o1N3}y)Ex0r!@mXPwxm;?(rypq9O0XUyec@e4rA0fAR4TA*^ zV7C@JA(zh%jt&=~-p2|9O9XUv?_sh`$gceiA_OEk%wVN}8Alkb7NE}QgVnVHQl4P2 zUO>T93^oWzdX~YaIqLeCi=y7@3L{%Y#UJPQ0c;bX4)g=qAz#Bmqs?`qUwgz>IYt+-FAf8DOd%~i znZy?GOao5=BjT|}Tmh}U8N?TGHvxkL0)`}HkVwGfu0#bGs6*JV;!eo5sSZb%6!5Ge zgVF+wrVPpoh}nXHzXG@v*Ds+&78M=9Sya{`wZE`RTTW2biFZ}%&Y-#ivz3Krco#7& z)N%k@sN;m3==us=Rr)vxQt3Bx0P8n#LaxVnmocK70l0MnbsQu}3#GD8S-{I_6=k{n~ ztiT)PxOs>hj1>6ufB1P0;F2tGLaww?Y{0!x$mQ=$!UYVB&L)=#m>-A1G6nG4O26O~ zUaW8c=dsEOxdta<{WSs#rev^AK$trtlSm{r082*)3k_!$M+-eCdd%Q84B;CwX(#|6B{6WXYVlLB(p zWpG+R>Shei3Ru@%0k`YCkX@}<<)VN@Z5dn^Fi3-c1>9=K8rKB84`6UZfI1!&p4}3V zB9Ory4b=RjUZ4$?d!k}j&_e}osv3Kbw`)V=i37O8o;e|Yw>F|*2(a~EEAU(yC@_u< zymJ5>FcEU=_(CH%K1#)#DnXP^@X-OB;Ik8QqQ5C{Qt7KV<-&!Z4q*LgYp zCS@Gr8hw|6zkqlT7*rGx`yqoW0t!81P+h=e4QdIPsPnBW!1mMKK#1*HV*%Q;0XbdG z1lhi|6kz+-Mu6>GfB@UKjsk4ox+oCF^MB|dPu1=&Mc%1O%<-1X)6)T5iM^eWI{#Ja z_Z9H`6@vi+KEGx#SU{;a42B8FsIzd76k=yOT7aF+I01Gx{|Kd}rIhtta0(f5(R?z(>ZaLuFCe`3~T^2y;R%oG7cJ!v&Ol&tRzloGhy}A_U+V zSOr!o;O0E`er2*&R3_<6BL&!AY*JvGDo0R|mol6tvNF7Y8yf`D^mKW=v7tlB%gG&OoCuZ=k z25SDFsq?rlDt4x~6gaNDNHT-d+!YPm>H`J1I^N7<#~&;3LnT?6i<3Na06YG|3Ath= z=jhiw|8jzJshGSIl{D!XSOR{eXYfHlxX$CV06Wuf0_<#l3b1qW2(kTiyXcpX z6Gs7V$nc4rZ(Icqsj~T$V&LrnE?Yt; zR#YApWRO8Xv?2_A1Z*tEAgh4X+N~S{Y(H}gus!n?FwCu8^AlpbR!D&DSy2JDXC(yK zo|P70dsa?>?O6o{o~RnkQ!=QBCy&2YLb7PT+6u58ZLh#a0&LH^3$Q)w zCBXKq4}e?OhwWN_rGh`mqPYV4vaf>#tkP@5PzP{@4R=DWqxD(eEns^y24e&)Y0hB0 zfO0JWaQ!h+$olrIGDW~*o#}J|N4v1bOaULdGYA%dGlo_DkbrT$7|auZvxb#M7z1Aa z?81hNN^@QMr2^s&;4~2eVrZ~RKnCsVS^@T=8Y#f8!A$~G6{-D~TZPzlv_k;b5#G)w zz^m~*-30M&)ut_M!giGQpBPkenRae`+K;6C@l3AqA>a`bBfi-t3J zC%|3;EdhZeS>uBMw>`Oj7Lt4{t9%nMavX!70z&kB>=Ekt>C%426kt0ZM}VDgTm`ts zarUz6gx+o;^%gNnx6%GpHoMcL{^40+wn}LqMRmQCmP)05$&V38}D#jWiSxZ6$*y0w!wETma4$ zR_)SCKuK+*t$@{$tkGUTg0&1fDd6VPkJF^9sC?C+yMWc}IZZDCOSIKK0#a^ejs60f zY+^7-z-bMJ3cz{Ay#9<3l1LjFCBWFpM#c(wrZpxAz|qF40wxJ~u9Hj^(B>d(1PQ=l z)GEm=0Jm=bk9(NR`K_{-L5P5S`x(p^a8-ka0-ES-77G}2n3F6M@Lg-H5OD60?*FTW z4Ap7Y2`H{R<^};c(povcSwNCg47LgI(@Ay;usio20d{xZ|GWR&{rQln*!}sa0J}e* z5McM`(*jg~hG*vl*xmV}0K4(72$<;B{rQ>@yFcF)VE5-c0_^^LUx3}89|^EK+EW2` zcYYzj?q{z<)%6z-0lPoH6BWBZTLREqRq;Luu>0m`0d`mXCcy5BKLyxb(PN&It=n$S zm_qEX7)QWJ-4){su)CtS0J|$D5@2`5qyp@&m_mTv6;r!~oIAwDODDkYiWvpiT`{u& zyXR#SVE4S73fxoEDh~5jb(Y5gJgxdVA=mwjy8rtL8FYyg6cUhLTPP~vnFb{U*m;yz z;I7KlD?MMLmJAy@Q=99>($p~npB3Bb|d zs-z7C1U_fbL_oba44MlVVCeb3m5>ONRoV*JY%ypr;Kv6Bodn<*ag}dZ0S7-b=q>;! zi7Sm>0={X`M*%mN{*f+ye^IfkV~_y50)`5(D`12Gy8=cDuq$A!0J{Pv2tWn!{69&E zT>(=C*cA{Yz^;H<0_+NyBfzeJ5CL`t%oku+z(N4GZhpH07Auvnsy{4E!+mI(1Gqm# zI3ZV)xE#GoK>nXx$!i6ubInofkpdEUG1w%ajz{{0?D9SlV3+r~0K2@e1lZ+$E5I(VDZno8djWQFKPlkm83QM;tH%1O zhyvW&-<^;%q5KjsF9YjGpKt5C;`uO$C7@Xr2A%@yX%J69WOk+Db|nz9f{81!fNZ(h zNHPKGHApF-K_1pfBcPx!gY*J&YmiC6&SI>QMFal-11G(s^w~vasRp?OL=|FaFTif7N&@Vbs4Bp2i5ddz zmZ&YjZi#vfxc}>>a5WSayCs?kuv?I;B*1Qop#tod7@-=2VLEck{g-98|B| znXa$`JS=87A?H@mYyr#5v;JHGK@}K;3c%_0%Hje6_p32jB%n2GxLr$xJl1KJ3&6Sd z%E(Fq-rCPK0&K_E3$Q)gD8Tk?ivZiR?HZ_IVY{|VRJ3cZy#j2{4hXP4J1oHV?3e=B zaLy;*E8kB#fUESh6LKA^%SAiq7P74YlZyi0H)U`|08YVICa($DtHDhHg>;fT0%mD& zU%+b(9y!46+SiP&K6QvXt6ydF;y2K~zEA z7GS&T{wBos^``*aSC0iwzBpxHc^1?0o$M*!dPx;GD9GbNp2W6mp{3I5mzz zB>~BG9#sXr)1Za`+l$%)?0oA9K)%Y)h5&Buxt(tlQL*!FF2K&Wl>!G;VRKDoBW)eP zg$-~*u2qvcx}$)zQy6p+;G+y+S@MO{CVx$0l^&vE=h0h$ZMCle+v)%X`2V5r`j4%_ z4q&&2Iw9xZv=I()yX?QyMma>idO+3ASONB5P7?&=)_F`4VE>yoRebH#D3KI~rib1%5Fl}I|fNUFBBSOI1O$=5EIN;vGWUUZ; zWJC(E-P)u852k{LImuShu(R1Az|Lm3fCD<0ePW}np0Ez`_)}K7u!kky99xyms*hOd_9OYI&@o$omw2z0uMwfmDgG<(*n=zC^%P(^;&G#0?&h~xKmop z*Fqg00(eD>O);^iBe+`!=VTw-}u4|zl zM?pwE>;R!2KY;kDj(UL%*Fm+79-$Rl{L(^gLk3j)aUs+$TnM$f7DDY2g;0AoAueh$ zTZ^k&sBMafQ@al#)Sf~JwW$w6?TB+je$&BcTByBWfH$>J8!%Ak=;y z2(?QGVxJDFEi?$JZ7&dN;|7G<RDXCvs6YB37HXmX zaY0D^I{~5Y$wA!HLfxc5Nc}R0P?xL_i?mP|rUp|6$3C__Y;BcKj!beg^3r_x~5?N&qW6|I1n>h)Ran@byU$mCx(69mT=Sv(Fx7 zSFq8OYerMN4{#Y{YzX}m7f%S=r~b=&D|YNZY<4Ye^u&K@onvhC@P8<^8WzF$=zsCq z@fsib51xJch*uKSGPa?zU#hdrn3|bJUfGs~4kU_-hxc-wNfcE?3!mhLOSJWK+VO&u zMrrs^^Teo=Q0kR9stm;1#8E}P9@rX}=~d#Wyk7Stm?=q=uh-o_gPD^RZd<^y{O~_9 zv_45xJTL5VWe+bC5@$|U{I~XPiMfz8Dl?@?3hnFvW%U%h_8*q4$Zre({uz^%_9cz- z^1Asa^Yyy_XE1A$B95!ro%`D@A8MTpjfefYf3kdCb??0Me^s4%R8&V6#(lJcEh;WF zXxq?@aT##|1RVi)jVPic$1TPUOk5~)j7Iwyx2Q44C8teXc`|B_CT`JDjAX3wxU>?N zIGJ%Iqj5nUTwFyk6^7(f7MG!{@2%JzwmCek<5$ZN=|) z&5`C^J5I6s$$t1|OLJT2=+|feTa6}t+=r*k*Z=pL;cOfJ+=H62n-sfWGZq+vmk|Y- zLX5W77rv$!`mhkAowe-EyRIhHFW1xRctNNU9vt)ftV?RN=nJRbHb3gmYlfZEZ`aj( zhT_fkLdOwYO{yPt(VHDz`j$|P4Kl|ivYyF3C zBP@g-+#;UqaYK&^H@SLoxIwkT`#Ft%C_uf!X><*u$AUJR<8gyRvQ8r*gywkMqd6Wo zG{@uSmcGqpgz7gM8IAS+E~BwoPZ04eeZ0%)i!ya+jz@jC>n?+;%GZxDV)0q)9bt6o zOXs&}gWJ<+#-!OZr)A9ec;eiQ_oq&tGkXI~>~wm(=TDD{|My3aoqvW#*DGSHlo7`I z0daJpEbJ%^#zn`=4>m998e=Q~AlsBOhD*J(vLC}zd6PN-rf?#rs7MN?X6cjXjOJ^!>qqP-XKp`iNU8<|7*s3TaP*H9JA~~d>C}GfIT0Dq_s5rot2Fg%r zfN3d83^3h6Z2_h);P%gy2b+JUE%5heii3|oQ^Spl?!(HTV>jX0&vb38BI9d1`FpZn zWbw4_J!s`3dcobEZQh^5w4Ny)&ht$FfuTIp3;4t{Er9#G*e|oE6c0{HrDc!!4LK>h^$O9jBj=cv1b*4RVPG@q!A)P6&nzq6uU7V7G4-`M>V54=ESP4sWwnzUryv)U3 zIVit)JRWh?tZN`*M@qqT4f#-j;=lE#qZLR7oR;jh0;EXdOSF4|!w&k#wY# z3~OyWLT#C_$!3@C0tb;?I;&(>LmMs5#K34oOj-x`XmM5sEGfC$IgXZUqJ1(VCar}- zG1K)FMVWu`kz3U5=||@@Yww?;<_*w3QqdK7N^;Dl zS$wq9LL~P*D=liu_J!x*y~y^6$uM1HI$KRvcqnpgW;J~T8%2)&Jxq}!Tv51FQ94`> zx!;e9-0*I<;N|nU-uqy(bkr$Ji?AJ{^S8H0Uz0LmQz#C}wQb5)HVQdPZQsK(&|G@E zMXMMZt;hV_wW;j;=d!qokx!_{p(OM$X*DePm`1~U&m^~a)z2JtYG-0gnVVU5HOQ7j zqqa^!50e(aLr>($>|JFSTlS=dJQ6DqG3hoextMa`#l`d)Ot_fp-S?4OMCF@*C9ihh zj`HF8vb5Ey$LUD>VRXeVS!1lVee|-PqB->y9c!TId61&oO%!bkCX$;+zs!vvOS=kU zh8+=;&a_Ze6s_pe8bxJW6ph1`0gv!j(@boaaI7{yJYtjl$J&=$8rl9vf8iG_VsqFZA7x7puBF{ z;%qubQY%DE%7D=Z)5kE!U|I)P45l5h!(jTZi=x5syWrTq?urUwaKW)-aJFE28Ynm>ucO&n#kp; z6-&}$U(wL~baXQ*=Y2)v;r+ld1D+2|>tOaEUdi}F6%|2&v`-|&r-*Emy>lxTHPkN4 z6BjGuf&*#KNZehEmff=QUPa|wv3M0~i4Wm;z+MS+V0FOs#dbyGb||_9Qv*>YJ6bC* zxfj!plh_DT0`>s-6lMfWm*7Ic)B*MbO#4nNih|()$70|#z?1@u0j7@d7GTPTrvTGf zcn2`qVH&`6?b2d}`ej9#a17w)d9Vs#`T!OIO!@Ez@DWS_nCcfO8UY&sjg8CLykXpEJt!bQ|LoQame21*m09&rzMr%RAoJLKZx#>NQk5ebkkx{ct+&Aa$LWg{~&O+^i@O zY0ey5i2P=zc}Gn;9;#`%t5UDg&ydXUPI!+NTeRSA et!Ud=^hF{i=U@&*2Bk@EQSU6BgWEl+)Bgca1>c|m delta 396150 zcmb@v2YgJ~|3CblmYGSJOi41mPmmCzccOQK)rBBhw5;AmZ$Y>?y6Bx~Il8bqOY}~# ztCvJsWi8KXGxq!Y{r}JN?3wj?#r=HlJ?DKs^^|+>xwH3fy5b%BOJ7&KR7$@A!@HO5 zTr9R*Qt3{yT}yQ-Q?g{Kq)sKumFiTgREct3VoR4U5nHNrxlWynmrN>Kvg_;{NeXYJ zoi#-}t%_cKdJXJRw#*%^kD3_5Ti&BoMGMcLVQADpdM3DCYhUN07u%6Gzh5);UJ}D8zso;oi7vS zcQJ#NYaCI6yQfh|?CchKK((Q5Ji-Ha86Zj+A1&CUO9-=WM~Ks+fTlun6vBxTI(3c! zj+`bs#JGXxQBAjy9qkr67w`y2+v|ik?d3w9b{ZkGr$ZD8e%_NGDdco935Pn%g>eaP zVMR=FA+C#65PGs(0C7K#$y zdCCcMA`58LU3z!z)VFu1&c%{C4MgrAC^!lh5!@YIA}7$S|Jf~McmhGPUKApH?;#he z6>thAyK96?F`mHCfrAG2>)*3e?*W3Pr*TdPxuES*R45!7D4cNx3fbLc!Xvj9IL2!O zK$Z0x6B5rOR7DU9_1^(8kzBZg4T8btEbo1v1M-28rxodrWydDjN-|9jFm4 zOcFY};6ukX$TSc;RX!q!yG5HG1fURo!ERorU9s z;xQH^e$&Z$PSISjVvWNB^4^vVMXD4M`nWZMt5_tpSs1Wi9D*Z2hEVGX*)As#J&K7% zCklX0dQk!4MX|!7GCTFL(!!!};Fy{pjxI$AM_f9h-=0XOAMu8xSV3$X95iOy-p3*q z?Cbw!haYhw4{<577gioeozN}0 zkdWQp0&27$Z}7&pkRDk`*xtn{9BHou>dPoQ;uA_BCv30q)}=t!BO?1^8GGPpv{Pu7 z5JfUfP$|GGagRb5S@hzBBs~s&(5%hAFyWy)ng)RxOBjIz&KrbtqGLrY zOP9x#6q!(1y)_Ak+ee_B3P3@$eb`$!YTxONCrxrO674wBQ7j8XJH-f>k~}{$g~pj+ zi$)$t$t+Hz5e4qG8gCOLlgB>DN2wkitqS$!N4K862MV@=MUgv8i6TJLQymTH;QW>! zAyn&O6nc7e-mWDlrU30aK1M|e;*naAD>52|VucHX+}H?;WBFEG1^-Rj;;={z0JM|p=uYK(7RY5igzQjJd)1@VsGUuP)Qo;h@k0@i2qJB zG3$%a1=cIf=xEtFGr5dp%o*u_{xeNJeB+Rn3U@&AX2RX5H;iz*375WaJmCQ0Ms=A= zxDSN8U2PiSmJ#m2)pWuwCS2qj${itGaM9W1+C0L2u1vX0V+iZ&MA>tM%egI(q6Z0A z|K41}%_ZDk#XQ2jB3yF(BEr2OoHChm8wnSBY7M#el5l&vttZ@{gtOh;NVvDsFg;jXlz+*iVNueX(4`;BmKqcRD1ns6b%Z71A5!UcSx+)~1g)a)YH zvI%!$HYD5*>3_zc<}+4Pb}PAf@5Ekm@jT(a^*uniTIfVO+xG~e@eG)Dbc00NFwCfeZZ6Vy&L6mz+xF#>J zl54jKR~|eh+$O?FX1$%T>j|6n%t5#;!W|mqBHUfVZCymUM}!+b(M_&hC7h?dhj7;k z*JCK<{v*S|-Ed4na_ua+7IP+=aCwBQv3*Pt!XBk;STVvaB%HDW40o-632-d1=DEBisQe!>_7ZN@jP7g4 zVD<}Pmk+(T7IV3T+jp`2I?U}N+!lNP9hl1@+{cQP+d#PTmT%e{Cl&xt4HO zmzCR%xeUVH&_crfLbxMcyJsoJpo{wnTU~5{xafVt-70Z|aLWldtv=;M#G^H9m)(O) zUL@B_?fF2s3xxY%TCo>jJ4Lv)9f}>m++o7?6e#zRaC^K$2h=LpDwUneM1EJB7 z7Q&d78e!|uKvI9#;22@jQnjF7trX&yRsLV~udQ^;@xX&x7IG(fg!fb03%f{pyD~i) z4?_4#YHCd(a&(lCKD?}`xX^TzLl`|=Cpf2h&{-!?hgjsIxq@h93=-jp@aKq<=y-`8 z&j}Ys6h>G79MM*ehnT;^JsMe2m_57|8swU9VU12U(TRthyXXobY7dXO^0sT3YA zMNFzw$N{veKx8sJApIRFX<3x;XmnR$+~`h1t!Z&Sv2a;DTzSh%$95EcL+W9?TGPe~ zOD0fE?1n#)UkZWj&!y$U*z^j*ZzEBYWRvbYiPxzK-a3WqG+z65tdJ$BwUx-(C8R5djY1M>@GfE&>JjQxqnFXgUz}1(xUwb3=}$ztu8#;*j$bWW>!q(5=5&FAbn82LNL!s5~^icNa(o6 zSM;IcvD%CJW@n^uO6Wn1gGX)e`J{QBNxkEHjo6F6x_B(dWgg70hqNK#NL*5DT2&O# zpM~CFmT0^16%3H$!P_g85#@sp%=*1dfKYRX8JPf&<@jRu;zq*A#Sucgg+=6eM5pJv zpj1`^^XWJfj=6QDFX*)}1oT-`EeLxHkM9gxzyjjr$4QS8Rf$J?bnS0lMAE$4Le+&9 z;rAt-h24W%3v(8yBT<(K^_NycaULt|Tv{ACDh5e~Cj(yGZ5vAq?U&QeW!o~d&z0T| z0=I>y3%D&ewz=?hxk`?w3>cx~_7Xy|472E@&>*9w=o;$0qDait+E7A>Tv1StCk(h; z>?#w;Dc>?oP_8T_sv`V6rmRqLfs!cIXGKw=_{x5w`J{5I8CXC(m!Q>(A+a^6$Fd_; zRtWLKx(FXu7ZE0`jS(IVZ6a(+3ldb@HG*VN9YH->CX8Hd{acTPCmk4N?C3f|=xC)d ze2rGr5`}gx;rkk`@P2hMC7y_&5^2#$F(=3@hwdNb4sFI@)j{dWnXJH%XbVmmhCG93 zDHs}chN9BMDv9gtqIN>@#kGalbrDF|--$X0HdGgqmK8!O;kgT|fh<%|nw~63=S++c zeqSFhIwAbIK1z<~EZ!2>+t`NJRyxIL4k2@67|1-|Js1ZCp38WfE{U#0fj9vr!KRJn zeZIqK_}j*2ay-$&MYnD&Bb=C4Q;w%Pn9tu-R+uoOB$5hGcf4&DUuC2|nt(c4I!1I9 zHg3k5jORh#V&k@yLg4Yj(yc{=-CJ6q?o}-`-eyE9Ul&%a)C*g;YSbM&_UzkpV8@O{ ziLw486Si)vAXM4bSBa-d2nZQ``Bn!|Z%+vnQn#E#E#$ElP(b}XwJ*akA!SFn5SN9A zz{Wm@v*AzFmh@C*cZB}U?Rd6@g}tz2F&Q$~?W2JO9}T9hgzvkO5W=rWJ%@nHqRvL-6!LbOK*p6JQXy}3 z@xMjs9YM5F56se<9-$sAEP6+>`Y;R;7DAO0&)Ts5ZXpv|z_zGSGGXKC%CAudx zS`jN)_l3`Y*9+ZySt`ZZC^{wt?As;!BJAInF3J@e?w=#tCEVXX9CRoN(2U^lKq2Sg z7qIl@e5G(Qdmu<0i_V_R9woFqG(@PG{YAKWV3ct3@F?(o76?Et!*eh!OVeLQ2=$JR z2Dy1_l)|;+LxsA(j0N9R@07y%BSVFT$HxlwkBtLyAJ-~`oTDQ^ztDF9sMuIi^z1Pu zvh00fH@ij=%%yLv4xA4Hv$iP8CL8_zPIKA65wBUq4Dql<8Pp`0MOf zV10BLl|7S+%!p@o*o=dO2M3ab+>3!iv&%z;=NE@cVsYV|m*8L+YT@n06tH>Z5d|WK zqFQ*qhieVNwZJpSyD)ST&-(DmVL+sM*k5RTbp-g{@S##@d~F~os(+^tT3#J2#9bdI z#M~Sy?7cn;e2qXS&s-ZIMBe&S*nD%CV7;vr%G?|bW*U$R`)(k2;A&NF3N(dLb7}0If03_+$zZbzEY%EUm-uE&H zBk!~jo!NQm&H&Lrzex@>_d+6st2!VdNKSLh-Pj5mC zWA7PuUU;%ZB-#v$Px90ec0Sw1DcR1g&m%-!0)X6tc^VME4BftL{_?xjPYm#Bir7Bq zZH9j^Wp~EDQ_4Y}I9?;v|8m7oFpyGIRC4EoKTn7$;+}7v{}sf$-+!Wru)0`uNkYIu zWPoVNzkv=X$VG1`JeUwD>h`Z-ZV3{#5fM3|K16hzk&;jmWaL>jCKDUQYvEk2=n>Ot zN`z?Lzta9&z38-z+UcBC)b(G%d~Xx2W^!(DiFW)em^P27KePRc0-{d;3g+>GqGrs> zg`z~CnaCw#L|grYhbX*Rq`;KoqIKRzN{Tkg{DcOHCEw`b@baQI3ee)WCgJdDHPLJ) z`LtRhztf1o3$;b9SRVaZSJZ%!ts00n(oligrlP}A8nq8wh_2E0;psM_TLJX!u0+vq ztiXn@q78m(T@&POe5?fJr*t+!ZEsOyDN!Aq?k&=R>?n~5u1pcl4e-yhv<-M?h^R8t zA$qhZf{{%ph?*;?X1miw*O+EYW{cVd^S2674{xzhRd($4sIf?x5iMa( zd3H<`%e)qS2Ad9d;c)7CQ4>Z!yW}J5UH6e2Zi`;90&8+bQ&h>)|G76nU-RZO?q<;C?GxuUZ8J5y+T4e=@#FkS15@38_u zH4&fm)1hU-vKUbzc)5kR3sn#{NEBc4LoGbHV4zo%#PKXt%JdNLW2C6JSkL5-N)Z=h z3icc%zAK|+QR@-n3#>r7RB>?yzlq622TxM2iguGZ7YLsw&g7hQ!QkoQaPdDD28gDM zO(1WwtRQg2DC{8hygU?U&k(;5qepthHSj>X_>l^eTDX0=c#nvl9lk;=W(8)f60c-u zucJfDDR;M-g=npBY{f}e^{FoZ|X#OD~9{X(pg&;s{g zi>Lf^m;X=AKE4%?;5Scca4l?T1c=W!g@N=FHD%E8Uc8yg2kw3pPxKSn2ETt2@BQbq zcAt`^!LLq<0#+4CCYnIwuA=|<_kRB0U;FVXNzewur9~uX znWn>HCC^nLHMXP{4yr22M+Il+t z?Es#glE>g}GJox4cq%#Sx9>(gmkeSuiC+2dyE3mO zXnFTfZ*tOs+80lY^Cat-OwHd(7WxY}9= zq%zGrC-u8~Qi!EBcxSrUbs#=QssxP!2I=54r8LDxr@MU%NuRPlw0jY$KVvXN_&Zq7 ztScrx#>l6!QglCvOy6pjlxo;KtXl=?X;vVvl5`WB4t=dAZ4*Mvc55PiprB;y*3$h{ zMCfTRJ;}~~O_G*iU{!ldFEKDzUuk{T+Ncz13?ujVm!ca7M24vYrNjUEji3LXsSbcS zBcy1xO8`HOkzQttvpX}T=}ePRbESJ(fjSGN6PciQGo<+ewA%f3J_GFCAT7X@%G)lr zGMR0=q%Rq1hEfM38}5}>V&ua8(m$9|83(0j+1ZiV(yq){Z-0?$*x9fXQX6Zy#yM#P zCfUp!sgjZFuSk`w+R^LMi%g5vccn&l_I$2%2Lqe^NP2~x9sET4g~>4XnY6N!>UQC+ z^bdw`?UU3yTF?0+9m1-azDc(P(y})cvIh*|OrR`}k!OQt+ele0OjFB_u(KVsvJ@uo z{Ro+xf$2=Ly{y1pv+OD(f3eEuv9di~vT?lAX`DE)PXXCv=0RCeS><3VdGiXg))q=0 zXes-P8RtwJ*}i{%^Tronm4TzDOaZo?Nz%>VRy7%>C(1-plBuA3N0|=fG?bX&qSF@RZbb#IwB5l8oxjbbJX9v}-~9&`_t#rdI718`^?(`C?TnVjjeXRKG3 zL*rym|M>$eVlRkv$zp22={_}P&+w^XpCb!lYE%X?D{tOsw+ko>vJXq7Ab#_(sj$Z~ zS+tDyp6gc0V*V9W1?;p@wu~vG-s)54`8HWq=93D$WL=mtTldQ5vVd%UM3&16)I1@3 z%jqeI;`~a4fvYB(1fnuZ#Q0wxvAhAfzWYDBWz)7MeEL<~SE3fPR z3p4=4-Bbs_Aq@h&eQ@)}0qD6L86B#|2ef5Q+t?z&%o*tbMPO~v<4cjEV0_zvcYLOR z2&9jQ_9boF1+c!PUqZk&B_ANZ{iz0-dBYol_~*l$!>T<3wsFRv52`s_+&4fe7VU;> zQUcI3)7>z7M8GINIy*H;EY>(4e6FNP0@FqZ=-{a_0S?ZfrcxrjmTKV#Pa zBS!vFPjl^CEqMwPeoO=TR#u=&Bl!YGK4~o9&d3e%@;z)q)W4OlZ1Fa}vbWm$$}VXy zzrxCn?cysN*VR|{SvOzVO+DnNSlJ2vd}V9=>?`}Szpw1pf$|Jiw&Mt2S=%UI*^{Gv zWv8afH?y*}C;Q6Eruxcmo#rc>k|xh&Ws3{GvUziTWf#u(m2J1cX9v%6U)e_)zOrd6 zePtW3mhWJ=noYj4Ih%cDhi&zht(Ym#W@Uq+uk6`9zOn=N`O20#Aiv8-GtV)({9nnM z$oaET57%T|Qg>M7j6BQV4uoW4Vc74y{3y$m>KEmUSg^giCU-K@en&ptFZprO!1#yq z!dk!crQio&zO4G>%a^5JM8O>^Fxbj zps|5MEd^?!s1{aiq9`OKCkHlHoT5~t)`~7c9CD&oPH|M5yoLW`h+|cu{%`Q6$TFD<_Up45lJH8KW4*i}E&A;gRrG zUOhpvkc!ZFvSJc1O6Mtx1a3z(n(np2l^KfBydvbzRNRmecb=ZB=*Nq4VxFQONexhY zks^Z^W#D3kSVCl(yiC!V7iGwD#Wb45+7*g>6i>89v5*(9&{{oz|69uHvSoWFXBC#Gc zzEs51F>ZLCLPN_fd8ddYT?BmfNpX_aIQ~TuPp=mErq~~XlNP=WQg)6YR9Ba>9j$S( zpi-hG=YB7*{7Ffu`ZbgvY29XZlx;ajfns3h^~WY~!4N2iF^!aG<xa6D4?-XVDLuD80*4HnT4dg`c`tOt%R6KfbR}=#|aUb+BT^u+( zlJ8T*n6eINqA0qr5 z8ff|Ypew;7R<3!1)U>bo7#+l7Dkml=i)XolhTUQy_q4(QzZDCrO|8Pv#@u_SPbeqP-hlC&&i)T6pF)L?u3Sw67*u_iPx&{@ZUTc*cq~uucz}bU> zUPh2C29E~^>42k!(gY8u1x0f8(1U_H!NGHaG{GF6L6WqAn&m;YX|ncM5yZx^xK%+Z zwEH@;Ip_!tG+}Gd7pnNOT|sJUw8IC2e&q>?|8i7@7_L4Rw3fEg?nF=v>aHVKf_BjM zCfxG6OMN$JAWe#SzXg?})V&u$^QfyQ|J2h!Knek<&Cr>zHSe0!{IoHvhH{gT}ziM9$cO3GQC{zJ+9Hr8~6YPele)799)&U zG_h*%uhdml>IVPvZ@9`BAIw~p(=?c6*3raZCC#im{en$Y75R{0=Aih|!OTH_j0-M6 zT@W)Rm}Q%IS}@DD8`FbXwt*R5s^u&%6+Sz-KCPQFKez{v`%tu(2RZu{roZ)bgO>%5 z)X-e4w>+5TVyVpF2rg6oy@3#TdspyR+S@(d6I_E@rBe34;b4FqJQdbI9-Kv!Msw2Z z8ms3Djgjj777{Qe`-+6O^gX)mTOongylzcxsZP)KV)$s zEI$rZ3t{=OH9llN)na(75Viz(+&+ZmN3o<3mLFGpgs={5N}mvx9|`?JSbmiJIV6Hw zrS0Gl6;}p$y9t;(D&#-_jr%>LLs;D3n-Fr>uVEJ;SOw_tqDBCyvpqxwn@kRIP`y)U zgs@dY-B}@Ql@L8Agv}=7=ZCP7KWbqJyO}6n7BZ2|Ix|96(LSuv9^nq@Qh`k%axhdlNKOb>nwfiCIJW-75)duPFoeB{DC?xHlHw+L!-2BRK zG_b>OA-5$+`3g@%w)lYq5KaV8KSjF&CO-?2aEyRnk#tb?CS)K_+%cVWpiX8RBeds- z%nlKKfZM-?EL5RmgAmnb89IK_s;-OBF(*t_GY}oa?W$*(|L#ytQJ~|LDAi@mw=b+p z7o+2=7*!Kou5vlm2VB2o6;)e&oLNKFN5^NeAFk7Y>8(^VMa#hUQ7LsnW)XK`Fr&3< zFb`}ctqo*W2vxwgZB#rjnm$N#>M%eosF0+xgGz3-8YWXf2gv-TFI(M9PcjpP~fVcRTn~#G@VjJVQ}&oRk9c{Z^x=e z`XL&8HcnNXRW`1|I0pvtS76!4q(O#9Psj5>_(K7gUhU$(89WTsM z?ZU?ivsIh%vA95w_vWe!M<70Mlj=nfI{uNR8W4bv$p=-JG=6CILom=LN!0-?Y!?~^ z&L*ii-kbQLEDDGy_#sEN5NQTxT~%?sANm7~M8z-HRQEaFS^Xa<6>q9K;AmKMTeaLD zn-P&N-BIyuuKOP%rQTO{!6NO<1;huqK@aQ;;={o?^PTxi2o0;avxMJ{peZP!_*3Y zs=lM{08|i%`VmG6aJVEi*$)FHzzG4NL$GbWDnk9p`UF@uF!Yrl!IJ=w1&8*>f|Lyn z^&{64;9zxV3BN2-R~I@D3vw?!)Q{0I0ebYI)BF;ou_?3%76e*Cm-1&)0(@@`J@1!m zIy*wQVnH*RWPj5 z-cQjm3Rry6+893R5W4N3e{;f@i{(LTl{X+wyP{(eh59L;PKSr6uN%?vRRMLm zNOUaFP<@%>#V&6&mIt}rVglfZ7V3K{uR?v3)cJnICxrwjFBVe4H{H~3EVZtex+V1~XQw zZ-o0}uhjP{8T`BldC6~-+WXbFA~;d#TrR?JuT=S(SxTKV7;_sd`Ey?%(>4CJ>f&U-QARVtj|D>o zkQeyG2o5GY0>SI*0i8fXWzAV{<=}jZBLIGn(+ouO2sp5YraV4w ztwnVjT1PV(nK7$@rlP;9NWrUup*naWUQ-5Hi6(%lndSiY()AV^KjvdZ8ww8)yn?Fq zxus?~R%Kxus!Er3L>2g=gNA3bm#+_oO_DSj$iGAbP`-yZw2JrCboZ-oN4UYz(MPiz zSp;57(VW9Uv}%y%E6$FLk(xf7y)}%Vpjm(dm74sosTv7yBTf))H)5%8+FwxX+04A_)j4U1BYzVT#(0(W4q=A-<@C&h^vxkfQxr%(EHih^=;_ON?Dq2VoH|WtJxJu$xpv%L}p3`-q(0o zfvOKQPDcLxNYk7lTz#TB7edSK_@J36p=909ns=-~!*7~TB64cBu>0CzL(`hVU4ApUYR*B%TMU4r)#v;(EV_!F(k?dAXZPr}^B zf~HGRnATZ)*daPc8{0iz8xGcw*RJ7g45T;6GrezcS~SF-gH5++Ph#Gfsojq2o!zNLx8u&ih%D`B ze4Mw3mTS3By8)HYI-tFWPv1YJy@QJ%II2ax?KxQdxVASwE<34RfRAO*XounB_H(p) z|MRq&3KzARxZaB^w3#y3X*0WT(sF}ulV+gfuJ%5vpOvf4#l;^y(hkRP?H_B4u%udcS3bU>!w;=JA8gim@Zz1 zj^B*B^BC?|v#ujLf?^|eHrT+bD}f7*w(EY!7n7VikM|;ob?M}At4kNAKv#Z=))5~D z6x9(QZYr)LK73wMM|@bI3>9Z^IUO-_XhmH!j5Mjb&IvZ#4My;5HJufxPm9!`<6f-? zysD(TgmAMf>ki|VQ>*H-@Ud()U1NMi^}1onUe(kQ-!HGLBffuLUx%JxoP#YI=}3%3 zG|>^Ke`u;BPQTQGs$ZwIj>OX5wzS;v_Bs+v)jR5lliziwcvZSmybaxHx#XU@Ll{4* zw{96W=c#_w+@k(ezor9q=t09dczn37CzcbLaS|?{HCmT~j|Io-`k?dFygSF~#MpRQ z)2Q)2&!EOzHk%snu0V}voKL}fE}%l+UPOgivV;nqw453tVigs-(;6!DxplPMj1ANX zy*E=M)XStsIJAS}#qOr%^0O%3-o4Za$p&O@C!9U#tCYKs%NMXhMuEx zo;t64i;b}Vs%|h2@e;RmN3rrB?&uQmvH5-7Bz*qXBb^NMxxdr;#;5f9kmtH7a+E=D zbtDmozt<^4P_YT3Fp{YGlCWGI;xFmLh>rzh*ad9sF6OXX_*lgnb`c-d_OMa7-pnFl zLAaSkMZ-Sg^K)Xu&f;T-5@A>Iu~ezBBl!47=`fO^h029J2uFNiM7>WK{ zZNo~0B0eNJY#{dixISU!mFRe2a2Scvkwe3dW1Q;4!@6Si*QZkXdX5Vljmtls81@pE zzd9?dBt9w^h84x`FSjCWFuuNRb=XcdI(FGj>v>>U08Y)q2f{94+;0b|oY{xNPGWw_ zk+4Ku|JmuVS;6Qy>{{4#ET8N#EqC%s*auwh;Ipum*xZS)!$#qD?&XKA!|hBGhZDW) zO2hl(^ZVuD?}N}WQy2ak+iQ75_)%QHvmrbU^KVSyZ!!PS6227Ur8>hk`1~Aq_&a=l zQe=1$Jv#2J6#f$1Eu&8OWORL9q59#tSX9ICm$+C&dR~A!y58aYartI_!(ZU*Rr-g|!0MhGPQ^SjDO`!qpPd?B4y!MnA5P3X zeqs1|Y~E(8!e8O~acja4;p^YGhl_AHhz^IFF~0RkcpZGc>#yORuskQPhd0F6!+sB+ zigA}c4L7UMao-=*45L1U2jlb8{tPD_bCbWqk6|-}i6cn3J(ff?!u3mOBGB-R+@+1U zf!nzr9$~=8JbeV|z?T~%qOXgyxTQ{i9E)Yq>!rB3)2V-o#SM(s_pJw#wp6nL$GM3nm^nZ%<$2o*Pi}_<;?Cki3`o4@5FY#6TWvPB4L+G#iE1o*;)N8c53Q*{d-n$<|X}1 zb~fg!{xKsxH}q&u>vv(Cn^$89OVwuV2c@ZMpiIBGlCT2R;jQ`b|HR zHkI{MUx>k%f9~_r)R%hn`32Ha*Ejl8OsXpHeAe9gLEnHC2>ql-UpOXZzklPclR^2VdZX$4d`<+q}*YtAq-ud*Uw;sZ)Jwha(en}h`}3DRW$~0Nc|RO@P?FI zZ}5gxN29?TQrpZ1uRH774Al`Z*cNGULNq0+#2WnUFl=MwUYB7lBU3zvD%dcnG+G1^ z$qE!Qc%$z|VS_jN+(iv-S%I0c25-u)Rjs_m?5 z@W%Rx>IQFc6{+oOZAe{TYY*%Ds;z2h*ve$++{D1V2Sv>dUiVdK;j_rJR)!`4RH5ey zhBnO9pmJw}9QN$!6Y6#+Ln4E0m}E%sdgN4BgIGap-|pk{i0x;eM}8UT^N4te&m&ca z`P!d3!rMmHXrBT{#`yG}Iu2VoRarv|D@`(#XEIEh;?p~Sny=c9G@q4c&+=Khui&%t zqj}!OV2cI5Y7vWkt=(JVv+}GApOtT|^tD!Njjvk3I-iw~Z}3?;X^YRwOSk#7e6`&$ zP!6iMimwZ{6>%23)MkDVhsIju|$J(GT&C zzA{7)FPt!xz^~2MWR=9>AB@s!)lIICla(ENbQ~%0S=!x{K<90!~)_*8ykT0 zR}2BLRgNK-?=}-ffe2-?6lChgX+XD|hNFH61P|XbSorQGF^v#_4W{2U+!RxRhUXgA z`5_P>c-I~n{@}aE`$H-{7}M6a0lI%T2qGdHJo(tLlabS(8qhc9umxe`=Z5`!!A06? z2vVKKP?(u#I3%MM81si=HNOQY9{L=PAp+)pG*t1!Ie&u!>MymF@V74p^eI{rH!J@# z@V&h9H>HV?^c7e6cf~88x^2(Df495v!d~WS2Nfs&UlUaw^R+|e112O7F2L*P2(y*dbO?)$@!7# z{Cj<4A!Za?yzxCVio2Qd6SG>8R>nb$+|kZhosqIcV+6D+`f{f60TEjZ?$0*v^INJOg7E>T3GpP3MVev0@h)?0z`}n) zs#%MSoUa^`%w$qMU25FNq}rKb-08QiO0P6>zLEKNsmiP|o@P?1*BkfxE!Bbz#$JAP z`1cMQ?eOw8<6_#If-yV&u~k=q@xZFS2{!21ZA|8S^?`M;2+9H59WZW@umKiYvyD8T z0Q}Ksr_Os~1FcKi7s2ck#t@8~pH?s&K00k&=|^^U1sE6p^sBKS8|YUNjI$L1 zd2fs=IN_CXn;&E4-=KiyX=HHLJ7YOEV%Pg*JjM)V`^#9$-$v{pU1qNW%ZN=ee)MZZ zUIL|tMyctplG;|TGRgSf5g-9w5#*FLIl%Yvd4ZtAYxMEx!?{U1ke=t3!@CC4BR^u~ ze;^0LQFashnJf|zOWdXdEH-*Znj+~811>LY3S%BP7HgX5PnbZY)n0#uhw3V(2P~4s z)lKNm8WH@L8m2>ml$_JpG>QrCXkm)rd;RN&5A@)0O}hak>>7w((JNtT3gbJN{8_RQ z^Ak`TT-nKl?&c8%ns+sM{D|kSAbyZ31T2x+OTg~QrtN;jGlL4;VQT=LeN5v*Ifotf zc~dJe3z!07{3z2JvA0(aOf`*UV;UG|>g_jp=6Dn5>tGh(6A>U36`VH76vk_~|Aqnx zN<*gm@YEF3W$I(FInBhkm*9t_VL-gwXoJOOnmBi6{tXJgO*idf`LlnHsW)$4dsPpI z_ZOPlD!h(vywZej$dllHx5jkY5A=>8c&|wTUfwWG&f03a?_Fnt4Vz7D1?}8vYQlnQ z>~4R8iZrEyYqL!I{fLB)5DDCocaDJUNyK35#a8=Fs;bFF&|5)iXSjbyicD${a5s?C zyEOehIGA?Ow46m|r6Z;d{Fz8VZE*KdQx`wH+!s_fnrR;k%A7G>V{wFO=HtOOr6UWat5&sbI z=WkF?borI32XFj&QTVn?TOg{R!fpjL{b1tTb3_c4N^fyq`or|v4_z3_+|Q<6%))KH znt1OAAl(?=y}wKaID-|&OU=1xJcGsM=0=?H2oOepaN%O109ZZHJdgF0PeaU0*-UJ{ z*6iS&59Aum?O=l5T$a=95CMFZ)2{oK!@Qh{v^3IuhY30@%KVvc_cfVV{RC3lnzi7s zDrN;lw+{yec=PCF1@mp@<(-wy3pl$ZbhClB08tBrIgNmCS^SVw1xi*kr}-(54K&d? zBj^phb=A#NSeC`rG4K92kZtf{T{Gv-*dJ~oLfW9dp;^oZhv+8eU;Z8WPREDkJ z6##S0O&P*xU_Q+jEti*>(eKI)8EXqq(IZlUKbpGW?sUHIe&DX0_=Zo{+%;d)ghLW(Eid~jyHWU z06+i%;Ld9^$FCgHIVzUo%^P!h^wLAq);0=rj<}wzM&Vt zuz{)tTgLOnAw+oX{IE?YXi!^Hn4cDEEfe^}07#5Z@Qlv#jCcM(01_iCsZ5r9gJr5e zvJ^B~ZZYd>ZT>;kwOg`z-JMs&(f}@xw7ipmmwg=Ja9xxI-OnLTFIB{n!lxlbsGOS< zEdbSR3L6x&7&$!!Gh;1%IO_sbw;9}D!g7+=o(P~8h%0N6f@y6nCRn_@o>1}DtN!KcwkaUA(!;U7@F;e

89$<_BKY3Vq5-$oqi@SKKG`P_ z_UmCm?{ttZXhd&cNGbaH6H*l+YNW3p3KJ>yFsQ$!KJBVuw?Te60|8F51cKO+=syx- z3y1j=Vt-RUcvv&&aDHOqpYHRLHBT3CONCEHD_neSN8?-Ub+yt|gAyxlO- zNAtjf-qxZ@{B8->Q*!KAi-L1mj6Bo|d<(F20MkTP-dDD;Xdtu6n_zG+z{+mCcM@Cc zv6G zwsL;;1wHP<4!|e?q0sLeLG*ni?%S7{9j)a-OgXCpzAj|VRnop;UbL0<4eFBCnyhc= zTH4x&(-+=GRIqCqYYomG0$>z~M16=h+u+=GRIw(q44GZsI+KyHb*z0jGlaB&jbW#G zvb-U8o*-FkfzhqKDe`KfRVRYe8e6+FV~U$vd2cCrq0x6+n^_R4PO7r>Rn&9 zZe^Xv@8VhzDLmc}+cyC9=Ua=y6A9L3oN7U2oM66>YFV)ND}WKn))3gFm-P~-1V2y! zLXp9}eXJ(l_h#aMLAjYd$Ql4U47Jt`ptHmMqpj%WeVhPb*jVc{PIvu)o;l7sf>&1` z3P30!V8sM0?=uC0lrha(5X9%3!XV0*32X=$H`U7bVLl7Mpb&v-c?V*zRK;Mo8P?&< z>iM&*oX;YuKs=fBUW6ODLovLGdGA5`77Q29Rfmtv|CU>~)kk zEg+Jrfgc&s12#F~ONLvgc#{EUpSE7-&V!5Acsy8?g557zmvZI-jK64&ZjgL=su+3fTbY3wKQ~_Qw&~)&}Lkc5&|J<4`6}_ap977{Zmztkv<=m24P{;>ZVpD+O0i|@{ZXxyv|);n$wh77l$0D+ z&Sqxhnrc4sVtv~&-Wx$)iTsGuh7g5>CV-lFY)c#OcE}&maHW-vcLNc1RIy36!XRg~ zaULwx&W5(u5<8x2Z^OTah?9J72OE0APsnzOwzo9jL5Hq3zE6W&XsaZWcXqRJ??(Ay zfyF&-yIIh7>TO%gpY;tPl4?Egh>8V*_fu@>bv|q?aB_fcogcCQVj<5U8~5I(9~Rm_ z#3p4uP|k2$mfuoU8foL+2lhj%YGZ6Kn5`<0v+=$<_XBVBc-uS9p_{}cM45o@1(Hbr zG}(5FMf$}w+Zw+uR%E7)dxsO!un~-%Ya78_cmVj5dW`^rve8!{O$%*@{21Q|lmen% zJv$_H{D@m+yUP0K0_$vOI}b5t-g;jT0yo-9^Uf8K9U6o0+ijsBLuM}uf7xbR>4&=; zqfbEDBKW>>PWrG$AoZk83(+UL(H`ef*9(M$PlwUhyW=%B6Wn^tR^E?(q!C2WXP6<| zowcFeB*c)GUu|eN2_auxx1rr6gdBFy_Kx#`0*-s4hw}flqX#UtXhy@VCpI&4@8jpT zbN;A>Ek;{{Xz!4TO&zDcwV};DM3t8BZD?~3A=AFt(B>XOZvSqp;#ZjFiA=TOd6_-j zk9cVW5Q+hyom7iqF@^oIi1-}p1MT^8DyC6uxA3lji63%Y_9!szm2n|Vx7r_yNJ;^N z#m<6im)$Pk%en|Q9LATlqs^Ci5}8%jj$Yp<(3utN zr8uD>vdCg;0+?IPUfU1FyTa==?Q5AxGwa%G`7wE}4pQ|`!+>%JO7dAv?BB)INm-4( zPReO!=icOmRHpdQ-NN36d1^*m`)uZ^Vjb=14MJks4~cg41|cE$bhfYaLnE@Zv%{cd zdw@vvCw+skZ7)0T8-&7`4szJGw|x_z!=mOdb#w<{qCFH|>1Q8}rU%OhX<(QB_8yG9 zGti!jdI)^B&j>sE;u#^IjIvi_WcgHkCh|2d@MXMxkw0RbnPcx?ey=}!Td+EHVagQy zHYyT`O|$d8Jx-7SLh}9w;S4+H&`puDr`eV8jbI;uVhh;{3|QcoU>FV{I40fYh4x?h z`r04T5jdE*#C`*L_URxksK4C4o@*lZKQQUsXJ3Z>#=jyWg=@RYj=nQTOj%~_zbWV1 zb#^U_=hGYQR=!OCVF8%F-Tul>^JC^kdqL`cc;c$PFC%N+vR7i{oO|}6j5I&8pJn97 zCw9QdQ{1vF{%5- zIliI(85?GFbw_dL!0cL%v8+I|`i^jRc4#9k3}6PhIovUbZ<^p!3hhx?YYziC@fx%(yQ}O6b$0#&6#M;KsceLV6-K?dK z?>s*ii#~E!2xLypQ^3UK4&JA^Lf(WRSYfqetwOYu-i$7^#j%-hCqN8H8R0~`O{V3^ zV3n>+f=y_y%kj#;y#OpLWbi%>;^_L&b@ZDx4_3MFh zIS%$#&$ly2f6N0=!*+1!w4(zk|J|XhkapOgxhGMk{`|IYg8qAZAL@YZ z3a1<%k~`NjvkwY%uH?@NUmG@fC&@)Vp_* zP*Xo1?L-SaBI3Gn&LRrYYCJGmVg5AdF3xeXw2)g+53>3d(ZW(QoPVJAL01&iz>2e+ zqoty+bl8i%8&UyOoa^L#2wNJ&&C1h)sCmvET%jBd;`cdQfZnZCD!5?2lk;t{zoCF~ z3!QxL_(X%m-<%Wa+YE4#6LpWNUC}S#JYDAejZ-y*Hv{g>aJJ;@Jc(9AfHm5!gRj;* zONM}lCr5{an;X$9`RS`%CfGU4iFR)jDI4!~@~t7GA#y-8Uy2g}M*+tPrv?-~;!=Z* zv#O#nNNT#%kdjd^dOJK%$D2EWB$m}`mU4n$IeNr%|H_*JQfmJsy%WZ=aU5@6Cd@< zB+92w^xZ}x#-GofC-}s`oyQEg{-u-i)wyVxk?%}q5o`X)9kB>yHbCEFR>BLP_}xQL z$fuZZ{OP>UjC1On^9ZMLDBe?vV)sZF=d;XcfI!k<3yJF~lc#Zj%P)Dzx0WRe*FL_% zn+PV{KVifT9{hMRe#Rh)s@FLnI$ok z0=%efu70qWs}=J@WItCeIvs)|2DnoBRvF$_{&EI`*gI}Bd^yZDOhRQJKFT$RwPhXa zlKPR5NDbD20)8Loy2L{N;Y8O3=Gmi@U4412kLF5sK&Hqu6xK_3wdS=pL2<}ErQwiy zuC7e)R|{MRnT_`^b)gUckT6`o!Znz;BcRP>7wQHhH@G&aIXfjUN)-Ki(z1On^tCD? zoBgn>lY)}7Pr9DSDLM6m3%wsf3N*jyLhCO=nl8KCtU%*iu6_*R{5{teMy5S-+34s8 z_dj*rVCt`a>1xUuZK#|28D_tAp;xGg1d~4avbga_pIqUeUCa3!7z8p77nr&`*zIPG z#EIRrIpJt8m63?{HivXBVg$>-yZXRrr4PD8kb7Sc==!UnE=bh7*Ye$}EG;<31;W7w zw}yAdls&f78N)&OD5OkWOScJ*E9*ud(0yptZ}!13@+9rrO_BN2e~ z`fl{OI^wk!jokY<}kqDe^h95?!e+r$D> zVcmJYR{8*6E9Dltjhtf|wq`ew*xaq2U!+g~SiYrjI7G`0^y523e#bi0%Te;fdN*2W zkh2Fj`kJ1y*>^U6tNR<@7axgFyFt}n_Zimiv;A)T-2iOO{Re$5j6dwYHZo6vZ5 zye**ywv?EuFzc-^RBylc#mm}1+nF7nD-{nYTgBm7lkcgx)kxC1x$RDQ44>M^(3O7QN#h( zvb+Z^Uav@#-wxH8f+hcg!-T63g`M5plst5CZcr$X?@V03vcC?O=bFrvoTB&!YoHpocdb)1hY;*lKYHz+b0( zo=HIN>``c^%`DGtzUc`_x!{=qQ)hb~@(##IzrOg$e1?a} zkwazFea3?x&e5j)pR5b)P$Y{tMm)|H}1nevUO7{12$Rk38rHRB7+@*mIE6jXqEq|J1|z@r(Z@ zTEiC}G~p$p6@2|Kh?e=rbCbJ=`n!K^aKKv+TI&(f8h-FVf31dt#s**g;rWTXcW3ei zgTw`ed&A-1Jg0aUR>+rq@Z+GL;c!LdF5dAEM+AJMiwxs?377>#UJv@VkrCwf27e!671^G%&!8#bg{BWjz`E#24OqC=qXuJ+6;1$22%$_o|U- z?SkVJ)~Ob0=bo?CjeNoD$J{=V2_PjQHf(;ns~$YuBC;j#aPCDi!N+YQ(Nh+pR{IW- zXput5=q{0HkwQp)_sD*nsRU6oO*EVtjq3KIk5#^miA1XsBFu;hk?64sAz!6MqE!hY zf1ewPRwaboHa`-rN(ec4K_pt05OU-4NVF;;Wc2Dtv??Lw)Af;PRYFMp)=0D}!DQBs z$ojl9e3Ym?e2bFaaMYeiH>c%r^!3IMP|!#IPee9_mk&oq`vKJ*qIJhk?p_Q{=i&du z+FQp*b$svRuRxTL5XAx{(2``6O*XQ-$!=^TyKzN|JH;VLaV@134?4Iz6e}=LEKpoR zkRru`J0wVfV!tzUXE*Tve1CuR-2QbZH+!G^9GNqIE_CO;tVrGEu60PEQV~G*HLU?_ zR%hz3!VWq%t%elw-Td-uk#!|rZuH>U`UYF8->J>z`qgaUTKjtaQ#K^2`Hb3RpHdNM zd0!~$dZ#{OLmq{#@#rYGsk?6jQu9H5-0tiE0?)UhJs;LDu4uJ@#67Kl7g;Ab&h=;Y zpJIK10gw@4zV>v|-}N8a02}uCXFBl%GzRd8=jZyvWKd(s&fA*#j>2{g%=Elx?(=n_ z2P^nmsbtcTV=)32QxI6mIY8PRt$U6<->PyTUU!{l&|t0aGN!Myk-i6H5Tsdp-&?YD z1-?*++Q;}VWo*{P`C`WoT=5(%Dc%=7m?=lOm*~5TQCe#9JuE{(gi|u4_#Tz7rIIw? zLPlvxrtcB?l(KynV_ON((vQ;0PjMsP<<>yyhh}ozXgu|5;rmgBg2vMit$YtM-Ry7c z`v+b(<7wyizGbqA#C-3&oe_D}SssyjU45~uJ{0T|%i{F&UcT5d96*ex1-*U4WW?$2 ze94ExKDBwE5vm*l^%AachWb83_B~lM)RrzD?IdwNH1A3%NM(Q(EQ$--a@ROIuPt$^7`J1X<;TuM+EvA%FSyBPDdWJ8^01rKUM&eS<6= zhiMmmlaND43b<|TK-{S}eLEt>r8)O~JuPGgKk*#^6_>tv?u-0%Y5;9h=9|ngR=@JS z!EF4?-@c7x)eg&W?e!<$dthCu!&PeK=Zw@Fuf?RGi?0(sZ0$FMkxj7oI|c0se67as z3H$q_i(gBuwRvsJR(|VD(tFmAp>3-BIaV>V9_i<&m&F=zJ?OXqzkJ5_pJ2b<_HgYU z;rE95L5DcMV@&12@qWB|y-x58XZICpek0iL*JSzaVb@L#{DQ&ebXF6;2Ta-#E&RsF zFcI(Ad(+|$e%oS`9$ca%Et6&3oTr{4-}ljt(SFOgKP ztMDeLp8B;S1A6(nlcy{FvGYg(*NBu}_Y-GCSM~9O<;kWq54e)N{(i@i?Y)$Srt7JFHh8L^PKNdcO8#`elM*YMN&K!@bEQ$; zd_Va50@EM0S_&>J6)!FGgClnQ?t~S7Fc-m#d8_p_9(%RP^4O{^ zmdAQ-^?NQJ>q-5_;SRV4l=ixJn8qlV730V z-&WbW3OeJ5UGrhCA!JjX_k-=g+=8z!`28lE)eo2a(4)3;R+X;!K|&zTYR)w|0ih9v z$aho3mRq;{*2)&J=^ekL0x#@=-#XcNYajYy&qtBPmHY=tW6GfCer2K}s$QWhBH)dn z^tB%{kv<$}U;ypj`oX#;H(v64KjhXq3F^WJzX#Yr&bg4!en$kCUKRXtXUm0HZ!7v+ zW4l3|%b&LXn*^6x4p=S}pwPWBPUANx{|$mh9~XaYh2T)HUHwC`ZU4yX{(5Xv1TSwq zBLwm`h<%Hm#3wDxgSgc2kEJ*3`8UIMl^8B54fL$lS&HW*VBfs0Gtpy>vy#?V-2MfZn?=1)uJ6jM^ zy7^}a4lDBgdmsmdTu-F`2E_JCyZ}j)?Ucs!fHiP`JgVir^yE%1rqWy;YLmE0R z@3Z0ly=Ad28RzdrivJ9&Nws7A_gkCURvzyUC&2hCW=--(FJp2~HowA-z_Bk|+F^?S zNx?pTnm?>+^0(BT;s0Egdlt^~kH9W%LW>_O9Uik=?H_?%*5oMs@R;MT{;;gcd2Sdq2f0YpV^GNri<-de0iN}TjZ&DhfKWBAgOMoqULs!;#viX>9Z6C za*~0g4NW4iXF0b6*^dP zTZEwc!xh+rj^+H0j8Hrfc!i@C*geAKc*ZI-b?C&Y3iO_Y|AA^ZLs2a3n@AMc4aNTh`ewEQyR=LG2WsU!MUmh)W+B>N z{s%OCv7!=oT=qXuq01Cc1i#>w|CRo3ty17SzQPGBll-dnCe!H~6>t)fH(5J2E8rv| zFOL3A5svJQQBXh~(Fn%vvmjR5uW-ct9fmAtx$meu-kEwbT!JcSH0;XxqCA^eP|#{v?gw8$3`fk)i;#d8&YM zIv3&MGfQzzsRD-V{BHLb3K+8UqW^2fdGVOjKZ<+UVFBoO!2hoPx3CH@`^Bh=0e^^h zH?j$6hqWTa&{S!7c-AE#7dt%UD13PM-ZKD(hg=W6YXrdXkQd|X1i0n1i%=P7j1F^V2sF%r*i{fjL3_# z8U(-?kr$6Q3xF{qFQ&B)fH5L3+II+mF(NNUbP0elA}{*%2*{A(41Gv(&xh8;Wd~#v zf>U|p=#9Ps&cfwB{SaWTVTT7;cupD=FiXY@`|~^_bm+(cmT079pc~!%W5943fW3)% zWGNDjj2p+GxpMYQ2-t~)ro~eOlB5to6|(~B3L`Y1Yq4GZ`4*i#Sr8C~9bCYB#z^x# zl@|xVJP#-SaA^R{^YG%a+f=uWZ=etMaY3IDLzqJ ziH_YAP#M`|&N>xfBr)BT-XwZoKp!2IlRP(ofzfVT160;lMP%NNfTy?~Ddz+*;=2gO z-vjy}eFl&^lWT_nsWe$tgRU+N*k2K-bv+n>`*IeOurmd~W60RH{Zv4N4KUy{&>3d~ zB9X&X;E_+WE(G)hP18Mp1)Q>i>x8S)wdwVMJ?!slB>{8bWpwjh>HdiO(lzs;^nb_4 z0WH}7JC_DL2DQ+JuL4Zi8M(!+0-Mkbn?RMDkZx5$wLqrpsWk(!0~3ZxuEl-hOdV9@v2CELs<+zy^W;VKlK{U>~yJWB{^jL;$WQU%RyIBuJ}3uNVWD zQ~>o4O9|YMtAz}=KXpzEL{BwvfTbCMiy4u`>_F@QhU1*e2}I8>aDW~S0{1c^%Ep0* z6{*SE@`tMKi6*`9{7j$EKQNHBZF2{sYnAye3K}sq5WNguj#6!elVjk2S)^6M^lKJwnOZH&uKnDx1b*P*4CNIyOoIFxk@ zI$sRLZiW8(P4?1=BK30MNpMD5^=cq&k1nErUkkLw?!7geT{=8K;qX8h(rVC~jFV;u zD!vGeLe36w5I#9j`AuL)ro2A?1j4rJB5L>?2-~WQXi!CES7ha3;54L?@&&SgDv`6y z2t4vq!WQZx+T2G8Td0fZDSstwp)R6_LX^DsHziC7Td0d@W3>{tP#4khQA*fCT|_Gx zl(2=mh#pN+!WQZx`X*HgTd0d@Nv1MdmO~b|3$!LxcGT}l;~Oep$by1E0N=f`oP2H4 zT=`BO-jB~6C}a(tiVRPndLxAqW_>HGL()R-+V0Bv*zvAU5uAEm@r}ZZp6;Q1UJ=$$ ztGUwCy_Mf$LyTdgGM=~$PB(~)%!Cj^)lZ0pNovFNy9AZl<0BBh@W#5bVa$M%PP&r5FZrftzuXx?% zQ{_@6dT7S|^Rm$~pxLjVXM32rmmmcesES=E!>TX1{L5ZB5p#Zf)Mj*(i z8@DJo3zhWVhNZzgC!apqE-Rem)8RXn@HIe)1a73#ZsiI&<{7j{xlaU@)cta5Y(Cv} zKzUF=6&zNsk;AIuQ6+k?R`N{Q>Wh`!(WjI{Au9!QAJ?;JS2lyzq0`SP(TQNoQQBTm zZWZ3-ds&G+K2eUh_Ali#?0|@&(41>ZI61)^7q1euACwcCb5r?F4k0PoQ0F_!^@3IX z`~QKO);v&NLw0#6$Yv$lju&N0Sd!%(j6E-vr?B00Kx{yY_bVX*{nr^{i$5q~m5<}U z{$zgDw!)x;*oi>?rUHi`H{!As($Mk@u`L{fAVVyFiNQGtmTGy?(rWYIAA21)r_3FL2`M~C?Y9k-VH4<58d{h&l_l;$#;!JTPG{~$=?$^~hm z3PP{Danvef{Qc-qO;C#pW};6cg5U#q9KByukhKg?Z$JRuLmC6d#RS2s5=X6N2!d55 zUi=Url!tU$!s#!r_t2JOCe|N0-?W?eJsvP`UTZN zPI$2PIz}4*9vl%AjvW6=D0~3?$4^19I?mBtfu7%-=F}j-?VO%?pCHY<|~qK@j>#Jog3&U|$}!pSvswmUKCE(TboLIkL>! z6!hg+DU#P)kcVstn&m)7O~^|jQ}*^%k}*4i&9DVn23HRLS+H}h5{#W^ z_!_goCHRC0NZmbxu|q2hCN1#{z9#UBY6N4?-&^pwS#!LC(c@b{8YUe`zU&hWo0Pe2 zH`foA5lhC3K{(VM zO)$Ef%mIc+2E)V^SBWu7jw6ntXQP9okn1B%7|7@U|5#XzN(%l7IdjiITM(CI7+3Hd zyiYQN`(V4+9P0GjAWIUefplrp;H$FWHg*p7peY@LM^(l*i!DgV55e|yY@guPNYzur zpkOB%eXkZ|-|*ndq}aQDO{y3be8z6(I_Pj!85f)(qmBsB9A#Z68Za>!#>mV=Y2E3; z=(D!mf+ME9b)L020LC8dqbI%Q1kbhMbn7e%9wCKKx?yQBdZhg2J1Ud!)(1P&g5|;R zePhnP^{QYPE%RdBn&6K}ds)2Ng%r>8?@oJe4nB=_Ll_hoq=94hp5Qp_z>%Zyfn&=9 z!7y;-5}rF035ww=(Xkhn+{_BbvnxnAlxeWafaZK+c=wYGXj;5e>^ z-F2ZKVpQ#{$(@}Cd3NCjq$oj!9-0H72i=>fs)dbr0N_eO=BrZ3B$EoeT2~ITK2ued z!hT_AYpYk}bGqsuWb0xuY9|4lvtd&OGMdP&JB?TiZl+NG3TBTZgu2rgD_4 zegW06rRsGBAeYugb>P1t_pYrf0o%Zu)z_V`V-q;etRN$os9cHROh{w8t*a`=3AnP2 zN~A`2l{?9A7gCd|2db_y5!{BTu;Wkjd;8E;LsjjugF7?IXj12T$d}uedyG(-Dq6jw zTYpsbwSlYuFRBYxaQ!?^1>2Qh(Jd2Huz}?j9W+Vh$9}h@K=m9vhEAQSQe&f(narpE z!m3{$kA~c5X%)z|#VR{Gbg>GO48I~V%T(v(zJ``8SD{a0nuQfky>XT5FyqyKt?Hay zUaTV5q1yE-^n}U(kbAm8b%&8VyIFPlzacmKHx+umLk(;|yb?Lt$*Ls%< zJu&e=QC3?5DEa@-Ig591R1dKo zV6(6t|NqjODJq1Vz>fDU;9ul6%X1FdFCPz*iTP58nj!b>z&yM=@^|$R(H#k`7ZSx9 z@gDU<+~jy90fl$`B5he`zmOlDW!969#GD(eCUL0+`FoTTG%l=^M$;og%AgM-ZK%%G zh0JC$JcTQUzWJRZAJ>D}5ZG1yif)S!fnC+F=*+~B6j>cct|&;yHIyncLY$Gi zs@X^hmi&GUX;A*np}Zy`ZLre>7B~tyu}3gvmbM9j4c4#d-i{%#!TJ?l*CnJtR*eL* zZKb@`NxefhW2XohQ3_BO8Mnx>A+W{z6Pf$hvna5XRCYAuDe2F zWa*0g2+zbd{6NS?`B3IV(_Lx)@sKUD+;_28Xft9c4yiordWaple%Q-{I-d*iFozZz z@mI)OS))D63$|Ym`IA}a!p)GMnAMu!3wh11xsO8*GpkmA8Bz`Iz9k8meFD<#;{k*=XPZO!3Z=N2l$_p<7t)8uHI z0`o|w)XUzXli0P>x1lDc+zo-DvX$G85LKvLy|$w}LPCp}O2>wWPOmCQrED69o=OXC z=V-N8IxR4uap+$3X@N(jHOSWQLU;aqO1-}eHISU&Lo>;Z=Aqs+wP`5kgNh_0Tg|LJvY` z)8i$fm{i$jLbK_;+o7()eeCatBIW@Z6nxJ)bSHV_VK8=XGeh;IjU0=q)+sne~s1Aj5=N@G;a*;xcnv7`k#Zq$w4`@bQiT%(4l4 zBP#bodn^}P;t?wo)pEG24YJ}BCoX_B( zo4SSf`}!=(ms$T?e;bDRPPUnDFOnY=<~qxx{xDh+5;hnybyALG`1xTqniCVYQx-~G zc9=J{OAC93n4~M`GP!pB%Cw|W7_8B=jxM>>FwC74&JL|fb6bZc%kZ^cgh3O&Q>UO^ z80^$xUPs4v3Bx2xV}$9ZUSSaCcz^s-pRl=DasV@qcIzMJD1`<(c2F23N96394zUyi zhlTwr?miqI_BUcHR=JY1pN6{8;)y_6Vn1R^*ijilwijW51OV-+VTMJH7Q{k6c#gTa zeV#>(z4OCHA*Q~{#TYT?c^w+PAq%Agxh!5hyEkmBD3Zdk-$b$bfv^Rl=x{LX3RbYzv;!ZoQeI! zaNHiHTBKl}+DHr)HMVrlr0@@jSbK9~-EtIfve8}LitN}D?oPZYuFhwsEzR$dXz&~xO7%ByHjSxpaGdLrDRB5Ywdxe>?H|ACd;7KbBu zs0iOHeH-pb7yKE%wjybh1+1E04qqfkRE9?YuO{8}SNKUe(Sul^NMUAc2O4uNe2{Rx zBRBpdlEmdfMSJRdGkhtcr7W*1T#4V`51(3rxv7isbch)XWjO^8M8g z^zUf3uZ*}TapFiPV$}u_e|!w;c$xI7k&3Tlh_f@WVJh4 z9I38J+or0KNg{a&mV}?aTs@pV&r!QejzirWsE=ZMjW9%NPJe8sR*Ami;Z|z4YWkhg zjcjSFo{dxjLnUK7LiqmNPJI(=ZO#o){N(^J8e-(;U!eBT?UVBj06rLOPDy8VXAufr zx~td9Q4&Cj=rW>*dYb?>_ExWy4cg{>yaV0bN4)?WU_t#YNbHj5_Vm*L_3wh(u_1Eg zmGB7Q38CYM;X|s0-xql2MyMx?aN6fb^%}eq{}0oLqt)lJ5ys54674l!eL)sV&QP@j zIXz8nL*EyuzmZWfS`Y?B0V+YnP~REqR2kg5u+SMy^5&{v;M7h*O)CVKv<2!VGD2Dl z3NaEo_Ix<0S*1RV#e(5vTLN9uQB<)}y|kh_*z%SN|!Ea5Emr>R~n|IZq*Svo0ouI9W$V#Vv>GMh29s&rAH;l&Oh~ zDA$y1_*-pDW-nI{qF(PTUCX%l>U_j%01r|S&W#ji-`iS|SBsjYkgSSc0mR)#gFH&@ zM>dVu*wF_znk^Mcj(t;Cy3RoZY1(-4hNGqmdNy*rCW0(*(|D5tXU$Hm-v9_bSw)j2 zmj!wPV7$gaPFB}cmG;s;b=S<3)I{b~)1b$d07?P0uF&`=FU@^)9c2XXT&n3sa=aT< zB9&@*Ri_*3Y0kNj!ylS>lB0Ds?xa+$aUiArtz79J;Tof4TT(-->5jLGfy~}s)0uil zXqpSW2|7)_OuQ;|mR^%!Bl+ILI1PNKmb>BX1Wh$jEKJhewvz5{HEEukiz%8kYw2#4 zOig8>R%MQ+xwt#Kp=P%R%|P^6`AlRT(bM`Pq`}p&EM< zQ^RW}y)ZyiXvJNet{bFrl@T5!XbRBFgx^#gsaYWWX7f*)XXx4M@tR!1(yEfK<21;% zRtjo_1v*}plgEEml^0IZOcgF|n66nQ2$vEKtoid=b8VjHmLn-^^?PkHqPtQ_vVZic zPl8tC8;Zhr8k_BFG;JzaZKiG4X`HZ12b^&7^jFOVr0cWiX~IU$L9AuW1iZ;4S>Ymq(2Mdz*7c?XA28g5ppNs8onfW=Bz0O)!(rUEUh5mL~gZvZ? zR~VO<(M9ebo%iPu$Q>iR^pNQSN&)4XSz4$Nq@RI^kLk@sa9 zB8!Onl|*FD-|~oDdxIuI!FwRn%4V|gg9bYl#cSBZkDC2*l(8*C+n4bute{;X$0&Bz z+MP0Zq|!#V+Hs7?4SOsRTI`@5jBTHJZO*Q)tuJl8v2)SFcak=ffgak$c(p_lKn$YC zJhc^Mv@?+uP*yVC{9RLvU0gHE7ev!*X_22$6fug+r1#eLVU&KYt6e5rK~~>re_&t( z>T3te23zc_z01IUR{RI1yBMG?l;PIG0aAjr%^0O+DlK+1M!Ef7hG;*@_3|q8rwHvf z?C70wp?l)AtK|TYDYqV0rmvH=S+Y6^rI|hsv^Yz9U6z#?3IP;bzJ-A{&eeWo_Tr!M z>)cQ~%Le)!pPOngKuDk$T4_H*--w=XryY)+6y??|*r5n}FRA0*d2ME@W;* z;~2VOtagoDRvfAd**Q<^NuP|<+Q@KfL2cu7ZDrbXsP(+<#gi;( z{!bypikYZqyYVMpYP zp|14P8LhU0R5YH~hEza8&YaW5nN*>XuH?-H?GPNu_fog6_9bn18_tN#y{4Uv!|F+o zT-Q>hG(BnUTUz)K9#arGaz{Jv-*cd#=TYd_FL|I{CSKp@v33ID^{!8}+t9D?_#C== zlJt+uv?Kog>j_BTlRCWAHnqh)oI@s!>EcB{z0+oUkkDO2J;@p;NMsTcA5oJ|agLZ# z5ewV0dy+j_G$_fIn7)mG-HC1y?L8##SNlcm7InfZFyb30>8>U+Vrf0x%fgAzIc;@P z*gwLaoJw!!PJ1?w*jbfJL!Uiyg5$!5T#e$*;Vk;FR|BP5K9(#Qu;)D1>gJeHG)N|P$!E zM?UeAh!33@c}(cL@$|?(cGBI;b0ZIV;Zz=G4$w!)iu>zplkD$)R}$|Xkt+~zuGgKa zlEO^}XHw!+R+-e_8F?RpQZ~oXn2f#Qc9yuOk8bIhp7I)CMBB}$CwGkBB8g)7J z)PYDPRH?)fCvBy zQh8@0>thsbCS^~y%&uLNdR>aV!kF<9m*dsQV@N?8l20!q?TLPWhC7*bA+i-cdowbj zvKd(MEOJ=|_~TS*B5_NaUbISS?_?8xU1B2Dsa+ObO%y1d~}O&Kz-(y zfiSi1Fw&j+(0P%%){MY=J>CSd(Yo`P&LjA9AG$40*O3wMO29i|%S7Edgb64RIK$o@ zo`M&?f2!^l;@yM`|2|#UgAwSGg%^HZwr)4W=$xnf5$i&e8t5SB=oQkev2Gp~WA=Bt z>u5#PXr^n#2=r>9n~x>1p{4E~nm|MwiNK_Gx`kK*MeTJ(=z0*>NtezvFrf=d1MwmH zzVt*_-9EGif_mt>Fao3(J{Dfh*A<}&WcJnNFaisIz{kSt{dFhMCde49>%|D{9*Wn1 z)o|S%G=X16>3(Dc9DmZS!a8B2F}lCeCU`bhH=GgZFj-oX%ae-6|t}VicVy`7KBH{97I^Lm9S&4VTX{&TM znIH9AtHVqOaV^eTr?Y{sGnu~u-!@*~h-#c^*=C(Jd-va4@opHqUH3iO3zB#0hA{;m z+NE2GjReknbe+)zY82`gFaq=dUIU;1(EWlY5O74dgb_G-Oo#dA6L+C%Cv*eR1j34R z{TP8&#rW3X$r;^cbTICGUblu3aJ#76@b7(qmR-~t(88bpOShQ4`-f}zAh7Sc?j&0H z;G4QVjKGuIx?lgj@KWzO`mXK}5lETc=@{F$zp5m1)te!~*@ z@r4Zk`}7LBGC<(=8y&?Gh>b@NdFgR?FkS%kay9pZuHV{y*o2FTgqBF zN{@(N6u|Vb0z|w2qPIraoi3TAzlV5^^q#5jOnqkPeGt{2!o%U1H70m2hh#3-yOHZ3 zqTI=~U8Zhy+ai56j1?Fb1uVXv_F|RZ;E1R-oKWgEy(8WGo4yi46-p*9n*Kf53xb(|*>a4QxwU0A7w)x-O^*$>dh!lwDlc5u>*WC^tJSr^1M2CmK~fsy5ak2_Q_Q z9cxDUGB2Fy6Xn3%XV$k-=NQMXeo>+58dpmh<;}pNL!$7$2q2F1d012sT1BNzl4sD+ zsHj}5ASAz4vKujFM>!Lx-H~o&VoLN}dfE{6f@$bLV$@{ke{VfHDle)l3+7M0!zl-z zZ$+0ji%P}lh1CU8r`{tcI=o#}GjxSWo0MFcv>Bh=fgbA?^%(7e0OLlJdqzED`qcK0 zDrU99u5Xk*i;ph-qZI6_9~5<;Ia9siQ5VsKe_ff}pO%h|azxi)Kyagz$44bFE@vi3 zJw-d!$X!r#GiF5DGB0Q_2j>MmE&-A|b)Fw(z_+p{S~zf ztsZ#TlNR2H@?Po}6)RQk+9}g$^N&#qG#5bdB(0b0ZK+R%=p|l2=s@l046MEA zlr?_i-q$f2Gi}G~B>?@xf?-PM=nX75zUdlWi(Nf>ME}58j?a%~ z!&ut3Z?p?+XQO>aL|0*d|2QhzzcyUgEsVa-o*%zB`VLkv^!bWtFLZ2&hn>j71l#ZF zr&ZC9Sy;^LOpKAMH#A-fJ05;_gMiM#@Y9B?)54 z_Gc2qOV1^S6Uw6DBfnQ@x0lhLmHs_81%?|i=7s0lGs}8zvyaKc?1km3IqelVxBT$RU5|az>H?fCd4)+fs;}J_RmyzI`aFNiI@$1 zW*9GGJ2b|b?&})UoW&2X9x;Ket|s@6xyJ&0@PL@7n6V&-A3idsGHJCWHJIKQ9^;8o zB!i&d1n@pI+_hLRXgDid+)7lN{{)d=;SeYoubO19GW9DCtEDlSvrCqATUS`x2U1MJ{ zs*ygiQ&`nI8Wj7GQQi_7TZLT@sAG3I!gaVIwlk7*CsJ6Zvmw{Jr%j|)(qiXfCa-{f zIgA}KOiHySE4#(=p`1H?)Hm&=744iC>&4vsr|)8U^k~sE7Cwl4g;sA7%PXmEtJnng zcWRs1LMD2pcCqzYZ!V;BtRGWBlm4-{naI(DW1ZMFZCLDUhG!TZI}#x}1^t^cr@biV zWXZ|c!K7!sxF4w9(bz7CE(Zk!cMo8&tt2+s0j_r*#(E)iNI-{8iBs)#=P%|DJzvHi zh0s8*zlp_k$;^-*^!?k|hfJ+^-^WHGow6x;Tt9s>)l`V9icpgz9w4|97+ToS$F^}Z znEggpird42VQjUyMeOhEHRIl3;c081xUSf6P2k}g#NeOiNuX_NM{n1Qn^76j0E5o+ z=s&8sMo2a15qQ{x-qXZAVE%tPBJKri91cXsy=T|G@o_^jozR>4ak*qs|MV#|JuhxM z^Qj8o#r=ek&kR(R!f+Lm7hR!in#H}wI6On5J{{sR!S1AIr#Q^&EN254?sQt`xT?&7 z)^v-rL#Unt(prq~z;kWL!sgMQ$0cKRc~~&-`7AFcdM@TNPzk=7OkF9DYikp)xtX%j8aiGYxL^ zLxy1ntEE$O4VX1!21x<(1T%i~hK4toejw-d^Vp2(^!v63^fU$4d~evp)bp~7VK=%; zgbXsIKo5ot8eu@3^_FHi0K;|FtdRyrhKx2Cm{VOEZ}@-+7i`J45t%r};6U3?HMB&8 zKMF@PXM2)!0!Gr|hYUL_NEA|z8fO1{3KYZ{ ziFMh6MhB~P(jjX_z4!ToPXu6Mq8ZX=n1{ z+t3M#@o`ROq#HT$`w?_j0g~{ZTaDu<2}c{*EdH}77PN|w5kI)zF5biJbe$}BbGyY? z6n8uJik~Km_Wk0I2~WHAL;NaHoI46b!yXh4c4!Ut!bO^!F(n6;KNBYqG@{{Y7uPjAwGZhWEDDwa_xnRJ^MkNS|T z$Ts0bTw0B`fzO-9Z$mWb)7#FeMtiJ?Z)s(VgzNa0TKmFG#q~KXs zJ5o?7!Iqrg|l|KX?nbgU8=T0<$8fL9#`w+{Wb35wY3EJx zmn)EhtcI>M@3;8wh~)+13OK}3ncz$^FUS8#TJ4XoLSO9#$Hj75^hf+uYtD(pAB|s* zgdqS^m9!aP??C4ri#Jx30LxCs|0oBL`V_@K6Xd+l#bdHbaD6dy6h6ms46e8>e8|I;sFYBp7U^!)$deB6O~?`EzZ8&w zbR_``b*8erRQLSj5?(;CVAU`%JE5h6RGiZ!p#prmm)%|8KB0OgsrYA)gx_q%5Bepv z5JlS|3AJscyXuh%?Iow6t4Ak5u1SvYd~8CJxSKQ~VZQinSwVu6z4U`Ba}t`PBD2s_ zO;T%70%q)OR&-60zBpkwu6A;j)}%X^B563uIynelWa^59sWOD{B7d$- zI3f!mdvyY;sR2V$aQHgVVlkiFxGABUaKDSY5^4+QvDue!#Y*}?Sz*E+QQUVR0lsI! zAKP~@!B_nD?;{DH#a-Lu33o*C{fPwVsqo+ac`5;ha=bXLIN>)@YfQ~(X+mPo88^sTz zUL?ThHu>EPuM#}P4?euHP_O)tg}T*;gcITw*FGjZk{;W3De;&9*itd^fhexCP5e_7 zr#d9=6UDZb6KjY!OsJCBT@>xz6W@p*xKvFv)16Tx(OdlBV6DV5@!rFA63zPG;*%ID ze(?UAL@R;dXBx%XU^@$Ua zFpO6it-c{qC$QRWPDFLmg^XeJ@s`950&DH|#GhpGa@>)aD6m@ZO2i!5H0wT$KG~hP zPhjmXOvFsHmScT;z@o37hZ0fKdKP`XJDdoENfyzF!wGD4;{FvzyPr&i5hll~awc)7 zEZwg-o0x=}?XpOA_|L?F1D+ygQ89dFeon&sZ=lUe& z3ax*rpR^85+k56C*j677X=Azmi^FQ=lHwL2z3BK6Ni$jx=oP->6Q*h=XC~DmQ<^5(5${`x?j&>YfC2QkoFwRw@d|Lb zK~fhXh@nXmvOSUBLg6juM)|LnNxMV`XJzZ8Od*JM$D~EbzD|F#_+p|vg*?8{_2tY9 z`X+4_%<~3f{YQc&EIlxV^uS69kX{{@)Ld{*8J+ZxxZB{Dq+rqSo;D@PU;N<2jHF>0 zp?WV(8Ys<+ThC8&ww5|;ev6Z8Ai^&Nut4EBzph9+C{+LBs-!&_Y7h|0r;A+a>kUa8 zoUA@e^Jb5CC!tzCwxn0GC&>vjaI5<$sR=1vkZntc?n{crR0T7FH*vg})JMMr->u_F z&P7S$gN+4;llE66C4aVbCGCzUVY+o@z&do_iKN3=^-!R6t%5}4Lva!&_gy)W__Iky zq?WsqO*hQCNxziztI&+dl|oV zm!iR$U?XOx2^2n(dW9HK3yS>V^%V z@Q3H*8@mV&?tP7jZBmkNwdiL=WenyVt_(1?797$CGM$|qfu7{RC89N9LXMe`W$(p|yQK^GDhglPhqXmb6$#^{sm|{d_59S;yPdCmI z9DbW=T!O9LHpGZZAj~yYZ%gX}rhS3+q<> z_Znfkk2j->_v4$0$vY0FB(xfhB=29e;Hw?FZYKX*NjWC>U6weM5P(#9Mrc!0Exq? zJNTBP<~<`S(=g|-{DEaWz&CC!WY?#nYY}w+aqbUSJ{xz4^kJfvytQUmMSe z*B8DuuEMII`aed@7Gk% z&V={I7L`m^B1-pkGGP`1Ifr6r6DsvEf4H5i>7CF+cMlUH=`GFmGgTWTQo{rv zbmW1lb}bXSE7z;GsV#?bBe%RwJ^#H!(NR7oDr}MZt!eqcN08iVVSN)S`!H9Ao4?6i zEj|U9FpCHrrlrz^Nu?TG}Ee2oBd+iBN+KlM8&gmtPzt;YXp{VDykNiV@;f9`UbP`Wk#^0X|qkg zSW63E_vf2jF!8M%Y}z8zbt&xAQOixvXl4a#9yt@6jf$G2&SZTmow3%Ggu*H{H6%V; zOw|dbI1VPuHksZcD(M+Op@8C!$*{v7F3)vLA=mM2Ya|B-Q=N=GY;vYP`%SRdj8zc2 z@t`Tm5sS!j9uvrU989v0K%%|f#iolgpa#=vXH5faC0;czn^p>nXReyw*hqIT-!dIR zq(Y{k#%Thg-`}QcC@(EFb)Y`)OnSsRJAwB%q9vbAO3Yk1dziq(l?fy~o=lY$lD+LD zb+m9uK4)e1nT9wf=ez!U%~Pm(u4u1hIgbhCJnlfR_$I56Ds4ys=C;&y(9z1|t5%X^ z`N7FmF?$nvePNl831mJFCIMYj9Z9Y>`O&{u4zpQ93Q$LdN6v{&ekVL~Swiw3g7W}l zaum8oLI&erbY)udVSzg=D;evX4GBw!OduVyEe*&`j>jsGLQdrOSb->{L*6T7iEEcU z+Zn6&7QK^0M15V*UxrQq$C)M%N^Xx*2kTWVnrLz&kP5jy-7qS-F6KBGcS)8HnL<9~ zj@Wv#3J`>5n-?S(ifW>qmMlglR5LSKOh41svy(51W;A(0@=Yvh3K@+FmM>xHkO`zi zwk39(zzEORBnJyl!5flMnWwlSS#D$kxsf|iudT^D1mc|?cpssF*aPJrtZ9Y}$5W`) z!Q>EZm0<{O^yty#=fdBQ7A60PNeINl6{Jc2QPK%%_b?eV{N_pq7?C7-;G^V^BL4kc zmOKFKN(53JPop01ljG2OV#$(OMl)Ob@^f+(!O7h=WlU9Ukb#uPXV7%Y^CeHNmonQ+ zYPBL_QyOD!M#q$xpC)qJSVq zKJ-)fly}$`fw08M1QI8&q0z%qCOB|?lS@CRV3zB+j{{(BGGSs$W%A(rXdSsRF(rr; z^oq78jXOpAkkP-SoRMtWaa_tm(bjvwuSGF*a!N-Lj#o`hIV{~>HGBrZ@ox2$#VK%r zkrx*&O{rd6DjwaJQY7xK+Mn_Ot5gE1lcQLd`ySHu8Gy*W9CR$jN<^Nxq7-xYOIe(v zz$Cxpnl1SZZUjGvh!@;!^u!-%Q})sw^w=dO9~D z)moT+W41+SV{F*h7CQ54l$zmzH4`Laj%7oI_c8#aOwJTCId8L z=>Dk(5aTlv-z*&xn!kmF!LuEoC(~0eh-h$b zPHGuusB3uzVcDH2WOq)*_`+8(3+UNpsb!9mUe9k#tu8|E$1SOY1oN>p^@51KJrAZ% z6hCl0nmSzkVD8D(>6q?IIg#QmF$d_d3#kJz^Ce%wc<^MybpEZ>+rmQ%?xd~}gZi{5 zsp~39qT0Sm-R&$D&)KA%5khTqNHcf(_f}5Jc9VWk$2)DfZ22IgLs*&%OVjI46gIKH z&};r_wJ|dUUx{l^0ToX9^8j6-PP-#y8k3kdLR4_i+_cL=yw45OJ`2yR(j;x2u=2)L*VMx>b|z=Tn0 zVd8Gl=(J5j7gNThd5WIwwh3v~gj%l6NjoQWv426@NAcL{#c6j%)jYH^ZM7P7yeTb0UR?*RlmpsInWo=tPfHezvv;S7-K2Ei-n7R;{9T0>@oyeZ3l`%0 z{F!z|h+p|~nv*C7Tupl@z`ngDSNt2LX?3Ms)Mp>3jlgunEdD?N>v!o;16^yK?#Fwk zZuGWO`nPgSblj^#jH4Ssg;iD@S53r(Ym$M#r9_E<&&O(t_q8-;%3r8zUfM| z@&KW_G@eTfOdl_-d^b4#R}saRMWs&>cN62%QBzW8vF%vO>166|OhgC3cbURAi;vx0O-OvT`R-{G^;+hF=ToC!Sa!c$yRNO8S6Kr&_8AL$ja zrX-M~T1)KCrK3lREXg&2B-bP8yYuPS1f~0*(;tW!USgF|Rd}MEb;b*Ew~}qfD^aXs zpAjSt*J-9}#%tl94XS3G7X9RK?+jn;qzQ%m)g92Y8$9{-#psL!LV&e#8NQ-HziG-? zimBS%2OtIZpNLw`R~!gD>_j2^^(#TDUyBU$Y_G9ZhIw|~qg}?YnB->M%^+R%7a6b# zWWa7iFZRtylWar624-M3BbcGxsCH1sPRaV)hh$ix)d&f(@$&0-^dt=ke9(yfSrH|h-OaCgbsv6 zDLGHz3#(&qW$Y2Lq|uX%p+beXo@Y!J#ZfOa`ir9dn+$WWV%a|#KZ(1MpE3rBVxd*$ z3Q_EDlQ~>eHyiuR+pbdJeODuMu`tcrx|s(>afBjsqA1o1&DD=1fsE zq-4Go#nc?jD=y__{tiiB;LtT))hY9ujZ~b|BQxBV7m01(OmP(3xnHI;CX#%mJWT!! z02n5vh_V@+=`4*=$hRXiF`JzLYYfdFm3a{924m=>(U~J8`;fsuV>nRY&!e|lo(6kJUhLp>&EVz!XesRfyk?O+ zz;ft4FLO2845t@nn)fY_UXqE~Cd;jPd1)qU>mPqOcSUA_u*Hj2nV2K&943BECZtE= zCe8dc6SH5A!z|p8xdW}v%3CtchZ3G`&0K*sY3laOBM1&OerG1+Aml0-zdIANNsp`G z#-7Y&m`3yF@yuScrrM6AOAlo_iWC?f51Qld^P`!V6x|e1Ux+s4PLVlg(SBz#TZy@g z+ZQscVa669YfF+pCbJS*e`$z45O=4)Ud@CI%)A+ycO&x^vTB#3I+OnQGhJuZ%5tFv zMRx72Nag#PwTMqoNTvJycBZ}P&fDM3oGWDc?NMf3QM~&+b2n-}nu%qYlxa=FUu7nv zMc@dP|IR$(AnD`5=ge%3Q*bSNUwrOBi)^#}&~!M$MEk6dqG?~~ob?)G^d(KR8S(#NAQTxePFtz9= zRn|k{U~5COCW%2}iZ;ty3bwRmWL9mA0=Px9duKY6J-a&Ck-Zx`xYLl>tee6zzDZgB z7+9b`YI|DNJ`Eyj!n0%PfRS00 zvu2Cp!j)N@MX}B5tW9DXx$Z{GZ%Z~=emic9<+tfuvo?s|R@!Cx?XlgK-}c#S`K`Jz zYm4~po5PmhZa-@IZR_Kf-_|{uby0M69nNPR#445K+_G~go1(JU(&#H$ddw0e*KhDU zi+w~8k|v*4%{B@BCe_L|>$hT^Y_opXduN;V+p})=dZC9vf6H$lDJ;L8 z9%%V(qoC{?LJvkw_DWfLprD6BgbFCAz}yTiZ<%ebSqocde-_@gVL-M)NdI}LMWVgK zEfRGaX^}|rWA1%nlM4z%qE0RIFh}of21C`Cvuj{R;9NeJ z1F$-4creJ8{&Ow6JElMJ6^tXvubtyUHZIOF(9R{~HO)yE{K+M@T+Itt#d~Tfl!?=#b;#AQkVrDoD=u7V&@)X8z5nV;i8O8Z;6(wD(GkcFLFsbg3U*5VZ21ylB%{&sE7Psj?| zf#jUcu0a-;{?LWy#^fxrv6@fI5^_!pf@e%Qm;--Y85|h0z&cY!N=`dLb$)sdWWwaE zduQhC5Ji1<&K69M72Z=GVO+`L#yLw#+nv=@NOu1b0c7iUIsFlJfJe^WO>)j4o~>Iy zPfG^tyL!+)O>?GUwlM)hHa*=TX9lX;UCs?9K7Df(QoyXxHOFLQb&I6-%E25WEfZ*= zbZ~wSDg!k`pup!$1z_>wha6O>w6Lf>AjgR5w3o~AdT`E1M&;$OoQ(+UmIG-<H;7nu&^w}Qws5PLmkiw3#G(*agIB2Ihj+F zF4~vlfNCWLx;-&mcCn?3137nWt!`20V>w#TJT;!k`Mx4t*B9lqu!pO|#hfEna6NM= z=Q~HZD(>WjIl;9>SxyQ2f6PBQi{0UR-6?lFdv2y{?gU@B){V@)1+Go4V{`4)Y0`#He%%#hrs3@30(?i+Uho7uU!m=z>Yo|g1#^w@(w zU!A)L-Yn_OVNvxB8 zU6|aRPv#D0f8Rcndkx``6y$kVNk~CI-^sN`hMmr2vQt}Iy7XagzBSNsf0pacX!*U& zeZ|aQ>z~|p@EUs5I&T7VgNAl_MeP1J&Uy2gIrde}<6`J* zoK{Ito;$JE=Dk4?@+b3>^E7l~L|$wK835$?_&jgYU!OMw50XJ=M&(_t2s-H#mv>qY z&Rs)ZD_a}@1$9)l1r9voz0CmKZt9U&lfKN%E3(2t{(r2!cU%<5|3CgcdM_d>sDQnp zV(-0o1dii?<2t<@{ip}nqY*1(udz35j2a8J*rH>K*GRc4Kj4l%JArP*Ls)c*kGC^316X$H;Nq>oC(s$)oE7l= z-;+^FYMY^ApFlr6Vs^kPTLAzlc2U3*_TziuIg109T7ewCs{+moz(GDo0=mKuSpoIT z1)~(N3pi^AltMQKY!wXl)20A3h6Zi)P%qxF>01NJ38hgx0yYVzw5v40O*o|~y90hD zloHAUb_u3*9|v3&PAT=rfGLF1heH8N1yI5eOAjpt0PsFLb~0cFVKer0z%s#L8_xtZ zwG)B@?F=@I{2b5_PrDj0+yZ!U9jnJp=vWJWfR5GqR)C$Lwqrbl4L`^@b2k8P{!d|C z74X>_(mhWC-jj6O%YdsQNQ+*P{`3?Mc@uD$r1jqgY!)Q?j`aa<7%UuPG;VKsU_(Jc zMG%Q*)S~I;ftXk{&^qusv829p;LjxerCuOs(f$U3oJGZ+f!i1@!O$r`0Zdf;O6rck zZyne|fB_SEM})Tv+)rrN>lg?ZJfQ0rXl4oNuiXMe3H`zS0t0OzEg2SA=qMz_#_bL8 zK>g%_HfYIu*tGgaU|<Di>YnM_JCDgIIRngi%&= z?9(O4hHboA7y0)L8iR4yAYX=fC-*2E0Fv|$a6$z=f@b}DO}HB!VDXzZa4*BZ5}2nMJgrc$Y^8c?(c@a!J3Iw)ohX zpbM1L>hVEq1(T}lALPP#Yx)<{-UJ1~{1?u5*Cjze2xc`}8l)8>74JYpco0lS=2!*D zgH{V>bzBiNOb9Dnp$eRFH|Pgj&O|hFPLLb&(FJ+pH%o%nF@2n)4DC z{}8lZfZ04MezYkFzIY-H3g6orbQPvGk?gVUK|j&#;?f{^dB&BF$3d|ceD=(bL5Hl_ zTi;kzURC3bPK^PR#-9kfXvs?!bKEGI{A^I9fM&qsGmrsLDcYjXQn`>c@+VK726}-Yyc) z5=5BbW5AzF2^U$57YOLj#+XJ%bnvt`u+|p&Mb_FONp%Y) zk{=#g2N}8t*rHXR#E^3pD;b-c--?hiIH`_!DyxD3pg|q|#3{(Ro|xf@9oLWfEesxp zoEnSaNx+qkb@91+;x`r`TX{qANmjc65d&f;X1gdQFZ|eBoNESb)J?^#V?v{SUU*|O zu}V0loh`+i38nBhV%D+OH%c4Yip^QW9Z-fN|0&{@yyFr(iGQ*LUfp_#x3fErL+pT; z_7qzRkcy&&^buzfsV?^uGdz1UMkfVpF+hBabr@ijsskdK9nHnlWP5Ve>cpK8+PO6He*+1hKt2sPr&Ed`NICNrJ>StRoW6usL~R7v!5N zwn1a2_`)lnVIh$?J6vqz1`N3eNl(MY@Jw!_*b|>f5|1bDbxRQ&gb*jE#Bj<&K@n#p z?u2HiikqN0UmLYSE7QdlLYWaUI80a4`$r(@py0ab>oFmhfWP)6QF`$fatUzD6Ymp3 z75b(Qcv8ODS$IH>E)*Xnes!2EJ|KV+21?9#mERiKxas28gw3Ft;u8Yckj}dUJ~T^Q z!a77VHV+^CWu7>T^!}NP#5;vhf{^t=09KE`U46M&94p9s|G;ayTs(~^w|V7%O0(H& zam)XRrec}5Ew1x}cnP7oZM}H!f2d~Ljbg?Z`E`-W)qnAh-xl!#Li6M{@t*&X=Aaz{ zhNNUr@(-sM?-Cahny!2QQ>TAdCN3A+J^wY<>+I*pn#DhgOaDVPtq+Msf`)jYW)r;o zxcG{l=n9^8L420=*@7{IT#?J88aMp)iugH!d|oO3Q#j0=NGp z?qLN~wW8o93~xxjQ3Y?gqS>v2ZSWeq;3tAueuHZ77~GbO$2h9-F2PrTHy&6o*p;LK z4TBrPIGV zxnMw9&pP1b?AS5Cy8}v`3p82|4&Kg4gVPiN)C9bEXz&2mOFSWj$BzzvEQrSTrQOHk zcVmMG2utTedJ2LNEGA`VW3UV#th0!46F(naiz4PIpfX>e-r2@=!|vx0vX zLHZ;+cqJ*HJ}I~hDL*(pxEfjlUNb9rG-H%upt8eA0JUBjOz$0mZ@6*2_`C{62yUA=4QUoWUBm zagod-ExF81a*(v()CQ6UB%Rer5+$ewm)@4Rpd_i}uTL?YT1dhjs7=_=Ns>;Q@!KvE zAx=CsUHE1K0_dgqS&z_PmM5XS1C1TP&&l)QEO#D4#xa1Q_r;LdAGGUlk`fY4h^=pj>-Wn>YOFGe`a*3cjWdeo(jNU1CQA*|tx&{3Q z-V}|blte@KC<((<%D>yp(;V2oyDi=vEy?;XY5o!?`9x?|B}z^S=$4SldaTe%9ta8* zfNF?dz7<J7CdWiA<1tjCgkF z_rX>!xO1h%0q)^=9|is*=|FDiihkpLq^ps%B14cxZ+IU?y_3LqD{!UyBnbiI_Vx*B zCd@}MwHC$L(+tK3r>UKG{2KxcR;fcJ+Wb5 z>yWb~?k2SjImJ1wbBHx@SYY>%-K3uNfRNp+_aEFfGU92CGqTvxp)=~cD#QWL9Tws$ z$Z-S@_ZboLm2@54P3?ryA&$gdGXD@uVv<@Mq9-QYm4;wJ1BlX?+I9%0kaWh`>X31Q zSaVP?kHiBn)P@WOp?T`h<3p~x0M(;;A#dy zNfh7n@4t$|Fj3Km)!G6x=@5K+O~`Q8P$dB9&LF8bnz|$`0zIiGb?ZH=v}0O=j{Grw zn}q;#Xvw({7t|Ps(0A3f>q9zNq5^#zSLC-fgmuXNS70x^cw30Q0JBXLy>Mu0$d6_` zyOz5{7PCdd-^}*H>3c$4gtEgRU@;|jXn)A}{{^wKA46`jKH>Yj{>4W^(kVIjWB&~~ z9CAFwhjr{u*p;0N(FtfvBqr)%r}H5_%u(Hvw(dBzBIG6?w|L0)kRL6$Ai>UeLYlC4 zb%Z4<#n0;Fi;qH9Sd!D!L;IeD)Io~ZA)a{0(~!494B(&6IZ$DjTS<3Qc1j!RTAFpYlh&gZ z`Z`H}rdba+X>Z0;a!nQG9SgC?j~hr^^S(wQ4W)4HCr|CnndXo_8YhL%QrF<}iPD`6J!7Fv+87@Wl17P8qskUexJ$6Kxs_-&nKd>NtqPZ} z`}db##IdhRsCCBMWYXsh?G8w_LNDdg3;(`rHXhm)B}7W=@sEyDmD26zNLOlbMV+-$ zhId;gPz<2s8A8JZfL;&n1E1uP)H0c5%rUGbdd^TOm@@oHY)LP?Xdg)y= zp4E;VDZ`Zif8bf>Nfm5i$wfd{47PowggzBXR|=MC++=BMA%x1NNzYL}cV|dT1oLSz zQ#wKj9}-cmvG;7~4S2WxI9GaFFsttKr7Vw0{^5L8iS#+uO1@aSUH~gRXNgqAFogLV zAv@f1ja1C=y!{)B%k!E#xWRVmJORC0SHz)=D3w07Lv5BA+>!nOTqFJL!#r`ykJ50y zQ^5C+N?~gn(raOSTsqg1&q~ioVd){RwCOo1Oi$;sW|yRUY3b?9(t|X+@G80HaTSJM zmloUb*YgfZGLleMWM7I?%6W*upqlQlx3|$cRBKQ z-D(v|-8`pzsD#?}zOTucivFQSH>V5@HM+Ua@KB?h8;%V%y7|GlP@|i-PY5--SvD~g z2EUxg9VFzuT=t?S^g1608_FU>`38wkMTZ`uRTn0PHlWHKP6?eXNV$Q%!W>b>bg3o2 zUl2ONf-@ZVnGz}y)W>~8?KnMj5moNy?9elm_OAJ%$<&yxi$f>S(gn*ymoYrA`xXYe z7d6Atg7u9(u;=#BTYPk4n?0c&8E*Cdj*4yeh5pKibJ@{Q2WnB{Q=x-tR(C!WhNGPO zhFuIbQ}fx7&S7p0L+Eek1|eHxuO4AYNMK_?8Dhh`cF~})sg!cZkzq%v@}hBJM`-ra z#IRE8nt772W7H%#sN z;M_nozA)@8+OwsoF_KICebKlNj&0C)MPUr9|^TlD&g5hq?2}?5P;6fIJ%@Y8J zf!#cYyHlf3uw-DZXI=c$(y%VPT6U|#7@kWJI1GMUA;9PHc*GB3Kky=dULS_oRKZmn z!k)3+k8u7Tk0W=41=pcn07e~=D^Pnqia&;UkPKG@NWzWdWQbj!)9_Jif`Wvd%y(;{<$)2 zuZXi^URBsZJ|}+|Hj@AEzQg2d zYhBVO{2W_L%mIZpaPx~3h~8f zgTo=f_-wO?aI!@vsnAIoz6`bpBH7B=@Lg;p9NvSx3!3S|mkG6I01ikEZw)Kj6IwGf z!|%c#Y9y;)6aKlGfFOYw^T!QNh3_&)Cub&%M8$_weNq2&;S2*0#I1QYC%x7YCGKx8 zN4lTGv;RFa?matz*pyU;x54uB;awS|`x^)X5G&+V5zg>b>#smE?nxPPSvSc7t1m&9 zgI?kUSM>QBORM@Tuoj2i2oDfwrWQxs4&QCYb831ooMB{R;#5`{K7--nYdRiWHv%{M zB|M&?_xn3Y!^h!ymdIm!k~`k^EZp5nREl73YM%{%)`Clk{Mh+@_-ji(>-J}Opf#V( zw3HRo3iTai-n7C9SJ^m*CAv(Ma8*Ou1Urrn%4{feL*>uHJ#lhNS#u%ILx4IOw`(J_ znhYgv z&(v%@P_0WZ{#*>Se6@$cvu(7Oq-{BJzH@VO}2HZz{$j93}tDlLDfNCfc0&*EgPZ_57{+|fkY za>_F)S;la)N+SJ#0bfj!-4zm;|IjlzT?T7Ea4!FnDPz3;{4bu8EZNKdkf&p=Y!>CY zIbXKuzX(m8vUZDXx+P~6p1o66Lrs~DO{N6xm$jm$vkuEnQv{`#-mw^q7HcdW7$Xnl40mXo>7e^{4QHgseXAa^P*Yb4<=(je>54p z<+BWC9dLF>|0(Nb#b6t7`yEWB>--|zXx%eiBl~ z@e#(LpXna~J4$gC#sx&s?htxu$qiLMkh6egsk{QQ!t-4VxJK&-VVB3M75 z05B!~crxM{W7H5fO8njFh-@<;VtFot;W0P4He$dzCqQK-_P-dBOgJ376v29%&e`(e za>OG>F|g0Ih=+uO`OS#=>=C2HeQrhEWELY%uEP88MqDODX5Ek2D1^wZs)#6tH=*1; zFQ;bpFA*yVktx4MFy2w{5q9E9#Bo7Hd|yPsvgFmMtR{kSh|3ds_cDU@ri%yI@;YJ< zA)m9}^C^jhta_;x}7fwUx8%hw%+yb9=dh5V7}@&t(e_T;(SZV$^|;j9Xpg zafHLL?sCQ_K|D@=4>{`+-*{Co`60p~qOV-g$YWtYxk!*0eFn;l36XPyg+-_BPfT7oMqyh|5ZR&8j1{|UUjiU zkbEKB+~750Ied6ujpU(n#>c_DJgdU~16BxF`QsT8@?nJ9MY((ip(fR^wrK=|U=^OD zl{XO-Lc!7Ujl^?bW97@)LI_vI$yuiHeT$wwN%Ek=S(oqSaPAe$n+kHx5A)F5Zq|9TmxvhaJw8nj;h8JOXaXnOf`1hC5L@ts_}{4a@Z%P8t3el+gU<7^?tGs>nuk-d@xFPRI>iv0F-dTuU80_-0Gny3hh?-RPLVjJq1&*`G4NGg} z86X#~cqMO4oc8-WxgSZrKgm0gbo^KOTapg7Q2a_#Ut5J(h%u<(dV~Y=Z>X?Ax5Z{| zxPi0cz75z`dnDT(J2p_9640W2IdBZ%&O~>GkD`{uSwK_8ujF^{)(TkXsTy0fRj6zs zjq0K}Y7c3f0g4RaCJlU3Qy+OvR9K<&V^nT<%rM1PYh#mg7^h%fYLJU;PBd}`3}={0 z{IFT9cqgEh`eK(*#cV<00{|ZA+!&QRDxLr{OM-L0xT2(C3I`k!u9yJ2@)JYNqZG6S z)oc=;a1U_5%e0@jS7F5R$=x1k~aVHe;t z4)p-{C9z@WKE*A7r?8Y>5pbY&Ce zV3Iy;p{!(>5o$U$_G_n%VGJGqVh;cfP^C|xJJJnPTH}80m3g2#KZLp1S^1E$U!dSF z&l{o%?E)>)$acyOIH`xSi!ibj&l*+v1iIl7y_9<>S$AaHTUm!6qx2h~JS2!Vi5RRK zqErha%f%g_)ZygCAn#<8vbJNCy#xid(;qePt%tu-3sJ;7YoJ)kyi7KCapWL>lPJmk z7S0J(_7gAf`m_xubcH)N6NmA6TG&ury=k~YZY>z&Et>lqAuy-|gHz2=jYGC?YQ z?Jc)PGv+Am(Sh1_Zn)kIB^d?s4)d9=A(5;Kt=j*fXUXqhrdKtUVN5@Y|!x!df?Me@Z!?HGsaM+&iu8PWmOz>e%x} ztHl?T-;pL(by<100o&N5?71@36b(r=N*6|xOP(wJQPuVCR@mdU@@EnUkKZXBiH>jH zD<6}1xbsm7Yob--M}I2A*-tVOpEFazV)oT|oTcg!!R=(N3T54TiR)8e7Qu>cUtLsI zCLKKMs>H+uU42zcLG2Hq>*L0aRi%tg!)V80Bjsx8Lt15&H zt`Io`jvt~bATjY`m`W;yZ^_3RS5)yR!~<82Q5`hh*tLPXTz=S6DN)sB3|_9kG@if; zXN9TAt07!1Q*{wS8Tn7Hg}rCeRi3y^tx7eGUi!zV>IxFph--!KCh$~8>I71C$(Pr` zU(!{@MwaMIhEdrIIjU+Q$|3@e0Ne)mE8zKVDpJ*9l~%D^)e)`odv1?=P5;(2poQNV z`4-MpjS~(&cCP9+iGo%ORIpolHU7L%#SM~9BGnrZ2_IOlN+6wP>oqDz#(BN`b=u_< zth{@8qiP`Q#fa-FIh1LeRkoz7nY&FjlTiT-@(u&~=@uLGO zL~cxTj;gpP9TShMU?tUR9CAuEn&`RqXB9W7oOD4|&HA+rDA5kXtU1`y{7=;6zN+Tm ze-?uWRjHgiechyX<-dZd`bEXMa67;$`5Av@)vBYG zsA62GE1LdHwV7>1Lg>Zd`_ENk*6xb~cu=d_X~uI|`$ok&6@i0#{8rVUH7YrPOCMD8 zDVOxmD%Q8~9MqmKsvQCXCuXmUdK0B`)=bSv1p}4mjEdk2Yjq`MaKuhMOGuEsw^uVy zGUL?z*-2eWxqR=c78E2Eb<{IiduZS?2KlsC)At0Hp6W(UsO6MUceKw_4PSx$rlKE7 zt6Qr(2xt{!Fq{PTh9)f(uj#0cW9+_36CGCaTIGOV38mjgcz;pmg`ds6JJB(J_nDYe3j8mT%(1>_I1b|j}=LB^O6|`M|dKe?k zk{Gp^e@E0PM19DbXZgEaeSz^MLRpOZFlBWyPVLFaia4Vu@|&f$LoQ!xtl`Ox`m-6& zZCaXo0PAhWKTrcR)vL|sF0gFsiT z9wO9)CfI+TdI)9z!$S2=$}@6_8a_?p4C%g14WA})+3MwL2mbPi&DN^Z1oRf)F5j0# z^U10ezyA9%2y(4-tcSmDQTMX>_Xp3vv$4_q+rQRF6SGAifBRT?fCv@b5))k#^qK!cML(qqh zmul_U@HG6`D)yr~fm;6LPxUl5toXeS8u<8))9;?Sh7|>iEH#}e%upN6tbb1igBw=y z=HOk98aJzd4}kz;Jo>)5#s-hAt1;N1TTNTIJut2F*-he2b9;xaT{ z(3S$t*MD!yUr@H)%&{(+YvqO~6luZ$@vdd27yyg8;_~pZHOeLTwpw#AHjuqb6G_k7))o^z|61_OjqvuDqaWz|y(_ zA_5P;WFmOxs)^w8>n4JVn;LJH3p0dkICi+NY0l7aFdPiKG;r7QZI3kF7z9F1{?LTs z#AlirbWGsz#xy3F{ElTzfC2Ff9SL;ȮB1SKB(S#!;akJHZf+MzU%r@3mU(&+W7 ztAz(>Tp+*n&@zn#$ca$pXAL*_%wdRN00=~W9kosP;ee=__B0(1+-{{^DgdwzZrVn> zl_4gGLpe%qa85hz6nZsq?ZC_igLzkk5h?AYRZ=2NyJ{B*l11H3TP}=EMGx&d%4TYB zEz4ckH;FIx(K3w~z9Fpcug#`xdByN%O^zJlbI7iK!9L{O3zs5;+Rk^ z+;x#o8`*?w-B7_(wI{A4)7D`bQE-ZFRB2(MNbWN5FiWIGBSdpbQ4J&fAreQ^%wuEI^!8MA~0a_b)Bm!a`{83|r4)4&+#Ioty2h_g6 zV(nL!p~nBkcEYdbYvZYy5ogHkO<>KAvzjz4UrSEL-*&Ip zHf0%zm~6lRn@yQ}Y%?)`vE9VHv{c)MWi-N{0t0EE{on!^mvlgjvGx;dw^RyH7@!{0 zfpf!y+BOVN(8%M9zTBfC43CP6EksZGRYgk9XiFKWk%xJxyl1Q>D!mY8hnAhy-ey2q zeIaTfS~)Gq3com~-EWRosr9h=!$s}*x_q|YFWR>b0&ty>{rhNFw6s>sGBN>n!;r3F zWM_V4a`}~Zgf+(twf)G{yBh&} zY+hMLZlr9s*hJ0~#O8%<Cq02 z!rmA)h*Yz(!4St!sE1;_B3TBI-(qi@cVr}Otj(K6_GIZLIk58W(T&lnX+hS=KQqV; z+qR8Vd7|tOS?;)CXk;O)smKWHi0XBWazdq}BJ1FzBO=Xh`A+4Ue`FZnj`5(7NZ53N z>vigfMoR4XtU(j`!Gh1uh>3&;1YCvOgh;(Ln$s_<4z@~Hr}%;a)cFsnB#`XB3im?Q{)Is{;>DkBPY?)Svw=)Wd?^k7DvL3 z2bX=gKQhaP&&D4!)-5|3Ins(Rl%9)}QjW(jMDC-^XI+VerOh~ifNPO3@ZhrUHzJog z@!4b5k+a4LXdR7kRhOv#?!3RcjEY*o>@Nt-MhL)MaqQTrp42tF1EY+tnIVoELv5`N zi*lq2nJc5-m?NLzAh)eH$|(1WsHmN^f+8WxDD0c0sBN@#SGuWmxIU_cmcGb~GRi%v zAgYj-x=%IL-84Pw6fG^B9W|Jeyt**TDDn~%WfWPqII1s=wasgyKD6ZZ-g74EAj1e6 zLrZCG$E#dt}a<{4c|Th!I&(PdPTr5&R6EF)Wx zAq=_ninc?)b&2vsZ+k|!KnHSz9MK5p$j-P`uV{rWFVeEX(cdwO#Ge2k92VV?Hn`8@ zOy*pk5M4rT$dX1!(O{^Jh#o|PVMt_jAr<6We6%0U)=M>M^DNB-b~Gb8n^qW`7u}Y& z^l64@dy2buvZ=IkYIG>oeALY7WehQdxZbwZ{G~hA&57=3!wH2>7e~Wf5AR4%T(c;; zAERW$5P?MiYlROjjW&kNq*W$UrE8+s!;;yJa_eB%&C%acVYlvzUPpCP9f%%f%{Syj zN28VYY<IosW0s3b^rR=QDG|TGv#zDC!8aN-8$miZ=dtGc$ z2Q77rX@Y+G7#;KPwVf}T-JHPLpgE$L-uS0a(R~>r@b4%K7soKXN;hF(U;=xGZ$vAs zW9|sFC}v@~+!l|tjp@qJ08EUCHZjQMiMb6P?GOW-oNq*{1k8^*u_eH+ntUNHCPsb@@tIi!AlV{$DZ-8L|$4oS<0 z#ylkH+EFp_Kmxl2#C#yX?IbZjlk`SdOj}z>&9pI>yao6b`%Q_dat0vyUShf+0|7{j zR%XH5hV*4IO>ohonDcgk>%TVUg9D_aOJl^%1rQ}otq&@_9OHv#5A=rdg-1^poO~^& z08YZY$f_!)KErdszq$U~8LaW$>KGAmQRTB3y(OfQ+L&UYq16Xfyp8chv1?pB@viqV z_gyJ@bmos3*rjHFj3>Tg7yFpuG2}nYAg94`j=|OoeDBz0^#uB$H+16O zsJeUXR#6$hkCA_dp$#(c8OwU*!tglBo55oAKpd+<_g@*TP|}rnH~f9?*d`2@C=-km zl0S%ZMJ-mCN5G=Yv5o(|Py{Li87d~wZ5g%?j7_xwnVJrZy(|FD3-2Eu+l!%bn)rBO zJSw)v45(}v8_RGR_zO_W@v+}AJlMq`%~&rWKzdU&UmOe3o*C4jafI#NCW$HEduW%%;`*hb|4H3wreNO|PZ*w3U~eIgc~o|fU)r(*}~mq~6AaI8H;4lsHbqt!Z(bhG#P4rjz;sxpAC6!(=&SI5EUO5oeIaTO%(w=QlUN#CuHJ4Dhw z8{;mKbn51~JtXb3H4c_RD#Nd~@&7N~5m!U_uR0Lds3n`mTo1!_4Vy&w=z`o2<9=cQ z`!-5XLbbNI;8EOH#>>_GMqBOi{ikv9BGElO_E}t#mFN*q&F8D3C2I33jrZsUK&4!%Bfx% ze}b0wTpQn)sx_t5Bxl3jCOO-c#ZRM$9X}BN2NmO7dHg&_#(3nqg1am88X(d zh-dDmUd~EzoquGzHF{nV&$5YT;f?qJ#0cdCi+ z#L@v7G3l+b<=gmUbvWbjP3r{szJ=I{H`*q^_bpsjVxIty+_|i$V?tq5KD)JJ0z8c7 zN((zBlBz$HGP43|R+Y*j&46;iTHn3`NV`sv4W)1r6P1wsZc!d+zu`(F9 zKj9@agVzTWPH+tNA7Rk|gOKZ3dT2N<3axsX9)o+FNm$`PBGJ{^-VOhDEkVR`r_JHP z$j}KjzYBZPdJjo-!MkoHRJj5&Uhpj8f{0`^FA}zK8Mm5*qg>|t%LGR&@~`T52~`#( zbLvyV74Bclz9d+YMv8y1NPJ*UGSh4l=Mk}RL;J)m8C`-lkM=_?l6WZ#S|#yP&S{^-OS!c(J<8BE ziI=ip_at7*;r)_$DaQ>?;-&N)nv}~)xo9*k(T+`8z)AT@OmQwql6Wbms>79)fyivC)I+oi< z0Ql7w4K$a#qFcqfeGHZyU9bBNkDaS)&%&QOxa$JlEi;~j7t*l|lsTBJMLL$3(TF>E z=ThB|ltbPM9mCWF9_I2&9n)Z)88*rsE7 zl)_nYV7tzanS)`c?tmGpN`U1i$L!Iue8I4dbGqfM91i}hJH#@Og`O#%ySO2^ zxVfPCCTYk2ssV{%&` zK3l&-@-J3=)}dQ6JbWT86W{Hge3)jp^h|zl$(QcwpL~>-P92y$hUJP5bi}A)>vM0M zF)BIBnX?T^M<=_X(i1vQ+)0|OW3-aO4i8UWLhY$lCAXu@+easlr=_zJlTUNkf;u=- zpX^0T7v`I6*A^uIK&|vFNbFod2vqi zF`8X7&!k@3g5-{j(IQ6Wiy%gVb=^I2_|oLx9r*B&Z%p36EF3|^>$W7%qhgHQWfE>O zHVOCWQ1bV7yj6v#O=3(uYZAli=j1YK>-qD^Fmaqy09`ay7<(ysB`y7YIoX$w>q0=O1 zC|OhMfh4-_9=Kiq6pal}KDeKe{H5V3sjMMQpz)(oDMkn6`~YU25eZKiwmW`lT%>MJ(o3`n(`yfUYM2wulBgo z*)vim!z%>RUpJeVV(ez#%};^%2BrHHb@2LyDe&%(s}PM+HrC^_O}3{P+uMg7DSaF8 zrNd9B7`r;Rvne6e)43HXuW6@NaNTr@z?&(?9@6G^%07CEOLtN{ta-3c4^5>feo1kl zr4OE&5ca$vBspg4nv|_H>rhrJp6K7wC!a$WkL&p2KoNt#W+X7+sI| z^uS-Vsm-YL-I7w-uj&L5k4#COLFIg?H%Y%M+hmF|mq_n_92QJ$nV)LBw5TVWq?gSw zN#A*mTtj`Gw;EX|1=jNo7^gUwsEMo#V{ZMq|ZYq3nd^NSZ zB^rI*#U01pN>!QhoGS06vaE4NU}00A)E`-{y4=Avm8l;sI1c#Zqg19x`hYVG4|tY3 ziIK!G-19~1a(kY{yVKl|&-qkOJf%EsG{Zos?0DKA&V1b2TuJk`<+DBS zrd@+|9-ynhUe#$GXjb+jZ5nSmep{1v#uB+SbFPCc-liE~nM_hw@hL5yVQEM(Y9!iT zH{Ax0vr4a`mSwo6Q_GU-r2oX`v5^>1FF5h!zHgS^keavOH+?;AY`UK5)~7&w( z=J||Gzsu0afg!^dmZw{yesVCz5SR|*Fs_?h6`J0ZVYZ?XZv)^t@+8N{r$3?Y7?Ga- zg=WS1>Eo>V3cIJI&vgFx4Fo~&@t5lkhU?B!b95|cc4K6S_w_~Pt@B!-eT&nXCw-(Z zNk8}RY2oCh=^ZUZ$MEWv=@w>?u3w#gj-)9+q~EZHboAEr&gB1jrRhpiet%c`P=;oJ z;5?nt%L|zvXyx8?hRzd-?xu(F^Ft1lrJt}89Ycmg=_UW(VgjVbn+~VfGQ>Q8aEGJm z2SE$;?07oM(^igv*U5Bm79F{RFP%zHBLs$@P5+)%fv9uoF6MxtzmT5Fieb2zE*3#h zT&qZbOR&yeO=q}{@uJpTOJ`cWi4!F8X8KVgh~J%bhSv}nFcO)aVSb-$G3erh^fjzP zT0Tm5V22$F2x>Gyx?y*Z^D=&P0Ji(S%NPg!8@8I8k?90!{>qGJ^&ySL8FPs>pZ8~! z5o>oJ;eQW1mH`|29>eWVXZ%8}uX8?QCaJgLV#Xy>uDiyobL@7;erTmQw=!cq!^M*L zx;<>jG5QVD5e*B?G{)#1X{Iea6f=f-R3`z+H*UTb-FeNT1;~t3Z3;sQB03qZ>+1#gh9K{ z&|FvC=wW6HUxv%Q2@E~g>myKR5129SwhXB~bz}yB65ShE73ke-z!N*_1Es%3#eI5M1kv^*qx~{AXczqj zxe8?|`UNcgkP z>sh9Kn7E8uqVFn*OVbs4SPqqomt(8+3^SsTiHrFf{S}rArwJfu9RToLrdtrzw}wJA`prP^y0*D0V$}>tWX{&PU7k>RFzom?XYYrgsqJqv`wg z@Es?|rN=>Gv72>BzflmEpUU-XDVOZydWOddTwP(dRQ-y>HS)p`Pb~D&ix*;UX&4E9~IZf7DTEP&X)z+CW zJ&=vd>{-RN@xpS^MB4U=kg_pEQN#fm2!KG*D)qF@>e{oGC1O zp3jof@L6-k6jb@wvS7(j4(!t1tjF}krypc7%{~Be;!%0Imm3aylI88nJGb~lmXg7_ z7{GS(-rQTAJ**DwE5zvF4=ap{aQ54Hn!i2M%hN8 zR(oX|+i#Ljwz2(=Z<<|9CHcLL3HMaHY-5uvX`cr(ShoX>`}@i?PB zu4Y?NoBVENJF`4bC%Ts0%eF`Up;k*!bY(WfTnElMMi5Ip{eE^E5iiM&N~0vNtFoEC zpoFIzV^MjOl>x8)Et~0qs1d;ze|eexQY5;Ke}9#oU$vGnsdKC-%x&-nKOqrlwosow$ln0^K%x_?6w6tFr}AkR7oW{6|{Z%FE`b7UTLbk zZ&uuZ1Ao?A?Hk8d^Aow7aW1jP;AYpUykO?8j$Gu54ZAm<>hJMpNguFG*# z-Tfy_b#s2oxkWEn+6y`M3=x9C$=@*sM+hGm2X5vZqrvd~og5fuaZ>htkkf=_V;|?t zWuS&gTp<64*30mK7dZ=Awzvg^JY4iO$2jKv(=68*A@416-_r;YHO}o~jF6_erU+@C zYl@H-xuytdl`El&-{_FrnB~1AJQW>^;c>pi5?z^CXC$)em%HoV2R^?740+RmR$a}s zKra1r?=hf=#^sJgOGE{AarS`R^%kP@xXIAmOfyIq56?Yd4r$Qn++3D^4v_D%5gLsB z$LHDu7Ze_lyP6e47ns|cCF+3pU<3p_xTVYxEM?XKhe&gKu-vDA!{Qdxm>iZHYz=0S z*N7WxRJryb@5_YT0xL+9({k$*`Df^JUF;xTQk3gv3F-D}xqmpYX`n(<$?tE#6`)v1f7M;GMUG`|4>2|)c8C z=NSp?*qS?xU!&E(*0U~ty*#%$%%pwP#1*w(le@RCak^%O-gpMWWX@xM^M!E7AMEtc+RRI!{;=+R-MjnvElZLoJba z$Go=KzFl4!Yv7wuP|pr|O9W8CK;;$$en_M%vhA9;MF14BO3J?gR&~pJ%IHLsKosgj zk34v6%<)^*JMa7dhTok&c{AZN3osgI4#d2JndhG(PlCh*R}ZR7LuXm+12&w^&pr{#sxx;+c?)} zk2G(R#nbZ?(7Z{u^&C@a?cBU5Xx^kWW>H=n4?eqgXC8c)#g*!J=fOvrTz354yg9UP z&5wCu^u%H1c|)xQXh(vl9dg-STNgR)E(pU@Pv;%C=B13N$ZO3Tg3z_R;{WU*iP63FO_Dv~+J2=##%lw1j*%m5Ss|@`ZI{Rl95L(eFNmO0=+P zei0KvA5`8lzYB(iOs=!_WgNgM_H(yKesx|rmvqagpTzWQoj=C{6uRJ>kN*QyFWj+1 zzP|v|O#HlXn@;(g%z)aJF8Qm4QY-70-}%2`b+kZ$)*L%A$|2R4S{+;== z*)B(1n`)0L_t!$B@EvN)FVY%*x^O7&u`hp%Gu0CRaVo!oAO($QfR8%K{MGGe^B)ll z=UwL&+)~LaX#F7HiC9|ialRbdCeHXRzZ?0zwI;uo{9f@UKhX|S$FH0cd#enbV8vzz zSXO=sRyr6sA-g*9<&T^V@#JuScLOZ@z63X|Z}>!Dyc!u`1=J-tq^aQ+`Q5pdVKmz{ zi3*snDuMxJgO}FWzM~-xp!wOO3%VJe2$JnDxV;Qz=0NpWUqc)*sl#9c7keW{8@Sk8 zJJ#Sx%6CpQaLTy`8@?x|tqe8PCF!0B!v>Ous|}k;J?j|5F?;s*Hx_Br4Qo(c*BOnG zT;eZASs4bFOU%(XhIS5AqEP{uc3>-f)uTIRGHMVLNdsRumXS z7NRdmHQ8{Q5d#56YkojnJ;m^q5CQ8f^ye$XY@~|!9f`D! zUerUSJDqIMtJemGcW4+w(}v|)81V2W8!qrSm_7zWT|D6rLl2P|w!qWh8~m+Am8LsP zmdR>dlX)E%gZ8ctse^Jv1)dAH6)4yu&l|RGutfLs<2_K-t^yCT`nm_+CMr11*ogiI z9^IC~&ZdCnjS~^`ZyaF{Rp){Z{6tZOZNYO3P;;D90mIjbBw+r5jRE@+tIz*0&F*-R zTLCr$h9BGu*8LYA;;iqE!|NC9G#6E3r-lW)03IK0Tu_&>)A)x1sN4}^;o|88Oa5W# zrltiyFm@sTf5_1|xJ7~58C2oAkqcc5mf3<0as3NkkW@OdK_pB;d&hqK(|A~su zyb|6!3jzfzfuWTt!AgFFdUJOH%+Sexq>~!!6Pmf*brm< zuNCCkLwcc#7iICo0$1{T%Zq}Q){u^QTX2eq;Pyws&m^sSU(grI_cks(U;{sI+7wP> znZNLVwBUM(Z!OvtS$Y>PLhCNZk3>mZn))JFpF-AA0D5_(ZMMa#m*Y-D7pple}szLy%(s&Kaj(shCrMXh}cu>e3{ ztZ!c!!Du2!$rsP@E8J(svypZwT+GM@gL(ah5z+T3TuzC!>|MB!kqFV*7pM0rtYqo` z!1FTXVpHgh;YM;3OY1fve7hCJ{zD4eyNXWmZT!QKLTKZI3vJQM43R575>$A@nv)-I z2roQKvqhT1I9?0zDFsIM1Q#7BKubkPE8 z;ktw(m@mMw_D?k#>yvIW_F{&~*jf6bR@A~1`9`Cef%sE+%n_n46nj z-|wmFX?iB4>c;!r_j#Y^?R+wFy1Kefo&CT3{{LSe{yp{W+eB~v-TKaL5BF+#ZsqLX z-nJWce(;~SjW56SAGeL!mGAg)CI6-um;dRuW91Lu`uMhw_|pI=tmv`R{EbT0;5n+ap_^qnh%g#TI?{>fP@i((=t-)lc6# zyk+(tU7y4`W=o@(|EJpqmgiY52NwA4SI%ykB%9Lb^DXQ`aR!zkXUv53;o5qXIriR>d(sjtdT5& z*LUnMPV8(QEUvk(V~BWVee3>Ww@w~-_4OUWn6>@9x$0z6WSI$I5K>wS0j7f)Z; z@r8fpXTKB2-`Fu+9Q}>feZ|_1twY6+<$rp8qjj{{xS@5pxbTLKkz(-;9RtLpH}WoR z-)J2nzPPc~{il9b=4TytAuvoM@~v36tk_W1$c;?TcC{!{1B$v>-Z*V9y?tgc>{oOR)3jaP^fcWzbY1r~O?MT? z3|Tc%;Cks3bMH!?=rzrLzF#q5{dsO|nSl+$#&sRjwZYeTytnHHR**h1_paoLA00aT zk$#29@O@o1R6RC*!v)0S8kXWZy6PFeZpC6lpV@PAZ)yk^?N^><&VGe92fnX_x@ktb zZ&*CWH~la&97~Th#R=R>oAd5U-cT7oyYa1}5!#_=$G%~@y5ahsABDad>!E6gs>|3{ zHl0BSwD}FWH>aD4;+vZu_WUTaoX%Hv60r7?u+`q3igzs%oBMYlbIY zeR=iZ@<4m;`MnEjWJiXgsez*ThGqwH4yj=nS)Qr|mM>nNzhH2AVsY+W4TXT-i5ypr zV?!}m3yy1=s>TSYW*q6dIAiQqp8Cq%pEewx^8)7R!;7P@@V+>DTv2z0GO6wO-1k^8 zsZ9|Rm9~Bb&C_|jsk@rv8@g#ZeD-5AP!-+q6iaNFvb3vlip~rScx&H{4cj&O3Fkqm zX@RErYMeH1{?xW78w#qcsHUUop`iwb?nZ8)>8eG)IJO@IwosQW7+#(_W6R2hrkwf* zT{TxNN9Uz?}B0my5j4u zp{WXJHP?yM$ngR@Qgz3+?DFP+ZCl^a6dE>bj6KD26+=@@*Ed*%e&EpxB@!DRX&+La z_|v&GH@i|#jGEN0Hf7f-2K{HdDvpb{_7#(kZyVig8qM})#~*R^1*31dh2f1%#quSl zE({{Wh)pMsOw%__g?@I;NR0n76Knpd^CtIh%Gqvbxov~X#kYirDNdMKdBh@NFyb zJSM3lWs$hDT9P$rIhJKcF|#t%4Z|{A&+^%eti%$Ym5{K2JL7*$oXb$RSX^3Zb>m&t4ewrP8|6Piw$1;vb2bYC?sg?=&F zF;xyU$7F45n&%*_iCO!!4=vyN^Y$kinsO@M@cVYPU}x7Uwmb6_@zwL&_AjWm$*#x( zcR4+H0mpJUpg8q7J-xt4XJ@)Yataz@qz6jOW@?&_c^oNKWWL3@>_e| z@k9fwR8wr1y)p7bBenvU%_e5!<(F~nh2^yew!gqulT-I7Ypz<%sZ|p*Cbe7Qg|N+P zilb1~ec$$N&u~ITZuh=psvP82q#5N|FD_#P$&oHZ%_7Sl6F=&{Y}l8wW@L{=meWI4 zb&)CAtm}UGdOmOh<*ID)wTFaWP!mVy>x{ zZFBe;v2A;TZMJKTDY2G>sq<;oEw`{f6Y0^!^DPnwj7`L z9vj9jQ-pGDTfe3lX+mc%`ff-uiaF;jUkYO(o2eqUpT2BJdElAtG)?L@b{uFXD=kKD zlll&lhvm7Z!uxXC4=>+ZYFpWWVBmxXd#;ulcdB=$c<1G-4?eG`nV1 zBqv;)Q|k<7u{hvMZH-Ni&OG!zEz%KDO@k(Bmg#zG#Q#_n%sl3&gTN8Hw7?2YL(_GS zVU0r9Gi}vkD=44QxQy*0FfHCV);-5@j5vr~&#-;Q#|>0wff#@LmLcV$wQ^NMV`iP= zp;P9mc~y!TGnc8N*fF<{Xl`pe=u=M3;id#`>^Zg;Mrw$F#fcq-ilzs;!^HBPbQ`Q} zAK6m4;N%`sp8vbHISn&&M#t~I@N%YUkA;`rbDFke;bk{XNf(}B#7RTTlVm{WfsK3?2*W?t1FFbfb{G^()lt^*FCHVhReDk8k< zGP16zIURmxPzML7&hm8RBrH@u>~s#V$0(k2w0b9 z?E9RXx@Kyz$te(<;?+SbhnF`Uw`N5{k&er%+7yGzbCm+GlU1!)Flvb^mM(7_T|l`( z>0r-8;$_JpKE?>MYUC-bK&2vCHYu)xjL6b6kw2wWk0Kaqc8s#XN)!(rFQ;cBBI}-o z>|)CHDQq2)Z`y1xr~pg_Ggi|vN4$KZp_o&3B427FGb^5Ta@)aTe&^hM#1oIV9dfv8 zPuL+_T6VzpZA7uFM;vm7V#lQ#KcPk)GBhcII*64PcDdh}9&QboOhq05kyopUx)fF41 z2>XDBF5=s97$e3J_~Mvi#w@nU%98V((6&uIWJflv(Dl(9eU49)(=^iJGVt8^Iw3XP7g23T~^&DRd495@AR5Ura$_*c7bj?(-NoHkUwc-qS zjha`h*v_UQhJ2%~Fj7uJLl0Ct#;&16o@de9=*Wm-woul$536i|3i}<$gl6g{8wC@U z7T7@;%Eg4Jd8^wtWL-!)(EvN2K{Nc5>35DFcXD(9?F`UY=#$oN6p>3gGIxHX4!?Y2h z>0l<%*}>($F}-&qHp&Pi3Gx-vG$(b85}`2mOeIG}x>~uPlp`N&7>VW+S(?RaQ;k?* zMzF7_8oLoc5t}D31+^@Xv_ej`sT}5KRvQU#^HNo`{(IZOO^S)M?uVA^tMbq`e1(<5 zqE}-*QbN%=Who+Y#jF*?m_0ZXA}Q!9jHMB}h@ouBp%$j%WC5d#rXX4eK9ijh^Vx}X z#bfBuy(8pFsoG8KXnS0$c3D*$V$@A@wZD&o&|xI|1TEvM1)*KofJ_rX!Zz)i5(_j3TRtsU&B58r|1hPQOWEvMA2} z(XydU*^LsLS1lMb3Y(3I6<1X~*Wt8coER+?y^9mgm$tn!TjccK1&h8g4a-&)qBoJX zrM$w>`E0!GmuSRtwSBO5>D>)YR;c(&tRtT@J%Y$n9VN6Z3~d(Tf?Gy9neCw3I16Hl$YUSb--{_iTNuD-{t!tP<( zd{B+R;U%3YHRctto?wpDHBy1IjU>ZzfLQJBzK zX@y$%r_~&3*m7ddZyUkFFhVITBSAU1;jmCUR+%A_29fMaljDphWz{LBZeFS_F0AY; z1`N96z_FUsY}OoRn#C%T7J@**e}H^|RuGsK2c2V|?$-PHr8T*C$*Db@k zRJH8E>9Jm-?D-gUUtQ7wmeFZ(*J)PBZk8py{`1Bxp10Bz_Yc2gYTYSNIU4dz^T`%k zcMANSC!+2Y_&bkE-6>Fa3e=qf2m*Ddzz)Y--6`;oT@iJsK;0=I_47Q-eBCKfcM9yx z8&P)(RJ|N^r$F5)PT^qihL~5lmNuM4xr}#-@lEk#l3w9R+f4IGWTjz*5{N2gl zUFFUZchAxqeqBC(!ri@I-t||jM8nA|KU)aF*Wn7(eFe-rcw5K7gAMXsS0semtYFM; z#%~c5;M*P?=t;c?QfSrKUaDmY~ z4!%ZQcV#w8{DL|424eSD=bm10GV2T^dJyEaVss&=JqO5_7skY&S%&K1F$+y4;2peJ z4{W=FS+dkf22^M z0SlRxM|v8tkXf&tv?cKoKDl-7A>Htt0CQq`0(h`bPx=gj%meHzAU^=g`l;`>V!E+_ z_?ZBz0&p50SbdOzzy`=D9GFp8Oi2oP$r+{|cush9-AS0;bAc|MgkL*l>+r^$ zhRs}dP>L*b6p);;MX(l*Qd83;EHLmDpjiM8Ll)5vWIxeN;5{r5AfTE;T-U_S5bdDi zincvR03z;!Qd<)L9%&I>N&t@Oc#&!W{se3otF%@EEV@uHIrS@I=I`d7S+H~J2K}gr z!e{0VY>Gi`+944KjwIc{G@dGCT*Yi^7kP=>8&b%dCon6vgQnK-e;>P2z+0``g@u zaPq1|T$zBoS#|)8fP?b}0BAK6BzTuc9+0$LZFsr;B%3uj64i>pkAoN26{~`kGr-{j zD6?3$o?!v^Q^3xsAXBLWaBCT)IPUnI8dGNaRhO*dlj zcoA`lz&*i!CR?$RuAmglshgVWbED0E3rs5ZJkVa?vm*r+rf`D_qFx?D3IBN-bX*~e+!K4NLOq_}aU?kQ7 zm@$dpMI6Z)zIg_%-T0^M$$K3@OI02T~eU=R=_vPScr8^gQrJ zwrdj!Bho{_vPsBXve-1BkHDS-1S^-AWg<|lkj}Gx&yqoxWv^q&gTR$!7%~AgDu{oH zE_0O-R6k*CDqFu1%23g+LoKInUCeamomt4KR>HG5)b5_UcYzbs2?+|+!7m~45m5(x zn&3GN$QeOUm0(deeAOp*!E)GMK$p41-hmkdPNrGl|7*`Q;#QF8n8&&w5eMgUA~lK?yf-mI#<^jyoUIz88ppI0oHVL-4CJDQ8oM*yq`;5;IH#*B~=RjslI z%J`;{rsWYgs>wJ(aMr|qJ33kcf+AR3@#@!?46B6S5$-^kC17v@??8*IY%(#s2FsZU zb}uRuN67)5Q*q^hj=cwraM0MXY+*I$8-WxmP*YpciT4O?!oDK_M_%ZFbq@g1 zCZX4xt{@_<5mY{sgsPy3ur3`ZL@6MOD6|M6cgoX$yYxZUTK4!j-H)oAnb`yLnbTd> zfY(A^oABzUYppS4ggAN}v;%;~2qVZDx}2H@<0p<-vS4TzK9}$wLa}28im2_tAlw=i z%u-PnI1>SQym@C72?Wfl zTM?s_wj;y?=g;e3VB1FB1m#YQprIkKvB?9C1a7Vq#_Cm$1CA?BLDU$NLyJ8YwTy6k ziwqCMiD~SeGKM}q**L*W;QUN@(=yNq9l~LOg(E(P0in_o5J^l!cCE>Qpf=@Hnyj?@ z!g-^cA`79w0U~X4wuKyI8e*agRM`QA8p;@3)Uh-W+ak7IAss->`e8D;^t(JcNaJ8L zD6$n@C&5C2o*fDo!^;+W^dAl#@<6EMwhkrtSF9v<*kWeI((jt&99&*naL{hL zZZ^AOz}J@S*W`kh2o#G{F^&Nu#3lQlj?XFZ9dZOjLVW^DewwE)d#1}Ymt8K#?D6Sg z%po~**5tIhTWoVWO#)|%V%;fQhZNkLmU&m<_E@uJ%L(F?rxu)2Uv~9nS6_BJ&V>K* zWoL`Y{pRddzJAk!iG3U1syW90^WPSzpA?|l##znZz2#|}?`ycC2(*#((KfhK>F&a7 z7W;swI4nr<6_6iLCiL#pi=^Y3w~485u6j}2Flph++y{zkChxL$=EAS`J}~Fe>cUHh zoG!Ni?ST>HGtXVPebK5OHIavxV<==%1O&1^y35hIlXC!Qs zS#w=5i==zB$Q!6Aik`|UxU949N@SJ34=#MBUr{DKc1bE0kts^%E+t2diz`Gm=! zZdIh8yt|SoKJ>)Gr~4H_x0oPT0FvT^Cds5j7D>{lnu<7aOUxR(Wxw+C8y5b72TD|cP1YNXI*nm&lJu_hpmK-Zk;FN5|l2|)yQImM8v}jLp#CePStUHFSJAcvOhUy)o zyM8`L{B-i7@qd5)C^7$nMVqVFd)9gDg^PNNBW_<*6z@%0bmTv}t;}uD^eWPHa(B5V zzyd(M;J-=VhOieP?%B`|AnMQ+g`B&@_PO)-D~|{l9XqgSgVaPWbjdvqoGw9&2Z|Jd zL7E^|R)`Gp?kdx_{rl}|=|Y*g$n0fVTKE1OBTm14(UCj-epuPRmF}#3_o)GsFTBRP zEV^=B(P*wb<~teR9VIrMaOYm)quUn!`0t9a|IZC1K8=dQF%Z=NH&R3rNw7$yL9xX;OEDUkco!}jE!LD4?Jj5Q7%`%>$oU6%mAUJn zh88}gom061}6ZfxNbj;4bYZA9UxuU=D9$WP4jvH$0KOmj7|G4TS%4aqz_{8o)@BH4IFd1;!XiRN5c8cP0Jt#?$n0foKSgM6Oy8`zE=sNLH+nbQ9R9 zOv2^cDdR}aO%=wGzpY>Ni<63);<12Y4~3DF5Y5S1azyDNFcXZkMQ zdz$#*4l$i(+fb;`1&MSA9&e&wGp8PZDpwyLe3bUv=@?1R?I`>bGZ! zTYHJ!UZyy`RTh`)6o<``#bf4EeBo|coYKP2qWNO^(czDbUIu({+r3sJ>@wQ+LDY~4wE@l-+1t{w$h8NTFn@&;#BjVfl%Rm97~ zm+V;puLuO4l;uQ-FuoqaEWo1-(t*S2VJ3kk(|eO!6t$j&Zc;f04aWhb0zD!}o{1i9 zrHI-DqSVBX02hN5ifyvxk=>c?QzF^{2C+EBpa`qLzy#ZqU2!G3V@}0M7SaJ@+V>Gl zd$$iOfXH;}!;Ve$STmOPYBm^8rt0q}(Q zhFG3KD?w6`&5i>Ra2XUBB%niplbO-O2uLVsASHza=GHo}45bJCnpL47b9*IS_=El1 z5BpRtC@^p!fZ%urvI%|}qk|4FLI4n&m=ky$Qcz$TUXmj`r8<2jyd-m=tR(sT4l<0K z8QLSyaZbNgv4M@5O%t#7y<NClok=2!9vdPFv1!oiY6WSS9G5O7IzB&g9+ zN#<#?H2`-97|)zeVW~{=O14KBmps6#j*4W#lJk8iT=+o*ieH9#l{YtS1-qJ4ZN(my zQ)8O$aqlth2g4&309r)3kufDCjV86E%8Tf_qcTMaVgrV`?vOQrRpHEuSwW!iNf{fH z?3jg07#^#VES=>|gI0Dn6dX{=7@82_=@e40Hloi zf^@OLJ+r%*I$;U9RPAP~1{X*;0-PigXGyG`P4p45auXjFdZ^?9Q);jK}U8D4x;IOzA#I zh+WdG{5f^UX%J<0t*J4awBgOoy47vb`H)~lnjI0t1Ze}wd=WciMa~bleGT?0$zqg_ zQnreo26lCRTE?1W50cv5w3{9{B{1RrF#4=LoeELn6(dVWcc+lvrRX5D|$) z+zzaNP%aV1gNk3CF}0nj<(#Smaf{#nIX2(yY9;;57_BR5I6!w;IAj18sCHsq3B+<$ zSO+8#j!_{SC~z<4i6U=8_$)yd_-PtS0_js2N9bc+XDGK zS(-BO`t)B)9v%Ea2>Pskf)^MO{QqRTC*qFKUKVIAj}A5^2z`)bpn6Kky^!}&Vr9O5 z4#>*xI&ml-q^6we2b~Pj8iSuvvzRq*Ynt15^1Vx%jv(lvS<^4MrpmNNtcepR)-zOS z^f3aK@r+3V0qLr%5CtWo2*PDZpesq}ISf@In4yFq3`|F>q0Lsh@CJUogoT$mQbx~( zmpwy!VCHi=Pom(9;+&;RhBW20%$u<^rNwAM!k4UkWRj0i24o>3qKR+-+GhJ@5&+DA zW{#PK5=%H6nx8y#`|a%nQRdW|@IB3MZQrX2(k6I4h$QCFHdrAJ#!w_*#9r8S!t&0%l!?t*h3vA#J>VTAT|k7W?AI)|0zvGEcbwH04~2Dy$QnpK6b?=tj*3^2D6?yY zr!FC#$*VS5ZpF3jgT$sMmlRd&cO zN|;RqyJu7_rd~C-lC1yDuP!-ccVdzpwb|9g-d|fXob^gz4E9BQvWBN)3MOJE!qAGe z!Gfx|JkyB6Y};{p#=*;o^2#2m9+GADx(&+rUGR_+Ke(PtWcA!ZC46Dt`|RuvFUMW z>1+Xd%E4|v!E1UelFAFE0+r_v-qO(|qonq){x3?_ZWanH1m*&X>+b((ckF0o++ zh&zzPiBcm(3+D@V_XxHzL>^`dz=#T8O1j3f-6^#?92TvtG3ud}p>Sl)${xpBcF$Qd zc3DXN(A=iMFjNU$CWQ(Ltig6o5GAHzf+-=H!?Z}EfGAeFs2!oC@lakckeS#%AcQ3# z4|YT3ub4bHsVyS0mo!NRD8il*Q3%0@yp7?91IA>sU~cR(!boPrLQd7L7@$cVT+I$6{K{iP03||cP3`zuW(8L?9m{vw%J;+*a3Qp&|hQ<8&(lK zx8+esOM4zdFS&7$%QSKzKov@iGZrKc5HCQEwk!6$oEno17R8(jp-+%X+cQ7JOoHQs zSZjoN=(WL6N&CD)5H_n$gNvpj?p4ym(Dx)SurL(*!{{YtXZuw7~7 zd7*Yh4;_0iJ2jp%bU78)+KT?4ZiCrgMw#oO%UF^#PCewugqiFg&&wXj+nmnpN_{i5 znA5T#r7|S@6V`4Bf5>UX?tq?yz=g4vIZAg_(%Dpuv)IPa8!+)<>;r@biVdSOiWv+^ z(8N@9?Sw3wj)YL$M)JXki9f)VvxZDAiAmEj%7{QHZ8>%O;{83APC&!Tt~RluPkgU^ zj{-tHJDepK4ZXycO*#XIOflGJ2sQ2|nLvYNq1U-?$ig9;0g^Fu+ChwjG@GPZNm_(7 zXc;a!yd;pNlClOT0x4*u{T#WDCBUX!%VC)F0+r(}uWs^j9EtqO8(9F~*z_gt4>D5) zW-b0T2(GVeeoZpOKY(301og(~#psSIHhvtyE^Mjmd=BOURLXGwu<_6rlHySMX)sK9 zu=NrX+?6gXr#>+V8mdBebwQG1D&=_k{xM5OkJXxOvqn>68wWUv3EY4aJ31j3+gB-dR zTQ&+6>Lyf}45)@v3L8mz&4eXa^)7hutP$9c|DH*S&H@b-X~PnOAG3gD4>FQ|;D#kg zjM!DkyMc|@#59Iv3D8s0?7?~{t<6%EttR2fs88| z%x~;V3R-ULkkbIYLYkFmmu_0+G%E}eIKzc{2KE;(Df

l~QHldK_R$CA{-o8Dal zq!xxrncpi(Bw}Ei#lnDa4Kq18_%yw;HA-^OysA?JPhQRVKW)Jp8+C+fH>-BdB7=V` zBI%ru?*!T>6ce^6jf^M}c58I_RQXJ8aM{R?RB%dtZ8@XVgKQToTh`?4q0oidT_+8Z ziQrhwX<3DuS3$?t4PYGCLgO?5W2|E&O6i-~HZcTBwscaTxfSbUPNiCUkY!g2Um{NJ#oDrdO#u@J zt~M2I(ZF0GB`+*@SawJeVs&MHOoV?VEl58d#y60xqJZ7W{TKnS0;i>ge(DCs@QBG7 zt2xpl3EP;ctTLP29Gqte%xRv%RNS(&tFDM!*_BG~)R6@s-Ef#_fAC`J(X<>ea9Gm1?5|oeKSvs03I$7#egOQGn9mFDO>2R&0he2=% z(nh+a(7tP9D{|@&l2ukji^{5-Dg0i$17;NiHfgK?!65j@P<&D$Kput!$5bG;~iyV zWG0fMiRlYTIk}jyACjLfl^0VBBWfKFkoXGH@Ud9o=_Fwr-dKw*H7d_ILF!}Km2&bV z`dD7AJ7h(IknmuV6b(R=OcY9DHBu>A@J`~3#S5RtO(h2zON_j;Smi)9{%9^Vdb85wcBaI;GVw1o> za&T&#t!T8ENm)$@RJhehh$lWc7cgA1Uo=9q3&tuY=`TA3c0{u5k)R2%jH;2?ja8Y@ z2(N5t!Xv;^loQ%zc+iJpER81KaOpS>l4Cgy!^*50e_P_DKrGFu*A%IfqGN6!DL0O8 zR=ewFq;@4wCZ;tD>$KEBR9*Hfdp9j~x)41wA6-*6T2l(eL&|GT+Xx45<~a4xxHz=4 zW@yj6ikV%P7Ufg64ld@jtYQXX#$iH^LNd&N0O)wc@kPpvq!X7?U9jgvI9;(iO1AYdW)IL^ z@^b?3)UbKSiU&4BmuSaC!GZI7rBqvhp^?@a^a(y}B_MGdj^q&Fmx=3JsT^=Q)k@Q& zhOU%ZDPpjitU2sC1Z3jO#m9p1Pj)j81Uq6PM8jAL!`l4=H4|$cc76WC=I2Oc76)92 zEd=aLm;Ka=6GCF5E!Z${+jt?kHPWCXlFHq-R*1~2JJ~;SY9(#-q;@OO)0#~T$;9OwS%_T29wh<;h}p z!*on*H-k%%$i5g=T9sx4v}#ud;Sx@O!pu$%Z1=@w(|QwdgAEy2o#cr(*x!ik1=@>8 zjc8c(fC{K4p|?;p^hkU^sBs3tmpFd_n4$!NhGa5VTxdD9CT9KIO2NA*Li(%=M4rY3 z1i(|x?!{XnBzd4YvD!G2U%t`^MnyVx5nd#e7~#;BIgAk$No7sS)T);kv;^=WbPJF% zxa7#YNJ4gxs2vi~Vkfsar4zpBoLW;$U0$WhX&?_a3_6S$HW=yZ2h4#vUPj?a5I12X z2oY5fWK)E(L?`@#cn~nGQm99Bz~4fI4IyEPy&#n$F$WQr3qGE+9KROuzBoYrCJir2 ztXXMBUcJ&yjf*9-PP}Mxf#IVbB9{MV>EI(QtJ&yg4Iw2l`X>e_-q|9^0%(#%#i8-D z+mZdZ&%9~S@nz!n#fC>fK~@YQ*(20L2jk_lCS{MiNkN{~Z9Ak$ExS<(@wHgz`ryZ>?|ashj>^A{Qsj^gF4{94*1WE z$xm^|b-@4NirJ(N_^%B!s004%fd5J;Lmlv62mIFo|J|ce>VW?`;J*&|ug#xS2mGHq zkB~;0AfXQUPeKgpfd4w+ALnQt@Lvb~*8%@sAt*iICw0Jo_fUf!Ag(&#zYh5C8J5ul znOq0__lPp61ODrP|87Y_>wtfBvO3`Z@4^h~fd6V9pB!v_9q?ZV{MP~hGS;9D`2V|D zi8|oFkb}Ih1ODrP|2p8mXP7}9@Lvb~|9v|D|04naWdQ#-@6oVH65xDBT=T}Vb*eFa z+SNB+Wcx=bB&Q&hl)xGiK86G&6C+F<3Q;BGfH4S`@l}$v>XGQ;>)T!2_~x?f8a9=; zzq#yR`ZPRV!>aSsZOium@3HC({Ok7qZ4*CO#^3$ri61=h!(K&Fa{8VD>surlAV^G1 zLMxqI_JrUOSsR#=Xz0;~^4q_Ez;DRCS$J=*`i40Cj}NTOzjX)S(BMBk@b%ugKPbQV zw+Hs>C9XYj_eQa1%A9@5hct8y`R{edZ$H}JPdsL{4k(xUbu?ZiZhy9Qq4y?kI|PXYij7uI?Bv9=ZL6p<>;$ zt=1=fz`@VA4iVy-j(5eN^}NBZovnw6AFOX3F0Q$*V~FTn-@1?Z@e8~`{6g#gV&3%~ zeZ)!E^Tmmst%JpJ^5Y+0XdNoncJhl`@4K_Vc>21IFZ_2Ob)Znc*zpz7P6 zxcr1+#gKgUj!#xBg_uav8Ip;goIJ4Ukaw7LaaLt6_FA}{xtMozIu}2?c=^iwTX)Pw zMJ&IyckU0$o0cvAQ1g{JGrLs5w_P8&(*5kh9 z6}#O>-y|1%+?c#~w;QKjpIqy4pDEkd@Ak^7-wPOP{S2H_a@aS}7K9 zElsEte{xFctV;2SQ%mPpiuasa`h2DM&Z(u7Dn;varAd|I+|QM+uN3!~P`%-U+e%08 zQQZ}U_h4z5m^Pubn^-rY)Yz~3g(5beTN*0vX(^4axqEx{?s2D;8f(6I=+dso+{_o1 zT02fF9bGBDby{g$rC2z<+VYQXFP&Yv`rPTIlXlduiZiY%4O={^)LV?1So>P4SaU~d z=;GO>gDSt9H?eeVrFiA+(up;%wBU-;@Z8)i)a7R(+#e+e*jQ{P2uN zOT)!mZ6&wzqozA*UriJ0`E*S2PP**9N!7OQeP*>)@83~6c1Ke*v0+}<{p-%GzV};a zmX5EzY5O@{H+|-;+6HUljEmE63bnVdjk<1s>8w(r@}lpaRqf7`&MtkXa<%!cYMZCu zRXV1op_}Pr(RmIHvCk>hJYG*aA{_fK8T{WFkeP;9LtNnPz=c{9}_Vd+O z+4J1eXKE@Pe=U_xoJXbCpIh5dBNk84UO%_`xZ)Q|C+=vzA-vOQe)5nzzfc|A zwO^>Nm5B78W~HjP&Z~CU;pbPIcIEli7dUM}?NiLOgXZ5$ zD~3+4cF=K?YsZvSVRB59n^sOPjjic}?KjW|d{NWqrbvb~x!bv*I;4{?sP^N!3#x0l zVM^)KJG#S4*TlloftA+Gol<@8SEtl=9C>BwxWx;3?ISO&_S;7btNk`{QMKRhSybC% zQu)(w$uB=Ywc2e9rdD6+^{J&#SE}z^TsmgQ+u7+xa;!(CZC5$5^8p6_XJ6?$VjB;n=``ttw z){X%w4dhZyzIh_74(s&x+F>OdjvUtHrX!=$*h(E&MAesE6;)sIgQ)tFr^MC1Qtz+! z)i2`Gag`^$aDQzzZe`nepmbQ}`_muj{(bTqYhqe4;^OLSeD31XxE)P((@B-w^yJ0W zN%hLb)weqIlG11QtZw=cZOVODbUw&amt0a^iJg~}j_-C?(u3j^3v(uem3Zuu7{t0S!qPKue=#uU)_IM^+h``s~&M9FYorE=>Z`&UCxW%b$Rtg zPk*@Ei>m2RzjAr0j~IDH^|8lYQGMIHuc*H5j7Pe?ttyhYO=>vx%5HC~isWsRukOCG z`q(vBR^N87Y2DtIO+4w=X}s-C)2eTKY^iiyO($sS+b%CvyH%ZDebHN{mrm$*Z!-Mc z+eiFrdTDI8uhMRol^r#sG@>#X=g%mOuM{7eQGLST-HW{6XtE(^a?hVx!8GB>( z345<8O%mU{v2=J3^`u6Tsj72z)h$(PdkWt>Q9O30BkW8?=%yi56okLm59+F0m+n+o z-Ri1am(p5S-72d>OXa~tAFQixl~b~=x&@-HxFC9`SjM{aVU5=W5Rdh_hv14V1&#{U-RhEnGBGxyq7}F>Hg&6ext*45g@4Momy>~pacnGwq;;z9f z#*6cAT)bED-2aWQ@K(b`;?>{WcZ66rWW}EScD$o(_Ss_Q@D=+U_+M$eICAKU6LwW0 zF&?_&k2`DXIC1od6+;qt`~RCYJ|?Cfy0G_<|H+ZPN=z8G;_#id*%5ypxnjV61DRm| zn_i&YSXiMo6@1dsLh4DfXsDMY8R_!Q${k?mt$%^TLXK#CKMTu|k>h_#koQ`mT>tFS>J(xJ!QQ_}a65#HN*E zj5zMx+Xso)sxR&h7)01n-^Ni}(kjN@_`f114;*3|H zY!Vl2TCsbh(oEWV$YFNea*}uX)x42>NinPWzQKOih2$|xvr95yYbWS#+ z)4;A@CykQ7)=5gypAf0iQ2<^iQm7p;wACRuZYI~<#X%Ubaa@j zpJZ+|H;X~jA39h(@SXoJ&942#bLPXN#nsbND*V0tOW`4p+QWU(#UO3PJJyTML&cX zCj1o&S?hg|3sCH&jLK<*ssbsJ4^mq3wAg@T7aAjIcSD~;*bcld+6l=MT+DfaSahDT z^0b1IQ#X{yinw4B$@pPg@*p>h1KW)u6V*I)Cvx+XokDS7ok=#?1P~#KV^8 zh3tA0Uh5+Z5QN7XR40-p1Xe1jRbbeFJ{TDR1_2{wAxsB`{K7g}@?8k{U>s0kNbsG| zA#pxg`{AT5LuCo`F$i2ZgKT(Q8AiB*K!``s_xUi|#n8;99h0;nw{A%+P{^q@p$uMJ zSb5kHl9XGo;q8Eh37op(T2=_>E&PE_@_(3fAn>-$3Zp=_+%Il*A&E&D1#$+*?#=<1 zGc|kgQss17AgLA4UbNd-jYMT+m9hvSL(|-xqQKJ^Jt5|T{ z1*~CMnS9!52lMO_52SOYRc3~9`j=(U>@IphHmQ!hr zZD6C?lv$rAXXTMiF-8+Nh6hD5$G`^f=&@fwM}Mbm7;UpGA&tDirs9vHH%93pd{8E%hZ*aecbV2V1f;h*`)+=tfsNw5VHhu z1;Qi_gDjgf9H)}c((@&s2lSrhQI{=yuwiEQX!zaNQ_ckJ!8(=QSGMH9DT;&a_92Cw z2Bk!AYqo4TL45q#m8aCtvHCeyKgViBtok|j4-U`zIaWW%5~WjS(%zN&_ zOMmv3*#5T%MwB=H`>L%C4d1Bgp&z}ys@Es&p>kpSs{5WRqCpWk>(X{)HZ_7j*g`<1 zH*^m(un~xd8fV{;e^=s*xcBL&ZrZa5)ou*Sm<=Z(bjEb35+Y+k#EQNw#o+Xbxp&DY zw!QbvQ|0%bdHUjcea>xY*kzYp#2ME-b+DNJ!#kDo+LKowac#pd#O4=PpWFo5qiyTZ zYC9I(m9Vq9il!2SsloyqxMGv!6|Ja@G2FnhWqMG{8n8^m1_=`~Cg*#9UOie>oM&hsG;4Eg>@0jADe_cJHNzJTVOc!mMIOe6*yB8$8 zIJ%D&MmU9BByUON7kVbDEgDChGEArX68v+nZet*)s|nJ^?ttVDfo&LjW-K;evl0^H zscla-6f~aWLxLPAG+c+-5(Zod)fpw5=r*;&te01_OgdG}tP^v6N_~68tE;_&PZ&15 z@KA1=I;N1o$G`x?q2%*M=kO&<=-~3EE0&>hKtLZch@NAiO9c?RN0ug&QwI+8#87Wv zwroiGt-bDe0zOelilGx#Rd_uO73+W!;!Wcw*gKiWHAabIPW@)ee~XbMv+geb+rHw~ zpRXQGmAY%jt;GhutsF6H#1Ej9cD?RGT$oR)2O=B3QjjcBd`TCQ%wd~3L<<4{Y(rs)y_ z?S`WB>Gq-JL^p178D->lRgd6!N5g~#8`a%6L(RqLllE0=P?Pi1@*$yvB$Jhm-5}Pn zB?RzX8W8BFwzq+=%>7wIA**sYl9M%9Ad78g)ig#CZz*f`DEJV$55*HcpJ@x>UQ0(^PX&Iv|=m- zm^31kY3OKu%T!}_lgQ&dby7Rx)MGZX`()RPbpo>NVotqU%Gf#c=c^Aeq(uRK;%2p$ zu~UuVdx5CC3&@?u7gu+fde!^-%M3rmNB2 zgaDmrM*jsnXgl*-2Ji7fLfQoC2V&;oR6h{w2jUJ1u6`h{o=`s!>j&ZzDSc-uZU4s} zh<17PDQoW8qv6>at@(#JO+gI#!$@($n=8pBszGCH7Ty0&uenFG?$(>w1dei#R`-&&ddtpp@ z_SW@p3=(}ixO&&`*Pk&`l=tV}Ui)-@bq{gxK@{KEUly;rnBvzD>b%_%;qSROoYFa< zpSW-<#ibX^;*_-%U%smIfZZEjs@XD%H+A;^#M9vQyFVO|F6srhcYfgX?X`=5;+ojvTKix(XtnvdL^d6W9-6=TGy+dF4BoGboH zo&VrjYmeGIIOF^Boga2SK3cqY^M*0y^M-8rUO&-3jpBsjh7U#-4Mz=P%q1A1T>QvB z?0kOUTCVQvj&FyGG!)Kh%Dzc#pF4lQa^o=@u02TndIgXEdaz;hp5oqs;)ZD(4(~7K zET%a4mJQeLC-fl{*DT)P4ipC$DGpq@;ku!FEn1kE7I)d@f`x~a?|ptl|IZeU5RbM= zP(XwtX@<6kP1FjEKo3L5!lGDNq(R?}EYiH2(?$B&9vfHY-&);9#r%F7KPvc`8x`NR ze9MhUx(I6Aa~xj*f`A#%@oOgCmv7vKFIEF3G7`qk2hQui4zCeF_p zWCA&0=!WN7u@YFJXStT`N44!Cmm`3r*kguZs|;zn85>p*ngAu-z%4iU%YgPcxc)6A zP*sc%hAnNLx@%h=kN{8)rdn$W%&9w0ErB`JiUp&VsN#v^HjXZkPTQno1KYq%4(!CW zC}VN94b$>ny}W((mg&8lbW2k(25G#O5n;1bl-LG^pn=X(ok}a3_)>E)F$bPB9byxT z1Jw&u3|!pliSc`4`J6a(8D^C1I_`q zJ7^#A`FLZ;CzV5wzG&mfX7RxVlLnP9U9@rhK@ESX5&C}q%*GL)ROo9v>cx%aqh9>R zvR@ZYAt-S$vL;4i;;`L4pavSmk(;{LtL#phof)aMiSu{fpacZ1vJ ze&a>{zRBOW`1@D>UgGcD{C$VN@ACIO{=U!O%ly5<-zNTE4sk#H`Q3VC>fv@y%$|iw|BnZ#CsS>EzK6Z;YTzvf^ znlkz%S>Inyq>^u*EQ>=!u3kJr77sp`;+|*7V#mqc@bp<*O1%mWF8}~MMA!=rMzNrwtddriX7bJ1o);s z9*V|+{^8LyP@^H9ODXw?K@mXfL<}zGRIiHVFKwAn46>^xa#;aJeDt@s>|Q|Yabnez zLMl^9Q(QBW-a>2v#3A?<7;*7X=@ysx1OgQT8`v&t2`}wLKwXiF@iF@4QAe*t4z|=V z<|Xw|$5*M#TNDK+B{=v1+0so#`UK)$%&9t+gNt5vwWMOiVJC1bo-aCnzolPOA(hE&}AfNpViq6eUQ_;?j{pbKHBYmqN;^=0%F+Jm@h zYkrLHoUjAOLobXq5F@5$f=gi(xodcN>iDfI8=5jJwuA&M6woxXDiw*-cm79P4n4wg zn@y_*T@0ke_GR*J;NJLlO(#@v);eIG%~-KQp+3QMLL6qGvi2G_l2_-WfGz*k+`AfP zW)D`6!!~=CT4r~TVot}o3C#H5(%d11yq1A^I7rOzv#d`e6G$pK7Qq-s=$n91LRXDg zC?JNM1T)?hC&N~2aL}PTXn-Va_C=d8i@;ViKa^IC$Cq^Jpo$tq0a^Nexk44NEySas z@F}4Zq4Fdy=86tV;D1*AXpM656>tV;)}6%39QExjdlbCbje>ws5c*1Kz!H#IwJ@_}uWV{R%|3C@#96V`_vT5s4IAL^7J&IsS3%0F3Of*ctFCCo1fajV z#4428dx=rVsX9ni(=eyn1ZZT6!xnU3T{*K>>wb4m$EjTa8_;!`O(U)8&FzO4z~cctf_cLOjt1Dt zArJ!t3Fdwu+?!e(7iBQ2HbG~=Bpi|osLTmH1e5_3i=Ej`r}+Fsmfqbk(qg4@OqgtP z?70}HeKt4XdNLYLsOv%Oq(@**?TS!VY?)NZt2kMOAnG!Yx)LUV~Ngmp_845lFL zfHA=+m>yg)Py#U0(d6x81P^H=)RC8cAF7Xtunos1?!@!UXEaJnQ0T=vyNv0DY(Nrc zW@*r!5d#7y4q}kn^_N{WC=-x1g`8T&jG4=hENGx_5*32T`>T>1o)Wp$=f zU4l8S3X&z*YC3!@CW|?5g4QOGMC|YC%zU ziJ(mwAXU!0;1FThylP3gyyMMe`4~98=K2 zu6j1|7(;-B%%Nmr`$ZQ*JX7PK0%wb$0YaAKAh$X2F>Lynj5R&-2w4Mgnx1tNXD)rR zp$XU``nlXhaG5F`oDtcP98;oEIV;O+50q;!r`8nAR>-Th>!>^IQ>sz3yi^G}Mm%BO zfX7zZ;5d7g5Iep{EMqE2S0HSeT35QGr1EC=(DVS2=1j*P_F7JltRAxxc{2%X%WfDM z+9iq<2;026vR7C3>dM~EOcHfvudeI?!!limA$&MS6B9=?csl1*|P=k?A;oAm4AB0*4z3v{7a4Zea^L85Bj9uck$9AAC4%4 zy#3J$1$DQ7m`>Okr>NqUH@BX5pe3^h%UqfknS^2I)L?8KXKIl$j>K2WxN)jN0KYcdRX@ z8txE-es^cL9L&jFS^uN07yj4h%7AWj#S|Y8U-5ad`n9cRi$j01b+q{5ek=C*r)SAY z;>Ca48fQEQFLDZOGTW% z>E_+Un^*jD4{`CnyY_GU=!##KKf2=IKlPst&xymrZ9i`Kj#xW=+h`FyvTcMoD%y6O z`1Xz44iFDU+op&a*HS9R+a`;Tua?*1ZD%(8KD~YFv~44WdJ(s;x{t3uzJA+oqPY8~ z`ibc+Z}$<8%P&5>hA;NIc-y(+rkuC|+x$^x!2_u<-#( zO_y%-#J6ss#LtF{XD;RD2{-Yv$K$oj_+s%~zSwi^h=HPX*|w9!?ze9{Q0#sAwzI@p zSMbFfoqO*k?!BBZnrHCw<<~~+D+XM_$20HXx=k!+Aj|pBIeC{ua9_NUh5}& zW5>12XK?M6WnAmLYTLeIi~M-)b$p!qqhAdd7hJ{1eP!43?U`bfyzlPShYb+N{{B~e z#3@(v?aWKLHgWK;_Yv#m#|=00@uRkFLxg<|A77U}dCaEk_YqA$d$*7Hvb@$Ldoro* zkZZS{EJn$0n(&)_8pX65f89rvujQ6gZ`^i}7&Gjj1QT%Xm-r{|}=Gg`FDk2Bl(_^VsCT__$%e(;rdn#3Jn;)^xY z`J(Z}FANk9p2S3Kn8~$+?&jJno$m}2H_49!=JD~3nbaM~>GwT*@&Iwq>+kdtm)y#? z@6YC1(!-nO$3Ms=@aJrKhcThl|O#$@^~S@#ahT`1YJ_7l@;$QA%F& zraSrKZxJ8gxRZgN(?Th!{EEByqFIg@m7gv4mbE3nn0z;1+$pE{`n$LJ;@?HrFV30E z7yl_oHF@2a<;N55;bZfv+YS@w&!e+nl1ugZD_h2ikL1U1-onRU{E=v{SC(w+BksP3 zU%V)Hhu_|_?M`vB+%{gB{GKjena>x`$#?$vzW0WUH-4~ve=+sGZF`9s3;05jZ(v^a z-ce%Uy?nfD5g&ik^4{mgcjU*v$VT(CW5wn7@$n_OJYKnvX*TLMN(0xucb<51Az$1q zhiAZ|ZMTShWgk4fXxmldSve!77T$No&5OC^Wx2h)xp>G?I_9> zbn5NvCWy0_Z0i&!UdhKlEqi~8SiF><-6|*2m!5wABynszAHOHN#O-|lSg~1t4CM;? zeQW2jV*aN0_Y(IkB`JLXo>~iVSZ|||orK@CVg)DtdmcAlOLY6vZ>G!hq zeOc;|rJu{vGFf_CmNv-Jf5_4zS!(zWr60)B09pE;EbT8#&&$#wvb0c^%MnlDR_%F+X}^jBGWLY96hOJ!O5 zwk*9UOV7yCtFrU}rJ0w$A&Z^z;ybeRWm)>8EIlntyM33^%d)hOEPYd!3bOQwEFCUO z@5_=aOaCEDC&|(avUH{_Es>?Evh*iexOp^wdmQY?H-b$L?`>rB!RYegk)l!7k@hX+JWO_KO>Lw`bXojel%+6l3v$Ol`J7H)OL#r9u!_Xy$er2eDq4Nwa zX6P0}w;0kGy35cLhHf$x@Ef3`486?I1%@j97BKClw6hE*aAp=muQBvJLme4f!BAg@ z>i!q7Vm zoh&{L-~gX5hJI$q&X9$n zzZu%hQ1MfMRxuO~Xj%h0 zkpF2we=}5?A&sGm4DDp79-s;HijN;V^!)S;mkv~Sw&!OWEsWoe}Dg%KycnEZ*e^QcHK`KQeI7aR>_BS?pB` zt?LL>o;~?{3`)vh`9V~3U$KhH{tLP!^=5^lbl$#vUmv|0`+Rv&&J?SIf5ejiyHPOr zye(*T+@XA(hl>!3#87&qCqj)nl7H3UOK|ChD^PZZZy0H>bn&N{rf9^Ezvkz>Ad4U? zMlC;{f76?}&5l0&mjBF)qe5oF)I2H{pz=<=*j%YQtNP^P)Y4SEv&s56Rh?cMVcEYkmafCOs@e z`#$jZr_C4h1Jy5A^OeCl^ICqekH{nUPFt|rbR)mKfonBf!L)lq&?}U&%HK~P`Rcdw z&l!SK*4l$Cd%0A z8vDNop`{*-Sf6dK$|~?K^8gGdbFMR(nl<%=QTFMQ{*?VJ+>fT!vtU5(<$q@INV|k5 zy+UXJWmgR?L7^AGol?#js1`lQ->EaIL4UD&irlaWjMUWIHh;>zQZkGN-6~m1E&C_` z@PEkZEwpIL@d@>#<>xUEJO0hz@t?R(h$lELaHAIonB1s$oJ^{i9? zu2k_y8g{0*Wxqk?c~qNyEzn2lYi=l1ZJ)md^T_z33{3Nq&n^Dc%{Me$c>*o>3`SNT zRS<0X%fO#EAhneiqUwcOyyNqnB17J_X($%EuRTz;47b=!)UdBDmNLWZBIx_SmJj%} z`~ig(SPXMBJJM3d#CU|tE^QfWfUlIXykUUz%39J5uw*$4Oq1|_Ro;RXB4AbwGdy~L zTC(49cjNPSW%@eK(!sQdZpK+`)bkf7*5OE)y51Em9Vl+Ev$EP>!BWn|U^qD|TF#k% zSNkjRm`KjaDwaQxv#zQIi(hgUXISbgOLa>p6O}G-kLB}x1v*$0(wh5fMo;S1veYp# z9-+q6whT1DYjrFW3~*RI%P<4Hl3@AX06%}#f;A__Mm4bfYJhDU@%&0|r6v};0me18 z{HTKznrtbd{%B@7Zr~sVsspcCU_!VQrMJci7c6j#0Ko*C zE494U)&k47I6%Ws1=?F+m_&-FlO>RDC0NR+58trNG+0sfX#)h^W3aC8VTs6EQrcGq zcC{=u$h*5)ZWtiQFx^tsf?k$81~{vaWtjms?q@k`fYJRe`wYJxIEonYFJ!`C`v%&f>y>LQ5e$Voek?S|!GQ$ABn^2frb)sdqV4^ZJ?9Z2wAD!p~KcdLZQ5S02)9X## z`ot1tVmv~H%w#=ekUpLTRavOo&*pU_IUUWGGsuaaYk6X#p;cgm<<5!bS-McYs<6BP z^DVI30L4luSczgjf>J_0jDPO0a2Y&}qiU%~nXI?WNY$6xVix6J%Rm<)8Hh zR%GrL%Myco>NZPtgPXg{j5Vn1<8pzdJt^m}LU&lY8)V3>OBoZR{3*SE`3SXZrv=-+ z3~#5uQE+)gR4t0@S3ZQoKDLG{%kIKqJbl|s&hDs{r_UoQ_)%C8n$h7GOGiWahBMX} zm9vlSPxXn;biP@Pr2PFbWhW-X8m13+L{iTKmdz%IDt6HFfrVOL0Tc=?#`>;hs7;I+VJcgbA#E!Sb3xg~aM=*(J+1U98Hu!d66j!h#5bVyIwN zbfDV&2O9>Vut`%)PBa??n zVTeW=z52#dNP;gLP3dVdL6qJ-rWC>T2vpl`7I-RLv6|+vd~8%FE;n{>f6A>FU6PVk z#vqJNRJ6ZJavvm0X zg?H|5Outiz}v9NUj{`BH*)nu+lUN*!sfMH%NS zRHLWwVI`e>)e5sGl=viTPfCca7_9OdSYciybHNa>=lE8vuHqY8VG%e}#UxtW_~`V! zk+z!TIbH#FJE>wgZGID4V{K+VV{o2$&DvV$R1n|70MlQ$Vz(0c0DDqW2~-;2)_TRL z^z&qEPnFW%ioH;8*-F@%Zh;jWtL1NaGZmO#HH2IrW;BwPr)vJR{LCwc8n)`K9eu?bhzdt2dUO2H8}Yt5`LE7ha)i6D&W%d3qEs@t2~bzS&vYfW0dqf!&)H^6%R zMY-LEYW4IzYset$DT9LUbV00itILptIe?iKp&()R7NNM;s7a|KDpjV~Wi?7F9IcG< z3R7J31tzqv2BrU54M)FcFrz;2T8|nP)msP49>2mGN9k{CwO<&w*T?X<4Gn-M;S*R2 z!v6nK?wVKqeM3q{I&|ew8tFJ9k?ayF)B4jCuwpF2NJ*tFI*JCIh`ib?JLG}(y zJZ0xq)`wR=xptq)R!u~7{#&o1D&_31Qk>HF*Fz8^A6T{dvw3)h=YQnnoT*&mg?Tt> zw!%de#!-n-K55V1BUN71-_UtH57kRqVkztsOZOK(HqQ9m+QGD&Pji)&`*Uk$6OdAw zR<~)l^7+E*>jU)eQ(GyD{>pk2dC$JG!fDR@3KRPLgXQcjtcDwl;1t40%rr5G8?KSi z3Ak->9xJ%1)>1w?j!Qfd6io@+s=heB%U4==8D(IJ+p6qU zR-B?l#)r%8EjCzh=(wu4$r`IS zL!pXxJ~aLs4!H7}wc0ieS^7ii9YBecy5HxhdF4hR4@Df(pd#ph|f-7h&jGd4~-0}z2YU%qz zdX5#xVxh?BrjM^)i@M!wWLUtT4p`xCF&XRib;>hW57AeP^APK)ltX`OQo_+{xVS1@ zE!B^D%k4O3jW?=3x({BN=jZBmC}}2^%)ArUpA8XVGodwd{0aL&!>TJ>4qH!J_ZmD> z8suu!EhoV@t8`sI-5~vO+PY6?QJ8gXET5ji=82Eysnqp%+!^0KXU#TkRg2DBakM<} z0Pd4aMdn3JMXo>gP}$<1T(o|S<>Ze`TIo+}x%hgzQF2|jE;A^wq_Fbe*Ql>gMaUnr zR#8UfU$ZuYJ>ufn-D*h(XaAr0hs5TzQ{b z@c!Pz)c*d+`kldqC0$u((k=e7T2=IQUHTbYOc4alt8EAZJN_Tsj#|d>Eby^G&7=yk z8rhv|m80xpHjo!#$c`7cLFI*v#=JraLu*A+_MKXx`0tWvMu6Y{Q#y4vgu`2iP;CNi zSi@49eJ_IV6|0hhY`B1tOwqU;UmM1|XYCh_$l?$iRIX@2%ABrMd_MfgLTxY{!lK36 zYEeR$T2T}>qlkO)Pq+;uy?6%9bHWu{58CuTE_8=P+B%pH>z4Ucr0oL}ko~{eqv>&h zHJ%cJ<0A<{H4QVd`eoZUU{I~f+Uofr9aqlQ04bgEw>77PYqd*LWjY7^K^TNiakj&p{Yoa@9V}ao%{(=?_RADHvwDb1uVBk%+KNm|9m>nCU740w z#KVx5Gf{3`CEF3MdR!G-W3KXl%7;yb5;B#FXraR@fQ*nftlK-2Jsn>I->D zZQEX!SfQ@1rw`3b#g&XauJ|Xx)`3z6J1VPTuh_7L0fv(t3o;7o)X@FVcJ*zG4GL~8 zYEf$4y4CbW+P5LPEoD^g#I+&Jd!vbSTD!Z8t3rvJA?P_aJ2@~r2sirM#a3CZT z$9s6ZAJvUl!;);5{-=^?+Bdasuv-4Q?Xp2hVFwx2V=(K~jij97wm_w|u|d^ETHSTH z))1eGc~n??Rso?rFL=EH3i55W8vBL~#{PNR(tk(WGLvoaL^xBWceceC-9X!6XN5H^ z$J+$0R=pSffqFf-wyqChAD=(ySk?=}>v?JzLJI0_%Qm^y&%Jr5WA1u)F4Y%YA3Vm+ z71qy&jT~SEi9yO(QLpw3J6BwP+Ybg=EMdZvdWpK%`^EqpOq~>jsl)c1oKT-Ui>)uK zZwJ}12@7S~a`p{Y)T@J!81>3h-X6Gxf2VSXg)Ab4{M>|g8VW7d$v95*eZiEi9B#u& zf(xoyBWyU83kW70A4J@~bnvH#RyTBd`Mc0*ogzLST3A=X)?PD&fW3)PQe4E`V+jpk zu&E!t&x$L8Z6Zs_z)%Fk5g^9xf9TDx~-Q1j{d}!YJfLp+D04TpgFc-I!Gus zm|9e=TT0*hdwgcYF-@ejobN4400&c7*DDc}r@i8@YG>LsgQ?D!UP)@@LR)V`ejwTU z8sPii*t!^1VHyY1w34qH1KVk_4ZDq0Rb#0Qd$fRHYHxs-zPAnap>0d;<7mSw6wUd~ zd+dGXN85WQ%JFyLj%_tBBamJ=d1qa#AFIx<<<%+#{@%MfXT8lwM^o3rx5BkUIQYsb z|4p_x|Cd1NQ4K1n>}=b5LxR^Ashm}>K`1RxY!E=tavJ!lJzEPaDaw*wy+If?U*iZ= z_kXfsN0xTPpS0D3fLI!R5(Xen!L$iMX*+FM(uNqSbrNoJ-oyr_>FJO4{nhn7HeA9> zY3w{n)MAB(uTSqb@T03!>%)lr!pg~H1#+Cxj}x1qXn8BN+A8S)E4vi;I^p4zo6(>$ z{Wh*auo`>Fh6_s}7Y+)A9coa4PH#lzVMlE^dI_0(r`Q=Y*uA~2Pc4tz{8i!!+j*lM z=wxYw3Eiqk%l~Q+spg)x{cEDTTiJZ`YeCcRwl1__53E({@3!eC1|#T&Yqw|ksOYhm z3ste_Y|C}B!u?%=!Rfs|45w~$8kQ%|lX8A4?vf23Cgy$z)<~I31Bsqd5ecmSozDP!k5dt1}iSYa7QmB zT&u-Ue8on=>KCgGr%}nw?&ZWcV!I88?ZWc><+D6xR&V65t~z_d#j{Ni2%((*4Gj%L7PsQ>Sc>Zp?c*p3Ts%t7FaCKc%0n$B=l?O)z&z!^b! zLl8<+XFZCgO>3h3Rl*bYWtgITp4qZYG^V>@vV3MJJx+`{d1?PKvByEZn3Y0vV5 zvZC!}Xu**tp{lu${U?Kfo82H4Qry17!1<+u$}3^F=(xJI2zWH@~dCFU_1*xYYcJxFFvYx3wLhbo42vYxs z+i@4BSH!O+(1!A=pp+eZ5HfLL_N)D6T3*mJmTK;>hpU<|d%K{}4k%t>$sOhFe;O$F zdPlT9&p@A5LW7+H5`(FKG`^D8jkRwzC{KdWqNj0oY{VjmpIuPN_w6MK{{XL~imT{t zn}Upc2GjEnE*X;;NU`Y{gcC>XfvQba`xb*omK3^*Yv?bV`O>*x(eyUe|DQ2RoRSzp z<$u5scByIKBc+W#CwvLYyiXHL>E>)mZTl`mI8O+THYbLt)Vg+Vrl6vh% zWit}&*#BZf&)(g&h`2O37D?Wl4pzB;N?28IKG)KVDfh&k;iD=MyVaOAW@< zzirV$0HrKFxt18Bk5P1cJGO2S?y2DlqJ;VO5K6Tr#!*I@#Nt@$n2Krnn2P3a7#)fr zd~_+xJk`jxvjrXk^aFWVvK=QGX+IA9I5&w%SWtYPDT7H%{RiyAd8n&*9jG6=+hJhA zX-p8>R)!o8?PXO&FFSS=k%8|IWw}3Ps7`Nt0G0m-ovPi(4&x_eSZ2M7tP6<&G(WCo zB=!Fn)78J9eYe4a0j;V!^|!+vcwSd(-KL=`b$}f%ugG~pQQJcg(gzhzRiSpOk5lci zF2erHL7b?#XKLz@!nW`_R#S%+YS43?b??-C=~>67cvcet&HVc9BD$n9-YFbhuNtW- zX@!;X^C(JR#WMpnqWFPL11K>R-)p~pw{YQ!4VkwfDL~C1V}}L(tRC*Y*6Zi4N#pDjO+Zp@mS}~w`41z5tvDbRbZ~^=G7|cPob-I$XS7^_TD#p$3Q~h6 z!Wtm^Om91G4^JiqQtBSpJ} zcgyXVZO1Mth1tte?m2cmC=*;xF&hdbddooD zbh+=q7uHkuDk^iW{j$LX(~v-W>$ml%zdpliIK1AD8#gKbd}?zx+oLFVSGz!UY9lXH zA1m%+6AZwTX=XlQ=uF9rYCfmy##X3Y!|9(?6Bjg_q3JSP@#zD!{NzjTT@|gh0z!G z!jWL%QR?)stUN+_UPh{opWil6xsJ2XB4im2WEQ8oS#6CSwbDuM9#56RRKc+nFzyW7 zqvwqiahun-4OS!078wrJ?Y!Nsb1H}rG{&9BP%Xa9mby?2DDOgBU-k3VLRH`;OIWfY zly?JfUvhol2*9nS9Vh1^WlF1%yu!I-9VF;rd3?fqBaBiyz7a%8*D+TKdvPp(?biRJ zO<^P7s6<`wczOEXE>tNwR=`G-d{J96mcJ3E7F)UL(tp_xN3FG2q2+(KE&amodd<$8 zhVbwMUGnmTQ$k3K06f)f;ivDOrCo)SI&B-4P=VWC$*7T6vcgKn*DVo*TXI8CH+$Ov za=AK2sgw7MP9RgV9@>4gdSO>B_Lm)ZNm5pJRcS;{<#y$C`(EcC-nfM<#z$}CX=oZY zT$oOwJfDYz5-6D2s9hxe8-ztM|A|-URO&N(sI)O=`#c9+9Vz%+-EzCMtEq1IIN$&X zMRw+;F^=+C1KI`C){(fKyI0Ll!^^;Kv7uSj!*~GR;q>ISLoydSfI|~4m{tGOk;NrAx~o02z8>A1J`mwkQ%Z- z>5RML(w&3UrqT}Y3iG-TA;e_0zKp{=iq98z>Nzcr&NiDFuFgg|HW(t=l_t2-u*~PQ zQtIdO4(uRO8IOpR9%j8(rS%2KE@VFbd8eFBi*UVv9 zzrr!v(ZYell{5$+0fOji9gK4N%+4jUe(CH-EnC80YL?`H_Iu4td3|UNmX`@ny93qe z*B#hpeB&&QvMN{-`GeiK; zAviyKR(-mAan-G-<1d56kIN}gwZf%JZ^sioQ+?dmfj4Dsd~pt!pD6Bp6P1+qb5*9w z{TpEhjo`Z0x12OR+nxp?*Ypk49yxdlxIwM zFsqT&tyoXIA1ow)HJo)w$l{r$k8t2aA>#@+N7&7Ubh?-`l2Z5fsG$BB<-iA8oxhA7 z&(c~s11RBf&+>HY*B*ZA=4i)g6Mgj=p32}?muXp_dtb^Vr#t4FfZ|R7mYCL0a>S~z z_Z;{2JaKU1$2%f@ghebrvruXtEatoq92ayx>>E*(xxZIkO6}Lnk4`D5`EMUO4hU5( zhcl=PKu@D6Z&yijw;^r}Ot#k4?Gf0_d>_3?eULBdZ%OvHzq1Gve6`N6sCo8A>w*H3s^ai&6ZaL+E_>$4sF*@|;B%#JEL$cMim zN?quvt301ME*qk}nYHQjYJL1EX?bsdntOg|psM{j8w#loUBM@!RlRG{Q7gV}^~-c% zvk{7HHsxnJYE!2Ty@OQxmku}?LSeZImBA4g9Nnx+>D0Rv#r@nnMD5LT^e`y0mt(j~ zQf}`))z#2%SO=txOmt?)-Vqcw{I0(m`W?nrr@*M;%IaF581>E)$66zkwN63nunll= z7y^C+1tkPyG+p=Y%WkX#7r`Q2#xV7rz7^@+mi_z{t{uLAq3JwMxU{io1}hoO{ZPnN0;_(jt}u1%!Nmnyg#aG+a2)6bes?TSRGhkH~UrBugNYc$5x%J z;F8}rI006nDF^yR=y$cZ_ON>WGat1*|AF!GU!Y^h@z{bI?S(~n`js_QJ>1I{A-4>c zIDU1ULf@6eGvOZl9k@&bh<9aquu9htINS!FcM+dH9pmrf27Kt7fi(90H$&;k_&5Ct zKl}((RS!FGJdlF;K4vf`%y~1IrcHV?nzZi+_|wT@Uk0k)M|qBgv3X}0Gch6wRr=$R z>?d#f={z4FbL=vB_WI(ZmDCDh<<+zkj;A_B%|GeD0|yb*YBuav!nnH)Roz@3>#cQg z=eX~TV-uZv#d{n1#qW;ECdLcZCW<=EeXF$Ud(MHQ2NU$iZJ{k;V!ADTD~$Fne5)*_ zoWr7@c!76q;gJnYCI&qCmm-%OI01RZDrnzvu)8%id~OfhQIeaC7OP5y*cY&u_-KSa;| znCG36f`^W2CdMPlbHoxrP__VkpiGIOBM{3C1Gc@b?pip)A5gRU) zi=evEPVB_DQi5sby+tVU*zuD=;VWPI?r#{Kj0=NsZ~oMQD<&x;?JcBG(gWO-cucs4 z{;R;T$KZi~2ZPu@6`}r3PWWbAP{CUH_~48WZV+qadZ_j_l)_&XV}Acutsf z&QuM{I^nho9WR=LXhDLrBo#D8@w^78XK$kv|E%>`>?6xL;XXk@VgpzQ9ov-^tB53RrEtFhOhWM#k zuQ{=n{)gOh+|5UL&U}$O8wYBq86OEVy^Mc3^k<_QHvjep? zJ1f(Hw$5ydn(GWz)7v?*7t~6}rh%9cZ;@w;cZ<5x!HF#jxV{M0*pAK<1}|lJkR}L7}T{pep@QXfiF8b;X_ElLPnL*h1Y>(%Gso_v|8QG`G-NlokEaW-osg7 z;A|J#ITG9pU=fFT#QfZ%@Y(n_crV3?yHy>MBW%isaCJauR78>2RdeT#;6l% zPP{e+C=Z>22zWipt3M);LVe!$ql|Izx!a89Rtt{|HF!$lCkt=CO!IFKXO9m&gU0f_ z36Fe(ea;h>_)Z}04SO3GSL2*8|H31?lg?Aj6RGCE@5E;gP{P&w6P(*kR3!_omXCfL zCPJP5&BD*{%6{m~Ffk}kWbjjhMRzNbR$^pXrG3PcD-=A4Hz+wXMj|A|x47|a@iA+; zknvNUVCtOd#Pdzxk@!{U?<3=B^BTOn$A`c`HDM~RBVm+ZEun_yFT5CBp5esixB50b zYdLJqnt`STIla%v?#*z1WMUk;%HQTux*Vl{_ins?l>6;dUQt4pD->x(Sk$QMw9)Tf zI3^D)`0zKIYZ$U0$2r75!9(;psG;rwOJy2qc4nKdsd96iuCa8@FYM9u@lDQ7D=o+-ZgCaFUGp19#{WL1osLD0%G<7?*or@)887e@&*hzP}qz z*%#jRrHo}`%IS?iu#g*;IsiK@0J@r2V-4ge9!b)`grGPLnlXm?}TR|JYp6_cG;;ofokQC-1&%yFv$|7W$qgEt6Np?YWi!96K)1@!|6daQIx%P zT%0<-&WXDvp~yLhDJpjZ?`V?AD_vdNg#22s=F??)-mJ|`}xB$F-RvUOWbCj2txhr532 z+J5ILousfi!i)+RK9uTQ=gT*NeA|D9D#$}fKe zO$oZ*y9Q13^v0TJvd?+v1%u4PPyHUr`wAU@A|S4X8&b#FQE z>!^GTX>r^6R7Yi^*FVB$l)AMz{EU2Plt^YTQ%$it!+Zpl3#vS)6ETTw&eBxYg$_Kh zWAiVhDo_J;W{d;g{WZo;VyKnu~iydo<}v;+N0Ecgkl!SQ&QIfPbR5_^E53tHxhDQ1e{Z(!RGx-cU*>%ol>1H9J9g{zIuUSFbgF&7LOaQ!!iYF%;H zwAtf2xiEqC-oXTl)w&%3u1#s))!i-71;qqz zoS|JoE;vGh*M1p+m6kV~QX;F_lybVVHY&+2T(KPrE~X+T%+(=lr&r0%VXhBMKp_fC zNJU4uJUYrJ{AC>{7BfZC^<8&MQ)mtberTji30a|{A8-*l0#c>lJ`!r>@Ggf;FGH#COx5l0j>=qlu`e;O zG8UF9sQlEI*vWfV#W*mCcJQhHaSfcO!~Ca*Qc?t#Po?TEoRgTW@Y6LIN8!YCC4+O? zkQrgBMQs<%*U3(oiU2;tHi1&0UWKQgdH( zg_?A5O$%4B0Um5wn0qtH<>y07E@3ph!MuElT4PAwy^J9#*2Y!C#9+93t*vX40sh*~ z^|k@F?BE(=fLq_-nPFZ+gofg(eX?toiLx@VKRpi&Hn=nE$ZX^5ES>BOW#6o(cHxn) z|0Y-wFRUYe_67ay4<{h1yQ`)NP&lm}1-2mOwUGp(c7qOrbb!{1C zSiEa_Pb_wAG{Ct_UF{9<&t37mht3;l#YaRZXR?an&+NOV+v`8{oS2t_}uRe4`6jw$jk3%{&GIev$2h zqtNyj*7dEf5frf(S4fk#xw0vLuLCFCpIq-CxNJO;zo=P^xGQ6;Zbrqno4%+R+ zI?!<}gjdwXT`pXf2_4H}ggUo}Rh4no@)y@a1H8Sru++uVt_o^+j;obXs^b|~C3R&# zH(jK-7PxAvfd^fA1}+Le_b^XU!SC3(5MA#znsF3sdF*9l<5KRU+(_UNs^&2lTr~lY z9C!U}fD3dY^CA4K(FYoqP;X4B`2>pcU!a@B?V3dtRD&GnT52H$Y4GQfj* zT%j;jy5$;!XQ(V;rXqz*;t5c#?b3?y6*z3U;}M>$zF^t`cgF zoApze>U&_Fbnw<)o*m@k74Lo4Wu4)n3qP9>@V&p;4G{3@KfFx{_{G1jR0Ayb#5GR` z3Ev9KsGUz;R}Ipt0^S>>KxvaZ-QfB*60r%-6|BVTZXY)mvCtEXyD_{1_V;x|w*=hd z=Z0ApuyueN8?t~W1Kr~cuv@SjHcfK#Lfl3>)YMRS8AI6WaCc9GA-I(LV*^AJzB9n~ zFT3$YMxLo-_)k@X>Q?RdKJ=b9MEpSj`RfnVpUu0Z|}vHm&aNKpiLZ6ZmM@skdslVYY!s zsHHXCFk}MusO{csfEDYyVYVgr?|SZi2KehMZdh>1om=0H%US^kH+16#hJe!>yWK|a z^hEb{102`PebWGkz2?4RfZbZUPZ?lBD;_UMh*URTcjH@0#bm z?#^uMu8AL=|oa%XoxA07O>t9!GN+qJtp z#mLR+>E3PR&g<>QRj3r}-q(#!PXcav(|y^7=)R9{u(8<3B(P?wRCgDO zs^Z)Mu|WyAdbk^J9Rz$l!u`3y@ZCuFNh5dCyY8Qi+@vvX zyOG;`oO`E{>-)a@v5{Nq1NT@1T==0Io21BneUf{-ksC0@-O2z5OmqKZFuXn8UAdUf zyZBT01ta&EKFM3IQ9f;&BHUxns2( zzx9yJH`lu1-w62EI`?z~G;eUjKPxr^CKMq}Kc`bOu+t=Lb~lBSI|Dn%fPJMX5%?1y+vLAG_A!X9FZSE%OeNzjH@p#Bdr@2&ug~FsMhr?B z_!u32XPpBnLRrtc#~R?s^X??r7S7#s(LLM%U%ld9t25{`Tm292V3z@~SP}y^;W||R z=pe7z`u@5*!Nhokx_yJqr+_nVy5WThSm95eqO)xEV+*Ir9muOsUP7;JdbvJq5yp}uQ9xd?Tt0m4AfA76DF;Xfj4~UZmiOZX;4O?ixvcz&@hyY zt1iCUN&_tBuR&KNcT<3dhus3657NFjNnqV%lSI``_LY#j$)OTYH#t~>=_dO~B;Dk2 z38R~=$IwmolK{FX$I)|>i%aO-u+p1vxq`I>Vu9k;!3cQJiDaq8taL z1q(-`1;(LhA(P|KB9nvAq5wyrO%9asv(r$JgU_NB9C;Qz9CjANc9Ihxi8qUcgUy1* zk!B&3!_1=F9Ag$V4loNEN0$YSL(783ab=SOB&aM#h9k;?g~Q3BdJZLvOpYU)Jk3|4 z$bywa$RgqRv6vtZ9*YtjITkJDu(3!uW^8gz2^foJbF^3t0*8vlq~GAAti*^#ISvqu z0vsI{35SM-XpReu>NzMZTF4P$ll=lD9xQsllO}~}tt%Wy?!bjdaC zE^QCj8dl|bXMw%mEb&rWAO6!1e}>DnqD+maB~a!Xg+*v(2JnC zaG55~uU60RrL-FOGhAkev;O=PS$Fu41%HOi%y9mSEy!BQe^%ko@U)-llL&2NX`U4( zr@KLUAAg2p*y*pE-_@h>rLsH%(O!< zWM!ruDS~M~=Yj?u&AR^ItegLv zh5q0E-@ME;%YU=%|IKp!H_P+ito#4X3cgb~0zCgEpQFISieM2%u*f3V%SEuVMX+*3 zu;?OK>i@+Q8-y^UsE_5KSxop}$~k z?K0E+ieQ07u#h5HSP`sL5iIIOY{I;d5$}#2l7fKa5#`j&@?_NS6I-1Et4mRUw69wVoy-N37N+ zlK&$DTlrC!px>`uehF57DYcH%1~&OlFS}n)_&*{*65Dhn{J#*8{Gump+JS|@kPl9C z(WN+TvOoV51mvxwx8k*#CMVsD*SeSCDr-YbUsHG$?OoF&np#DRHf^Ers-OmT=OD~V&MI03(^XZns#czV?^d&#R;wf% za1h(UE)Pz-L_@2gh61&*n)a2+w3u4efS6k}sD@Ux0=sqK>;e-ySe!c^%`3ptHed{f zryZqLHMCl$3v{LiobR*bQ&XF4%A%kD zjpl=7T0^^PYZa=pKgiOe2f=q}pMpPaN3jFJ#v3J@!d?$f`!lPKR;D6*iOkw^Cb+_9 zF_-Rsq&0x89t^*c66+vG|8N394l2$R1T~H=IS&OV^>o|)yfIvw73Pyi$+I7mS3xDkp{Zm(qp2j90B#WNt z{*QR2$Yie+345hT{?!w9N`bLciiC{<5_U?Fuv3bJol+$HUks42Q;LM0QY7q@BH^tC ziHZM{B2xBBk+4^aguPNE`}E{*J<;@JCmpJ%b(S-lS&nFCIibyw1DaXRXJ$E`ndNk5 zmVa+OWlb0DTG<+np9K6hO?lQ}<%PglZvmCn2vMkMVg?3m?{W#%*1G*r)LEVCT3%(8&Ya=a<($d$;vE_jaklBW;s@wWi6OR{mr8HX3=u9sIyr#*evHMvmB?U znZ++Li{6@L-!hBV&Jm@ZBRV@rRCbOWqvnXh&Jlezi@MGcZJi^^I!APMj;QJ!(bPGj zsB=V5&2n~{BT70)baYNR(a|}gqGmZa&5={n92}Z{d{s*^9Vg%VTC8aURjH5bhz&GV zPcGKih5~EWKpTT(T>~vGUjBJcVmx-Do0Tx2;}=d}m^Q95&_go=U#gzAof!L$%G}bzR^krjM!R?ga7`G(b z>9r4Vq6vXpkernL`Q3Ux{w?ZzJ;?Ik+1TEj0*jDJ`VOuuy1{J@yp0)1La3tLFBOL`LB zQtOD!5iK!HOKELOjL1^D+Y(J#N=Zo=w52pF3B6xR*OIi}!BWq!0XV*152TD%T21OY zEZmpIw9plRg&y0(Ty$-Q1>i@cyie%60+B781 zT5D5~>}suzL{h1ZHUr6zZM651lxwTKhh%h>HiI-vZRp z2j41MeX3RD;N4ZJ+*nVrpSRlY+H3t$?yvURU?lxIXoHZb4%%=eF>gqS!?G0@- zGW&MK_Uodv9iexCq#v(^pC7oE|bb>!?Uv?g7IHouF|u6GeyVppvtSU&11 zEQh;d#@10-H|WfQ}HxsH~0(>fz@cEgOVqgT5_L)X!#-L)P_E_Rp9m>!Zjwujau zUOEtU5F@n-fAnQD{!roM!1?L{u}-Sn6WwsqjGkzRldkoI1Si$&1+{h3%wAAiWa>%7 z-rArL`JYua&O%NwuG4QW!vsjc+CU_=`bu@v`$G30)AGI;pvUx3PdfI)ygjDue%df3rQg(gv8y=hO|3Jh zyWiB_Z6(LO{%L$t}kd|R2;tQ=~3 zT8?rjqbdZstw%ZUYyM!FJru%j)03gvL?q*f31%Ax%Xpjm4MzuW)8XNQHF#SaTU&&c zs0Lw^@kgKVuGN9+vvQ2JQbwj}W5Ibj4Xf%HwI3yz8l|NJ ztNt#=WC^u@7prjz{rIkyh9rD6)L;os9*u4+A^T_)SVH~BU>PoHdX}uHC7v?GnGjO(>tBWl&*E6^nnQ_Y3u~3+7ddIt_`myauT|L z<^7)C!8z3ns6IG+HJp};;AGve;kO;>C2%q?`dx%nfe|^Jck_bVK8!N z@cTkL_C6Y(LrunO?;u$*9)>E1LM90I!31qohzQPo2Nn5_!J7?UE(iwux#?gxF2AXd?7r6NP-JeL!QUY9;)#CZhP{ z59#K73=4vICV^`DNSHqQ2nKBvJ^V=fkm6=wt9ow|8oG&YPQqMlq8^i>iks;0WbJ*O z{MyIb`1nmc2x=yTHks`mqu@C}^)Wg{XFkTfo}!jhuxL-wk|~(GQ{*=ly*)+gQ&GVw zx-nHU-iO!!v63dvle(_YgD#>S^U=l!G<-gq^MEeQhh2L>JwJycJfPE`YtxZ*Um%&M7Qom& zpiY@u29lGRf+c^UO$>g(E&lKZD&2IOmpA@<6v7H}2-o7YF9j`rK#5;M!yeFV zgvCSJd|*?*mL&Kajez~|jW!!e?QgZYNYuB2wfqhp*-QJsgDbI@S}hjr;9~d?d#T+L z)c!RMUxE$!Yudg9yU5pgbEWkQ`I@`+abz+4C%4FA^hGZOKShW=TEA2a1GN{AXbbc8W;A?8Q9Il9zSQCX3vE_aB z{+gW2<$9s(3Q4xE&<5+wt{5=4i7iI0dV`t6-9-%>Jbtj(r4WI=V!?A9Jlsl&c~|Ii zd`&05msZqXDarhm(iqoDc$!~R#~;x9M>O&Wcmj`T^AFhEAJLN^;AA|a&Z|J%Lhr7E zld%Os3*q{0p~tJ>WNe{!KT7h&kMJC~(3Kyt|8Jq%t5JLleY6_x$QC-hT4*KLz;oO} zeb#85gSUvHyoR>6Ye9q8Xb642MvI7->^?1!UAbj3V-ISW1XMR6RtjH>+N?BSEm~=% z@7F@2mF#P^W=N{8Lo2UR+jVeWuabEk8he$Ftpm$d3SSTB=PISFM@z2Kn)O=8VE)#Y zc5@Iq@Q33k@=JM7LtVRP>-vWxm_Eg3tznx!dvd48{4!-iekcR*WY?afO!h z4mwXslYO9e-_O<5q0?PkhEaO1<`*JW4BijggagGW;S8!k)UI-c+I^L7DCt_woj4s` zrO`WON_Om&5q`2$MzPf{8O52qaK^hzr*{cU+1=2a_0)K`)+uB?x1jG8)UxVYF}iyM zwIBjkCGUiXz)G}`s+TJ%}dlYM;jR|vfm8H-C$}Ywc^+zh|3g5t{lxTUT9MzL0eS1xUrs6 z$^g~ZQvpTpM|TS7?fvlH3uym-zLBJ$1ClxL0KE4C+I|3CEg=7cu!jXS@E|m%fHofF z%&bFN_uvBV+wn#aI=KmbaZGD0VUY^wrGPdZ5&;EZM#=7np|b_F>@bW-0l5!DD+{RQ z5vXGUWgUSci@XIbA+K92T5$sMa(`$ap(4WUeT(c80ELkU{D#r;- zPXTrMO~n298Y!K*)`6-TtjA>%(vFI;y8H1v1r z z`@BdgenB$3U669$UC`R=&FF!T>1nAy;y)r{V~@Lt&98v!U6fg!eo?B*)swhO(BJ}^ za7ns)>XJyUco}YA0cBj4p}lk&hvdbqI`15UZxH2q8KaEgHb%4)1pH_WcVRJgy@HWh zOg~)F2E_~eOZZHXHWQb<`U#~Zt~3p8zC{(UYAs9OVxft+H%$w{t*3C!t48yC-mO8) zuEGtxML%BEUPE&GDr~|n{747p?iS7bL#tE!E|+b__w3JaB>LdS-Kc?|S)^Sy$Owd| z;pcn^UgFiwn^fx>mi|%dcnusp6+;rh1(F5~|UC}DJTXCP30*gr=>Z+4%3xIEES(r!fw2uAuo2RJ(#MIZ)9G zs^P@KT|s6i8nJ@zII&_@P!pH-DUx4Y7=aZO??yR0wRCGegE8B<`JaM*#Z9Fzo}gde zPz~YUS+mnEHyUB5CK`HVr+FHRU#9gMmeFPUo3U(q*@G*@yZ}!L8skB8vT2tG`RC}8 z2Sv|O-Mi@NIhuVJ_TU^{zl)}xqk8wC{O9P?dss5(=#P6SaEBh>L-9M*?mpJ|9h!R| zXU#iw>^{7mI~4E$1@6$G2Uz2GXw?IF33tf#0BiFOHGhbkw>vcTp_DuDP*?)~!p?Pv zy8eX$zC%lN>`y(Z@i#WNJM`|~SS@#G-QPGM-XX`|QeVw~q+I$xn1ef%^N-d#m|qR0 zHNAy_GW|(;JW$>r*OxIA;0|?uB(gqxgvq)?=O0N0W&agfgY@Kwf2E!~|4J_t9!nQK ze2lI?BYLcL3Vz1*%)EzsramB#6ZP;9+o|pocp1;A@e_3R8O_p@^G{&co>A;mO!6}t z_Z05+SG43QgdL%upJE`6WIY4_5$dWZOP`^-Bb5IPM(qeSDZm6Cp-=TBw*az^EQ<2< z#NW~KcfY3-=p{{_KEX%0Rc}P$TUJzg+HdkSqJmVXA8j;w{K2xr- z5}s5fr%Hfj2f0dk`Udmox3qTr*{#7S3NPWQP53!+4P*3o&<0;m3)3}n_@cz06zJy} zfMkRpr2R>!{E&H`Tz+WGd1~(OX;^_j$E8)k$G8`aVL~QQ-3s9Y-IxBJ9zIC({XLyH zZ4lt;%jx_84{k|H(5(PZcTO7y>iFD1PYgcjtqJt>M)E8W4LCt>1!4G3a9zKgg78IW zsYQUN66FPX_~Tztu;(o#BZ8&KFTtMnz)FO8h9OA{@w^!?B?}xVX};@g*vcdK3R~%+ zKSR)K4^=Gb>40QZNzdy@HkI_WiT7}&-}&J)-ohY1qiFwNpn3-nP(&!04^Zz=%*p?; zb=HAVB+cI^XcF8dSa2t}ySuvthYZ187k4L6AvnR^ogl#p&f#`l4y1KerXLh!y`xq@xXqJGulh7;;kt&f{JKiy6A$xWtnVFMjCpVMomr2_sGUGsH zXCkvXMEt~Ney;^oCNXOGHnmP{R)ScT7$vz)&l1D*Z7Q6^tN}4H2}*gJt|dYLxJ@~e zqJP|`i4gH_tBm%yMn=&BRYnEX+nR|rP80~-HIN=AHw&l}tWzV=lw@Xe9ebx8Vjs0v zi4glbhTKWrrh>`Qi*M6}`E~`IKb*+7-Mk&pDUY{vECCc=fUZ;eGFp8H7)gMMpQo(E(g{MMX7`;w~ zxE~ZRwb>9NFtu3%Zy-`wYV?x(v^O;d#C=MX#%z#LE%Y-6A4Db#j=3$>Gg9(APNUOc zyd0-1X;6mal*7+#05R0hESBM{N?H?Z6}lDgR$SjRZ1V<+ny&u+*+`fCklQYLqXbdB zv=ARCml8{;Iz%h^m*Tep{*yu*;6D`d;ZKX-v4>aT(Y20UuQJEK0RM^QXXrZi6&+Fe ze53nm%~I;=vtK$hEgt_CPls&zacs}T(f^Z_pT_E>@-+5$wkgWsv5Su7rmDo+s zAX?p1nP;biML&vJc97Z05f2WO!@#Vzcpmv$ebm~Ij z$%GDmjus(^NqD~!$LJi6ezb#xq$g#lF-~9iH%`-@1)yfa!J(hj^PP<>N z_|U%HrTUqX&pYa=#AlkOL>R4C;s>3ED5KVI7^ARwwhoB&ZShdCSKat?DkL|{%c^Zz7W zlG9XwVL!}imV!u|3-jqN>XplE0dXc5E+e}rdv3EM#MIolp6;Tjxy`N+_4452zl(O~ z!L7tDN|~3TC$DKB^dc|ATKUY*2yM&9p(OcPWoUlW9}xMarM>yhJeWBj=Qr`bG9?Va z<&CIO0ImT<;Q?l4h-U$q^@)lWFsnceF8~`vj|#vdQI&#b2Z*%=;Ve<~LabT85H3kX zOADE)Aodo*bpC;S3!`)&sA^%%@gHbWVYu*}A`0UsVhQ;bF^fPnD1vlLXju_lc$d(Z zA{^JWC@!E&R1+t8%OBLfs9A+>_DB&AFB(viVyxUb&F?_W^H2VE{{R*nQQQ69*68?FN@kfO2K8#%n-B6nuWCPQEakO z#!Q751Crv(bd;W##nqSH$d@?&|C3|ia%OSFBF7wbwVas@-;r$wic{Y7``^54ls8i% z7I_zeK(^^r-E4?B5g(V z;Vaa(B09nqil}5}rF#`|>xP(0W=RO>rKNtA%p_VX9femy)v{_OuPB<*!pupzE2C&p zbhd@*PxC9ouPBPDj1C+{iCdZh)S-&m$Qut3q8Ymj;~lvxNwF_!72MiHQO>I9jZt)| zrJ0(-tD+vG=vPbR7qc3?ilTh2zytO7<<-o#UQzR_bAtBO&Gv|Y*~&~$rD~gnDSi{v z8><9x0~kf=Tbq7Vz6NJ7wT9UT=tm8+7etSm=rK`rtESlxqE0QeZWJA;#kSJbX5p!g zv5B19;%3;V4*GQz^=WHnqmgxR%ZMV@K}U?D>~(P~97U$m+EN!YM-;UPH0#sgdZ@Z6 z+EWihCyIRPvsTag<_Lt^w8JlhR1G+0V>{H^+y-cYD7w}Fb3+sbG-Oexy_t$uHe~1D zHe{~@8?m_9h>KF8F+1O@gPDbHHD(95bby0(o8Vq73NL$^19e@`!`hXAmnqUxttMtM z>fIFAfGC>Y)EozKz9Z_aYBMfUnocOhu4WkC_{XY~nU{(;H*0GXFEBZ5&66?>t!{1x zYLv7kcHO9uG8YwVf$5IhzZ?XbzA6NoyZ#?7J*6eOE4OrpgmHu0cjz3PF{od^0eG0k z?Vb;DXmTac+PNWGw!)3OYUp&drj?lp1g-5yS6i_iGJ$&w{ccF zfVRhXG;}8V(i$C=Tic(Cw87})CeM{Pe$QS#^9BWV`t1k0fFEsX!x^9-q^HMiFao0p zoxzWix5aeGJ)$B6I)f7E2bt-HjzKTz280d}2(d5F%mi^a5SNuGO3;p52yL%=5}Lgz z#J}hX5Q*BeK#QZigvQQ9Guv}f(BfI?YI`oq+xFb0(Cpc%NeBGQh$6JTs&h2E8i8o> z9OT#0^!uaPTXr-vA{s58gTg!FGQrJW8v-p}1p8Ts&iE0= z(`g}ykj}UygwUnVsEQCu+6CP>gf4VJUG?gMd4glo(b6ua55BMKVrJ3NY8g@8u4Z*# zb@z@*c)=`RDliqZ>5;Bx1HDGbcPOSxd{D0|;2Haw*gGTGOdKNwYmvjcnX6%;LXf!< z;z^J>3u2IAu7mLJZiYb|>~1cAXc}zJfp{KlhQ{Mx3Vo-;Y~ShBKG+;a-aXBDh)v$p z91F3aC$8_N4qBDKi%Jn{+ zAh53)f&}mTnkyivpE)HRXMAe~(y0&Jig*Y0Xy3InMt~|z+5WiVzNBgWG3ULc%l*;y zUefdan1a?*tpR3nU-cUXb@UhN$TQ5WO}7S^DG+B4FndA-4#YKYJ)IqB_J=4p2y@nY zT0IE!#Cl3G*z6vUe*)FofZS{0kCIX7P8kQHAN(9-#;2!)F{;+n=fRvRa0sWmI0RGU zdMY*4900LxD6X*UDc&$v={F2>`FgrF3^UYvDl!~566IE$D;zL{ z&H>Hw=2VDv<4q4l&Iz1u`2-9x&TR;O1D2eK(e;gnOhhGoqvsRNz7VY^p=*4jhm*`P zY4OlFnz7>r3Zp*IjB&cO@7TXr-ytE!HySzFT!bGqiJMp{sK6BcYqI_{6l3BPlh?-Y znPT=(KQXgSHHRy?a;iB+$$)8QdL^OUMc+=PrK{7-vI*6)Cp3GL*?jjpjkX15Do$Hx znT;_7zSEZJ<_4&@nqjVoh&|KX0e=Q7y%wrqEc|pV7>oQLoB65y zOtTYVzvu)yE-JSASsD93af#-d36MO)Tnw`BbaE~R*>~z5Vy@N+t|df*YdG}um}_k7 zJPhyew11vC21}aC%*WN|5zUy7k@txF$y^Q*N#-)WTIzF3B>$X}Mu(gE=Vlz^OZ67u zYMFKgW{XD@cLB!mBiglq6EzFN7%NBB|(jrv!BYL<9!~78qTg;(UOU%XT zf3KfXi>S~(KAi^i4i4(rzCW%o>{m*9u>{R}hT1HJk7sD}Qgd#6{w2Rst+T?%{C=2h zW-Z11^>DRWm+HPW<3sQ9GWc_bCN4MEK;&NmN6yfd6=pcZz;IO48A`X3Lq}JdixCQ3 zWiEvHwu(awR+~!@D!vBSUCuit1+T$`y`Q$Ofgk(HYb|ai_EUp(nApd!#pQQD-C1jv z!P=+P>&#+0rUt~qb#Q>8AGKZ23X9fb(ppTpHlQ9B)2R)}cQJL`h}!075F4wYTpO#P z_RWB~qbB2|gso;ZUE5g0waJ_Z?b4e~`p-J8$<=AuEi~=JO=c6yw+2nSn0jns^S)bA zp2f6Qi>lj9Lg@ZBb12q2wb+j7T&;>ipM5&pm&*1=O(u%Wo{S!B$2H~%W!-^aP)BIb z4h+a6RDGv8AL7AIb18&p7sn;uZH6MWemA<#5h}9>?j514dpOi(FJ|E1tFbP1qfuAk z<+8nIP3n2fj1A3^`^;$&arc|k)3D|XwLVLIpfkkc8;%g;J#F8Q+sEyc_yB%(Y$xLY zZVfn;iWVQh)Ulb;A2b{Js>M_&O42#lgqF;F^N*XIFz_~0qC@6JdV3OoBOE=1*4Ruz z5g2Wo$?vea5#sb=48hGbAi{b@5queG{8AH};ppSEp6MO->( z*5P3dl^SPox%<6rYukeVsN8>t(S3mipEYMfc%MV}xj^&JaVT4qIm?gJWnTf)>H{?w z8#hU~M+z~pfGi5vsuPsqJZ|w$P?z(VO;6C1^X3eQ0T*EE1jV=rXHO7aWSH#|44QB_jJ0sOeFL2)oO;|u_Tlv7CTq^S zh3*wj`EFy7gwxsE9O`(7H9y`#w+yF=cR7^i9tsgooA04-m~`eIE^Kco*L|~j+Bdpe zgwEkv*|%@!u6;ZA>lf6kXNa+YmfVNQ_f+fw9_zlRsShwuyr+B*(LdhP!-wb??`ihm z=5C1U|1kXekGUP8P5+v^AUZzcP>RRsN$)B0F{bwS)bk04{GOt>yr(lyG26VS-p?@G zyr*Q(aczvCQO|MxjiBexVKagjzA%qKw0>zGhQMacCm{ZLWuAlB{Mx(%G5QUwRD5fm zLde%-am6$*Bec>ok3w{@&EpWc-*M>mJM#cS>)xCDAUb~FP==4@L4@vpG;=_}iOiJa z6NXkOjrOvN&Al`~L9)L6`iJmq9~en5b(OUvYfhn@WPZiZi)CL-Uks{Hs`ME@oI>f~ zXN-kVD)9wRUa$a6ivnNqJ0+BMYf%5s!Ii#}9LmPfzMfioEm@}{->?h~d;1_3doyELX7V?<)z*1SX^RhBR zphz{b5G%^dDh=Ti-3o*Vif#qP|AHQ2T+4;$qxhhQBQWi4ol+zYEsAdCqg>01s1kmm z3NftINYN^WrB-k)jA0dztJYefUb4@{1Bm4f;nI;9*ygoeOe+ggU{0l^9BO6SC5d zglsisA~ee#8kERt2XQkI3VMf1CAPY01I5R|K=E-jDj5v?Ol-wQY^)@lXK)hE^8!Lz zxBDdMcAum(o0*g|Tb`7?jhl?cfMlG@^<Lse2*!8*y-rAV@MDfR$Bl6a}mXefRvt1rZ~R91J0&#A0F5JqZi0K~)8 z)*y)HX{=!o*V0%cwH;m{wq~z(I-j5A5mLIP~J=^>;_tz z2_A2t1evW~5F<0Ao;T3_%xKgNR3VF{{;ojc>R9l#Hj7mzz53Sz!|4Hr6MAsG&Vze* z?iF+Ib6E2rzT~i`LX6L8&4fsv%bE@mp34e_D4pAy1#vz%TIeQK z$%7%lnGRMJQN<0Cn?=A_Eu}Er5FaMQaOKL$sBt#bIS?ak>y- zwV^4nqH*35z#IC#D-Eh`H5mzGB_?=YZCm(G2ak7>)G z*-))zFoXZ1jAgCy5Ua~tlOY1iS<@g6mE)X?l}D5Q!t+vV0z|0_)?jV@^$=KpJw#hi zTM^^o7v-zSMP5~rJxNo^Qj5zbR^m$kT8T?;ROZs%s?4RUR>kTEl>=2+C0|ucVf@F~ zl36gmWR|MiX7M|;@87XoV85WD_<8aRkDxI({G#A$T*>#USzY3Dl1TiWXW)Yxq_psi zx}H@sZjWB7TMy`=l5MMw`QaCycVfi;q6sxP->)?ocB#oGFW1CC!wS7xn4#EY0Dc-6 z0gF}pHzKntt`>1>bLUD~n+q{Pix0JNt@=ep>aZA42UE{4dRfPktTRt*TR##ViZhK;SR ze!KwfIercr>O z<(pf5^>VYLpWzBVXm;oSq{vHkb~Q}RDe||#ym*R2T40tuMPFNBBI4}QQt_5nYj5{2 zQEETpNh;de(kh@Kg9}&bbUSOBUW>LP6Y}1XiL5T@X3$O?H!!ec`{3Zf zK$YrZdkn*?RHFm@$I7=3)^MFFGCNX5X8)g5_%EifP8HD+GsIOY)(Ji4DsAtCmb*%6 zI-{RorSY9n7I@qRW8f+c=z@WCm7a9rY}$3@1b4b(%Dzh7yRnr=-7r|MQo|rj4_E1K zkd*}j1@4D+Yy%8*viTHYU?k0_T-`D9=hM>e7-jRxJD5eEU@J31^McV2SJ2~Nt85ze z>ObnJ`aHe{dH3ub)U{iOUg&r$s7w!xt>v__hgAu}>;V(YsYOprf6M7yPt@RYs@)4y z(sDY}3mz<|GQF);5dZeJ#-?Ac2G^j0s2TNv9_`b;XV1W{ecSi$7J@AX#`VGF;|0Cx zW0ir((-%3tpoM)gO}!xRez5j}hWA5GQ0a%;P{97U(B7h6{gL1nZPKA+127o3Qr7`i zQHUi2Ft2T;1Ow4Ew^F}>sIhA}Wfq+$*&wShzSkIp>b^!N23eyastv}(dyP&FMs;7K z3PaGU*XZyNl8PkMbf)yGlZRqdunm zBiYV`k?6&b>ETGLIYbE$ZrL7Fn8#|a%|%>;xrl4jdmPN+=$vGTtv$+W0nCo6kse{i8qcDbk-tb92-kA z-f9Dt-s7#7sd-I7_$#=fKGd!Efc`yiZT3leFctovq%zZ3ESv^EPtwO} zn7mF>>**|xO~*asN%Eh8Zhn%c%z*PJ>9rR1XIiNc3Yv*3eNG2v;+Md4`ZN>io>QAy z=%&x<;w&V1P6cP9M9*o-Y~1=ir=PRY6`xbbIhYdwXNx0bHV z#Vy!c>KKCivbAJ|;0|sr4Vi~a@osuG&#IDex2}l_^LdmS|^UEn7J?8jt0Ai$kpn5D!Ap(f_433#=)rd4)#3QCO3qK2%fo zZQm2WqVCTRgYI8cF$^vF7kR=^Cx6kiFibEvsK7$23dEp=xGZugJ?&m-@nXK1i>zX5 z%|@9;mZ9XjMHmHYH#Z}20Wt~1Q=R3OKh0c%F}ZbNFK_DUW8&c|4t7{<;h7g+m0ye> z7@VNPRwU@Km1ZrrYVcVaF+2#XLvD!tn#}IL!}7flRs^jxleN z?@E-?q(&<-8cbTZ5>ur~Usj^!O{%rZDv8x66IS6K`50|ph3oh+`n(F7$EfaVOq0iG z&T6YF#I4mBXvZjE4F=OOn!E;`;~2eKgX-jGE~%)(TJ(tp)Nw8B-=@48R>^|*Z8rV1NSw%fEzi<}$Lvu@LjjjZx@ zBc{~b6ts!qg-w`lZ&UHj99q1YReZMKYQTB7#j?FRTdj1oZVMXqJe}Qw+|E<3tyU%- zQynY$=5Mu%LtNa7VRn}SwxJ>3QJ-y?kKfUjZTNx2p)~Yln^hTWW^!-GockFkPGA6j zrsLa@>NB3GqLYTvs2!-sFgmaU*@ThbPD~A9G0DGxDw7h3oSMc-}J z_u(Zs+py$@GJf@>q`teYeDM^+telcCFet-UPby#Dm%{k1_IS6Y)&!Q>gSx*@L-(M{ z?$et+FngZ@_o5z;)7iavWN@6~@5A-uIE~nc&T*VR?1ScU3fhly9;CkySq13Me*Dfo zNYD0LSs^k+;MOSH0V_SeS2=(-J4lNTU^pM7j0bU}bC8xCwo1|82dxtL?ste4`oauC zD-XdLHd+P(h6+N!Mn>uzfsxCGiqoA4^eDDgmwFs#4wJz^agSKFAetS)9p6qGc?1>r zl&VKsCV6^%Y=HIK6jEoB_H$m;?IzxOFjf2*keDQk^4N3{G9hqg9e)RdZ>#$>*V zzMr!S((Tij!&gzeD62H}K4Uf1s*}IPq1n$D=cW&5&}^JZO&W97%Iy6~WifN65B+@- zli;2^VX0!ACCF*)5_?mF zj;{++{7Wd-M{0KogPM)C@OnbCexXy+GW**R3M7{wli4KDu`mU34EMykS+Luxl7S`)KhE+_Egfnr8BZxyAr zx6p0A(wke>42TE!F*BdMjfVV63GU!g#aCMT0KMY)9h4F1p;eaJ-DQIZ?^^SL8r?%5 zWAj}hV6p)OtYxER_tBHsWETin%RxOKpxd&^o(et0X#7erRGK0lVrKbD?;ct^ydF~G zr&e?N^*843hm`jptE=}z)gm*>c+WdLCqJG0$LgZV{qo*)H2$38)aPG}{f9K|nN^$e zJ%WD^Y04vuv{s9{-eg9fTaa2kwrV5h!gIKC>9JK=M>jxpubHn?Q;{d=nh$B_6WmI& z596bI#iDqt!kFJ6xaG|9sT>omB+iQHUuJ@V^NS zdymT{7osEt{7;=I-hY~~p+ zmLD-Iv&;GD#7EqQvfoX7@LpInBP({tqr}a|CZh(Qa8v{RXes(Zg?66P+e>k~g*Qvp6+1{chFO$e8S{r>`5|G0NDbaS*Up2X*lM2mE|O zy?e z_>Qb*L%?852sqK6;JGNaC-=kvNqafLB;N~zP>Iq)6LREP$ou@mC^_%wEI2(*=Q8Wo_r z1Dd7*1X`sN1RA6iuC*-wOhjt~vv1 zIV;u5!q!mL*=Twebn9hwH;dg0qIg!jF~sz&_HYQ_Y<395QV8#5s<%IV=*$aUvcoo~ zDna3w)?|xrJfJVx?bbR`5t^Cd3Nkwv^^pV(T5=|RP8*`$MM^e6A_F{uPfB11L13l%Dd&Ut_qmb0TEx|O$YK$Ndwukk*hnrd`1oJ`#GO>Rn4 z(Vnc)!Zbd#^z5!SKiq)pLNVR<=7pz@LWntujUeds7Vpj%1~&RnVmm z(5fnSI|z7Fjp|gzFlU#_Q)E^29`-970xscD((34!>{n+xR~_A!oohs0YuLH|@bGvI zJMa$=C)MQA!^2TX*teEF-s=H{wY3{jt=e`LeD7TwQwjIEg7l>}`qcwU9f(mpq7FQH zK+^;5%9O4yW|Rjsx~{zvBCMTVfx6bSyW@M#_I6{O=4B7W_a*i1GY}&?!1#d%n9?3l zk%snZh@TDZ%Mh0u+1nv9cE;V=fyU_L4=7a=`yxb*E_Qcn)YK05exRy6ynqk&YPD}D z4Q^(SL3G+~b~ozS+#aW+Ul#JAOB?oeq=qdp03Oi3AiFD-YKdO_V9%G9c2X~}_^r{6 zA5h(3yEY|lgDLO|ys|wxiYzN~z3is-da_#Agsguif_KzYp zKv_@>6vH2 zwQmYjoql#nr9HWyZ7BJnpEikn+tBU)c0L7>*%Bp@&tWBz1&j@}v#9{`3818d?0SD> zwttXa^pDK)47Ss#B*@I4f(F|;RRB2_!h>SFi`Qk!Hv|oLnN|!zKfFu{hT03_TvmN& zcSGzAXcwV>huRIjnY?f2gFEAh9MpLju6vhh$tYa+&JV+6ewoS)w+}=77;c9{EFXbh zdzt)3+QW3xi000(&od)&0pv`pQeBT-2;Y%qSvume1H3Mh<*_?>?^W3+IpbtDc9fk4 zTF6X!i+rk4?a>%soLPN(F&Z;D=U9lUj=@!gv&}}6#$Y&Jqz7X#;x1C9vFIlkY3*1{ zGn`8)8aU3bf$vAg!T*aCFy0>Et+s|W#`p4}%?%FcqdVhqpLdZ;O~BZ=NQWk{A^(XO z&1|+D9h_(viNnt3Jw%(wVk#{-2@brax|8fie;B(l$u6UfRiT!XQ6jdOmBJ?5Y4IIq zv(x>_n4nHm-Whf+8aD;}G%cTkYvE}!r{G@mG<}|dW}h<^g+EOXr(zJEroU&}4d~J| zTuDz;&gu4aZ?&(j@ph6^-Os1v!oeo{LM)qMH-mtgju5a=mcnM@D$Qo*Lcl@|ikOAb zc9_o3#q=|BHZJLhY1M384Gz<<+4fL~p>xozhgClQ({w&Q6GM!=(|n>ChpE6^d!bG} zT&E~ZBSUbv#L2J?RtPR`pD5KlT-85Ok9n8}K4ICa9rVYOjau{Vo`?xvV7H`Xgc9>p zgwnKx?B-fE7anL>agUdwQlWN@Kb~>y3AOVf1#&4$X&2b_w59ofB&-&O>Uc||mtY!x z7-nb0cdvzZyEtkWV58qk-J~lP+Lbj4T}N-1*tsdyBJ}>Z)OHc>1Kv{9BFx!uY4%dw zyp3FpTdubhu^880?giPX<`T?-oJUu$z4Uwunv>Jypms~q<2hk#h&M~^8BiFp483tL zyrN34HTecE9^Rd43gO^@Y7^38LM!Yl`0$;FYcDHPy0}!(8ncdUpOvz zd#Utl+)C$JX*bc)%`n8u#l^l;`&Pnl&b%6xUxm8?w$$SfBdJ&8BFsiw{E`0rYP*Q% zma4Vk*j0N%h%prJ`|(G&;s}jUA@wF8zk>`g$^{%f#tpgA;}vk;3XG=AO>zP2PjN#= zw|E>qO#u%lh?a=S3{gpvl))?kWzsU3BS3A7i#$REq{ge!0HnY!<#mZH48mN%UMzA$ z#*>^X+G8vclB^^rSSFxBT?Q)z^sdifrGOm`8LSrI+myjt0kPXKSTA5wTLv37z;4Zk zS0IzkqSB)sgRKH4v}dqgK-!KBb_%FBgu!kBkA^bXE5NCa0}7C;pBv#vp+UR1JEJL~hVnmYCy{3h1p9 zq!6$u32USla0Rc0B9F8Jy6Get1U%Q^1BCX%HxVaU22%iP{2kT#>Q_va=L>W;ImC$L zd2RuYtN8>tt`-pBxLR0%<7zPh>?+1zNg=+_YtoYKRjzL3V+LL&i=$)*AvBP|33Ypbml;1^UswPd4# z0^+n{(7^@lRwoX5l-qk6b9`4fUcKU~95n>wFUp{YfCnWQ^cHZYID>uyzGyH|Ku(=x zh=3aaYWxis5>=Xwcm$--V2ps{8jKe(p*$y0R|OPms{8+SA=H$O+!9cr8H2k5@Jg_%vj+mcXz-7K?af)^ zv49jU7(5d&RD+i@)%Aya0NxT-R^NyU-Vs*765x!g_X3`~^7UD2o7R7-bjW45M5EoMDt#fX5j}0YaQ{R7ij`j*1F!#!(3Y&ZsFZ zz!^2=1URFnq5x;qRPhLLhD~(=&akN^z!^4m1vsOofdFUJG#22Dnq~r=QPa`|9>WM%Fn_&W+ zQ8QA2GipXF@ZXz|aW3FX&jdGQ^!DhRl*vMtX)sN|6%A$z=&ivV0Zx*60-PkF3h*n; zYL_L9kcBQ_FBYqihvU^N+lXK4#v4_KGgvNQ;aCRY0y2+duu6buJcBg?c1>WgPC(2_ z3^oWTGg;67n}lSZ$|_p~sJFi1*){>iW-!qKW;56$pvxQv`vk-eVQ>Jz zqbum9CWk~ty(|u^hXuR|WpGr$nlJ{D0uC=?a6&+KyfY3Prv#{%$N|m>$Tv{W|51uy zvrHVBw31aWx`12ivKw-vuPMN=sN<+u48b|1s)?*lLsy_ zZffwifb#1(&A$RH4IT?nFR82mgKrMN^)K#0COJ_2;hd5n09yi#pn^Ej&{bOE}6LS6%gA4-Hkt6WjUw}Gb1R%434%ZoE6%cWQL3RP* zHyPvGLVTFYHga!zu+_z|~R64HrPLHLkfAEW#Dz>VM-J!txFRWg}1?)gAH)QmG%h7cNOn=9qo`4UZ88i^! zSZu7oe}3hAjAkz3JX*LRquMvN&`N+hO$AQ25irJ!L7;#^(HXQC5FCR+M*-@971-!3 zz@xSq0O=}3?JWQhBp|UjgYE(j`Y`ArAUbvzK$2bp)OG^^eFU`Bk2LxzAba#dV<2|| zMY!~XCB8rswlGvcL9CKRg5d(xo&*3R1-wqhV3YuL#tSsY2#D{;V4Q$4X+2CP2swov z*N|qCfP?87OcBsEBZFxIHf3cnLx3k6gINO9)&?*-M}XR)5MbVHbrUYT5`u&(6$Q9D z!rYMB21^92(qNf@rukW8g@E@OtQ1hVKy>~Qx>|@jV+Pr*6_BeCgY^Rb zD$HP`0Kbw9HVYW9!BzopHP|jdori;5b}7Ke3LEXQ>mtZrMfSU;-|vQu>^l08fEF4Y zQ9!nBgn>xWaFU!9;3PToM-u!9bO~4a1vg}L$Ig&2c}YOd$_%auc&ouR0czt0B)Kji zs49b-0`^p6a9e;!9kYWpcZDRZ!Qj4tc^W(vpbp(Zl79pY#?o_uM*`HDI{;4<;7t{9 z%8mlhUBG31iI7LfXKupruibc~L|X=L1su@85)d578t(-7wqx)?Kz|KB2`JTxHNFT) z*;$XjZ$kQaVU-^OvUX+gOMp7p2SxG1o9Wtjb)XMG3<0Awh$TSnCIO8&3cOd-yV|4^ zz;})sf9fbx!|uf-zEV+uD=48Ga-)+duvzJs=*{}cUBLP&-H`EJN2eBWX&~$S2~g(< z!39q`AyWr4$spj?5C;AN-VI}rS-`X546+KCJCZ?m0k_67$SGjMI0m^Lfbtg@&m^y? zsMCnxT7Ct1V~Hgb85DE@7q+k)GLlW^=%NC8Ph(JAfX_SzB?U~?p!6K|Bb@UnjeRkY zX<1QG8)X2L7cefAK}7-Tcq3?37SJJ#K~(|jU?XT$7tm-qgPH<7hcu}zL~WpfG<5|y zrEj3X3Dx#1cC$uf7jShnbwft9l^oq%z_oP@S_)8yBq58|03K~}<_0EhMdjW`2JHki z+{~bZ0M8Z%odl@uIbgMmfaE(EbQ5r7Cj&#koLzeS1q(@~%hpqXQ`kNV@X<=K_OOxu zF5uD+bVJ5z9X(jUmd7X|1zcf^RA_-ZveYPo9a@oKsUrWKomRMj6RdPY#)wOt<7xqIZ!%ab;GqWV z1+>GgAa!<(Q zSPUKrC>)2u-vWllWALwlM;bg9P*+#jQvps5zEB`kRjJx&8ddt5uYZbgoxYX$Pl-6* z67Vr8gLeYdxn8jFLBKB!J_%6AdO_ohfDWk`d=qdRK>Z2wLr4W2>;>>kfI8_5zzh3B zXwOThVGu(=0vzuJjaULEXb?w$IsgnBJ_6KfUjT6x@Nj)R(cI-10H7F#YL2=e7B0%kD13!xi zs9%af2?4J(C?#N8Y1Sy?5fUBen!!jp0fRNDAVBSN1C2@ooWfRB;F&6YT%39ajT$cC z(${iBMnFZ5t|K6{njU}kg!F63Dh&jbY099H0_tpODnj0j~gSAeyE!8`%#I5{LC0e2QNSRg=c9R!Vq03O|kYOG+g zSX5H2WUy4gx>XF83pllwLAZd6n;5JT5V?)P8UfvRF<2*H&0gJ{8-%Fi=-}EW0WA+Q z*zy}hFxVzQZAOG7I|Qin<^XmH7=Mhx9szwL8SI;@et&U;$3Dg6fT*00VsJ=++PMf; z4+~Ix76BX;(DVv}NC9`QGB_ci&tD8q2}tA7gZHc=8`Nl?b%RyTyMRaYMK{E!+#%D; z0(RYF{i^~_-e>TafY1jFZU`_QGPtFHhch)FGr1!wju-b8;FBG?;p_(F`?m|&t$*E+ z;Y2@C;HD~uI_m-Y&t1U!FWr!F-~~s&o~wR;aRPPD9umA2l@YHPSOUCWGk7Op&@Tob z1bp=7$EcqKkS~KT0;bcF{mbBR&xe5LRA0f3h3OD zNi9+N*_uHe0cr~?WK&N-+ja~Z2pHaxK_dapDcFjIiqwhNBT z7BE+Xxembii;oS6pfXQXw&FPp00~e>NCGSn&>Qbv0xT3z0T&5?#RAkuUjR!5s9nAQ zmJ1k#Kath%k8mLwv340Ms{}kdz+jC4XI@>e07}ZoP^u)GT)-3U7B^%xKFJ2Q2{?%V zHlV*lfJdE739?HFPPSBFuL8U&*uC=%4!D5xIOK--&`RhZ7Le{T>mL>1g$0Vxh!o)Y zo52YHkIqBwIR=$eO67+t*td23Q0A-xmIBUSgy&trUR+cm7}Mul!oU?5aP&1dWNg4c z{D{6TK%IvPaErUF+MmowU^2O@R1{zf_uY`O;T=am6wmFw$BWkrTvu+XQ=O2;bOF0%yCI`me2#uEAbLUu9|fq>HDTbh zfPf?nzB2HrJk*9~Q28z@Rg*FJDPT)-2GOt&(*L*>LxHQxhB{vgHe$Pg{q%N2#_Tj4 z?JHnjMh2dELRR`SNgzP&g$9#}1RTrEAc=t3Ss5e~kR2PLAxR1WYG*WnR02BYV35WE z82`64Nh>PqJW!-bFJN$91{nqP3}BE+z`H^WvIwYBgh4g|$%`?_A;2o7fXB!sWPCYR z$s-^~MF#l<@??EQ02iDlPF9>vMcr z0ec!SC@&yGBL)=(G;YG6vH&NKY6__B-Hc8xSfi#3IM3P$dHyH9o{C?t5}eQp8oGcJ zGm3; z83f&aC~I_c0sCpVAwGf?27(3TAIbVXUEnbS^c2wBB}V-*tkPG2lg9uBZmCS2cXkH5 zfHNKHhKzC(*uZcFwkrLm(;0YN!1|*(#N&VT42~b`#v5m5GZ?SHHDy5^?}l!A^pm7+383I}?VK7TTzvT=(bA(h_$s|NT_zkw0W;pS{xbpA2L>+$-1x}gm4MZs8N3lN=qm$rp8EZ#+;F{kr&Q)D zP~-=zd~^Z3_1O)%(ccunO&;cUt^d;ntRD@#_37wWUi{QFx`2o{3_LM~wDe{YTfkEd zyakMi%No7{+QerNPr&^I3=#+!l8`|n0aKDQNa6sLKU)eW$wXy`1}Oxn6N=FWsRZQo zV~|F``m_wv3UI0;g96W0{Y0i?jZ7}!`pGh1jX#dRb7 z8RQX=u_}Xn0^ZhO5Fo(uqL2dkg@ETz&g1N&E@8ilyCGwHUA9nCz|%$yN((TXF(@k_ zW=jU;71*uv@N3JUk_$MCDmtWIf>LKMqk5~k@kZtD3~DHFPg!V=BQ&8=+XZZ)t{ZZr z8z}Iv(pN`rLcg&KSih+oG9KZCPDD2c@aP0;^GA@DO69(?piZs?XrsVi3e1|p8tq)b zCOfzxBhdto?xesCrQZ-oK*K;+7qEVi8*-zAJ&N#lk2`dNUM}DSecX`Icn;g^CqV5d zi3|n^c({FiF6ws|=qh-jtzL02)X*5$ua>0qqE5s0@SJ3$YZ4f$5b8x zIQJT0jSD!Bb#BNQoQR`02q>76!6pHVJsFs65i&RvgKYxTLD|S-hk&Iy8SD~JCl7-? z3gD@RtSH#;0(R@53f)%G>PT2vJgk665sp79@v{nYe58O1Wf`0haIrdrQv%-OtZ0}# zBOqrz2ImB%ZqDGmfK4qF@E8|`sFS*3ComVhZ8 z8Qc+&qBnzk8mReaLmws&M8&C~e-yyO2YpN~vU%(RuCS+W$f!G*4Lld1j@5K`EhfeU(1)Sis8*-z+DS)5-I5-q%i6eubE@1s= z*b`JopPInY(FMeu$sndj5j^LLW(*8r62}E>!N(05U*~ajTmkJCGl(ys+$shM75MKn zlq4=-i^<%O@nb#o@%tx*B72kzYRgg-BDD)Rfu9?4qth$!-$~lv1+1Uh4H>(3u(_-P z)LH1TpIrfG((o|J27`hM98_gEahE|67qG=*ZpfJR zn4?R&z++sx$E1u)jM4WQlot^9Zw8eF#QujtRRM+mWl%%F6b)(%n56TqC&2O3(@==x zS`z`Ybqm6-hvm#2pd zxDtE0A!E>Uj_xbq*-Hik1blwQV6cEvuNe#zkU?kR87aicbhH2`n{fi1Y$ghDvY8^l z$!59$C!1LcY*9t?=zQloz@sPMd4I--DuBnn(Tv&O*z<)h;JR4shOnP3M`NQiN5ABI z2H^s*v8<}y)dI$RVz5pD59e{{E0c|)f*od6nk@nxFSaZ2Nx6khW|hV+0oY|gR%P**25SDFt@F4kDo&<%6nLV%NHUAl+!qbU>fZ`*b-WH^#~&%M zPbFEKlaoAk0XzQO4H>bLbMz~oe>uU0R7~EAN}99`Yym&gG58>0na<<004LLL0-S7q z3UG4q3U&PS7)~}ZU1B)d#8H47a@i!#*H?kBs%-wH7{qr0mo1?iGFs;0=p+J$hp-QiZDDpKNkS024n^`L`g0^a7$4Vc;)dTQLS%1f1UQ}*72tSQLV)90X#tLBi3@_T!qyn9-H^7PFhm{ z_U=`nj({B%7}OVVuM&es0$*lbf6yP}8K>^;TtZf{J!hzAyVaNC5W#Rizo~0d!C<_AaxDRH|1n9(<_@efRlstc=?noUy0XS>0Ux?E2odmF0}?Q< zCu@WW7_Px$27LW<3cE~HTIkY;3y3>_jjR?BLxXh!(rZ^Y3UDr}TLd^YxLts%BDMZ& zmk_6p_6p!S!W=HZsiFu0P8A&$;8f9Z1$gqjKc9U+B^pi@omIfYD$N$K%6U<7>gbXH zr$(*{aBAeb0H;Q732k8NcdXHrAL4e1ZTt5p*K9*I!2^cw!!A}9$>{wa#!cM^2 zPi%FpKuiIS<8cHy`T8orHJ)cNCyDP7QhzCvL@waMCUHZ?`l%e9T!3>;OeNr7eUbDN zFmeeeNiV?Z3H}0_E%2~P79oyb*#!*LMsf+LuKmm_z;Qf4fa6FZ0gfX@1vo}aEKt{< z)v9llzsQc1Rw@c`>C3tyWAJK@t{|Y`at4(JDCBhra%d5Q6QWRe47VF!wPSE8wZtm>^)# z9@dyF;F(S`O+eeDtT9u-$O8=K0C;rse>})!-fxvd3_=CuJIr9Afa@A85ztg;vs}QK zNKUd+z;~^&M!|l(PUk)-!0FD1 zfA@c1VGNsQWJ-0#1K^D=JQZwgsTKs^WbR;PlPU0-Ub+ zO@PxCe+qEAqF0!kt;cE3m_nSc7)Jp1FIV~c3UIn&d;v~ZOeDbRib(}HT``3Krz@uR z2)S^Kvq>w!>53TyI9)N50H^0=72x!|911K`)9TxYY&5qEcv{WthKz@ob^i|#GUy5? zC?p`Awop_6_U~5JQ9^)|M`;Bfs7!s*@hxgO(Qu4b6yO-G5~k+=NR{U0SGHPRsVKmX z)^tNg^nWfQL)}uP%LmQE{qckN~Fwh6->hV1xjt0!9gN zDqyStrvfGjKn3vckI6!u3YaFqseqXRoC=sDz^QnXx$r}ZH^J0xH0uuNz*e;;1vVq?pyM#o< zXO+DIc584zz~p4C5g{OdQU*r_V9#_lJdO*%j_C@V60kEhgR>0y_s3kVa$Z!N(q9tb zl=rFtr@Yq%IOV-1z$x!t0bE|(ehW~=Rrf#t2yx2$Sb$UBX9Aq^z7*h;_l*Fjyp{l` zyzd1##r>p!hi8n^CAdnyDxv_l_IEerPAI|Mv@6gr$I^q4Rf?_6^nKj`5KMF9( zCMwtjUUiwA0^Sv3kVgRafma&&1sFvb6cn&cXH!H#G7X9gSf>E`e<>kGaW+y`Kw;f3 z6$Cg9Rat=364eAaEm2c|(-L(AI4x110r!916h#ddKtSi33>FD^Se?OA z0oVqghs6pZ*actpwN(NlYcW_WAinlo?Hwh3@N+bO{DY>x(NSU9fj7ZvTA zaY%sU*%1MbXORLN&rT|UWyx3!)0}-j;{vYIb8g5uS&ySHc!cb3$mFsB?5VG+cb`SagE`}#@&-UmNc2X^GG0((_q zu_M27)s`fVs~-e7u6`Eaxa#>P#PRi~0LNFaMQ*;Y25>epUBGo3+YK4hT5+_G0LRaG z0_-lVkx;-3k0wckV2^)Ql;i>u2Qx?|V1(B26Yxm8m0p13r@sPRKY0(ajVucA7V`7< zGRVG2{Vd@+b@I(6Mx1=}3UKlb5a8rnNP*L;89q&7t3_SF^;6sp8MB9QbSVMbNBHn< zSy>_LN3co-0cXcCs4O74&ZC+D94MeFtfm0Ri#h_FeCrE9zA8y00FUIdP}}j0C!X3)|ie8SAESbSDAlr!wd&04EgiWl5h-piKUn%qqd6;^fgw zfMd0<0LSV81^EA=@A{9e!7gC8hPom5-?R}f@EFeDX`@_XgoLseV+A;WIZY6N^9@wd zCkt@?O`9gb@nWU`$LJgZjt$Q|MYvC{(tR@21?+j48^Wmvoatf#q3akd6R=nt2p5ob zD{HJ4uyH$sbpnofb~4#0#2Fb|1UPPOSAYjo!AMTBOEjEp_6l&aIUwMO&Lu)@1nLRv zD33p7l?xjw@y>ufDZt6}i~wiKixQCS6uWg%0FGEtt#n0zug>%@0XSu$u2Q)v#PREn z0LSWm0glzb1vpk8F(4oBcO^Y%QJ^*_OSHgyPAcxG7W1^gTQmyd zeH|qZX%V8uYc24Wi;BaWMM}KV0&k(HkgaaDAa`i7Qj70e;Po37cSei-S}fM$h!$#B zCa7%I;(`_@vgPXK?ro|mCHfVu&sg&kTEq-aCUUvdi zZzMseSArnat3MFxbsY%xz6^wV9R)(Y>;R!&KY+kX1s)~UqJ0Rpj2=R*j)zc7+#%F5 zWQd41F2T6L8w(? z5Vy5ZOPml=3zZ<$@*{}PT7+q#*7E@F(Lyc0K}ap3fl$j{Ak@MQh%H*EWd#VS|L`Hy zAKYzltFQj*MNs|W38DVzgHZp?K&XFQAf9NUp2;Dk9wI@ghZGR%mpO#GWrbL(g}O0C zNZnmQsEa0qy6!<7)MGd(s=;md; z6#M1Q5NLyx2%SG3=^s}R(D6ei=nwIWnDOsFMZOp_pE2YKtLMUFcG)?h{ zh=Av-{68Uw-F3m-n2RIrF}p=l2BYL;dMs3LS~kHgQdq+)=+ORDK?y2l&&$ z6*`hhPHB%%;TL{hUT>^@2xUggJLpzRdRk7elzDm2uEnCg9*bo3vSKr>vBy*1c%9`^ zPkCCpG+KY|F2{za<)o?2JO6h{%Z~SXERj2x%eJ)R&phO!(O($q0S{H~@1O^m_q%I7 z&6@k4)}j;p%`!1i4?wNGr9pZZIXO^oZ~n&B#-$aKcGyEJ$}Tf{ROX?|2h{Q_Pp$ga zdqz_{J!+g>W24>V3qiWse9T=-G2@9-_a;@;-(N zU_ArHyB-AVadLOC9&8El8X(4)88+wlw$`qTPN@x2= zSM%etBt%a#QG$63!a+wlGEtyMNc_93{B6vYsuzn_dnx9)79z2W4Ntdh?lp*aH>zaYjLt+>H(u$ zr#57}w&3w)6uc+|et)Gdj?hE9O zSH3j*eA!(M|6OZyJT`0`5A8cj{$RmHq%VU)S!L60bP@3su+iYA4DP7MSbFtqUAOlC z7PWl-esf=BEgF5&I0`&)+`27mQOX%Zz2l+E#t1zO)tj)l1oM6OMYhnE&ENIZd#me% zXR}*(U@IDO%8$BG*P?Ffq}xJUzCP}G=tZ_lqxDS>RZi)IYh3TCtsFs z)==0?VF?8XgFLaQQXWJnR=qe59O@)$S*tV@qTo7ay%r{E})ul+S!^ww521nT4y&x`xy*`n%jKpRooels$LKx$=+^4!B&%24 z?u3@~X>vr#vFlKL?xq}I)w`nLSB_QBjG%rl<__Y8egWVG^~ch~BQL%d8 zD7y1w867@e=(rc-ew(nhotLZ*)U9%FtRB*pehFYHbpS8)O8_r))T*tct6Wl1+F8bi z=;mONh_y%CjgFvQx$J7wA3+ah+4O#>TDQrjQ#fVhl!}$JRtf+TO6ksJ({qClqi%BA8DtlKTH)oDzt++5>A5p= z^H5?u<(b_4T>z?_5DePTpeV;1^^Oc}udkx-QTBU?=~26e?g^iV6ix7g3skX%&hE zFqNZ90MlD255SaxDgaD@>lC4uw@a&n;Xf}uvr&=$E_LRHb|T^K?13X_$Rh^B9G_j{ zZ^QGRDHq1|Ovm9z&vXYa^Gq+pJl-I?xCy_0bT2MFC`=X(iwxJc&AJ?abl zpcu3omd8wIvlSJOA=1u#Tvw44dw|;a&V^#o(q|N{oJpj8d%o^VODqi@#qdQ?46?lD zBD>fy-`gu+?i$`VMo#y)g=9w;rBSAM-+@*Jt(S_vffud#UOO`2-h;S=GHNyJ zLnsEVhf^z4#4Z=v#YULIV*A-QW8|&W)CjH1w0n`gEn8^KlfmF#HQp-Isx_)@ZFGx@ma zJs%=1@7BHAFt$Ma8vc!Jv6uzpMyA6pWQGqTYx7#@MOZPi_GyfwXsaS?tfE{vC33qX zitHjU#D~66Z1_TvCs+2dmbR&XB+gP#eTYg#dxPe{?oiZgle*V04-TM#yZ8jwgQ7&c z*0=ugoY-GT`8X4bK`UY1$219^ec~7Gsp9%J!4?|Zi;dHu81yo{_C%#-f4}}jmvkEN zBLM@7K^I`%#k3oqT}-dStc$7L6(a4WqxI`oj-$x|@gWSb*gb2q+1Ew)+bPO#uV`Nf zMYn?#`GzW5A5Ns@PP%`v-&4)B-MlC$29;B z^>{K|&Kv%Cn6_K7qrZo4HNsP(+r4s4x@czE<{vf_JHXIzGs-$p+ijJer-V7 z@pl?Zhm80Str-K;5cc&*hFb_z7HmS8a>Eo&hc5_gM=dV0i$4dpp+hS<_C&0_HE5!r zcDuUabWXv)X~UWEXlBqHSamSH1bYppHSpD7+6qGrrjkC2M#3?JwGRd=s)0oYYy04h z!89DE7)&?dhQahvmM@_;YG~umpx9zMlycZuumeUv_*XFHO(fDfk83QMo{lLZyfbs5 z7_|EtMN?rE!I}<(2&Oe~h7g;z=90$7APY?@2?5&%V|vLh{tiord>PVXhD9zJHzi2R zIM_HQ&~!$7^+aPvc&A;|`Vt%#jOi!4=EASR18xB z))vBzfN3sV2$(8iKj0$x4luQ^Rx|-l1FR*&QGm(&vLe$@iUz_=z*ss^oQI77H*A1^ z08__niZWmjz}kLAcCi+|5x64Ja`p8Y(OS%srsDYY2Xr2{Bln;4^#hRO&s5Vw2ax8^ z+G^zYiwD}3txYec7aXQFyC9dIGx2w}&~mfV`nFee6dCp0E*+Wkt~FZdHzd!q_Hu-x z2^|%AM=4s@Sy6MeFX8Kzr<=6O(+|wE)34Iu^h9zy=e>^_py=`tMg1RDWX>YeIu32F z8r*X`t!bJ7#h`XiD6&53BDac)PT5B3I%0;O*sH{1yN5Cag z#1bf%w1wB3=Z-d=+8nE-Mk4mY4On8({Wld2Kq@tBuONq-Y2jXj_Et5U4z3tS z6Rlzn=Ce4D`V=OUn4HLeW=g~q5mR@}v@orxRJ0p&6|6;GCvx6eVKVtFjJ-u0zR?89 zph6#i7maL7?2;T{#!x3GyG#8)3q>Dle4+Z$Fv|V t;2f=2gltf8&bjoik171&c$&->k08C1GebupuhSsAXm^-4Ww*~r`7e5nOToiAEMCi6$mS7Rd&trbY%P UNfwDohQ=x8#;KdPGA1ko0JriKd;kCd diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 3b97c250d7f223659e8cc8aaaf425209c71f4e29..6cb8c3f72a42981ba05457f4fd3b975fdea57280 100644 GIT binary patch delta 63 zcmV~$!4-fY2msK>L_sP%#tETIc6A{aXc%rT)Bm|4H+&1|oi?23a}+_vQoBTVwUf++ SdNgBW6}epR8rYCl!uSE%Nfj6X delta 63 zcmca|oAJtR#tn-Z4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp Tk}MLF42@IFjZ+t2Vax#l&1e*& diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index b648c52ba..388c995f2 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:46.905901Z", - "iopub.status.busy": "2024-09-26T16:57:46.905412Z", - "iopub.status.idle": "2024-09-26T16:57:48.220424Z", - "shell.execute_reply": "2024-09-26T16:57:48.219845Z" + "iopub.execute_input": "2024-09-27T13:44:12.200916Z", + "iopub.status.busy": "2024-09-27T13:44:12.200561Z", + "iopub.status.idle": "2024-09-27T13:44:13.479668Z", + "shell.execute_reply": "2024-09-27T13:44:13.479088Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.222820Z", - "iopub.status.busy": "2024-09-26T16:57:48.222253Z", - "iopub.status.idle": "2024-09-26T16:57:48.241708Z", - "shell.execute_reply": "2024-09-26T16:57:48.241070Z" + "iopub.execute_input": "2024-09-27T13:44:13.482034Z", + "iopub.status.busy": "2024-09-27T13:44:13.481452Z", + "iopub.status.idle": "2024-09-27T13:44:13.500047Z", + "shell.execute_reply": "2024-09-27T13:44:13.499596Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.243929Z", - "iopub.status.busy": "2024-09-26T16:57:48.243487Z", - "iopub.status.idle": "2024-09-26T16:57:48.451471Z", - "shell.execute_reply": "2024-09-26T16:57:48.450893Z" + "iopub.execute_input": "2024-09-27T13:44:13.502039Z", + "iopub.status.busy": "2024-09-27T13:44:13.501593Z", + "iopub.status.idle": "2024-09-27T13:44:13.696938Z", + "shell.execute_reply": "2024-09-27T13:44:13.696313Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.483707Z", - "iopub.status.busy": "2024-09-26T16:57:48.483195Z", - "iopub.status.idle": "2024-09-26T16:57:48.487154Z", - "shell.execute_reply": "2024-09-26T16:57:48.486583Z" + "iopub.execute_input": "2024-09-27T13:44:13.729165Z", + "iopub.status.busy": "2024-09-27T13:44:13.728951Z", + "iopub.status.idle": "2024-09-27T13:44:13.732830Z", + "shell.execute_reply": "2024-09-27T13:44:13.732365Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.488961Z", - "iopub.status.busy": "2024-09-26T16:57:48.488621Z", - "iopub.status.idle": "2024-09-26T16:57:48.496919Z", - "shell.execute_reply": "2024-09-26T16:57:48.496323Z" + "iopub.execute_input": "2024-09-27T13:44:13.734478Z", + "iopub.status.busy": "2024-09-27T13:44:13.734300Z", + "iopub.status.idle": "2024-09-27T13:44:13.742648Z", + "shell.execute_reply": "2024-09-27T13:44:13.742221Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.498974Z", - "iopub.status.busy": "2024-09-26T16:57:48.498629Z", - "iopub.status.idle": "2024-09-26T16:57:48.500983Z", - "shell.execute_reply": "2024-09-26T16:57:48.500538Z" + "iopub.execute_input": "2024-09-27T13:44:13.744355Z", + "iopub.status.busy": "2024-09-27T13:44:13.744172Z", + "iopub.status.idle": "2024-09-27T13:44:13.746680Z", + "shell.execute_reply": "2024-09-27T13:44:13.746217Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.502678Z", - "iopub.status.busy": "2024-09-26T16:57:48.502341Z", - "iopub.status.idle": "2024-09-26T16:57:49.032323Z", - "shell.execute_reply": "2024-09-26T16:57:49.031807Z" + "iopub.execute_input": "2024-09-27T13:44:13.748214Z", + "iopub.status.busy": "2024-09-27T13:44:13.748042Z", + "iopub.status.idle": "2024-09-27T13:44:14.270554Z", + "shell.execute_reply": "2024-09-27T13:44:14.269884Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:49.034548Z", - "iopub.status.busy": "2024-09-26T16:57:49.034196Z", - "iopub.status.idle": "2024-09-26T16:57:50.968947Z", - "shell.execute_reply": "2024-09-26T16:57:50.968319Z" + "iopub.execute_input": "2024-09-27T13:44:14.272696Z", + "iopub.status.busy": "2024-09-27T13:44:14.272497Z", + "iopub.status.idle": "2024-09-27T13:44:16.167242Z", + "shell.execute_reply": "2024-09-27T13:44:16.166648Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.971511Z", - "iopub.status.busy": "2024-09-26T16:57:50.970708Z", - "iopub.status.idle": "2024-09-26T16:57:50.981203Z", - "shell.execute_reply": "2024-09-26T16:57:50.980707Z" + "iopub.execute_input": "2024-09-27T13:44:16.169775Z", + "iopub.status.busy": "2024-09-27T13:44:16.169000Z", + "iopub.status.idle": "2024-09-27T13:44:16.179484Z", + "shell.execute_reply": "2024-09-27T13:44:16.179037Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.983160Z", - "iopub.status.busy": "2024-09-26T16:57:50.982812Z", - "iopub.status.idle": "2024-09-26T16:57:50.986985Z", - "shell.execute_reply": "2024-09-26T16:57:50.986552Z" + "iopub.execute_input": "2024-09-27T13:44:16.181448Z", + "iopub.status.busy": "2024-09-27T13:44:16.181041Z", + "iopub.status.idle": "2024-09-27T13:44:16.185086Z", + "shell.execute_reply": "2024-09-27T13:44:16.184632Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.988771Z", - "iopub.status.busy": "2024-09-26T16:57:50.988449Z", - "iopub.status.idle": "2024-09-26T16:57:50.996238Z", - "shell.execute_reply": "2024-09-26T16:57:50.995660Z" + "iopub.execute_input": "2024-09-27T13:44:16.186814Z", + "iopub.status.busy": "2024-09-27T13:44:16.186483Z", + "iopub.status.idle": "2024-09-27T13:44:16.194898Z", + "shell.execute_reply": "2024-09-27T13:44:16.194442Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.998409Z", - "iopub.status.busy": "2024-09-26T16:57:50.997938Z", - "iopub.status.idle": "2024-09-26T16:57:51.112743Z", - "shell.execute_reply": "2024-09-26T16:57:51.112140Z" + "iopub.execute_input": "2024-09-27T13:44:16.196580Z", + "iopub.status.busy": "2024-09-27T13:44:16.196252Z", + "iopub.status.idle": "2024-09-27T13:44:16.309588Z", + "shell.execute_reply": "2024-09-27T13:44:16.309001Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.114671Z", - "iopub.status.busy": "2024-09-26T16:57:51.114330Z", - "iopub.status.idle": "2024-09-26T16:57:51.117374Z", - "shell.execute_reply": "2024-09-26T16:57:51.116803Z" + "iopub.execute_input": "2024-09-27T13:44:16.311378Z", + "iopub.status.busy": "2024-09-27T13:44:16.311198Z", + "iopub.status.idle": "2024-09-27T13:44:16.314110Z", + "shell.execute_reply": "2024-09-27T13:44:16.313548Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.119122Z", - "iopub.status.busy": "2024-09-26T16:57:51.118777Z", - "iopub.status.idle": "2024-09-26T16:57:53.250696Z", - "shell.execute_reply": "2024-09-26T16:57:53.249828Z" + "iopub.execute_input": "2024-09-27T13:44:16.315717Z", + "iopub.status.busy": "2024-09-27T13:44:16.315450Z", + "iopub.status.idle": "2024-09-27T13:44:18.461870Z", + "shell.execute_reply": "2024-09-27T13:44:18.461184Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.253432Z", - "iopub.status.busy": "2024-09-26T16:57:53.252773Z", - "iopub.status.idle": "2024-09-26T16:57:53.264456Z", - "shell.execute_reply": "2024-09-26T16:57:53.263964Z" + "iopub.execute_input": "2024-09-27T13:44:18.464456Z", + "iopub.status.busy": "2024-09-27T13:44:18.463827Z", + "iopub.status.idle": "2024-09-27T13:44:18.475330Z", + "shell.execute_reply": "2024-09-27T13:44:18.474881Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.266337Z", - "iopub.status.busy": "2024-09-26T16:57:53.265982Z", - "iopub.status.idle": "2024-09-26T16:57:53.320394Z", - "shell.execute_reply": "2024-09-26T16:57:53.319936Z" + "iopub.execute_input": "2024-09-27T13:44:18.476970Z", + "iopub.status.busy": "2024-09-27T13:44:18.476794Z", + "iopub.status.idle": "2024-09-27T13:44:18.534040Z", + "shell.execute_reply": "2024-09-27T13:44:18.533545Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 1b9d62b84..ee987f2db 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:56.582392Z", - "iopub.status.busy": "2024-09-26T16:57:56.581922Z", - "iopub.status.idle": "2024-09-26T16:57:59.568352Z", - "shell.execute_reply": "2024-09-26T16:57:59.567688Z" + "iopub.execute_input": "2024-09-27T13:44:21.818795Z", + "iopub.status.busy": "2024-09-27T13:44:21.818359Z", + "iopub.status.idle": "2024-09-27T13:44:25.172344Z", + "shell.execute_reply": "2024-09-27T13:44:25.171708Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.570666Z", - "iopub.status.busy": "2024-09-26T16:57:59.570348Z", - "iopub.status.idle": "2024-09-26T16:57:59.573999Z", - "shell.execute_reply": "2024-09-26T16:57:59.573434Z" + "iopub.execute_input": "2024-09-27T13:44:25.174634Z", + "iopub.status.busy": "2024-09-27T13:44:25.174327Z", + "iopub.status.idle": "2024-09-27T13:44:25.177811Z", + "shell.execute_reply": "2024-09-27T13:44:25.177332Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.575790Z", - "iopub.status.busy": "2024-09-26T16:57:59.575346Z", - "iopub.status.idle": "2024-09-26T16:57:59.578505Z", - "shell.execute_reply": "2024-09-26T16:57:59.578059Z" + "iopub.execute_input": "2024-09-27T13:44:25.179604Z", + "iopub.status.busy": "2024-09-27T13:44:25.179228Z", + "iopub.status.idle": "2024-09-27T13:44:25.182428Z", + "shell.execute_reply": "2024-09-27T13:44:25.181941Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.580278Z", - "iopub.status.busy": "2024-09-26T16:57:59.579942Z", - "iopub.status.idle": "2024-09-26T16:57:59.637557Z", - "shell.execute_reply": "2024-09-26T16:57:59.636941Z" + "iopub.execute_input": "2024-09-27T13:44:25.183984Z", + "iopub.status.busy": "2024-09-27T13:44:25.183812Z", + "iopub.status.idle": "2024-09-27T13:44:25.249858Z", + "shell.execute_reply": "2024-09-27T13:44:25.249370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.639548Z", - "iopub.status.busy": "2024-09-26T16:57:59.639173Z", - "iopub.status.idle": "2024-09-26T16:57:59.643067Z", - "shell.execute_reply": "2024-09-26T16:57:59.642599Z" + "iopub.execute_input": "2024-09-27T13:44:25.251675Z", + "iopub.status.busy": "2024-09-27T13:44:25.251321Z", + "iopub.status.idle": "2024-09-27T13:44:25.254967Z", + "shell.execute_reply": "2024-09-27T13:44:25.254497Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.644820Z", - "iopub.status.busy": "2024-09-26T16:57:59.644426Z", - "iopub.status.idle": "2024-09-26T16:57:59.648173Z", - "shell.execute_reply": "2024-09-26T16:57:59.647692Z" + "iopub.execute_input": "2024-09-27T13:44:25.256494Z", + "iopub.status.busy": "2024-09-27T13:44:25.256317Z", + "iopub.status.idle": "2024-09-27T13:44:25.259546Z", + "shell.execute_reply": "2024-09-27T13:44:25.259112Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.649862Z", - "iopub.status.busy": "2024-09-26T16:57:59.649584Z", - "iopub.status.idle": "2024-09-26T16:57:59.652681Z", - "shell.execute_reply": "2024-09-26T16:57:59.652224Z" + "iopub.execute_input": "2024-09-27T13:44:25.261161Z", + "iopub.status.busy": "2024-09-27T13:44:25.260831Z", + "iopub.status.idle": "2024-09-27T13:44:25.264077Z", + "shell.execute_reply": "2024-09-27T13:44:25.263614Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.654524Z", - "iopub.status.busy": "2024-09-26T16:57:59.654184Z", - "iopub.status.idle": "2024-09-26T16:57:59.657522Z", - "shell.execute_reply": "2024-09-26T16:57:59.657025Z" + "iopub.execute_input": "2024-09-27T13:44:25.265683Z", + "iopub.status.busy": "2024-09-27T13:44:25.265493Z", + "iopub.status.idle": "2024-09-27T13:44:25.268752Z", + "shell.execute_reply": "2024-09-27T13:44:25.268295Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.659231Z", - "iopub.status.busy": "2024-09-26T16:57:59.658903Z", - "iopub.status.idle": "2024-09-26T16:58:04.690826Z", - "shell.execute_reply": "2024-09-26T16:58:04.690184Z" + "iopub.execute_input": "2024-09-27T13:44:25.270462Z", + "iopub.status.busy": "2024-09-27T13:44:25.270157Z", + "iopub.status.idle": "2024-09-27T13:44:29.935939Z", + "shell.execute_reply": "2024-09-27T13:44:29.935366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c454eb6f366f411e9e5a792ee1c9e53e", + "model_id": "0b869b8329164886999ca781a3f1f88f", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55fc53367ab44c9d8da2fe8bbced532e", + "model_id": "2f7c87a3feeb43f391ce3706d650c567", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07e2bdd218e347478ce3ef4840fd25cd", + "model_id": "09adcc4cd1544f1ebd40819b4bc61c29", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94557935a2374333b2239085d88eec9a", + "model_id": "4d443bcc5d6f44bb9f778f33e726a41e", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c670a9f65c784a998597204abdd99c6c", + "model_id": "81db904263be418b972cdc74693c1347", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4bb31413f5b49d5a94609831a4b36f7", + "model_id": "857f6827f751492d8e4455d6dcc779a2", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9cbb0d355e3b4631ab5bde4863e208c9", + "model_id": "dd92079e014444fb8d53b9ecd43d4155", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.693169Z", - "iopub.status.busy": "2024-09-26T16:58:04.692979Z", - "iopub.status.idle": "2024-09-26T16:58:04.696816Z", - "shell.execute_reply": "2024-09-26T16:58:04.696217Z" + "iopub.execute_input": "2024-09-27T13:44:29.938477Z", + "iopub.status.busy": "2024-09-27T13:44:29.938022Z", + "iopub.status.idle": "2024-09-27T13:44:29.941082Z", + "shell.execute_reply": "2024-09-27T13:44:29.940499Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.698945Z", - "iopub.status.busy": "2024-09-26T16:58:04.698555Z", - "iopub.status.idle": "2024-09-26T16:58:04.701698Z", - "shell.execute_reply": "2024-09-26T16:58:04.701079Z" + "iopub.execute_input": "2024-09-27T13:44:29.942910Z", + "iopub.status.busy": "2024-09-27T13:44:29.942537Z", + "iopub.status.idle": "2024-09-27T13:44:29.945282Z", + "shell.execute_reply": "2024-09-27T13:44:29.944823Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.703349Z", - "iopub.status.busy": "2024-09-26T16:58:04.703169Z", - "iopub.status.idle": "2024-09-26T16:58:07.638950Z", - "shell.execute_reply": "2024-09-26T16:58:07.638268Z" + "iopub.execute_input": "2024-09-27T13:44:29.947025Z", + "iopub.status.busy": "2024-09-27T13:44:29.946610Z", + "iopub.status.idle": "2024-09-27T13:44:32.703158Z", + "shell.execute_reply": "2024-09-27T13:44:32.702446Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.641750Z", - "iopub.status.busy": "2024-09-26T16:58:07.641028Z", - "iopub.status.idle": "2024-09-26T16:58:07.649310Z", - "shell.execute_reply": "2024-09-26T16:58:07.648709Z" + "iopub.execute_input": "2024-09-27T13:44:32.705934Z", + "iopub.status.busy": "2024-09-27T13:44:32.705115Z", + "iopub.status.idle": "2024-09-27T13:44:32.713403Z", + "shell.execute_reply": "2024-09-27T13:44:32.712933Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.651234Z", - "iopub.status.busy": "2024-09-26T16:58:07.650776Z", - "iopub.status.idle": "2024-09-26T16:58:07.654975Z", - "shell.execute_reply": "2024-09-26T16:58:07.654450Z" + "iopub.execute_input": "2024-09-27T13:44:32.715431Z", + "iopub.status.busy": "2024-09-27T13:44:32.715087Z", + "iopub.status.idle": "2024-09-27T13:44:32.719832Z", + "shell.execute_reply": "2024-09-27T13:44:32.719339Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.656848Z", - "iopub.status.busy": "2024-09-26T16:58:07.656512Z", - "iopub.status.idle": "2024-09-26T16:58:07.659918Z", - "shell.execute_reply": "2024-09-26T16:58:07.659369Z" + "iopub.execute_input": "2024-09-27T13:44:32.721313Z", + "iopub.status.busy": "2024-09-27T13:44:32.721134Z", + "iopub.status.idle": "2024-09-27T13:44:32.724562Z", + "shell.execute_reply": "2024-09-27T13:44:32.724100Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.662038Z", - "iopub.status.busy": "2024-09-26T16:58:07.661635Z", - "iopub.status.idle": "2024-09-26T16:58:07.664815Z", - "shell.execute_reply": "2024-09-26T16:58:07.664344Z" + "iopub.execute_input": "2024-09-27T13:44:32.726129Z", + "iopub.status.busy": "2024-09-27T13:44:32.725939Z", + "iopub.status.idle": "2024-09-27T13:44:32.728884Z", + "shell.execute_reply": "2024-09-27T13:44:32.728424Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.666617Z", - "iopub.status.busy": "2024-09-26T16:58:07.666279Z", - "iopub.status.idle": "2024-09-26T16:58:07.673548Z", - "shell.execute_reply": "2024-09-26T16:58:07.672928Z" + "iopub.execute_input": "2024-09-27T13:44:32.730636Z", + "iopub.status.busy": "2024-09-27T13:44:32.730297Z", + "iopub.status.idle": "2024-09-27T13:44:32.737194Z", + "shell.execute_reply": "2024-09-27T13:44:32.736719Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.675394Z", - "iopub.status.busy": "2024-09-26T16:58:07.675051Z", - "iopub.status.idle": "2024-09-26T16:58:07.909209Z", - "shell.execute_reply": "2024-09-26T16:58:07.908613Z" + "iopub.execute_input": "2024-09-27T13:44:32.739037Z", + "iopub.status.busy": "2024-09-27T13:44:32.738695Z", + "iopub.status.idle": "2024-09-27T13:44:32.967915Z", + "shell.execute_reply": "2024-09-27T13:44:32.967330Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.912237Z", - "iopub.status.busy": "2024-09-26T16:58:07.911438Z", - "iopub.status.idle": "2024-09-26T16:58:08.105044Z", - "shell.execute_reply": "2024-09-26T16:58:08.104481Z" + "iopub.execute_input": "2024-09-27T13:44:32.970125Z", + "iopub.status.busy": "2024-09-27T13:44:32.969750Z", + "iopub.status.idle": "2024-09-27T13:44:33.182474Z", + "shell.execute_reply": "2024-09-27T13:44:33.181896Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:08.108440Z", - "iopub.status.busy": "2024-09-26T16:58:08.107647Z", - "iopub.status.idle": "2024-09-26T16:58:08.112497Z", - "shell.execute_reply": "2024-09-26T16:58:08.111965Z" + "iopub.execute_input": "2024-09-27T13:44:33.184797Z", + "iopub.status.busy": "2024-09-27T13:44:33.184365Z", + "iopub.status.idle": "2024-09-27T13:44:33.188436Z", + "shell.execute_reply": "2024-09-27T13:44:33.187921Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03a9fcdeeb9f4795928321d22c20b1f7": { + "0071d1f0936c4bccbd1edaa5a6ae1140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,25 @@ "text_color": null } }, - "03b1560a105349118e85e5322a8057be": { + "01540b61781c4eb58c18e156802a58d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "07d077e0c6b44e658f800f4771886c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1153,38 +1171,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58744c76ca2d4b4bb16b3ba153883f90", + "layout": "IPY_MODEL_a7e8d478c1164e08b3fd282538dc8416", "placeholder": "​", - "style": "IPY_MODEL_71273fc53eab44809f296c757a78d589", + "style": "IPY_MODEL_30c76f3386e144e1a905593cb8a7b12e", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": ".gitattributes: 100%" } }, - "0520794e1ebd4f6c921dfb71f4cffad6": { + "09adcc4cd1544f1ebd40819b4bc61c29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175e8d16291a4560868859b225cdac46", - "placeholder": "​", - "style": "IPY_MODEL_0854de3c0f4c455889479ae81081bfd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4e4680d87b8463aa7d08f5c6d456285", + "IPY_MODEL_dbef822c740d42df9d83e77b0148c4f4", + "IPY_MODEL_901dbc7b9c464aec8a3cac4e2e14e625" + ], + "layout": "IPY_MODEL_bad51eb444f94a938e31c59e3113684b", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" + "tooltip": null } }, - "0544fbd69b124534b049440d1f3e0d41": { + "0ad90065d8c740b1b5f909e1a0f97c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,25 +1256,7 @@ "width": null } }, - "05c30b39421044298e1e8ac7e138767d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e2bdd218e347478ce3ef4840fd25cd": { + "0b869b8329164886999ca781a3f1f88f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1270,70 +1271,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_768d4093bcd8494385059cb2bfb032bb", - "IPY_MODEL_0f51660866534becbe9d4f34c4c432f3", - "IPY_MODEL_c56505f3a8884fce9a47bbe99c1b9422" + "IPY_MODEL_07d077e0c6b44e658f800f4771886c72", + "IPY_MODEL_5f9b91f66f694d5eb6207514df3f361b", + "IPY_MODEL_801dfb197b9a4fffb3406e9b3339e8a6" ], - "layout": "IPY_MODEL_0c9fa872de1d46889ced023c38691b80", + "layout": "IPY_MODEL_74914279b76946f9b81bbd35eb876eb3", "tabbable": null, "tooltip": null } }, - "0854de3c0f4c455889479ae81081bfd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "08a01d42535f45c1afd47cdd82b5c40e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09070af955a14e1c8557d27f12ad54b3": { + "0bf168d57d974301a816bd335166c3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0c9fa872de1d46889ced023c38691b80": { + "0e1a742f353b4ae592d5e9d4c904dea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1349,25 @@ "width": null } }, - "0f51660866534becbe9d4f34c4c432f3": { + "100942b5144f4805a0308187f29c80ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "103601f7b0dd496689126efcf81dcfd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1402,70 +1383,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf9d5b94bbd24770874e0cc5af1a1615", - "max": 665.0, + "layout": "IPY_MODEL_8b68d00ec9e74aa99b854e1e6e50035f", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a0120faf64f6497691116777e44f77aa", + "style": "IPY_MODEL_839cd742a34841029c4a4e34d5a903fe", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 54245363.0 } }, - "0fed13bb7b7a48d08e8db8513746e242": { - "model_module": "@jupyter-widgets/base", + "13c263d5f8be43648b83c74ed95579a2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80896446ef2545c9bbbc50f05e195a0a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66da8b50d05043dba9d9652587054967", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "16d0ccf5f28d488e93908803a2b4c76d": { + "15162f4480c04b0aa1ed945e710c6f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1472,7 @@ "width": null } }, - "175e8d16291a4560868859b225cdac46": { + "15da45f559dc4baebc98b369b1b1bac9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,80 +1525,7 @@ "width": null } }, - "19015823d41c439e9c231621c87bcc79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a376e53928b43568a37bf5c1034a061", - "placeholder": "​", - "style": "IPY_MODEL_03a9fcdeeb9f4795928321d22c20b1f7", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "1e7e4021c02b427c840f1dde6a12c6b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1ecfcaca36e849409b94d9e2b3a6d2df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22a5fe5ff39e4ca2978a0d5638deed64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "264cad247c01411dbbec2aa09c72f96a": { + "165de584f55f4cc4a61989a56f9b49c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,7 +1578,7 @@ "width": null } }, - "2a376e53928b43568a37bf5c1034a061": { + "2062b55baccc4e66b21d4eaf7516bfb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1750,7 +1631,7 @@ "width": null } }, - "2dc0ab7b03f9425ebd4489c94893df8e": { + "2d58ff6fd7d14ca59a65d5f6fbfa0638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,76 +1684,49 @@ "width": null } }, - "31ac4e398f274fa2884c943b6c5bdf67": { - "model_module": "@jupyter-widgets/base", + "2f7c87a3feeb43f391ce3706d650c567": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c54f7221432415ba2afba64455af817", + "IPY_MODEL_13c263d5f8be43648b83c74ed95579a2", + "IPY_MODEL_b9e3785791cb4f3f85a367cbdffbc2ce" + ], + "layout": "IPY_MODEL_0ad90065d8c740b1b5f909e1a0f97c65", + "tabbable": null, + "tooltip": null } }, - "39ee56051f0c4ee8b154fc79d637ae7f": { + "30c76f3386e144e1a905593cb8a7b12e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a682b5847a0438eb5702f512f795f1c": { + "3305b2d61b3f4915bbc3a70282874455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,15 +1741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d9abfaf1d24260b3f87b1ea0c4209a", + "layout": "IPY_MODEL_91544e5b16174f2e909f6bb9aadf6a74", "placeholder": "​", - "style": "IPY_MODEL_09070af955a14e1c8557d27f12ad54b3", + "style": "IPY_MODEL_48b5e652296a41afabe845a77e1a40c6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 117MB/s]" + "value": " 232k/232k [00:00<00:00, 31.8MB/s]" } }, - "42172bed218f48b48601266fd4b31f94": { + "3731f8d339c84d94a28f11beefec8fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1913,7 +1767,7 @@ "text_color": null } }, - "45f797f62ab84a74bc35ca4a2b3595cc": { + "3e2db40e57e84f2b90bc19d497f69a00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1820,48 @@ "width": null } }, - "55fc53367ab44c9d8da2fe8bbced532e": { + "468ecd46323f48c58c97d2c4190cdfa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7ef1ed37e7949049da1bc6875f2930d", + "placeholder": "​", + "style": "IPY_MODEL_d6c315a338314fa6b05bdb0eb28b15f1", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.08kB/s]" + } + }, + "48b5e652296a41afabe845a77e1a40c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d443bcc5d6f44bb9f778f33e726a41e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1981,16 +1876,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03b1560a105349118e85e5322a8057be", - "IPY_MODEL_c3093ff50e5d4a039d2e953cfd360463", - "IPY_MODEL_0520794e1ebd4f6c921dfb71f4cffad6" + "IPY_MODEL_5af95243387d4a879df020d4e1cb9e2a", + "IPY_MODEL_103601f7b0dd496689126efcf81dcfd7", + "IPY_MODEL_ef4c1ce3b993449bb0aaf04a55c873f3" ], - "layout": "IPY_MODEL_0fed13bb7b7a48d08e8db8513746e242", + "layout": "IPY_MODEL_15162f4480c04b0aa1ed945e710c6f47", "tabbable": null, "tooltip": null } }, - "583111a984204d99b91ecb3dfb37bf0e": { + "4dfef38574554577ab70c1090376620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,7 +1938,108 @@ "width": null } }, - "58744c76ca2d4b4bb16b3ba153883f90": { + "506c7f29cf3d491e9d8df294ae722e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8c2df192a274240a738bf66fe3a221b", + "placeholder": "​", + "style": "IPY_MODEL_b58fdee4702849c092df49b1636d2bad", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 5.61MB/s]" + } + }, + "51d4961d8f8541eb88e2da893fa47eed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56b546e9a9534adb835c7ed1d9aa4667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af95243387d4a879df020d4e1cb9e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_660acb2278724be28796fcec6f69d7bf", + "placeholder": "​", + "style": "IPY_MODEL_92f6f017f752469aac3c5c095c42bb92", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "5c54f7221432415ba2afba64455af817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2062b55baccc4e66b21d4eaf7516bfb2", + "placeholder": "​", + "style": "IPY_MODEL_a62d8b73dd434befa5c8f4700fdebb3a", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "5e1fdc7754424b10af668c3784d1d79b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,7 +2092,7 @@ "width": null } }, - "589d98252cef4f85bf193ba74b4f11d4": { + "5f9b91f66f694d5eb6207514df3f361b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2112,17 +2108,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae489b923a8340a3ba0481c4d1ea261d", - "max": 48.0, + "layout": "IPY_MODEL_2d58ff6fd7d14ca59a65d5f6fbfa0638", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_39ee56051f0c4ee8b154fc79d637ae7f", + "style": "IPY_MODEL_51d4961d8f8541eb88e2da893fa47eed", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 391.0 + } + }, + "62a0b42d5f6c4da2ab47c1a7942d3337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5955dd04859341989c951890a4df5fa5": { + "660acb2278724be28796fcec6f69d7bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,114 +2189,168 @@ "width": null } }, - "5a8d7753d65946d9bba9b5af5477e2f0": { + "66da8b50d05043dba9d9652587054967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dc0ab7b03f9425ebd4489c94893df8e", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6501307f5ce34203ab7fdf2215a08557", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5e53f21879bb44d39a75f785746eb86f": { + "6c15800b0d624e8d81d8abfc85f9254f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d0ccf5f28d488e93908803a2b4c76d", - "placeholder": "​", - "style": "IPY_MODEL_e55810572ac94069938f8aa1d5c89733", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f7b4af5f8fb4207a5fc1453ead1657d": { - "model_module": "@jupyter-widgets/controls", + "70de1cac82cd4800a25b8f67e952ca42": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45f797f62ab84a74bc35ca4a2b3595cc", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22a5fe5ff39e4ca2978a0d5638deed64", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6501307f5ce34203ab7fdf2215a08557": { - "model_module": "@jupyter-widgets/controls", + "74914279b76946f9b81bbd35eb876eb3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "674c5467100e43c3a14efcbbaa694b2f": { + "801dfb197b9a4fffb3406e9b3339e8a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dfef38574554577ab70c1090376620e", + "placeholder": "​", + "style": "IPY_MODEL_b9ab52a5d21a46f397d61d32477dd414", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.9kB/s]" } }, - "67c1114ef93e46e4875c1a36196581fe": { + "80896446ef2545c9bbbc50f05e195a0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2335,7 +2403,31 @@ "width": null } }, - "68665ef2c2d344649a6bb5bef2cd0cf1": { + "81db904263be418b972cdc74693c1347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9202292df4544bb09b34656d6dd33226", + "IPY_MODEL_af6e581b18b24606b3bfcf4f16217c63", + "IPY_MODEL_506c7f29cf3d491e9d8df294ae722e21" + ], + "layout": "IPY_MODEL_b7c7600372e74de589a5cfb229cb8728", + "tabbable": null, + "tooltip": null + } + }, + "839cd742a34841029c4a4e34d5a903fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2351,7 +2443,31 @@ "description_width": "" } }, - "6bffd8a3cc944217923e11e74caa87ed": { + "857f6827f751492d8e4455d6dcc779a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5f1210c6850475f951124e6e276868f", + "IPY_MODEL_b45a54addc1642888759cbcda460b064", + "IPY_MODEL_468ecd46323f48c58c97d2c4190cdfa6" + ], + "layout": "IPY_MODEL_15da45f559dc4baebc98b369b1b1bac9", + "tabbable": null, + "tooltip": null + } + }, + "867d9702d3e54bc588e06b3916ce2240": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,71 +2520,7 @@ "width": null } }, - "6ccf6a21dc3945fbb2d43252f575ef5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5955dd04859341989c951890a4df5fa5", - "placeholder": "​", - "style": "IPY_MODEL_951eb939a72f45bd92ba8792847aa1eb", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "71273fc53eab44809f296c757a78d589": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73f23d2d6373465e9dbad61f9ad06ef4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6fd9b1124fc4d558957370f8075ca1f", - "placeholder": "​", - "style": "IPY_MODEL_78da90f9dba54434957f9d14c8d668ed", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "74470f7ecc834ba8b2c48bdabc27a04d": { + "8b68d00ec9e74aa99b854e1e6e50035f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,7 +2573,7 @@ "width": null } }, - "768d4093bcd8494385059cb2bfb032bb": { + "901dbc7b9c464aec8a3cac4e2e14e625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2536,15 +2588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4d73ac4b9df4def8a36beec9df58011", + "layout": "IPY_MODEL_ec91ee5e87014770a996a744ed36e8f7", "placeholder": "​", - "style": "IPY_MODEL_fb9887fc25ab4f2394962edb6a9502f5", + "style": "IPY_MODEL_01540b61781c4eb58c18e156802a58d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "76eba979f94c468e8d98b7112a0724a5": { + "91544e5b16174f2e909f6bb9aadf6a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2649,30 @@ "width": null } }, - "78da90f9dba54434957f9d14c8d668ed": { + "9202292df4544bb09b34656d6dd33226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12fb1a366134caf8620d9c169f63fb1", + "placeholder": "​", + "style": "IPY_MODEL_62a0b42d5f6c4da2ab47c1a7942d3337", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "92f6f017f752469aac3c5c095c42bb92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2615,7 +2690,7 @@ "text_color": null } }, - "79795d7634484b35a621edac0423512e": { + "9883831e5e574351a71cbc22708f91c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2668,7 +2743,25 @@ "width": null } }, - "7c1143c17f2040eaa6e34bdebb77865d": { + "a62d8b73dd434befa5c8f4700fdebb3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7e8d478c1164e08b3fd282538dc8416": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2814,7 @@ "width": null } }, - "86a1f95ab6d54233a5b9ed9a5716805f": { + "a817cdafff274fccbeaceccbaef0ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2739,112 +2832,215 @@ "text_color": null } }, - "94557935a2374333b2239085d88eec9a": { + "aa4c151e344c4e0abf44676bbc9d2d45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6ccf6a21dc3945fbb2d43252f575ef5a", - "IPY_MODEL_5f7b4af5f8fb4207a5fc1453ead1657d", - "IPY_MODEL_3a682b5847a0438eb5702f512f795f1c" - ], - "layout": "IPY_MODEL_67c1114ef93e46e4875c1a36196581fe", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "951eb939a72f45bd92ba8792847aa1eb": { + "af6e581b18b24606b3bfcf4f16217c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2db40e57e84f2b90bc19d497f69a00", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9bde3a464254c5da9b0c1fbe9a12c90", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "9a1b4b67f4494b1a8782e13d9f96e298": { + "b0459879b52642d29b2816724da7b8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c1143c17f2040eaa6e34bdebb77865d", - "placeholder": "​", - "style": "IPY_MODEL_08a01d42535f45c1afd47cdd82b5c40e", + "layout": "IPY_MODEL_5e1fdc7754424b10af668c3784d1d79b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bf168d57d974301a816bd335166c3e4", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.81MB/s]" + "value": 231508.0 } }, - "9cbb0d355e3b4631ab5bde4863e208c9": { + "b45a54addc1642888759cbcda460b064": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73f23d2d6373465e9dbad61f9ad06ef4", - "IPY_MODEL_e6d0b0f32de440cea180d66631646e9c", - "IPY_MODEL_5e53f21879bb44d39a75f785746eb86f" - ], - "layout": "IPY_MODEL_264cad247c01411dbbec2aa09c72f96a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9883831e5e574351a71cbc22708f91c9", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c15800b0d624e8d81d8abfc85f9254f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "b58fdee4702849c092df49b1636d2bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7c7600372e74de589a5cfb229cb8728": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ab52a5d21a46f397d61d32477dd414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0120faf64f6497691116777e44f77aa": { + "b9e3785791cb4f3f85a367cbdffbc2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb6d77b735c24be98e3a75116bd9d3d1", + "placeholder": "​", + "style": "IPY_MODEL_3731f8d339c84d94a28f11beefec8fc8", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" } }, - "ae489b923a8340a3ba0481c4d1ea261d": { + "bad51eb444f94a938e31c59e3113684b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +3093,7 @@ "width": null } }, - "b0d9abfaf1d24260b3f87b1ea0c4209a": { + "c12fb1a366134caf8620d9c169f63fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +3146,7 @@ "width": null } }, - "b4fa9e58d31840ddb31dbe586ab1d95e": { + "c4e4680d87b8463aa7d08f5c6d456285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2965,33 +3161,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74470f7ecc834ba8b2c48bdabc27a04d", + "layout": "IPY_MODEL_70de1cac82cd4800a25b8f67e952ca42", "placeholder": "​", - "style": "IPY_MODEL_42172bed218f48b48601266fd4b31f94", + "style": "IPY_MODEL_0071d1f0936c4bccbd1edaa5a6ae1140", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b533e592f3a247a29f1370a2808a81e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "config.json: 100%" } }, - "bb320defcbac47aeb8b230aae7ef2e42": { + "c5f1210c6850475f951124e6e276868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3006,15 +3184,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0544fbd69b124534b049440d1f3e0d41", + "layout": "IPY_MODEL_165de584f55f4cc4a61989a56f9b49c5", "placeholder": "​", - "style": "IPY_MODEL_1ecfcaca36e849409b94d9e2b3a6d2df", + "style": "IPY_MODEL_100942b5144f4805a0308187f29c80ec", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 6.88kB/s]" + "value": "tokenizer_config.json: 100%" + } + }, + "d6c315a338314fa6b05bdb0eb28b15f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf9d5b94bbd24770874e0cc5af1a1615": { + "dab9adcd9e7c4d6cadb92cc8fbfee50a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,7 +3263,7 @@ "width": null } }, - "c3093ff50e5d4a039d2e953cfd360463": { + "dbef822c740d42df9d83e77b0148c4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3083,64 +3279,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce20eedd96024e7cb76caa10382b98f3", - "max": 2211.0, + "layout": "IPY_MODEL_0e1a742f353b4ae592d5e9d4c904dea7", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_68665ef2c2d344649a6bb5bef2cd0cf1", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "c454eb6f366f411e9e5a792ee1c9e53e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19015823d41c439e9c231621c87bcc79", - "IPY_MODEL_cbdee891ff404e1c89551209815fe333", - "IPY_MODEL_d47720ed569042059b470abcac870e91" - ], - "layout": "IPY_MODEL_e506b0552dce44f58fe55b55001595e6", - "tabbable": null, - "tooltip": null - } - }, - "c56505f3a8884fce9a47bbe99c1b9422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e836e2ba2e3f4854ac42659a1eeeeade", - "placeholder": "​", - "style": "IPY_MODEL_86a1f95ab6d54233a5b9ed9a5716805f", + "style": "IPY_MODEL_56b546e9a9534adb835c7ed1d9aa4667", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" + "value": 665.0 } }, - "c670a9f65c784a998597204abdd99c6c": { + "dd92079e014444fb8d53b9ecd43d4155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3155,42 +3304,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b4fa9e58d31840ddb31dbe586ab1d95e", - "IPY_MODEL_5a8d7753d65946d9bba9b5af5477e2f0", - "IPY_MODEL_9a1b4b67f4494b1a8782e13d9f96e298" + "IPY_MODEL_f9aa0a5acc2d4c988ab5f6b876ade570", + "IPY_MODEL_b0459879b52642d29b2816724da7b8f2", + "IPY_MODEL_3305b2d61b3f4915bbc3a70282874455" ], - "layout": "IPY_MODEL_31ac4e398f274fa2884c943b6c5bdf67", + "layout": "IPY_MODEL_dab9adcd9e7c4d6cadb92cc8fbfee50a", "tabbable": null, "tooltip": null } }, - "cbdee891ff404e1c89551209815fe333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76eba979f94c468e8d98b7112a0724a5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7e4021c02b427c840f1dde6a12c6b7", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "cd63150bb3a1425c9689cc541dcbf29a": { + "e8c2df192a274240a738bf66fe3a221b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,7 +3366,7 @@ "width": null } }, - "ce20eedd96024e7cb76caa10382b98f3": { + "ec91ee5e87014770a996a744ed36e8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3296,54 +3419,7 @@ "width": null } }, - "d47720ed569042059b470abcac870e91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd63150bb3a1425c9689cc541dcbf29a", - "placeholder": "​", - "style": "IPY_MODEL_05c30b39421044298e1e8ac7e138767d", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 54.7kB/s]" - } - }, - "e4bb31413f5b49d5a94609831a4b36f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e81be626ddb14f05bda0812ebd9f1e69", - "IPY_MODEL_589d98252cef4f85bf193ba74b4f11d4", - "IPY_MODEL_bb320defcbac47aeb8b230aae7ef2e42" - ], - "layout": "IPY_MODEL_6bffd8a3cc944217923e11e74caa87ed", - "tabbable": null, - "tooltip": null - } - }, - "e506b0552dce44f58fe55b55001595e6": { + "ed4314e49f3e423ab3e2f4721f4b9212": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,51 +3472,30 @@ "width": null } }, - "e55810572ac94069938f8aa1d5c89733": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e6d0b0f32de440cea180d66631646e9c": { + "ef4c1ce3b993449bb0aaf04a55c873f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_583111a984204d99b91ecb3dfb37bf0e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_674c5467100e43c3a14efcbbaa694b2f", + "layout": "IPY_MODEL_867d9702d3e54bc588e06b3916ce2240", + "placeholder": "​", + "style": "IPY_MODEL_a817cdafff274fccbeaceccbaef0ae77", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 54.2M/54.2M [00:00<00:00, 194MB/s]" } }, - "e6fd9b1124fc4d558957370f8075ca1f": { + "f7ef1ed37e7949049da1bc6875f2930d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3548,7 @@ "width": null } }, - "e81be626ddb14f05bda0812ebd9f1e69": { + "f9aa0a5acc2d4c988ab5f6b876ade570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3508,68 +3563,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79795d7634484b35a621edac0423512e", + "layout": "IPY_MODEL_ed4314e49f3e423ab3e2f4721f4b9212", "placeholder": "​", - "style": "IPY_MODEL_b533e592f3a247a29f1370a2808a81e3", + "style": "IPY_MODEL_aa4c151e344c4e0abf44676bbc9d2d45", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "vocab.txt: 100%" } }, - "e836e2ba2e3f4854ac42659a1eeeeade": { - "model_module": "@jupyter-widgets/base", + "f9bde3a464254c5da9b0c1fbe9a12c90": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4d73ac4b9df4def8a36beec9df58011": { + "fb6d77b735c24be98e3a75116bd9d3d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "fb9887fc25ab4f2394962edb6a9502f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index a5325d72b..4d8b78fd5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:11.666172Z", - "iopub.status.busy": "2024-09-26T16:58:11.665997Z", - "iopub.status.idle": "2024-09-26T16:58:17.115098Z", - "shell.execute_reply": "2024-09-26T16:58:17.114580Z" + "iopub.execute_input": "2024-09-27T13:44:36.603453Z", + "iopub.status.busy": "2024-09-27T13:44:36.603070Z", + "iopub.status.idle": "2024-09-27T13:44:42.107486Z", + "shell.execute_reply": "2024-09-27T13:44:42.106821Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.117549Z", - "iopub.status.busy": "2024-09-26T16:58:17.116881Z", - "iopub.status.idle": "2024-09-26T16:58:17.120196Z", - "shell.execute_reply": "2024-09-26T16:58:17.119731Z" + "iopub.execute_input": "2024-09-27T13:44:42.109797Z", + "iopub.status.busy": "2024-09-27T13:44:42.109442Z", + "iopub.status.idle": "2024-09-27T13:44:42.112852Z", + "shell.execute_reply": "2024-09-27T13:44:42.112294Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.121809Z", - "iopub.status.busy": "2024-09-26T16:58:17.121619Z", - "iopub.status.idle": "2024-09-26T16:58:17.126367Z", - "shell.execute_reply": "2024-09-26T16:58:17.125801Z" + "iopub.execute_input": "2024-09-27T13:44:42.114568Z", + "iopub.status.busy": "2024-09-27T13:44:42.114269Z", + "iopub.status.idle": "2024-09-27T13:44:42.119040Z", + "shell.execute_reply": "2024-09-27T13:44:42.118475Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.128273Z", - "iopub.status.busy": "2024-09-26T16:58:17.127955Z", - "iopub.status.idle": "2024-09-26T16:58:18.305634Z", - "shell.execute_reply": "2024-09-26T16:58:18.304924Z" + "iopub.execute_input": "2024-09-27T13:44:42.120949Z", + "iopub.status.busy": "2024-09-27T13:44:42.120568Z", + "iopub.status.idle": "2024-09-27T13:44:43.941703Z", + "shell.execute_reply": "2024-09-27T13:44:43.940859Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.307831Z", - "iopub.status.busy": "2024-09-26T16:58:18.307625Z", - "iopub.status.idle": "2024-09-26T16:58:18.318649Z", - "shell.execute_reply": "2024-09-26T16:58:18.318056Z" + "iopub.execute_input": "2024-09-27T13:44:43.943941Z", + "iopub.status.busy": "2024-09-27T13:44:43.943720Z", + "iopub.status.idle": "2024-09-27T13:44:43.955413Z", + "shell.execute_reply": "2024-09-27T13:44:43.954952Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.320584Z", - "iopub.status.busy": "2024-09-26T16:58:18.320195Z", - "iopub.status.idle": "2024-09-26T16:58:18.325935Z", - "shell.execute_reply": "2024-09-26T16:58:18.325369Z" + "iopub.execute_input": "2024-09-27T13:44:43.957114Z", + "iopub.status.busy": "2024-09-27T13:44:43.956812Z", + "iopub.status.idle": "2024-09-27T13:44:43.962413Z", + "shell.execute_reply": "2024-09-27T13:44:43.961847Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.327582Z", - "iopub.status.busy": "2024-09-26T16:58:18.327252Z", - "iopub.status.idle": "2024-09-26T16:58:18.797178Z", - "shell.execute_reply": "2024-09-26T16:58:18.796545Z" + "iopub.execute_input": "2024-09-27T13:44:43.964221Z", + "iopub.status.busy": "2024-09-27T13:44:43.963888Z", + "iopub.status.idle": "2024-09-27T13:44:44.422014Z", + "shell.execute_reply": "2024-09-27T13:44:44.421486Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.799295Z", - "iopub.status.busy": "2024-09-26T16:58:18.798812Z", - "iopub.status.idle": "2024-09-26T16:58:19.937622Z", - "shell.execute_reply": "2024-09-26T16:58:19.936983Z" + "iopub.execute_input": "2024-09-27T13:44:44.423808Z", + "iopub.status.busy": "2024-09-27T13:44:44.423482Z", + "iopub.status.idle": "2024-09-27T13:44:45.385758Z", + "shell.execute_reply": "2024-09-27T13:44:45.385212Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.939805Z", - "iopub.status.busy": "2024-09-26T16:58:19.939457Z", - "iopub.status.idle": "2024-09-26T16:58:19.957921Z", - "shell.execute_reply": "2024-09-26T16:58:19.957472Z" + "iopub.execute_input": "2024-09-27T13:44:45.387774Z", + "iopub.status.busy": "2024-09-27T13:44:45.387444Z", + "iopub.status.idle": "2024-09-27T13:44:45.405880Z", + "shell.execute_reply": "2024-09-27T13:44:45.405337Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.959708Z", - "iopub.status.busy": "2024-09-26T16:58:19.959373Z", - "iopub.status.idle": "2024-09-26T16:58:19.962455Z", - "shell.execute_reply": "2024-09-26T16:58:19.962003Z" + "iopub.execute_input": "2024-09-27T13:44:45.407707Z", + "iopub.status.busy": "2024-09-27T13:44:45.407368Z", + "iopub.status.idle": "2024-09-27T13:44:45.410436Z", + "shell.execute_reply": "2024-09-27T13:44:45.409969Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.964013Z", - "iopub.status.busy": "2024-09-26T16:58:19.963713Z", - "iopub.status.idle": "2024-09-26T16:58:34.705096Z", - "shell.execute_reply": "2024-09-26T16:58:34.704532Z" + "iopub.execute_input": "2024-09-27T13:44:45.412058Z", + "iopub.status.busy": "2024-09-27T13:44:45.411732Z", + "iopub.status.idle": "2024-09-27T13:44:59.801008Z", + "shell.execute_reply": "2024-09-27T13:44:59.800349Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.707498Z", - "iopub.status.busy": "2024-09-26T16:58:34.707096Z", - "iopub.status.idle": "2024-09-26T16:58:34.711017Z", - "shell.execute_reply": "2024-09-26T16:58:34.710531Z" + "iopub.execute_input": "2024-09-27T13:44:59.803402Z", + "iopub.status.busy": "2024-09-27T13:44:59.803141Z", + "iopub.status.idle": "2024-09-27T13:44:59.807543Z", + "shell.execute_reply": "2024-09-27T13:44:59.807041Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.712913Z", - "iopub.status.busy": "2024-09-26T16:58:34.712565Z", - "iopub.status.idle": "2024-09-26T16:58:35.450910Z", - "shell.execute_reply": "2024-09-26T16:58:35.450314Z" + "iopub.execute_input": "2024-09-27T13:44:59.809665Z", + "iopub.status.busy": "2024-09-27T13:44:59.809247Z", + "iopub.status.idle": "2024-09-27T13:45:00.567639Z", + "shell.execute_reply": "2024-09-27T13:45:00.566984Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.453164Z", - "iopub.status.busy": "2024-09-26T16:58:35.452805Z", - "iopub.status.idle": "2024-09-26T16:58:35.457809Z", - "shell.execute_reply": "2024-09-26T16:58:35.457267Z" + "iopub.execute_input": "2024-09-27T13:45:00.570314Z", + "iopub.status.busy": "2024-09-27T13:45:00.569847Z", + "iopub.status.idle": "2024-09-27T13:45:00.575162Z", + "shell.execute_reply": "2024-09-27T13:45:00.574623Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.459721Z", - "iopub.status.busy": "2024-09-26T16:58:35.459376Z", - "iopub.status.idle": "2024-09-26T16:58:35.584541Z", - "shell.execute_reply": "2024-09-26T16:58:35.583868Z" + "iopub.execute_input": "2024-09-27T13:45:00.577328Z", + "iopub.status.busy": "2024-09-27T13:45:00.576927Z", + "iopub.status.idle": "2024-09-27T13:45:00.691103Z", + "shell.execute_reply": "2024-09-27T13:45:00.690409Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.586408Z", - "iopub.status.busy": "2024-09-26T16:58:35.586206Z", - "iopub.status.idle": "2024-09-26T16:58:35.599540Z", - "shell.execute_reply": "2024-09-26T16:58:35.599063Z" + "iopub.execute_input": "2024-09-27T13:45:00.693335Z", + "iopub.status.busy": "2024-09-27T13:45:00.692963Z", + "iopub.status.idle": "2024-09-27T13:45:00.706085Z", + "shell.execute_reply": "2024-09-27T13:45:00.705457Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.601125Z", - "iopub.status.busy": "2024-09-26T16:58:35.600946Z", - "iopub.status.idle": "2024-09-26T16:58:35.608862Z", - "shell.execute_reply": "2024-09-26T16:58:35.608287Z" + "iopub.execute_input": "2024-09-27T13:45:00.708127Z", + "iopub.status.busy": "2024-09-27T13:45:00.707715Z", + "iopub.status.idle": "2024-09-27T13:45:00.716060Z", + "shell.execute_reply": "2024-09-27T13:45:00.715507Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.610542Z", - "iopub.status.busy": "2024-09-26T16:58:35.610361Z", - "iopub.status.idle": "2024-09-26T16:58:35.614478Z", - "shell.execute_reply": "2024-09-26T16:58:35.614026Z" + "iopub.execute_input": "2024-09-27T13:45:00.717915Z", + "iopub.status.busy": "2024-09-27T13:45:00.717603Z", + "iopub.status.idle": "2024-09-27T13:45:00.722261Z", + "shell.execute_reply": "2024-09-27T13:45:00.721747Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.616016Z", - "iopub.status.busy": "2024-09-26T16:58:35.615841Z", - "iopub.status.idle": "2024-09-26T16:58:35.621639Z", - "shell.execute_reply": "2024-09-26T16:58:35.621174Z" + "iopub.execute_input": "2024-09-27T13:45:00.724102Z", + "iopub.status.busy": "2024-09-27T13:45:00.723755Z", + "iopub.status.idle": "2024-09-27T13:45:00.729426Z", + "shell.execute_reply": "2024-09-27T13:45:00.728942Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.623234Z", - "iopub.status.busy": "2024-09-26T16:58:35.623053Z", - "iopub.status.idle": "2024-09-26T16:58:35.739774Z", - "shell.execute_reply": "2024-09-26T16:58:35.739189Z" + "iopub.execute_input": "2024-09-27T13:45:00.731141Z", + "iopub.status.busy": "2024-09-27T13:45:00.730829Z", + "iopub.status.idle": "2024-09-27T13:45:00.853648Z", + "shell.execute_reply": "2024-09-27T13:45:00.853124Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.741627Z", - "iopub.status.busy": "2024-09-26T16:58:35.741282Z", - "iopub.status.idle": "2024-09-26T16:58:35.848790Z", - "shell.execute_reply": "2024-09-26T16:58:35.848301Z" + "iopub.execute_input": "2024-09-27T13:45:00.855705Z", + "iopub.status.busy": "2024-09-27T13:45:00.855318Z", + "iopub.status.idle": "2024-09-27T13:45:00.964042Z", + "shell.execute_reply": "2024-09-27T13:45:00.963452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.850804Z", - "iopub.status.busy": "2024-09-26T16:58:35.850284Z", - "iopub.status.idle": "2024-09-26T16:58:35.953589Z", - "shell.execute_reply": "2024-09-26T16:58:35.953058Z" + "iopub.execute_input": "2024-09-27T13:45:00.965938Z", + "iopub.status.busy": "2024-09-27T13:45:00.965576Z", + "iopub.status.idle": "2024-09-27T13:45:01.070709Z", + "shell.execute_reply": "2024-09-27T13:45:01.070224Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.955515Z", - "iopub.status.busy": "2024-09-26T16:58:35.955161Z", - "iopub.status.idle": "2024-09-26T16:58:36.069054Z", - "shell.execute_reply": "2024-09-26T16:58:36.068561Z" + "iopub.execute_input": "2024-09-27T13:45:01.072505Z", + "iopub.status.busy": "2024-09-27T13:45:01.072108Z", + "iopub.status.idle": "2024-09-27T13:45:01.175748Z", + "shell.execute_reply": "2024-09-27T13:45:01.175154Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:36.070954Z", - "iopub.status.busy": "2024-09-26T16:58:36.070626Z", - "iopub.status.idle": "2024-09-26T16:58:36.073888Z", - "shell.execute_reply": "2024-09-26T16:58:36.073420Z" + "iopub.execute_input": "2024-09-27T13:45:01.177710Z", + "iopub.status.busy": "2024-09-27T13:45:01.177244Z", + "iopub.status.idle": "2024-09-27T13:45:01.180494Z", + "shell.execute_reply": "2024-09-27T13:45:01.180049Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01dd619d956847aa997ffce9331c6f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "04b2119cb5c24b1282f4651b60c081db": { + "018d3e0de5994deeaf61abcc22f7e853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1425,39 +1407,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", + "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "​", - "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", + "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 3.40MB/s]" } }, - "069285b7fcae4a49aa4d8b2a0ec5e1f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", - "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", - "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3" - ], - "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", - "tabbable": null, - "tooltip": null - } - }, - "0d9c93e26d3641af937b86cb28f1043c": { + "03f302b33f0f499db69c7ab14a1ca2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,7 +1468,25 @@ "width": null } }, - "119d581cffd34949a8d48c293a69272b": { + "10c368927baf4420969cb6ae68c4e717": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11915e48f4504281b814613868eca199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1525,31 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", + "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "​", - "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", + "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 827kB/s]" - } - }, - "1207321f92434ac49c2b3961aa955300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 230MB/s]" } }, - "1689568cadba4428a3c16e73aec93064": { + "151e8ca846e44a6e9194a75128fb307e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1567,49 +1527,7 @@ "text_color": null } }, - "1a937547234f4e3e8c99c9942633b902": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1bb31cd8192b40ce90db2d1561f184d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "2105f964155648f587a79823e2dc52df": { + "168def778e954cfab29445ed86ae3d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1624,15 +1542,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", + "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "​", - "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", + "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "22f37e2ccb594a9b9e6d3ed7ba64429d": { + "1c30d7917105425b986c353f9fee84f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1648,7 +1566,7 @@ "description_width": "" } }, - "24bd633b981f4071bfa481b55e491ae3": { + "2a672c9d548d45dd9723f972d19f5cd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1619,7 @@ "width": null } }, - "2611ff525a1f41f0b9d0440d5259df6d": { + "2c41fc16193949dabc14c8dea52ea0ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,74 +1672,7 @@ "width": null } }, - "27c15cee7b864a8bbb79e8a88cb39b17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "2ef3f35a45534012b74dce3efb231dc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", - "placeholder": "​", - "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 448kB/s]" - } - }, - "3061b1986853449599f2d06f2326b1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "348223f05553429fad2b7618c7dbd29c": { + "2ddcca527ea545e2918701a00e64a4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,80 +1725,7 @@ "width": null } }, - "3521b72379974fbfaa344ab8e0fc15a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "37f7257044bd41dc9f107740b3e64070": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", - "placeholder": "​", - "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "3ab74bd10a8b4e988d838d02d6a7f8f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", - "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", - "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1" - ], - "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", - "tabbable": null, - "tooltip": null - } - }, - "3e8e9bbc1d5144968fadad5594c865a3": { + "4053bae3cf9f4d7c99f6bd1bf8fec47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1778,25 @@ "width": null } }, - "4aa4c543e9214f93af3a4075231e3d53": { + "40c77a336db74f489321f1f6b9e81cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "47ad7ceb8f4d4fce9cebe4190fd489d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2053,120 +1849,126 @@ "width": null } }, - "4c0c0f4c36114fdf9aeb5e0e2108452e": { + "4a182bf1825140f88b758ae22e5f180c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", - "placeholder": "​", - "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", + "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 128619.0 } }, - "4c0d8e35a50f4d4eb5c8b76fe80c92a7": { + "50977494445c4346b297684613074520": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "4fe513d681ba466d900d11c396115fa5": { + "571870242b4f43aa8e6e1bdd1628ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", - "placeholder": "​", - "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", + "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 56.0MB/s]" + "value": 16887676.0 } }, - "55987e4ef9f44c18a42f73fe72df11ac": { + "5863021a6f354713830e74ab4fcfa0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", - "placeholder": "​", - "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.68MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5614924105cd4430824c54f8fbd620e2": { + "5a43ca99790144e9a5702ff9b3b2cd34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", + "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", + "placeholder": "​", + "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "label_encoder.txt: 100%" } }, - "58a8dcd03ec24652964baa102fc44bba": { + "5be1b1a4405046d392c0d881cefd9325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2021,7 @@ "width": null } }, - "5dcab6e3e9b74150a77ee8695ec6f12c": { + "5e9038000b834a668c338ea02511ac69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,60 +2074,25 @@ "width": null } }, - "5f4f61eaf6bf46b098b8abb00a3d84bf": { - "model_module": "@jupyter-widgets/base", + "612eaf97f5134a35b05234006254d4f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "61dfbe2e6b0f4758ae16a0d955f1c152": { + "668f7d7744d84739b5a00b9fa075e89a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2341,83 +2108,116 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", - "max": 16887676.0, + "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", + "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "61e09812f1bc40019dcf1e4e5110b6eb": { + "68af8a48d81e4721b4da3d3dc6a8ef57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", + "placeholder": "​", + "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "64a71dc2611f471ea0d375c4aa5cc6a5": { + "6c3b53f037b3487a80cffb640af03495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", - "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", - "IPY_MODEL_119d581cffd34949a8d48c293a69272b" - ], - "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", + "placeholder": "​", + "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "691c3e35f66d4a8d9767d80f6b85f07d": { - "model_module": "@jupyter-widgets/controls", + "762ccb3a102448568ee60cc41b44dc7a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37f7257044bd41dc9f107740b3e64070", - "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", - "IPY_MODEL_4fe513d681ba466d900d11c396115fa5" - ], - "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b3edac5eedd4e929d87d30168008e9e": { + "76c50230cb5a4154b63c7afd956c5656": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,7 +2270,89 @@ "width": null } }, - "77d1a086e62d42df9d823e2016fd7a8b": { + "782c8b9cb2704b4694519195d9c535d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818535aa611c461389a532d95e7c1934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_168def778e954cfab29445ed86ae3d09", + "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", + "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf" + ], + "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", + "tabbable": null, + "tooltip": null + } + }, + "8432060f5fed40438f092ea7936c46c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c3b53f037b3487a80cffb640af03495", + "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", + "IPY_MODEL_c80c47b2a3c54cf787e88de611551989" + ], + "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", + "tabbable": null, + "tooltip": null + } + }, + "936f5441144546599078322a02ea1264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "949f7d6cad114c68aa53aebedd9ca92e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2486,7 +2368,7 @@ "description_width": "" } }, - "80b84f6784d245229070cb0b2c51ed60": { + "9649f71e84fd4f539505e104fdc2b949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2539,25 +2421,31 @@ "width": null } }, - "8431f88fd57741c591d760cf54e05437": { + "992b4d56eba94771a314a42397dfaa94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", + "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", + "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c" + ], + "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", + "tabbable": null, + "tooltip": null } }, - "8a11de9efd4c4eb1bcdb5e0572a7a6cf": { + "9f67f2e8fc6e47b182ba7f1089a4c5b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2573,7 +2461,7 @@ "description_width": "" } }, - "8ead2917d2cb47caa5737a8fe7543902": { + "a33fbac541a5428c8a0d561d886f279f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2591,7 +2479,7 @@ "text_color": null } }, - "a8f57adf102641838fd50c8bbaf3c77e": { + "a62e67926fe849f384b2c354aa669eb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,31 +2532,7 @@ "width": null } }, - "ad0fb9aac7a14f05a1580ff6488782c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2105f964155648f587a79823e2dc52df", - "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", - "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac" - ], - "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", - "tabbable": null, - "tooltip": null - } - }, - "af1897d6c781491a840fec89717380dc": { + "ac04b000aacb4879bf4e95114361c74e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2585,56 @@ "width": null } }, - "bd8ed9c113d64a59aed51794c9f93adb": { + "accf3e2b636443809c5c8d0b8a6ff5bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", + "placeholder": "​", + "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 123MB/s]" + } + }, + "ad8e8630e0ef4330a5851661d05cca2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "b74268b143c3457ea3926c8c5144f8b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,7 +2687,7 @@ "width": null } }, - "c46a370402f2481bb9924ac5e9f67307": { + "b8ae14d02947401f8ef065665ec71125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2792,30 +2705,25 @@ "text_color": null } }, - "ced3b9d2c3be456b90083e8f9057f668": { + "bf5b5193a91d476588d2b32f118e2805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", - "placeholder": "​", - "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0a44fb871b448adbba43c44b4502169": { + "c486a759402940f1a631675c983d06ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,25 +2776,30 @@ "width": null } }, - "d3c6eb59d32548d28aaf3137df63dd43": { + "c80c47b2a3c54cf787e88de611551989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", + "placeholder": "​", + "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 753kB/s]" } }, - "d72d99b3b0104e81845d798e3082b95c": { + "c89a331526a94333842b49ad04c7fec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2939,30 +2852,49 @@ "width": null } }, - "d9acb79e5c9248618d2fe0e135c9aae1": { + "c97a8b48d85148af82daab8dd0193369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", - "placeholder": "​", - "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", + "IPY_MODEL_50977494445c4346b297684613074520", + "IPY_MODEL_11915e48f4504281b814613868eca199" + ], + "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + "tooltip": null + } + }, + "d61231cf2b94494a8c4901a0f9cfc33b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e67238f3e71a4da182cad9cfc8a90dbe": { + "d7774cb8b5a24b4fb76f4da281a186e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3015,7 +2947,7 @@ "width": null } }, - "ec1a41355e7f4d23b1bd5a452a1839f7": { + "d91d31ef52e240b3a7fbfbdfe4c6ec01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3068,25 +3000,47 @@ "width": null } }, - "f56a5502560a40e5a983b3bdcefc7a73": { + "df407e638a9648569ea77312b39b3124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", + "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", + "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853" + ], + "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", + "tabbable": null, + "tooltip": null + } + }, + "e0af8aaa092d489583a475dc5f415438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f95194d703394d719ae03aad8cc8c815": { + "e2d39e561781403d9baca72c88e6f3c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3093,30 @@ "width": null } }, - "ffde30c67f7742f88a8ff28a1b3a78a7": { + "e6d30e9cda9f43ccac9318d15445f701": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", + "placeholder": "​", + "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "e7d4217753f2470494b46b000eb13525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3168,29 @@ "visibility": null, "width": null } + }, + "f4be297a9bba4232b2b5d09f2781b53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", + "placeholder": "​", + "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 444kB/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index ffc430e68..f96269130 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:39.586217Z", - "iopub.status.busy": "2024-09-26T16:58:39.585770Z", - "iopub.status.idle": "2024-09-26T16:58:40.868805Z", - "shell.execute_reply": "2024-09-26T16:58:40.868290Z" + "iopub.execute_input": "2024-09-27T13:45:05.545064Z", + "iopub.status.busy": "2024-09-27T13:45:05.544883Z", + "iopub.status.idle": "2024-09-27T13:45:06.777330Z", + "shell.execute_reply": "2024-09-27T13:45:06.776775Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.871104Z", - "iopub.status.busy": "2024-09-26T16:58:40.870653Z", - "iopub.status.idle": "2024-09-26T16:58:40.873864Z", - "shell.execute_reply": "2024-09-26T16:58:40.873292Z" + "iopub.execute_input": "2024-09-27T13:45:06.779593Z", + "iopub.status.busy": "2024-09-27T13:45:06.779069Z", + "iopub.status.idle": "2024-09-27T13:45:06.782274Z", + "shell.execute_reply": "2024-09-27T13:45:06.781769Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.875643Z", - "iopub.status.busy": "2024-09-26T16:58:40.875341Z", - "iopub.status.idle": "2024-09-26T16:58:40.884143Z", - "shell.execute_reply": "2024-09-26T16:58:40.883552Z" + "iopub.execute_input": "2024-09-27T13:45:06.784051Z", + "iopub.status.busy": "2024-09-27T13:45:06.783747Z", + "iopub.status.idle": "2024-09-27T13:45:06.792444Z", + "shell.execute_reply": "2024-09-27T13:45:06.791879Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.885948Z", - "iopub.status.busy": "2024-09-26T16:58:40.885595Z", - "iopub.status.idle": "2024-09-26T16:58:40.890353Z", - "shell.execute_reply": "2024-09-26T16:58:40.889899Z" + "iopub.execute_input": "2024-09-27T13:45:06.794094Z", + "iopub.status.busy": "2024-09-27T13:45:06.793909Z", + "iopub.status.idle": "2024-09-27T13:45:06.798914Z", + "shell.execute_reply": "2024-09-27T13:45:06.798484Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.892204Z", - "iopub.status.busy": "2024-09-26T16:58:40.891849Z", - "iopub.status.idle": "2024-09-26T16:58:41.080702Z", - "shell.execute_reply": "2024-09-26T16:58:41.080055Z" + "iopub.execute_input": "2024-09-27T13:45:06.800723Z", + "iopub.status.busy": "2024-09-27T13:45:06.800392Z", + "iopub.status.idle": "2024-09-27T13:45:06.986289Z", + "shell.execute_reply": "2024-09-27T13:45:06.985622Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.083033Z", - "iopub.status.busy": "2024-09-26T16:58:41.082578Z", - "iopub.status.idle": "2024-09-26T16:58:41.413208Z", - "shell.execute_reply": "2024-09-26T16:58:41.412618Z" + "iopub.execute_input": "2024-09-27T13:45:06.988338Z", + "iopub.status.busy": "2024-09-27T13:45:06.988040Z", + "iopub.status.idle": "2024-09-27T13:45:07.366255Z", + "shell.execute_reply": "2024-09-27T13:45:07.365671Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.415261Z", - "iopub.status.busy": "2024-09-26T16:58:41.414880Z", - "iopub.status.idle": "2024-09-26T16:58:41.439241Z", - "shell.execute_reply": "2024-09-26T16:58:41.438758Z" + "iopub.execute_input": "2024-09-27T13:45:07.368186Z", + "iopub.status.busy": "2024-09-27T13:45:07.367830Z", + "iopub.status.idle": "2024-09-27T13:45:07.391565Z", + "shell.execute_reply": "2024-09-27T13:45:07.391095Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.441206Z", - "iopub.status.busy": "2024-09-26T16:58:41.440852Z", - "iopub.status.idle": "2024-09-26T16:58:41.530137Z", - "shell.execute_reply": "2024-09-26T16:58:41.529646Z" + "iopub.execute_input": "2024-09-27T13:45:07.393457Z", + "iopub.status.busy": "2024-09-27T13:45:07.393097Z", + "iopub.status.idle": "2024-09-27T13:45:07.479260Z", + "shell.execute_reply": "2024-09-27T13:45:07.478768Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.532252Z", - "iopub.status.busy": "2024-09-26T16:58:41.531887Z", - "iopub.status.idle": "2024-09-26T16:58:43.523076Z", - "shell.execute_reply": "2024-09-26T16:58:43.522490Z" + "iopub.execute_input": "2024-09-27T13:45:07.481318Z", + "iopub.status.busy": "2024-09-27T13:45:07.480967Z", + "iopub.status.idle": "2024-09-27T13:45:09.458434Z", + "shell.execute_reply": "2024-09-27T13:45:09.457792Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.525189Z", - "iopub.status.busy": "2024-09-26T16:58:43.524668Z", - "iopub.status.idle": "2024-09-26T16:58:43.546082Z", - "shell.execute_reply": "2024-09-26T16:58:43.545611Z" + "iopub.execute_input": "2024-09-27T13:45:09.460455Z", + "iopub.status.busy": "2024-09-27T13:45:09.460050Z", + "iopub.status.idle": "2024-09-27T13:45:09.481260Z", + "shell.execute_reply": "2024-09-27T13:45:09.480768Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.547971Z", - "iopub.status.busy": "2024-09-26T16:58:43.547533Z", - "iopub.status.idle": "2024-09-26T16:58:43.565545Z", - "shell.execute_reply": "2024-09-26T16:58:43.564959Z" + "iopub.execute_input": "2024-09-27T13:45:09.483053Z", + "iopub.status.busy": "2024-09-27T13:45:09.482738Z", + "iopub.status.idle": "2024-09-27T13:45:09.500620Z", + "shell.execute_reply": "2024-09-27T13:45:09.500057Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.567356Z", - "iopub.status.busy": "2024-09-26T16:58:43.566943Z", - "iopub.status.idle": "2024-09-26T16:58:43.580877Z", - "shell.execute_reply": "2024-09-26T16:58:43.580421Z" + "iopub.execute_input": "2024-09-27T13:45:09.502444Z", + "iopub.status.busy": "2024-09-27T13:45:09.502128Z", + "iopub.status.idle": "2024-09-27T13:45:09.516645Z", + "shell.execute_reply": "2024-09-27T13:45:09.516087Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.582509Z", - "iopub.status.busy": "2024-09-26T16:58:43.582336Z", - "iopub.status.idle": "2024-09-26T16:58:43.602652Z", - "shell.execute_reply": "2024-09-26T16:58:43.602186Z" + "iopub.execute_input": "2024-09-27T13:45:09.518510Z", + "iopub.status.busy": "2024-09-27T13:45:09.518107Z", + "iopub.status.idle": "2024-09-27T13:45:09.537902Z", + "shell.execute_reply": "2024-09-27T13:45:09.537447Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f129293f2b7f4d01baa85a24c751e661", + "model_id": "50cf0d4e3a5e40da9095dbb72f93a5f0", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.604349Z", - "iopub.status.busy": "2024-09-26T16:58:43.604011Z", - "iopub.status.idle": "2024-09-26T16:58:43.618854Z", - "shell.execute_reply": "2024-09-26T16:58:43.618317Z" + "iopub.execute_input": "2024-09-27T13:45:09.539519Z", + "iopub.status.busy": "2024-09-27T13:45:09.539343Z", + "iopub.status.idle": "2024-09-27T13:45:09.554415Z", + "shell.execute_reply": "2024-09-27T13:45:09.553921Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.620668Z", - "iopub.status.busy": "2024-09-26T16:58:43.620349Z", - "iopub.status.idle": "2024-09-26T16:58:43.626243Z", - "shell.execute_reply": "2024-09-26T16:58:43.625776Z" + "iopub.execute_input": "2024-09-27T13:45:09.555991Z", + "iopub.status.busy": "2024-09-27T13:45:09.555819Z", + "iopub.status.idle": "2024-09-27T13:45:09.561554Z", + "shell.execute_reply": "2024-09-27T13:45:09.561107Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.628003Z", - "iopub.status.busy": "2024-09-26T16:58:43.627682Z", - "iopub.status.idle": "2024-09-26T16:58:43.646139Z", - "shell.execute_reply": "2024-09-26T16:58:43.645652Z" + "iopub.execute_input": "2024-09-27T13:45:09.563243Z", + "iopub.status.busy": "2024-09-27T13:45:09.562908Z", + "iopub.status.idle": "2024-09-27T13:45:09.580496Z", + "shell.execute_reply": "2024-09-27T13:45:09.580033Z" } }, "outputs": [ @@ -1447,56 +1447,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "493d4fe5a17b4542a5cba6b8200f4ae7": { + "13e0a4b1bcb64960ae4953c3ec5c1636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", - "placeholder": "​", - "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "5a7327b11df54676b5fb98e19a96e526": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "818e28bbe3084ddcaa93c64bdb1f508c": { + "496f194feb564a1daa738de061db6b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1516,98 @@ "width": null } }, - "95805e5fdb02411cbbf6cfaf4ec7c3f2": { + "4d927327f69d4cdfb32e031a5ee96d57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "50cf0d4e3a5e40da9095dbb72f93a5f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", + "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", + "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e" + ], + "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", + "tabbable": null, + "tooltip": null + } + }, + "5eafd2215f0341cd91a935914978c169": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "990cfc063988462d9c5a3959cb8810e8": { + "74154c49b3f64aa4a35fca171dbe795e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", + "placeholder": "​", + "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12681.19 examples/s]" + } + }, + "9bafe95cde0d418990b519ee1c938809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,43 +1660,30 @@ "width": null } }, - "a0d26fa2294748cdae66f37cac146d99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64dad38377142beab7236d5c03dd452": { + "a5d0a705e9874a42a56adc5b9dab4d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", + "placeholder": "​", + "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "b90f5b04ff9c4839ab6282c6ada4d10e": { + "cbaab24fee4e48e29c8c9a265a769a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1707,30 +1736,7 @@ "width": null } }, - "c62f251c21d64f54a595d6aed66e7783": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", - "placeholder": "​", - "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12335.91 examples/s]" - } - }, - "d590738a78bc4dc5b75006050b4cfd20": { + "e450d708e2ef4d12b0412b094270b7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,28 +1789,22 @@ "width": null } }, - "f129293f2b7f4d01baa85a24c751e661": { + "e7203aad39f349f5a2ab732b1748e935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", - "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", - "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783" - ], - "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 54e829ffc..ce77562ed 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:46.520582Z", - "iopub.status.busy": "2024-09-26T16:58:46.520135Z", - "iopub.status.idle": "2024-09-26T16:58:47.747238Z", - "shell.execute_reply": "2024-09-26T16:58:47.746611Z" + "iopub.execute_input": "2024-09-27T13:45:12.449349Z", + "iopub.status.busy": "2024-09-27T13:45:12.449169Z", + "iopub.status.idle": "2024-09-27T13:45:13.685579Z", + "shell.execute_reply": "2024-09-27T13:45:13.684973Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.749716Z", - "iopub.status.busy": "2024-09-26T16:58:47.749089Z", - "iopub.status.idle": "2024-09-26T16:58:47.752228Z", - "shell.execute_reply": "2024-09-26T16:58:47.751798Z" + "iopub.execute_input": "2024-09-27T13:45:13.687686Z", + "iopub.status.busy": "2024-09-27T13:45:13.687268Z", + "iopub.status.idle": "2024-09-27T13:45:13.690359Z", + "shell.execute_reply": "2024-09-27T13:45:13.689877Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.754183Z", - "iopub.status.busy": "2024-09-26T16:58:47.753797Z", - "iopub.status.idle": "2024-09-26T16:58:47.762845Z", - "shell.execute_reply": "2024-09-26T16:58:47.762414Z" + "iopub.execute_input": "2024-09-27T13:45:13.692049Z", + "iopub.status.busy": "2024-09-27T13:45:13.691875Z", + "iopub.status.idle": "2024-09-27T13:45:13.700878Z", + "shell.execute_reply": "2024-09-27T13:45:13.700441Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.764312Z", - "iopub.status.busy": "2024-09-26T16:58:47.764139Z", - "iopub.status.idle": "2024-09-26T16:58:47.768778Z", - "shell.execute_reply": "2024-09-26T16:58:47.768359Z" + "iopub.execute_input": "2024-09-27T13:45:13.702335Z", + "iopub.status.busy": "2024-09-27T13:45:13.702155Z", + "iopub.status.idle": "2024-09-27T13:45:13.707197Z", + "shell.execute_reply": "2024-09-27T13:45:13.706613Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.770422Z", - "iopub.status.busy": "2024-09-26T16:58:47.770241Z", - "iopub.status.idle": "2024-09-26T16:58:47.953927Z", - "shell.execute_reply": "2024-09-26T16:58:47.953369Z" + "iopub.execute_input": "2024-09-27T13:45:13.709224Z", + "iopub.status.busy": "2024-09-27T13:45:13.708778Z", + "iopub.status.idle": "2024-09-27T13:45:13.895158Z", + "shell.execute_reply": "2024-09-27T13:45:13.894579Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.955878Z", - "iopub.status.busy": "2024-09-26T16:58:47.955545Z", - "iopub.status.idle": "2024-09-26T16:58:48.331139Z", - "shell.execute_reply": "2024-09-26T16:58:48.330595Z" + "iopub.execute_input": "2024-09-27T13:45:13.897147Z", + "iopub.status.busy": "2024-09-27T13:45:13.896877Z", + "iopub.status.idle": "2024-09-27T13:45:14.233059Z", + "shell.execute_reply": "2024-09-27T13:45:14.232489Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.333057Z", - "iopub.status.busy": "2024-09-26T16:58:48.332771Z", - "iopub.status.idle": "2024-09-26T16:58:48.335783Z", - "shell.execute_reply": "2024-09-26T16:58:48.335363Z" + "iopub.execute_input": "2024-09-27T13:45:14.235157Z", + "iopub.status.busy": "2024-09-27T13:45:14.234707Z", + "iopub.status.idle": "2024-09-27T13:45:14.237635Z", + "shell.execute_reply": "2024-09-27T13:45:14.237187Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.337521Z", - "iopub.status.busy": "2024-09-26T16:58:48.337167Z", - "iopub.status.idle": "2024-09-26T16:58:48.371595Z", - "shell.execute_reply": "2024-09-26T16:58:48.371120Z" + "iopub.execute_input": "2024-09-27T13:45:14.239301Z", + "iopub.status.busy": "2024-09-27T13:45:14.239117Z", + "iopub.status.idle": "2024-09-27T13:45:14.273678Z", + "shell.execute_reply": "2024-09-27T13:45:14.273114Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.373233Z", - "iopub.status.busy": "2024-09-26T16:58:48.372923Z", - "iopub.status.idle": "2024-09-26T16:58:50.400212Z", - "shell.execute_reply": "2024-09-26T16:58:50.399604Z" + "iopub.execute_input": "2024-09-27T13:45:14.275640Z", + "iopub.status.busy": "2024-09-27T13:45:14.275229Z", + "iopub.status.idle": "2024-09-27T13:45:16.344723Z", + "shell.execute_reply": "2024-09-27T13:45:16.344059Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.402429Z", - "iopub.status.busy": "2024-09-26T16:58:50.401916Z", - "iopub.status.idle": "2024-09-26T16:58:50.420509Z", - "shell.execute_reply": "2024-09-26T16:58:50.420015Z" + "iopub.execute_input": "2024-09-27T13:45:16.347002Z", + "iopub.status.busy": "2024-09-27T13:45:16.346480Z", + "iopub.status.idle": "2024-09-27T13:45:16.365149Z", + "shell.execute_reply": "2024-09-27T13:45:16.364694Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.422399Z", - "iopub.status.busy": "2024-09-26T16:58:50.421975Z", - "iopub.status.idle": "2024-09-26T16:58:50.428339Z", - "shell.execute_reply": "2024-09-26T16:58:50.427906Z" + "iopub.execute_input": "2024-09-27T13:45:16.366944Z", + "iopub.status.busy": "2024-09-27T13:45:16.366625Z", + "iopub.status.idle": "2024-09-27T13:45:16.373078Z", + "shell.execute_reply": "2024-09-27T13:45:16.372627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.430067Z", - "iopub.status.busy": "2024-09-26T16:58:50.429730Z", - "iopub.status.idle": "2024-09-26T16:58:50.435287Z", - "shell.execute_reply": "2024-09-26T16:58:50.434843Z" + "iopub.execute_input": "2024-09-27T13:45:16.374800Z", + "iopub.status.busy": "2024-09-27T13:45:16.374466Z", + "iopub.status.idle": "2024-09-27T13:45:16.380038Z", + "shell.execute_reply": "2024-09-27T13:45:16.379595Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.436910Z", - "iopub.status.busy": "2024-09-26T16:58:50.436575Z", - "iopub.status.idle": "2024-09-26T16:58:50.446601Z", - "shell.execute_reply": "2024-09-26T16:58:50.446159Z" + "iopub.execute_input": "2024-09-27T13:45:16.381766Z", + "iopub.status.busy": "2024-09-27T13:45:16.381371Z", + "iopub.status.idle": "2024-09-27T13:45:16.391456Z", + "shell.execute_reply": "2024-09-27T13:45:16.390908Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.448308Z", - "iopub.status.busy": "2024-09-26T16:58:50.447987Z", - "iopub.status.idle": "2024-09-26T16:58:50.456869Z", - "shell.execute_reply": "2024-09-26T16:58:50.456315Z" + "iopub.execute_input": "2024-09-27T13:45:16.393310Z", + "iopub.status.busy": "2024-09-27T13:45:16.392915Z", + "iopub.status.idle": "2024-09-27T13:45:16.401735Z", + "shell.execute_reply": "2024-09-27T13:45:16.401281Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.458607Z", - "iopub.status.busy": "2024-09-26T16:58:50.458282Z", - "iopub.status.idle": "2024-09-26T16:58:50.465100Z", - "shell.execute_reply": "2024-09-26T16:58:50.464548Z" + "iopub.execute_input": "2024-09-27T13:45:16.403279Z", + "iopub.status.busy": "2024-09-27T13:45:16.403108Z", + "iopub.status.idle": "2024-09-27T13:45:16.409811Z", + "shell.execute_reply": "2024-09-27T13:45:16.409374Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.466816Z", - "iopub.status.busy": "2024-09-26T16:58:50.466493Z", - "iopub.status.idle": "2024-09-26T16:58:50.475579Z", - "shell.execute_reply": "2024-09-26T16:58:50.475136Z" + "iopub.execute_input": "2024-09-27T13:45:16.411631Z", + "iopub.status.busy": "2024-09-27T13:45:16.411232Z", + "iopub.status.idle": "2024-09-27T13:45:16.420514Z", + "shell.execute_reply": "2024-09-27T13:45:16.419938Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.477133Z", - "iopub.status.busy": "2024-09-26T16:58:50.476962Z", - "iopub.status.idle": "2024-09-26T16:58:50.493434Z", - "shell.execute_reply": "2024-09-26T16:58:50.492823Z" + "iopub.execute_input": "2024-09-27T13:45:16.422097Z", + "iopub.status.busy": "2024-09-27T13:45:16.421922Z", + "iopub.status.idle": "2024-09-27T13:45:16.439717Z", + "shell.execute_reply": "2024-09-27T13:45:16.439288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 728d586b2..3f66f37a1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:53.411773Z", - "iopub.status.busy": "2024-09-26T16:58:53.411606Z", - "iopub.status.idle": "2024-09-26T16:58:56.467577Z", - "shell.execute_reply": "2024-09-26T16:58:56.467015Z" + "iopub.execute_input": "2024-09-27T13:45:19.192307Z", + "iopub.status.busy": "2024-09-27T13:45:19.192117Z", + "iopub.status.idle": "2024-09-27T13:45:22.256949Z", + "shell.execute_reply": "2024-09-27T13:45:22.256396Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.469779Z", - "iopub.status.busy": "2024-09-26T16:58:56.469465Z", - "iopub.status.idle": "2024-09-26T16:58:56.473173Z", - "shell.execute_reply": "2024-09-26T16:58:56.472707Z" + "iopub.execute_input": "2024-09-27T13:45:22.259042Z", + "iopub.status.busy": "2024-09-27T13:45:22.258751Z", + "iopub.status.idle": "2024-09-27T13:45:22.262361Z", + "shell.execute_reply": "2024-09-27T13:45:22.261892Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.475000Z", - "iopub.status.busy": "2024-09-26T16:58:56.474674Z", - "iopub.status.idle": "2024-09-26T16:58:59.847498Z", - "shell.execute_reply": "2024-09-26T16:58:59.847018Z" + "iopub.execute_input": "2024-09-27T13:45:22.264021Z", + "iopub.status.busy": "2024-09-27T13:45:22.263690Z", + "iopub.status.idle": "2024-09-27T13:45:25.535718Z", + "shell.execute_reply": "2024-09-27T13:45:25.535139Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed3e7469df2c4560897c195c6e1c0003", + "model_id": "e9fb2e15855a495eb8393c8b1c470abe", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2c29b6ce7974f23abf1753e738849b6", + "model_id": "62d0e0c88f1a4c2abca87123937bd572", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d87537574d1b46388a5f4de507d1aedd", + "model_id": "fca7e86a7eb34f15a6e35dfad2b37d04", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "258343123ee64d078d587fad6e7e195f", + "model_id": "aea869f9cc8d44cf80997dc63f1b0a73", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "219ae75bd53e46b39c1ca8d09542d8c6", + "model_id": "907485478951427389e624de9ba0865d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.849333Z", - "iopub.status.busy": "2024-09-26T16:58:59.848963Z", - "iopub.status.idle": "2024-09-26T16:58:59.852849Z", - "shell.execute_reply": "2024-09-26T16:58:59.852310Z" + "iopub.execute_input": "2024-09-27T13:45:25.537751Z", + "iopub.status.busy": "2024-09-27T13:45:25.537387Z", + "iopub.status.idle": "2024-09-27T13:45:25.541431Z", + "shell.execute_reply": "2024-09-27T13:45:25.540977Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.854463Z", - "iopub.status.busy": "2024-09-26T16:58:59.854166Z", - "iopub.status.idle": "2024-09-26T16:59:11.144483Z", - "shell.execute_reply": "2024-09-26T16:59:11.143910Z" + "iopub.execute_input": "2024-09-27T13:45:25.543067Z", + "iopub.status.busy": "2024-09-27T13:45:25.542758Z", + "iopub.status.idle": "2024-09-27T13:45:36.948754Z", + "shell.execute_reply": "2024-09-27T13:45:36.948076Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30f170149e6d448aaa4ebe763786395b", + "model_id": "b9cec9f2501a478298bdf046984e17af", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:11.146451Z", - "iopub.status.busy": "2024-09-26T16:59:11.146216Z", - "iopub.status.idle": "2024-09-26T16:59:29.523070Z", - "shell.execute_reply": "2024-09-26T16:59:29.522532Z" + "iopub.execute_input": "2024-09-27T13:45:36.951145Z", + "iopub.status.busy": "2024-09-27T13:45:36.950781Z", + "iopub.status.idle": "2024-09-27T13:45:55.344083Z", + "shell.execute_reply": "2024-09-27T13:45:55.343530Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.525358Z", - "iopub.status.busy": "2024-09-26T16:59:29.524954Z", - "iopub.status.idle": "2024-09-26T16:59:29.530885Z", - "shell.execute_reply": "2024-09-26T16:59:29.530434Z" + "iopub.execute_input": "2024-09-27T13:45:55.346499Z", + "iopub.status.busy": "2024-09-27T13:45:55.346039Z", + "iopub.status.idle": "2024-09-27T13:45:55.351081Z", + "shell.execute_reply": "2024-09-27T13:45:55.350506Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.532500Z", - "iopub.status.busy": "2024-09-26T16:59:29.532161Z", - "iopub.status.idle": "2024-09-26T16:59:29.536179Z", - "shell.execute_reply": "2024-09-26T16:59:29.535767Z" + "iopub.execute_input": "2024-09-27T13:45:55.352921Z", + "iopub.status.busy": "2024-09-27T13:45:55.352512Z", + "iopub.status.idle": "2024-09-27T13:45:55.356736Z", + "shell.execute_reply": "2024-09-27T13:45:55.356311Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.538000Z", - "iopub.status.busy": "2024-09-26T16:59:29.537676Z", - "iopub.status.idle": "2024-09-26T16:59:29.546498Z", - "shell.execute_reply": "2024-09-26T16:59:29.546051Z" + "iopub.execute_input": "2024-09-27T13:45:55.358366Z", + "iopub.status.busy": "2024-09-27T13:45:55.358194Z", + "iopub.status.idle": "2024-09-27T13:45:55.367089Z", + "shell.execute_reply": "2024-09-27T13:45:55.366635Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.548140Z", - "iopub.status.busy": "2024-09-26T16:59:29.547810Z", - "iopub.status.idle": "2024-09-26T16:59:29.576281Z", - "shell.execute_reply": "2024-09-26T16:59:29.575747Z" + "iopub.execute_input": "2024-09-27T13:45:55.368819Z", + "iopub.status.busy": "2024-09-27T13:45:55.368623Z", + "iopub.status.idle": "2024-09-27T13:45:55.407222Z", + "shell.execute_reply": "2024-09-27T13:45:55.406716Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.578551Z", - "iopub.status.busy": "2024-09-26T16:59:29.578155Z", - "iopub.status.idle": "2024-09-26T17:00:03.433901Z", - "shell.execute_reply": "2024-09-26T17:00:03.433237Z" + "iopub.execute_input": "2024-09-27T13:45:55.409382Z", + "iopub.status.busy": "2024-09-27T13:45:55.408920Z", + "iopub.status.idle": "2024-09-27T13:46:29.730340Z", + "shell.execute_reply": "2024-09-27T13:46:29.729712Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.020\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.049\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.710\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.896\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa4f2e95243f4fa7a40ad4fcfe57c6c0", + "model_id": "44364892919440e29a4daa044be042e7", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "731f00f919044a8a88cc076b579e46dc", + "model_id": "48dc2c5f935d4a06a9268360f445144f", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.163\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.662\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.758\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9f651479fb634fe188bcbb02162bfd50", + "model_id": "8587b883949a4e399dabc4f91c49eb97", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "262103e39f614b7ba8346cb40a06a364", + "model_id": "c217771fa5814aabb7107510b1d6e6a8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.968\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.120\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.706\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.781\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe416b8103714c939d38072d169f1695", + "model_id": "c9feed1c5a194d669dfaa347748b2250", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de925572cfb54cafa807449424d39b7e", + "model_id": "c88a0a54a7d8495c90e0ceefd16c73ea", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.436161Z", - "iopub.status.busy": "2024-09-26T17:00:03.435771Z", - "iopub.status.idle": "2024-09-26T17:00:03.452443Z", - "shell.execute_reply": "2024-09-26T17:00:03.452024Z" + "iopub.execute_input": "2024-09-27T13:46:29.732349Z", + "iopub.status.busy": "2024-09-27T13:46:29.732107Z", + "iopub.status.idle": "2024-09-27T13:46:29.748596Z", + "shell.execute_reply": "2024-09-27T13:46:29.748051Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.454156Z", - "iopub.status.busy": "2024-09-26T17:00:03.453981Z", - "iopub.status.idle": "2024-09-26T17:00:03.923150Z", - "shell.execute_reply": "2024-09-26T17:00:03.922671Z" + "iopub.execute_input": "2024-09-27T13:46:29.750480Z", + "iopub.status.busy": "2024-09-27T13:46:29.750177Z", + "iopub.status.idle": "2024-09-27T13:46:30.218781Z", + "shell.execute_reply": "2024-09-27T13:46:30.218120Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.925208Z", - "iopub.status.busy": "2024-09-26T17:00:03.924815Z", - "iopub.status.idle": "2024-09-26T17:01:55.216532Z", - "shell.execute_reply": "2024-09-26T17:01:55.215848Z" + "iopub.execute_input": "2024-09-27T13:46:30.220918Z", + "iopub.status.busy": "2024-09-27T13:46:30.220731Z", + "iopub.status.idle": "2024-09-27T13:48:21.510252Z", + "shell.execute_reply": "2024-09-27T13:48:21.509624Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20ae57fa05ee4e83901a856b849b3891", + "model_id": "9b584fe98d9c4efaa2b4e34b431444f0", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.218688Z", - "iopub.status.busy": "2024-09-26T17:01:55.218316Z", - "iopub.status.idle": "2024-09-26T17:01:55.686428Z", - "shell.execute_reply": "2024-09-26T17:01:55.685792Z" + "iopub.execute_input": "2024-09-27T13:48:21.512469Z", + "iopub.status.busy": "2024-09-27T13:48:21.511882Z", + "iopub.status.idle": "2024-09-27T13:48:21.969651Z", + "shell.execute_reply": "2024-09-27T13:48:21.969088Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.688736Z", - "iopub.status.busy": "2024-09-26T17:01:55.688529Z", - "iopub.status.idle": "2024-09-26T17:01:55.750648Z", - "shell.execute_reply": "2024-09-26T17:01:55.750042Z" + "iopub.execute_input": "2024-09-27T13:48:21.971962Z", + "iopub.status.busy": "2024-09-27T13:48:21.971637Z", + "iopub.status.idle": "2024-09-27T13:48:22.033131Z", + "shell.execute_reply": "2024-09-27T13:48:22.032635Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.752599Z", - "iopub.status.busy": "2024-09-26T17:01:55.752266Z", - "iopub.status.idle": "2024-09-26T17:01:55.761230Z", - "shell.execute_reply": "2024-09-26T17:01:55.760653Z" + "iopub.execute_input": "2024-09-27T13:48:22.035050Z", + "iopub.status.busy": "2024-09-27T13:48:22.034706Z", + "iopub.status.idle": "2024-09-27T13:48:22.043297Z", + "shell.execute_reply": "2024-09-27T13:48:22.042841Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.762949Z", - "iopub.status.busy": "2024-09-26T17:01:55.762675Z", - "iopub.status.idle": "2024-09-26T17:01:55.767458Z", - "shell.execute_reply": "2024-09-26T17:01:55.766879Z" + "iopub.execute_input": "2024-09-27T13:48:22.045108Z", + "iopub.status.busy": "2024-09-27T13:48:22.044706Z", + "iopub.status.idle": "2024-09-27T13:48:22.049614Z", + "shell.execute_reply": "2024-09-27T13:48:22.049150Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.769237Z", - "iopub.status.busy": "2024-09-26T17:01:55.768788Z", - "iopub.status.idle": "2024-09-26T17:01:56.270226Z", - "shell.execute_reply": "2024-09-26T17:01:56.269609Z" + "iopub.execute_input": "2024-09-27T13:48:22.051112Z", + "iopub.status.busy": "2024-09-27T13:48:22.050938Z", + "iopub.status.idle": "2024-09-27T13:48:22.550532Z", + "shell.execute_reply": "2024-09-27T13:48:22.549905Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.272148Z", - "iopub.status.busy": "2024-09-26T17:01:56.271744Z", - "iopub.status.idle": "2024-09-26T17:01:56.280250Z", - "shell.execute_reply": "2024-09-26T17:01:56.279691Z" + "iopub.execute_input": "2024-09-27T13:48:22.552263Z", + "iopub.status.busy": "2024-09-27T13:48:22.552084Z", + "iopub.status.idle": "2024-09-27T13:48:22.560446Z", + "shell.execute_reply": "2024-09-27T13:48:22.560005Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.282121Z", - "iopub.status.busy": "2024-09-26T17:01:56.281789Z", - "iopub.status.idle": "2024-09-26T17:01:56.289090Z", - "shell.execute_reply": "2024-09-26T17:01:56.288525Z" + "iopub.execute_input": "2024-09-27T13:48:22.562109Z", + "iopub.status.busy": "2024-09-27T13:48:22.561922Z", + "iopub.status.idle": "2024-09-27T13:48:22.568965Z", + "shell.execute_reply": "2024-09-27T13:48:22.568523Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.291094Z", - "iopub.status.busy": "2024-09-26T17:01:56.290554Z", - "iopub.status.idle": "2024-09-26T17:01:56.760975Z", - "shell.execute_reply": "2024-09-26T17:01:56.760351Z" + "iopub.execute_input": "2024-09-27T13:48:22.570574Z", + "iopub.status.busy": "2024-09-27T13:48:22.570400Z", + "iopub.status.idle": "2024-09-27T13:48:23.038305Z", + "shell.execute_reply": "2024-09-27T13:48:23.037704Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.762860Z", - "iopub.status.busy": "2024-09-26T17:01:56.762505Z", - "iopub.status.idle": "2024-09-26T17:01:56.777586Z", - "shell.execute_reply": "2024-09-26T17:01:56.777116Z" + "iopub.execute_input": "2024-09-27T13:48:23.040310Z", + "iopub.status.busy": "2024-09-27T13:48:23.039947Z", + "iopub.status.idle": "2024-09-27T13:48:23.055305Z", + "shell.execute_reply": "2024-09-27T13:48:23.054831Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.779480Z", - "iopub.status.busy": "2024-09-26T17:01:56.779138Z", - "iopub.status.idle": "2024-09-26T17:01:56.784613Z", - "shell.execute_reply": "2024-09-26T17:01:56.784161Z" + "iopub.execute_input": "2024-09-27T13:48:23.057245Z", + "iopub.status.busy": "2024-09-27T13:48:23.056900Z", + "iopub.status.idle": "2024-09-27T13:48:23.062573Z", + "shell.execute_reply": "2024-09-27T13:48:23.062007Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.786223Z", - "iopub.status.busy": "2024-09-26T17:01:56.785890Z", - "iopub.status.idle": "2024-09-26T17:01:57.544005Z", - "shell.execute_reply": "2024-09-26T17:01:57.543433Z" + "iopub.execute_input": "2024-09-27T13:48:23.064087Z", + "iopub.status.busy": "2024-09-27T13:48:23.063915Z", + "iopub.status.idle": "2024-09-27T13:48:23.767378Z", + "shell.execute_reply": "2024-09-27T13:48:23.766755Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.546041Z", - "iopub.status.busy": "2024-09-26T17:01:57.545838Z", - "iopub.status.idle": "2024-09-26T17:01:57.556107Z", - "shell.execute_reply": "2024-09-26T17:01:57.555567Z" + "iopub.execute_input": "2024-09-27T13:48:23.769501Z", + "iopub.status.busy": "2024-09-27T13:48:23.769322Z", + "iopub.status.idle": "2024-09-27T13:48:23.778619Z", + "shell.execute_reply": "2024-09-27T13:48:23.778012Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.558206Z", - "iopub.status.busy": "2024-09-26T17:01:57.558007Z", - "iopub.status.idle": "2024-09-26T17:01:57.564674Z", - "shell.execute_reply": "2024-09-26T17:01:57.564129Z" + "iopub.execute_input": "2024-09-27T13:48:23.780575Z", + "iopub.status.busy": "2024-09-27T13:48:23.780399Z", + "iopub.status.idle": "2024-09-27T13:48:23.785587Z", + "shell.execute_reply": "2024-09-27T13:48:23.785005Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.566774Z", - "iopub.status.busy": "2024-09-26T17:01:57.566367Z", - "iopub.status.idle": "2024-09-26T17:01:57.768978Z", - "shell.execute_reply": "2024-09-26T17:01:57.768415Z" + "iopub.execute_input": "2024-09-27T13:48:23.787352Z", + "iopub.status.busy": "2024-09-27T13:48:23.787182Z", + "iopub.status.idle": "2024-09-27T13:48:23.966439Z", + "shell.execute_reply": "2024-09-27T13:48:23.965775Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.771130Z", - "iopub.status.busy": "2024-09-26T17:01:57.770703Z", - "iopub.status.idle": "2024-09-26T17:01:57.778526Z", - "shell.execute_reply": "2024-09-26T17:01:57.778048Z" + "iopub.execute_input": "2024-09-27T13:48:23.968665Z", + "iopub.status.busy": "2024-09-27T13:48:23.968476Z", + "iopub.status.idle": "2024-09-27T13:48:23.977999Z", + "shell.execute_reply": "2024-09-27T13:48:23.977408Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.780134Z", - "iopub.status.busy": "2024-09-26T17:01:57.779959Z", - "iopub.status.idle": "2024-09-26T17:01:57.951031Z", - "shell.execute_reply": "2024-09-26T17:01:57.950434Z" + "iopub.execute_input": "2024-09-27T13:48:23.979913Z", + "iopub.status.busy": "2024-09-27T13:48:23.979502Z", + "iopub.status.idle": "2024-09-27T13:48:24.151812Z", + "shell.execute_reply": "2024-09-27T13:48:24.151203Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.952982Z", - "iopub.status.busy": "2024-09-26T17:01:57.952568Z", - "iopub.status.idle": "2024-09-26T17:01:57.957023Z", - "shell.execute_reply": "2024-09-26T17:01:57.956578Z" + "iopub.execute_input": "2024-09-27T13:48:24.153793Z", + "iopub.status.busy": "2024-09-27T13:48:24.153384Z", + "iopub.status.idle": "2024-09-27T13:48:24.157912Z", + "shell.execute_reply": "2024-09-27T13:48:24.157350Z" }, "nbsphinx": "hidden" }, @@ -2555,136 +2555,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02526371af764684aad4897d7046a365": { + "002c47d512744c3fb829f25bccd29856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2c0b351610b424a8cb54f4c25c0257e", - "placeholder": "​", - "style": "IPY_MODEL_ba1f4e88e2294c9a9ae17a70f35db16e", + "layout": "IPY_MODEL_d3d80ec4b9644c34aa7dec8beecea5f1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3df19d52b5fc4a0386413fdd1a5664b9", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "035f34e6a54c4b3f92421455a5670762": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "03c5fbd3c4ce4ea3984de19281b147af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 60000.0 } }, - "03f55df51f0c402d9c5708341635fe40": { + "025f175b1bc3460aa89f24cec6604d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2634,7 @@ "width": null } }, - "04922fddf2054ab9878395aa1dc5e2f3": { + "02853640143d49f7b2b53d5367f5366c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2752,15 +2649,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb652988afd24cf39d30d03f9b269bcc", + "layout": "IPY_MODEL_c879a51624034291b6cdf7b3b37731ac", "placeholder": "​", - "style": "IPY_MODEL_08a40c06549e498fa902f8ad4a556c8d", + "style": "IPY_MODEL_02ca223a4d244a87ba6bbf44a8020805", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5604.15 examples/s]" + "value": "100%" } }, - "0650dd8061c74475b7cdbeae70782dba": { + "02ca223a4d244a87ba6bbf44a8020805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2778,7 +2675,7 @@ "text_color": null } }, - "06e241b5f01342ee8d3b0aebd6334347": { + "08efa39df96a4a8a920c810498a698dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2794,30 +2691,7 @@ "description_width": "" } }, - "0770995c96e7450eb9dd81b263cd14e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d048bd8c5542b6b70d1e261b8dc718", - "placeholder": "​", - "style": "IPY_MODEL_d0536047d0804b29a6ffc9d1743720b2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "0889c9fe4bbf404ab1eff02e6fd5ffb9": { + "09c9d6cec18948cb9ab2f8fca3850384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2835,7 +2709,7 @@ "text_color": null } }, - "08a40c06549e498fa902f8ad4a556c8d": { + "0a7525dabaae4dca8e04969f7126849d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2853,30 +2727,7 @@ "text_color": null } }, - "0987ec15d6064297a9565901e22c60ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9627b06404dc417283abd3bbd64bcd8f", - "placeholder": "​", - "style": "IPY_MODEL_8263a572de4e4c51a641723f1be42eb8", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "09e50636d37d4ddc95009d6c95403302": { + "0b9d536d30c348e1b0ee4b0e6fd7f865": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2929,7 +2780,7 @@ "width": null } }, - "130a697771f84e80b9ea4c02d03ff62a": { + "0ed7f54f7cb54b18a2f8364afef47f0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2944,41 +2795,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41f6476f5f3049ca937e85253a058768", + "layout": "IPY_MODEL_4a5b873579bc440fb5e928cbcd9e8234", "placeholder": "​", - "style": "IPY_MODEL_6d26f9d99de84cd8ae50d08e423a9a63", + "style": "IPY_MODEL_922fec678412462e833e856911d44510", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1415e475761d42f1aa1007fae7458666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad687e0e218b466f8fa90ea5d77f2d8c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d2592a858d1d4bc3a7166e7814eb9d4c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "146da5ec780b4aac90aa3bbe92293e2f": { + "0f922409e00c49d9a9eeec3cde61b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,7 +2856,7 @@ "width": null } }, - "19d4d84dc95d4fb280f602be22e0c3cc": { + "12da9f31adcb4e82baab27c1b7261fe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3084,124 +2909,67 @@ "width": null } }, - "1a786c5ee7b14db9a60268ce2d3b9d35": { - "model_module": "@jupyter-widgets/controls", + "1333c86767824ba2bfdc4b6770dbafa9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cecba2ddba24988b0c32a3d2ee48be6": { - "model_module": "@jupyter-widgets/controls", + "14216ca27f61486ba99444444f1a70dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20ae57fa05ee4e83901a856b849b3891": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37e7fc65d04d40c6af6a1ae75c0546ef", - "IPY_MODEL_e027fdb1fd7e4cb8ad7d32a540884a3f", - "IPY_MODEL_5fa31c28566b44368ecfc567dacb405f" - ], - "layout": "IPY_MODEL_2754204b7400466cb5c5a6ffe197c89a", - "tabbable": null, - "tooltip": null - } - }, - "210e5f58051a429ba35833408833e675": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98625178d3c94ba6aa8694f50e9cdea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06e241b5f01342ee8d3b0aebd6334347", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "219ae75bd53e46b39c1ca8d09542d8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7647881f3689427e8af3b75d42cf0955", - "IPY_MODEL_d8c0fe97e2c044588249051a7efa85af", - "IPY_MODEL_3d99c44fdd794cda8666e6a73ca9c36b" - ], - "layout": "IPY_MODEL_36e63c9cf648431a8aef6237de973774", - "tabbable": null, - "tooltip": null - } - }, - "21dffe123dda45ca921adea1ee821ed2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3247,33 +3015,7 @@ "width": null } }, - "2215a31e00c54862aaf7ac054bbc1aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d92644c603c4714a4323cbd5c7def02", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ea2add80ce54083878a4116c9ef864c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "24fe7aabcef64c109f622061e0158fe0": { + "15e69809c93145258a4330c0e888e019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3326,31 +3068,7 @@ "width": null } }, - "258343123ee64d078d587fad6e7e195f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0987ec15d6064297a9565901e22c60ad", - "IPY_MODEL_89795a6284bd43cc835148fe363e72a4", - "IPY_MODEL_68bc22f66089416691ac84bc6e9e2f68" - ], - "layout": "IPY_MODEL_9b592443fd5c4a3fad02fe6396ff2168", - "tabbable": null, - "tooltip": null - } - }, - "2607500fa00c409ca1c6a4d2a5b954ec": { + "16090d1c79bc4d79944c3db2302e3ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,31 +3121,92 @@ "width": null } }, - "262103e39f614b7ba8346cb40a06a364": { + "184f9afe203d4b1da69ecfc142c87d3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54947a11404642838dd6ac6508a28be5", - "IPY_MODEL_1415e475761d42f1aa1007fae7458666", - "IPY_MODEL_5492f35efd7742c48dd625ba8592112f" - ], - "layout": "IPY_MODEL_c2946c68ee174245bcdd55745289e1b7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71dbb609000745ee81c749a485c20ca4", + "placeholder": "​", + "style": "IPY_MODEL_d2308e6aa2c346db8e5f494a09a900df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "1943f172c86b499fa74d2c6a950c476a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8687d2dd5a4b42bcbeb9c9ab9dcf7954", + "placeholder": "​", + "style": "IPY_MODEL_34619bf82add4c5b9cec777474318ba8", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "1b0dee58b4e24391ae1c6c3aba2e0615": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1e2228f9753b442bb900eae6d16b0696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c771392a402e4f02a8adc98797fbbcf2", + "placeholder": "​", + "style": "IPY_MODEL_bc749c7612fa4072b6e6984641f56a13", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1129.56it/s]" } }, - "2754204b7400466cb5c5a6ffe197c89a": { + "1e56f8f70dda4ab08089dd57df8705ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,7 +3259,7 @@ "width": null } }, - "2895596c7bce4e01bf33024c61fa1430": { + "1ec68b1b3e0b4beba1dbb2306c65cb25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3495,15 +3274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cd770306d9140b38f9f6769c71463c6", + "layout": "IPY_MODEL_a797bb167a3a464eab4111ffcbbaacb0", "placeholder": "​", - "style": "IPY_MODEL_61cb09df6d6b46d6b0e7e6fe2dba2b8c", + "style": "IPY_MODEL_bbbc5680d7f54c4ba83de0786a5d362d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "28d048bd8c5542b6b70d1e261b8dc718": { + "21273b24249c4cf494228a97e6e6323c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3556,7 +3335,7 @@ "width": null } }, - "28dda56b04364578939536044765661e": { + "220c8d108a9f4d709a8fe4f12c10acd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,39 +3350,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_146da5ec780b4aac90aa3bbe92293e2f", + "layout": "IPY_MODEL_f2e4496d9bd04825889b9c186e65f9b4", "placeholder": "​", - "style": "IPY_MODEL_0889c9fe4bbf404ab1eff02e6fd5ffb9", + "style": "IPY_MODEL_cfed0889f9f74e5797b43674331d24cb", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 36.6MB/s]" - } - }, - "30f170149e6d448aaa4ebe763786395b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5372f1d6c299485e8680e9d5eace8471", - "IPY_MODEL_2215a31e00c54862aaf7ac054bbc1aa9", - "IPY_MODEL_04922fddf2054ab9878395aa1dc5e2f3" - ], - "layout": "IPY_MODEL_ca12b0b5aa404384aed47c6ee217cbac", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 63.33it/s]" } }, - "3239d991ce634399b2910d27bfcb746f": { + "22a42e320abb49f8adc090a7ffb13967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3621,30 +3376,25 @@ "text_color": null } }, - "3267636d8cfe4aefb95062323b8beed3": { + "2506ec2e415149d0821f3541b2eaaf74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55e4a7231fac49038bc8cfa3f2024501", - "placeholder": "​", - "style": "IPY_MODEL_3239d991ce634399b2910d27bfcb746f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "332e863acfa84fbfa8f23f214c0afded": { + "273f714dbdd749fda418a3dbcdcdb56d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3660,91 +3410,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6b7b4edf0b54766bb2595264c412440", - "max": 40.0, + "layout": "IPY_MODEL_281cb8c9ae6b4c68a5d6d8df2286a56c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c087d94edd244d06bc339ae3eae373b3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "341ba052899a46a39f6a75bbeff09cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ee4e9762e70467191acd8fe944bb30c", - "placeholder": "​", - "style": "IPY_MODEL_ce2bdbdf7ffa4ed793d5d360fa121258", + "style": "IPY_MODEL_548655fd1e9243dc9415665c2e9b5103", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.75it/s]" + "value": 60000.0 } }, - "3580f919b155455397a655ec3658894f": { - "model_module": "@jupyter-widgets/controls", + "279461e9a239483d82ba4799fdf324d6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "369a2a2d596c42679bd5d6150343580a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a334bd3b18749a694dbba7cc4ccfd20", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1a3ba97be74a5497c8c8323f7d9e25", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "36e63c9cf648431a8aef6237de973774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3790,56 +3473,7 @@ "width": null } }, - "37e7fc65d04d40c6af6a1ae75c0546ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21dffe123dda45ca921adea1ee821ed2", - "placeholder": "​", - "style": "IPY_MODEL_90378f2557ad48428999c94049d0f188", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3841ab79c51346799f39d11f1342e840": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88c371ef2071478ea464b014ef44388b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eb2ac9db956a43c695844d19480874ce", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3af5790668ef4fd8926ccbfef46e8b36": { + "281cb8c9ae6b4c68a5d6d8df2286a56c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3892,53 +3526,7 @@ "width": null } }, - "3b2afe08176b4aabb69056cefaacb5cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2607500fa00c409ca1c6a4d2a5b954ec", - "placeholder": "​", - "style": "IPY_MODEL_61aa613e156c437d9f9fc30e135cd74d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3d99c44fdd794cda8666e6a73ca9c36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be1cbcf9b7b4432eb3fb1ff24bb8ad77", - "placeholder": "​", - "style": "IPY_MODEL_e50e3c1c825f4781a2ddf6979af74bcf", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 243618.35 examples/s]" - } - }, - "416cf1f58de24f37ba6c0b9bd9bdc5d6": { + "292a189eb66e4301bfc896b4f8dc100b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3991,7 +3579,7 @@ "width": null } }, - "41f6476f5f3049ca937e85253a058768": { + "2a50581896484c0b976aedade7f12cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4044,113 +3632,51 @@ "width": null } }, - "4b2880e86cc84b4bb20092e88ae37e13": { - "model_module": "@jupyter-widgets/base", + "3070a952e2ca45bdb899c4d4198a9fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_292a189eb66e4301bfc896b4f8dc100b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b0bc94aa2b643519d5909658b963a45", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "4c2a376b53e04076b5ec3b93703c7bcf": { - "model_module": "@jupyter-widgets/base", + "34619bf82add4c5b9cec777474318ba8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d0a92c29e944931b6a22814c9d20524": { + "3778d1f5c0104c7cb2d7bcce800be452": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4203,48 +3729,23 @@ "width": null } }, - "522cf8445e0042feaa3d882bb0c3dfca": { + "3b0bc94aa2b643519d5909658b963a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5372f1d6c299485e8680e9d5eace8471": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb87b58f2ac54a589cbef4e34fafee8d", - "placeholder": "​", - "style": "IPY_MODEL_dca2d257b6ad44eabe656a8f5f3bc7e6", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "bar_color": null, + "description_width": "" } }, - "54841d1608114ce69f63a7780325533d": { + "3b55e363cfde4908ad226f56c13f1d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4297,7 +3798,7 @@ "width": null } }, - "5492f35efd7742c48dd625ba8592112f": { + "3bde4480ffa94ce4a2f7159486381564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4312,18 +3813,118 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f330741bd3a495e945aad4a4ce4d358", + "layout": "IPY_MODEL_0b9d536d30c348e1b0ee4b0e6fd7f865", "placeholder": "​", - "style": "IPY_MODEL_c28945c3acdc445ba0cd672a325d45ce", + "style": "IPY_MODEL_51493ffa05404893af4a5dab6f77dbca", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.88it/s]" + "value": "Generating train split: 100%" } }, - "54947a11404642838dd6ac6508a28be5": { + "3c3e29691e4f4ad6840284ca3b17cfd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3df19d52b5fc4a0386413fdd1a5664b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "430a9c6146344b98802597b77c3f3be9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44364892919440e29a4daa044be042e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ec68b1b3e0b4beba1dbb2306c65cb25", + "IPY_MODEL_9066808f620341428e1ffba3d084bca4", + "IPY_MODEL_a5d814399565484a909f082c8b7e872b" + ], + "layout": "IPY_MODEL_d8ae40c5da4b4b0089c20c890333293e", + "tabbable": null, + "tooltip": null + } + }, + "44d904ba3762435b8839df2e24700f3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778d1f5c0104c7cb2d7bcce800be452", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08efa39df96a4a8a920c810498a698dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "453ac5707a4d42ea81efc5e1565c4272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4335,15 +3936,650 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e465c1cd187a40f08ae74891d98d2689", + "layout": "IPY_MODEL_8d46174213f04048904879468ae71cc2", "placeholder": "​", - "style": "IPY_MODEL_c2861ca15b3244f8be1b0c9cca4eb464", + "style": "IPY_MODEL_22a42e320abb49f8adc090a7ffb13967", "tabbable": null, "tooltip": null, "value": "100%" } }, - "553af763d43c4e7ab92d8c26794fc190": { + "4749b626cbe94fc48d4b03ff6b199529": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48dc2c5f935d4a06a9268360f445144f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ed7f54f7cb54b18a2f8364afef47f0d", + "IPY_MODEL_4ca2bb4902ef4978ae0992bba223f34f", + "IPY_MODEL_7bbd9038dc554aed81bdf10fee8af2e4" + ], + "layout": "IPY_MODEL_ef45c415b584442b90eddf019859b2fa", + "tabbable": null, + "tooltip": null + } + }, + "4a5b873579bc440fb5e928cbcd9e8234": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aa1a02c15664164a38a57b714c9f47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c346a8ee11d94046a99d5f57ca946487", + "placeholder": "​", + "style": "IPY_MODEL_09c9d6cec18948cb9ab2f8fca3850384", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 23.0MB/s]" + } + }, + "4ca2bb4902ef4978ae0992bba223f34f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15e69809c93145258a4330c0e888e019", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce1305427aef46539cd0b52d2a4d80c5", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4faac9084cd14f7d9ab6683cd9cd154b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4fdb056e1ace496abe457111412c9432": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51493ffa05404893af4a5dab6f77dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5183bf12f78c49ed8e0b391f732cea7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "548655fd1e9243dc9415665c2e9b5103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "577f31248c7e4e5395e3c6c065b26c4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cba06315d8e47efa34517225eba91f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62d0e0c88f1a4c2abca87123937bd572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffa49044d9234ebd9ec0888b452e8736", + "IPY_MODEL_6b3ea55673a641d0b9359241bc72e1ad", + "IPY_MODEL_7e7b44e1efd24e0e9970f5bdd54948e8" + ], + "layout": "IPY_MODEL_9b94d4160a064040bec6b5cea5b17e13", + "tabbable": null, + "tooltip": null + } + }, + "66783477b102444cad83795901922fd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6796911564e248d6a2edc13c06584dd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67fa9a2630bb48a3b16c5e994c294ae6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b3ea55673a641d0b9359241bc72e1ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21273b24249c4cf494228a97e6e6323c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73fc8ea97ef84eef8297d0f573949655", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "6c4fcee6e76b44cf8f0a29ebaa311f66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71dbb609000745ee81c749a485c20ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4396,7 +4632,23 @@ "width": null } }, - "55e4a7231fac49038bc8cfa3f2024501": { + "73fc8ea97ef84eef8297d0f573949655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7508894f89054a63884f667b7402cd0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4449,7 +4701,7 @@ "width": null } }, - "5be663589e854e1ca2d5091a520b9adb": { + "767e0f06b3954e37b720f3c3db178341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4464,49 +4716,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e50636d37d4ddc95009d6c95403302", + "layout": "IPY_MODEL_a4ad05f1a8d242eda71d46ff04931d4d", "placeholder": "​", - "style": "IPY_MODEL_d2fec809ded6478fa101f2ee9596becb", + "style": "IPY_MODEL_da7f1b082c844fcf930864e35764ee69", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.75it/s]" - } - }, - "5e0283188f004ba3a715af38795bbabc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ea2add80ce54083878a4116c9ef864c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 40/40 [00:00<00:00, 56.79it/s]" } }, - "5fa31c28566b44368ecfc567dacb405f": { + "776aa050d3de4b2da0c5382c76274a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4521,85 +4739,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_553af763d43c4e7ab92d8c26794fc190", + "layout": "IPY_MODEL_16090d1c79bc4d79944c3db2302e3ee4", "placeholder": "​", - "style": "IPY_MODEL_5e0283188f004ba3a715af38795bbabc", + "style": "IPY_MODEL_80bb02045bc3428cacc4a8bcfc972f07", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1166.47it/s]" - } - }, - "61aa613e156c437d9f9fc30e135cd74d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61cb09df6d6b46d6b0e7e6fe2dba2b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64f9c4a5caac4ed4a19638a0b0e449ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "67f4dfd67393497c82cdaf0ab4a36a35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "68bc22f66089416691ac84bc6e9e2f68": { + "78e7fdc2f6ad4c19826157e8a3133740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4614,31 +4762,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f55df51f0c402d9c5708341635fe40", + "layout": "IPY_MODEL_ff829270eb2a450eb4bc4925b67b9353", "placeholder": "​", - "style": "IPY_MODEL_84f1dad5ee8b48ebb18278f22a5f4af8", + "style": "IPY_MODEL_a841775f0ace49feb3f9b7bbc04db697", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 253081.92 examples/s]" + "value": " 60000/60000 [00:00<00:00, 274804.21 examples/s]" } }, - "6c1a3ba97be74a5497c8c8323f7d9e25": { + "79712b33a5e94203b162a657bcb12a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67fa9a2630bb48a3b16c5e994c294ae6", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f02980876a54dbb8324c1fb8a142491", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d26f9d99de84cd8ae50d08e423a9a63": { + "7ab9a46c76fe4397b418d39e88da20c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4656,7 +4814,7 @@ "text_color": null } }, - "6f0f807797024621adc6abb7e0c9eaa2": { + "7bbd9038dc554aed81bdf10fee8af2e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4671,15 +4829,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_416cf1f58de24f37ba6c0b9bd9bdc5d6", + "layout": "IPY_MODEL_f5c1c2b5231846bc965b4a84d97c4978", "placeholder": "​", - "style": "IPY_MODEL_1cecba2ddba24988b0c32a3d2ee48be6", + "style": "IPY_MODEL_f351d976879e4e049d1f0ab7a19a6e3f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.56it/s]" + "value": " 40/40 [00:00<00:00, 60.58it/s]" } }, - "7038f74f23cb484984b1f5b1a8467611": { + "7bd4513692a04dcdb49f383da06e9355": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,7 +4890,7 @@ "width": null } }, - "7250fcd5c60e4b2e913bf33bc3e948ec": { + "7cc4d425c4ba401c934dfbc8568af440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4785,31 +4943,7 @@ "width": null } }, - "731f00f919044a8a88cc076b579e46dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3267636d8cfe4aefb95062323b8beed3", - "IPY_MODEL_7e380dbf96504aa19f37a01d07f25c8d", - "IPY_MODEL_d7fd58aec3be4461b5345173cf2a723e" - ], - "layout": "IPY_MODEL_24fe7aabcef64c109f622061e0158fe0", - "tabbable": null, - "tooltip": null - } - }, - "744cacf45c594f1688ae383d7a5c2fec": { + "7d37a14566bc46748576dd5718acf67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4862,7 +4996,7 @@ "width": null } }, - "7647881f3689427e8af3b75d42cf0955": { + "7e7b44e1efd24e0e9970f5bdd54948e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4877,15 +5011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc6e5172aa4d481b866ee9019152d9a8", + "layout": "IPY_MODEL_e1c866811f2c45698441743106275cc8", "placeholder": "​", - "style": "IPY_MODEL_3580f919b155455397a655ec3658894f", + "style": "IPY_MODEL_4faac9084cd14f7d9ab6683cd9cd154b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 36.5MB/s]" } }, - "77f21503eda044e1927d7ecee477a275": { + "7f02980876a54dbb8324c1fb8a142491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4901,76 +5035,85 @@ "description_width": "" } }, - "78a107afdf9d4ea49f9a9125e4c4348e": { - "model_module": "@jupyter-widgets/base", + "7f448eb8f9734416890102ab074a5c56": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a049ad814974333972be807cc0a70ac": { + "7f474e068b7447a4a707fae39fc4779a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80bb02045bc3428cacc4a8bcfc972f07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8587b883949a4e399dabc4f91c49eb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932527b3058d413a8641e6ad04c14915", + "IPY_MODEL_d171ea950ab94c3fbaccb8d2373a6da6", + "IPY_MODEL_767e0f06b3954e37b720f3c3db178341" + ], + "layout": "IPY_MODEL_12da9f31adcb4e82baab27c1b7261fe7", + "tabbable": null, + "tooltip": null } }, - "7a334bd3b18749a694dbba7cc4ccfd20": { + "8687d2dd5a4b42bcbeb9c9ab9dcf7954": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +5166,30 @@ "width": null } }, - "7c73c164138a422c88af31b40796165c": { + "8a51589c96d04591a2667d780bf7ad33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_577f31248c7e4e5395e3c6c065b26c4a", + "placeholder": "​", + "style": "IPY_MODEL_6796911564e248d6a2edc13c06584dd7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6898.07 examples/s]" + } + }, + "8d46174213f04048904879468ae71cc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,23 +5242,7 @@ "width": null } }, - "7e35d053e8e846a2b5a5c3c7590496ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e380dbf96504aa19f37a01d07f25c8d": { + "9066808f620341428e1ffba3d084bca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5108,17 +5258,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b2880e86cc84b4bb20092e88ae37e13", + "layout": "IPY_MODEL_7cc4d425c4ba401c934dfbc8568af440", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_aba08fb2e9e8429791ee936b70d37d77", + "style": "IPY_MODEL_bd7992dfee39487da2fdad5caff6a94f", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7eca5077ed044501ad01b2a33813c5c0": { + "907485478951427389e624de9ba0865d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff792f1c1a83439ab079e6e7c4cf646a", + "IPY_MODEL_79712b33a5e94203b162a657bcb12a35", + "IPY_MODEL_a6ec3c12e3ed442b863c224cbc4006ec" + ], + "layout": "IPY_MODEL_025f175b1bc3460aa89f24cec6604d04", + "tabbable": null, + "tooltip": null + } + }, + "91c443f7ff764f1dba681c3c09a14ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5345,7 @@ "width": null } }, - "8263a572de4e4c51a641723f1be42eb8": { + "922fec678412462e833e856911d44510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5189,7 +5363,30 @@ "text_color": null } }, - "84f1dad5ee8b48ebb18278f22a5f4af8": { + "932527b3058d413a8641e6ad04c14915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7508894f89054a63884f667b7402cd0b", + "placeholder": "​", + "style": "IPY_MODEL_7f474e068b7447a4a707fae39fc4779a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "966bf58e5bd14b8aa8e5fb75608923bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5207,7 +5404,7 @@ "text_color": null } }, - "88c371ef2071478ea464b014ef44388b": { + "97e27482e67741c58d5adb5df19c4e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5260,103 +5457,31 @@ "width": null } }, - "89795a6284bd43cc835148fe363e72a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c2a376b53e04076b5ec3b93703c7bcf", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a478aae5cc6447a3967de33488043afa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "89c909015de74accbfb91189d3a0649c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d4d84dc95d4fb280f602be22e0c3cc", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a049ad814974333972be807cc0a70ac", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "8b19e50194a7452a8003471537d3763f": { + "9b584fe98d9c4efaa2b4e34b431444f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_744cacf45c594f1688ae383d7a5c2fec", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e35d053e8e846a2b5a5c3c7590496ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f328d6279d4641508fd95fa254664013", + "IPY_MODEL_002c47d512744c3fb829f25bccd29856", + "IPY_MODEL_1e2228f9753b442bb900eae6d16b0696" + ], + "layout": "IPY_MODEL_6c4fcee6e76b44cf8f0a29ebaa311f66", "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "8cbbe4a65db040a5a3cd69e593a07e1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "8cd770306d9140b38f9f6769c71463c6": { + "9b94d4160a064040bec6b5cea5b17e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,7 +5534,7 @@ "width": null } }, - "8dd8bbfcf5eb4f7791da688e32498197": { + "a1df0d01bf0e4cc6ac9bea2b331ada11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5425,7 +5550,7 @@ "description_width": "" } }, - "8e5afc6c10514e5f82023b27683a226e": { + "a4ad05f1a8d242eda71d46ff04931d4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5478,7 +5603,30 @@ "width": null } }, - "8ec2b90bf10c433a8459e57d425c8760": { + "a5d814399565484a909f082c8b7e872b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debfb1185b13494a9970d6a72d784b60", + "placeholder": "​", + "style": "IPY_MODEL_0a7525dabaae4dca8e04969f7126849d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.87it/s]" + } + }, + "a6ec3c12e3ed442b863c224cbc4006ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5493,15 +5641,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7eca5077ed044501ad01b2a33813c5c0", + "layout": "IPY_MODEL_c55069dce44f4f9a96ca7801f9823170", "placeholder": "​", - "style": "IPY_MODEL_522cf8445e0042feaa3d882bb0c3dfca", + "style": "IPY_MODEL_66783477b102444cad83795901922fd6", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 67.6MB/s]" + "value": " 10000/10000 [00:00<00:00, 252363.34 examples/s]" } }, - "8ee4e9762e70467191acd8fe944bb30c": { + "a797bb167a3a464eab4111ffcbbaacb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5554,7 +5702,90 @@ "width": null } }, - "8f330741bd3a495e945aad4a4ce4d358": { + "a841775f0ace49feb3f9b7bbc04db697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa0eb853a308442c86674889c9306833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aea869f9cc8d44cf80997dc63f1b0a73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bde4480ffa94ce4a2f7159486381564", + "IPY_MODEL_44d904ba3762435b8839df2e24700f3c", + "IPY_MODEL_78e7fdc2f6ad4c19826157e8a3133740" + ], + "layout": "IPY_MODEL_97e27482e67741c58d5adb5df19c4e16", + "tabbable": null, + "tooltip": null + } + }, + "af4e03b9990a4c36a589dde3f0ab1f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0d9a87e19e84400b026e8429c228a51", + "placeholder": "​", + "style": "IPY_MODEL_2506ec2e415149d0821f3541b2eaaf74", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.42it/s]" + } + }, + "b0d9a87e19e84400b026e8429c228a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5607,60 +5838,103 @@ "width": null } }, - "9002357990284f828a897347131f356e": { - "model_module": "@jupyter-widgets/base", + "b36513bdac0f46ceb83785d8a9bde09e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d37a14566bc46748576dd5718acf67c", + "placeholder": "​", + "style": "IPY_MODEL_f849bc18dadf47e89463232339c585a5", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "b896146cc7f64fd186cf2ed0dbf51c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5183bf12f78c49ed8e0b391f732cea7e", + "placeholder": "​", + "style": "IPY_MODEL_7ab9a46c76fe4397b418d39e88da20c3", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 579.16it/s]" + } + }, + "b9cec9f2501a478298bdf046984e17af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc5f5ae55db2472581e2857a66600c42", + "IPY_MODEL_273f714dbdd749fda418a3dbcdcdb56d", + "IPY_MODEL_8a51589c96d04591a2667d780bf7ad33" + ], + "layout": "IPY_MODEL_7bd4513692a04dcdb49f383da06e9355", + "tabbable": null, + "tooltip": null + } + }, + "bb4c35815c7449a8aed853a01aa86fa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc87aab28a8c4d119db816e03e6122d3", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b0dee58b4e24391ae1c6c3aba2e0615", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "90378f2557ad48428999c94049d0f188": { + "bbbc5680d7f54c4ba83de0786a5d362d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5678,30 +5952,25 @@ "text_color": null } }, - "903b0619b70a440ca79228d1c65fc405": { + "bc749c7612fa4072b6e6984641f56a13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54841d1608114ce69f63a7780325533d", - "placeholder": "​", - "style": "IPY_MODEL_67f4dfd67393497c82cdaf0ab4a36a35", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91feb6a6496446f48de62109e80a5436": { + "bc87aab28a8c4d119db816e03e6122d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5754,7 +6023,23 @@ "width": null } }, - "9627b06404dc417283abd3bbd64bcd8f": { + "bd7992dfee39487da2fdad5caff6a94f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c02b0661ef614d25a8b00a2146ff5ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5807,7 +6092,31 @@ "width": null } }, - "98625178d3c94ba6aa8694f50e9cdea9": { + "c217771fa5814aabb7107510b1d6e6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_453ac5707a4d42ea81efc5e1565c4272", + "IPY_MODEL_d7550fd273714d05a635895342a929bb", + "IPY_MODEL_220c8d108a9f4d709a8fe4f12c10acd2" + ], + "layout": "IPY_MODEL_1e56f8f70dda4ab08089dd57df8705ff", + "tabbable": null, + "tooltip": null + } + }, + "c346a8ee11d94046a99d5f57ca946487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5860,7 +6169,7 @@ "width": null } }, - "9b592443fd5c4a3fad02fe6396ff2168": { + "c55069dce44f4f9a96ca7801f9823170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,7 +6222,7 @@ "width": null } }, - "9d92644c603c4714a4323cbd5c7def02": { + "c771392a402e4f02a8adc98797fbbcf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,108 +6260,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ecf5c7750b847d4bf2c0d59f10434a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da49b42ce92046c998e9eb384ee0c39e", - "placeholder": "​", - "style": "IPY_MODEL_f1becfe00eb44b9bb936e4528ea9e942", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.14it/s]" - } - }, - "9f651479fb634fe188bcbb02162bfd50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9875d5f680740d58b957c92f84083c3", - "IPY_MODEL_aa9a51c33c8f4854aa529f9859b40b9f", - "IPY_MODEL_9ecf5c7750b847d4bf2c0d59f10434a2" - ], - "layout": "IPY_MODEL_8e5afc6c10514e5f82023b27683a226e", - "tabbable": null, - "tooltip": null - } - }, - "a478aae5cc6447a3967de33488043afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a5f665c94e1e4e7cb9bda8382e1e00cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d0a92c29e944931b6a22814c9d20524", - "placeholder": "​", - "style": "IPY_MODEL_b5a1be7d14b44a2b90d6c5e8c0ecbe95", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 620.23it/s]" + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8c9eaa0ec7a40f5b91b6c381bf54765": { + "c879a51624034291b6cdf7b3b37731ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6105,7 +6328,7 @@ "width": null } }, - "aa4f2e95243f4fa7a40ad4fcfe57c6c0": { + "c88a0a54a7d8495c90e0ceefd16c73ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6120,42 +6343,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_130a697771f84e80b9ea4c02d03ff62a", - "IPY_MODEL_3841ab79c51346799f39d11f1342e840", - "IPY_MODEL_5be663589e854e1ca2d5091a520b9adb" + "IPY_MODEL_02853640143d49f7b2b53d5367f5366c", + "IPY_MODEL_e16b0d4eaf784c8c99039a50e0c30aba", + "IPY_MODEL_af4e03b9990a4c36a589dde3f0ab1f57" ], - "layout": "IPY_MODEL_03c5fbd3c4ce4ea3984de19281b147af", + "layout": "IPY_MODEL_e3c308c6e2834aca9d4c0ee48a779a51", "tabbable": null, "tooltip": null } }, - "aa9a51c33c8f4854aa529f9859b40b9f": { + "c88f01ca4b5546fc8a07b2d1c845732e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9feed1c5a194d669dfaa347748b2250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_035f34e6a54c4b3f92421455a5670762", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_77f21503eda044e1927d7ecee477a275", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_184f9afe203d4b1da69ecfc142c87d3a", + "IPY_MODEL_f9ecde13ff2f4aa6b46a617709da636b", + "IPY_MODEL_e9de42840a6f4ef5ad2bd529eebdb5af" + ], + "layout": "IPY_MODEL_0f922409e00c49d9a9eeec3cde61b32b", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "aba08fb2e9e8429791ee936b70d37d77": { + "ca07382e91084da7af02c7ff7e300311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6171,60 +6410,23 @@ "description_width": "" } }, - "ad687e0e218b466f8fa90ea5d77f2d8c": { - "model_module": "@jupyter-widgets/base", + "ce1305427aef46539cd0b52d2a4d80c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b5a1be7d14b44a2b90d6c5e8c0ecbe95": { + "cfed0889f9f74e5797b43674331d24cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6242,60 +6444,33 @@ "text_color": null } }, - "b9cee27e7db1451a9caff091181782e1": { - "model_module": "@jupyter-widgets/base", + "d171ea950ab94c3fbaccb8d2373a6da6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14216ca27f61486ba99444444f1a70dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1df0d01bf0e4cc6ac9bea2b331ada11", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ba1f4e88e2294c9a9ae17a70f35db16e": { + "d2308e6aa2c346db8e5f494a09a900df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6313,7 +6488,7 @@ "text_color": null } }, - "be1cbcf9b7b4432eb3fb1ff24bb8ad77": { + "d3d80ec4b9644c34aa7dec8beecea5f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6366,23 +6541,57 @@ "width": null } }, - "c087d94edd244d06bc339ae3eae373b3": { + "d601f361fa2b4a219d2e10c6491a7d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1943f172c86b499fa74d2c6a950c476a", + "IPY_MODEL_3070a952e2ca45bdb899c4d4198a9fff", + "IPY_MODEL_b896146cc7f64fd186cf2ed0dbf51c0c" + ], + "layout": "IPY_MODEL_1333c86767824ba2bfdc4b6770dbafa9", + "tabbable": null, + "tooltip": null + } + }, + "d7550fd273714d05a635895342a929bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93c51ff0a3040cab6611c1a43b2e805", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca07382e91084da7af02c7ff7e300311", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "c11ba1f9642647e6b19c9534b3391681": { + "d8ae40c5da4b4b0089c20c890333293e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6435,25 +6644,23 @@ "width": null } }, - "c2861ca15b3244f8be1b0c9cca4eb464": { + "d9a6b702bb5e4e309f95c88d6c690b39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c28945c3acdc445ba0cd672a325d45ce": { + "da7f1b082c844fcf930864e35764ee69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6471,7 +6678,30 @@ "text_color": null } }, - "c2946c68ee174245bcdd55745289e1b7": { + "dc5f5ae55db2472581e2857a66600c42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279461e9a239483d82ba4799fdf324d6", + "placeholder": "​", + "style": "IPY_MODEL_ec3747524c714804b0de0a16bfad570c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "debfb1185b13494a9970d6a72d784b60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6524,7 +6754,59 @@ "width": null } }, - "c8e7c01446584517b3c53cd3261e5d45": { + "e03fa8b0f49f49f1baa465b1ca0883d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4749b626cbe94fc48d4b03ff6b199529", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9a6b702bb5e4e309f95c88d6c690b39", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "e16b0d4eaf784c8c99039a50e0c30aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cba06315d8e47efa34517225eba91f1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f05df81817754b7b87f99efbdce1f223", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e1c866811f2c45698441743106275cc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6577,7 +6859,7 @@ "width": null } }, - "ca12b0b5aa404384aed47c6ee217cbac": { + "e3c308c6e2834aca9d4c0ee48a779a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6630,116 +6912,7 @@ "width": null } }, - "ce2bdbdf7ffa4ed793d5d360fa121258": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0536047d0804b29a6ffc9d1743720b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0cd44c2bac844dd9f2edbdea4c9aa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3d8772d91d74a74bbfc3c241eb0ce09", - "placeholder": "​", - "style": "IPY_MODEL_8cbbe4a65db040a5a3cd69e593a07e1a", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.17MB/s]" - } - }, - "d2592a858d1d4bc3a7166e7814eb9d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d2fec809ded6478fa101f2ee9596becb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d398fec274b44e2b907f4c5cae300b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6b7b4edf0b54766bb2595264c412440": { + "e93c51ff0a3040cab6611c1a43b2e805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6792,152 +6965,7 @@ "width": null } }, - "d7fd58aec3be4461b5345173cf2a723e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9002357990284f828a897347131f356e", - "placeholder": "​", - "style": "IPY_MODEL_1a786c5ee7b14db9a60268ce2d3b9d35", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.17it/s]" - } - }, - "d87537574d1b46388a5f4de507d1aedd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0770995c96e7450eb9dd81b263cd14e1", - "IPY_MODEL_89c909015de74accbfb91189d3a0649c", - "IPY_MODEL_28dda56b04364578939536044765661e" - ], - "layout": "IPY_MODEL_b9cee27e7db1451a9caff091181782e1", - "tabbable": null, - "tooltip": null - } - }, - "d8c0fe97e2c044588249051a7efa85af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91feb6a6496446f48de62109e80a5436", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64f9c4a5caac4ed4a19638a0b0e449ae", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "d9875d5f680740d58b957c92f84083c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c73c164138a422c88af31b40796165c", - "placeholder": "​", - "style": "IPY_MODEL_0650dd8061c74475b7cdbeae70782dba", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d992a44e172d47668b49fe9830d4ea41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a107afdf9d4ea49f9a9125e4c4348e", - "placeholder": "​", - "style": "IPY_MODEL_ebd09a0dfc4e41d8b37610226c9e7be8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "da461b681769492d812461f46d6775ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8c9eaa0ec7a40f5b91b6c381bf54765", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8dd8bbfcf5eb4f7791da688e32498197", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "da49b42ce92046c998e9eb384ee0c39e": { + "e9980f6d6bf842ce92b80dcf43f39e4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,25 +7018,30 @@ "width": null } }, - "dca2d257b6ad44eabe656a8f5f3bc7e6": { + "e9de42840a6f4ef5ad2bd529eebdb5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9837661e474434ba02cde38ddef5148", + "placeholder": "​", + "style": "IPY_MODEL_430a9c6146344b98802597b77c3f3be9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.40it/s]" } }, - "de925572cfb54cafa807449424d39b7e": { + "e9fb2e15855a495eb8393c8b1c470abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7023,42 +7056,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903b0619b70a440ca79228d1c65fc405", - "IPY_MODEL_332e863acfa84fbfa8f23f214c0afded", - "IPY_MODEL_6f0f807797024621adc6abb7e0c9eaa2" + "IPY_MODEL_ed5aaff857784513a498c55586a92986", + "IPY_MODEL_bb4c35815c7449a8aed853a01aa86fa4", + "IPY_MODEL_b36513bdac0f46ceb83785d8a9bde09e" ], - "layout": "IPY_MODEL_3af5790668ef4fd8926ccbfef46e8b36", + "layout": "IPY_MODEL_91c443f7ff764f1dba681c3c09a14ff1", "tabbable": null, "tooltip": null } }, - "e027fdb1fd7e4cb8ad7d32a540884a3f": { + "ec3747524c714804b0de0a16bfad570c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed5aaff857784513a498c55586a92986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efaaf8ce120240269b0246dccf24c672", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d398fec274b44e2b907f4c5cae300b81", + "layout": "IPY_MODEL_3b55e363cfde4908ad226f56c13f1d9e", + "placeholder": "​", + "style": "IPY_MODEL_966bf58e5bd14b8aa8e5fb75608923bb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading readme: 100%" } }, - "e2c0b351610b424a8cb54f4c25c0257e": { + "ef45c415b584442b90eddf019859b2fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,60 +7159,23 @@ "width": null } }, - "e3d8772d91d74a74bbfc3c241eb0ce09": { - "model_module": "@jupyter-widgets/base", + "f05df81817754b7b87f99efbdce1f223": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e465c1cd187a40f08ae74891d98d2689": { + "f2e4496d9bd04825889b9c186e65f9b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,41 +7228,30 @@ "width": null } }, - "e50e3c1c825f4781a2ddf6979af74bcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2ac9db956a43c695844d19480874ce": { + "f328d6279d4641508fd95fa254664013": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fdb056e1ace496abe457111412c9432", + "placeholder": "​", + "style": "IPY_MODEL_aa0eb853a308442c86674889c9306833", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ebd09a0dfc4e41d8b37610226c9e7be8": { + "f351d976879e4e049d1f0ab7a19a6e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7269,55 +7269,7 @@ "text_color": null } }, - "ed3dd5752c5341fca2216803c8c4b46d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d992a44e172d47668b49fe9830d4ea41", - "IPY_MODEL_8b19e50194a7452a8003471537d3763f", - "IPY_MODEL_a5f665c94e1e4e7cb9bda8382e1e00cc" - ], - "layout": "IPY_MODEL_7038f74f23cb484984b1f5b1a8467611", - "tabbable": null, - "tooltip": null - } - }, - "ed3e7469df2c4560897c195c6e1c0003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02526371af764684aad4897d7046a365", - "IPY_MODEL_369a2a2d596c42679bd5d6150343580a", - "IPY_MODEL_d0cd44c2bac844dd9f2edbdea4c9aa01" - ], - "layout": "IPY_MODEL_c8e7c01446584517b3c53cd3261e5d45", - "tabbable": null, - "tooltip": null - } - }, - "efaaf8ce120240269b0246dccf24c672": { + "f5c1c2b5231846bc965b4a84d97c4978": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,7 +7322,7 @@ "width": null } }, - "f1becfe00eb44b9bb936e4528ea9e942": { + "f849bc18dadf47e89463232339c585a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7388,31 +7340,7 @@ "text_color": null } }, - "f2c29b6ce7974f23abf1753e738849b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b2afe08176b4aabb69056cefaacb5cd", - "IPY_MODEL_210e5f58051a429ba35833408833e675", - "IPY_MODEL_8ec2b90bf10c433a8459e57d425c8760" - ], - "layout": "IPY_MODEL_c11ba1f9642647e6b19c9534b3391681", - "tabbable": null, - "tooltip": null - } - }, - "fb652988afd24cf39d30d03f9b269bcc": { + "f8c948dfdc854e989e91dc328f4b69c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7393,7 @@ "width": null } }, - "fb87b58f2ac54a589cbef4e34fafee8d": { + "f9837661e474434ba02cde38ddef5148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,7 +7446,80 @@ "width": null } }, - "fc6e5172aa4d481b866ee9019152d9a8": { + "f9ecde13ff2f4aa6b46a617709da636b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a50581896484c0b976aedade7f12cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3e29691e4f4ad6840284ca3b17cfd9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fca7e86a7eb34f15a6e35dfad2b37d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_776aa050d3de4b2da0c5382c76274a23", + "IPY_MODEL_e03fa8b0f49f49f1baa465b1ca0883d5", + "IPY_MODEL_4aa1a02c15664164a38a57b714c9f47c" + ], + "layout": "IPY_MODEL_c02b0661ef614d25a8b00a2146ff5ca5", + "tabbable": null, + "tooltip": null + } + }, + "ff792f1c1a83439ab079e6e7c4cf646a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e9980f6d6bf842ce92b80dcf43f39e4d", + "placeholder": "​", + "style": "IPY_MODEL_c88f01ca4b5546fc8a07b2d1c845732e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff829270eb2a450eb4bc4925b67b9353": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,28 +7572,27 @@ "width": null } }, - "fe416b8103714c939d38072d169f1695": { + "ffa49044d9234ebd9ec0888b452e8736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2895596c7bce4e01bf33024c61fa1430", - "IPY_MODEL_da461b681769492d812461f46d6775ee", - "IPY_MODEL_341ba052899a46a39f6a75bbeff09cc3" - ], - "layout": "IPY_MODEL_7250fcd5c60e4b2e913bf33bc3e948ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8c948dfdc854e989e91dc328f4b69c7", + "placeholder": "​", + "style": "IPY_MODEL_7f448eb8f9734416890102ab074a5c56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 169e30683..61c139cf0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:01.656948Z", - "iopub.status.busy": "2024-09-26T17:02:01.656539Z", - "iopub.status.idle": "2024-09-26T17:02:02.850939Z", - "shell.execute_reply": "2024-09-26T17:02:02.850256Z" + "iopub.execute_input": "2024-09-27T13:48:28.690694Z", + "iopub.status.busy": "2024-09-27T13:48:28.690508Z", + "iopub.status.idle": "2024-09-27T13:48:29.909631Z", + "shell.execute_reply": "2024-09-27T13:48:29.909082Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.853271Z", - "iopub.status.busy": "2024-09-26T17:02:02.852947Z", - "iopub.status.idle": "2024-09-26T17:02:02.875172Z", - "shell.execute_reply": "2024-09-26T17:02:02.874705Z" + "iopub.execute_input": "2024-09-27T13:48:29.911776Z", + "iopub.status.busy": "2024-09-27T13:48:29.911485Z", + "iopub.status.idle": "2024-09-27T13:48:29.929829Z", + "shell.execute_reply": "2024-09-27T13:48:29.929260Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.877142Z", - "iopub.status.busy": "2024-09-26T17:02:02.876721Z", - "iopub.status.idle": "2024-09-26T17:02:02.901260Z", - "shell.execute_reply": "2024-09-26T17:02:02.900803Z" + "iopub.execute_input": "2024-09-27T13:48:29.931726Z", + "iopub.status.busy": "2024-09-27T13:48:29.931354Z", + "iopub.status.idle": "2024-09-27T13:48:29.955883Z", + "shell.execute_reply": "2024-09-27T13:48:29.955429Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.903032Z", - "iopub.status.busy": "2024-09-26T17:02:02.902670Z", - "iopub.status.idle": "2024-09-26T17:02:02.906081Z", - "shell.execute_reply": "2024-09-26T17:02:02.905633Z" + "iopub.execute_input": "2024-09-27T13:48:29.957546Z", + "iopub.status.busy": "2024-09-27T13:48:29.957198Z", + "iopub.status.idle": "2024-09-27T13:48:29.960644Z", + "shell.execute_reply": "2024-09-27T13:48:29.960187Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.907891Z", - "iopub.status.busy": "2024-09-26T17:02:02.907547Z", - "iopub.status.idle": "2024-09-26T17:02:02.915059Z", - "shell.execute_reply": "2024-09-26T17:02:02.914598Z" + "iopub.execute_input": "2024-09-27T13:48:29.962526Z", + "iopub.status.busy": "2024-09-27T13:48:29.962099Z", + "iopub.status.idle": "2024-09-27T13:48:29.970289Z", + "shell.execute_reply": "2024-09-27T13:48:29.969831Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.916797Z", - "iopub.status.busy": "2024-09-26T17:02:02.916457Z", - "iopub.status.idle": "2024-09-26T17:02:02.918910Z", - "shell.execute_reply": "2024-09-26T17:02:02.918455Z" + "iopub.execute_input": "2024-09-27T13:48:29.972004Z", + "iopub.status.busy": "2024-09-27T13:48:29.971668Z", + "iopub.status.idle": "2024-09-27T13:48:29.974120Z", + "shell.execute_reply": "2024-09-27T13:48:29.973664Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.920658Z", - "iopub.status.busy": "2024-09-26T17:02:02.920329Z", - "iopub.status.idle": "2024-09-26T17:02:05.951867Z", - "shell.execute_reply": "2024-09-26T17:02:05.951334Z" + "iopub.execute_input": "2024-09-27T13:48:29.975796Z", + "iopub.status.busy": "2024-09-27T13:48:29.975523Z", + "iopub.status.idle": "2024-09-27T13:48:33.022239Z", + "shell.execute_reply": "2024-09-27T13:48:33.021576Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.953863Z", - "iopub.status.busy": "2024-09-26T17:02:05.953664Z", - "iopub.status.idle": "2024-09-26T17:02:05.962841Z", - "shell.execute_reply": "2024-09-26T17:02:05.962408Z" + "iopub.execute_input": "2024-09-27T13:48:33.024546Z", + "iopub.status.busy": "2024-09-27T13:48:33.024174Z", + "iopub.status.idle": "2024-09-27T13:48:33.033530Z", + "shell.execute_reply": "2024-09-27T13:48:33.033087Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.964552Z", - "iopub.status.busy": "2024-09-26T17:02:05.964224Z", - "iopub.status.idle": "2024-09-26T17:02:07.908703Z", - "shell.execute_reply": "2024-09-26T17:02:07.908090Z" + "iopub.execute_input": "2024-09-27T13:48:33.035207Z", + "iopub.status.busy": "2024-09-27T13:48:33.035031Z", + "iopub.status.idle": "2024-09-27T13:48:35.057425Z", + "shell.execute_reply": "2024-09-27T13:48:35.056829Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.910953Z", - "iopub.status.busy": "2024-09-26T17:02:07.910373Z", - "iopub.status.idle": "2024-09-26T17:02:07.928712Z", - "shell.execute_reply": "2024-09-26T17:02:07.928235Z" + "iopub.execute_input": "2024-09-27T13:48:35.059795Z", + "iopub.status.busy": "2024-09-27T13:48:35.059229Z", + "iopub.status.idle": "2024-09-27T13:48:35.078592Z", + "shell.execute_reply": "2024-09-27T13:48:35.078085Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.930415Z", - "iopub.status.busy": "2024-09-26T17:02:07.930091Z", - "iopub.status.idle": "2024-09-26T17:02:07.937827Z", - "shell.execute_reply": "2024-09-26T17:02:07.937268Z" + "iopub.execute_input": "2024-09-27T13:48:35.080517Z", + "iopub.status.busy": "2024-09-27T13:48:35.080147Z", + "iopub.status.idle": "2024-09-27T13:48:35.088054Z", + "shell.execute_reply": "2024-09-27T13:48:35.087581Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.939627Z", - "iopub.status.busy": "2024-09-26T17:02:07.939288Z", - "iopub.status.idle": "2024-09-26T17:02:07.948313Z", - "shell.execute_reply": "2024-09-26T17:02:07.947729Z" + "iopub.execute_input": "2024-09-27T13:48:35.089935Z", + "iopub.status.busy": "2024-09-27T13:48:35.089521Z", + "iopub.status.idle": "2024-09-27T13:48:35.098940Z", + "shell.execute_reply": "2024-09-27T13:48:35.098374Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.950161Z", - "iopub.status.busy": "2024-09-26T17:02:07.949841Z", - "iopub.status.idle": "2024-09-26T17:02:07.957648Z", - "shell.execute_reply": "2024-09-26T17:02:07.957041Z" + "iopub.execute_input": "2024-09-27T13:48:35.100861Z", + "iopub.status.busy": "2024-09-27T13:48:35.100449Z", + "iopub.status.idle": "2024-09-27T13:48:35.108869Z", + "shell.execute_reply": "2024-09-27T13:48:35.108267Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.959493Z", - "iopub.status.busy": "2024-09-26T17:02:07.959139Z", - "iopub.status.idle": "2024-09-26T17:02:07.969567Z", - "shell.execute_reply": "2024-09-26T17:02:07.968948Z" + "iopub.execute_input": "2024-09-27T13:48:35.110735Z", + "iopub.status.busy": "2024-09-27T13:48:35.110393Z", + "iopub.status.idle": "2024-09-27T13:48:35.119177Z", + "shell.execute_reply": "2024-09-27T13:48:35.118615Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.971246Z", - "iopub.status.busy": "2024-09-26T17:02:07.971075Z", - "iopub.status.idle": "2024-09-26T17:02:07.978570Z", - "shell.execute_reply": "2024-09-26T17:02:07.978076Z" + "iopub.execute_input": "2024-09-27T13:48:35.120900Z", + "iopub.status.busy": "2024-09-27T13:48:35.120578Z", + "iopub.status.idle": "2024-09-27T13:48:35.128239Z", + "shell.execute_reply": "2024-09-27T13:48:35.127660Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.980461Z", - "iopub.status.busy": "2024-09-26T17:02:07.980085Z", - "iopub.status.idle": "2024-09-26T17:02:07.988648Z", - "shell.execute_reply": "2024-09-26T17:02:07.988195Z" + "iopub.execute_input": "2024-09-27T13:48:35.130045Z", + "iopub.status.busy": "2024-09-27T13:48:35.129690Z", + "iopub.status.idle": "2024-09-27T13:48:35.137653Z", + "shell.execute_reply": "2024-09-27T13:48:35.137215Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.990420Z", - "iopub.status.busy": "2024-09-26T17:02:07.990085Z", - "iopub.status.idle": "2024-09-26T17:02:07.998038Z", - "shell.execute_reply": "2024-09-26T17:02:07.997573Z" + "iopub.execute_input": "2024-09-27T13:48:35.139474Z", + "iopub.status.busy": "2024-09-27T13:48:35.139126Z", + "iopub.status.idle": "2024-09-27T13:48:35.147699Z", + "shell.execute_reply": "2024-09-27T13:48:35.147238Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 343f76c9a..b10d7534a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:10.815001Z", - "iopub.status.busy": "2024-09-26T17:02:10.814842Z", - "iopub.status.idle": "2024-09-26T17:02:13.720806Z", - "shell.execute_reply": "2024-09-26T17:02:13.720189Z" + "iopub.execute_input": "2024-09-27T13:48:38.123019Z", + "iopub.status.busy": "2024-09-27T13:48:38.122617Z", + "iopub.status.idle": "2024-09-27T13:48:41.156902Z", + "shell.execute_reply": "2024-09-27T13:48:41.156293Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.723175Z", - "iopub.status.busy": "2024-09-26T17:02:13.722674Z", - "iopub.status.idle": "2024-09-26T17:02:13.725899Z", - "shell.execute_reply": "2024-09-26T17:02:13.725444Z" + "iopub.execute_input": "2024-09-27T13:48:41.159363Z", + "iopub.status.busy": "2024-09-27T13:48:41.158760Z", + "iopub.status.idle": "2024-09-27T13:48:41.162218Z", + "shell.execute_reply": "2024-09-27T13:48:41.161666Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.727650Z", - "iopub.status.busy": "2024-09-26T17:02:13.727301Z", - "iopub.status.idle": "2024-09-26T17:02:13.730292Z", - "shell.execute_reply": "2024-09-26T17:02:13.729849Z" + "iopub.execute_input": "2024-09-27T13:48:41.164034Z", + "iopub.status.busy": "2024-09-27T13:48:41.163676Z", + "iopub.status.idle": "2024-09-27T13:48:41.166941Z", + "shell.execute_reply": "2024-09-27T13:48:41.166439Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.731901Z", - "iopub.status.busy": "2024-09-26T17:02:13.731621Z", - "iopub.status.idle": "2024-09-26T17:02:13.756874Z", - "shell.execute_reply": "2024-09-26T17:02:13.756312Z" + "iopub.execute_input": "2024-09-27T13:48:41.168602Z", + "iopub.status.busy": "2024-09-27T13:48:41.168322Z", + "iopub.status.idle": "2024-09-27T13:48:41.194210Z", + "shell.execute_reply": "2024-09-27T13:48:41.193635Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.758691Z", - "iopub.status.busy": "2024-09-26T17:02:13.758260Z", - "iopub.status.idle": "2024-09-26T17:02:13.761816Z", - "shell.execute_reply": "2024-09-26T17:02:13.761257Z" + "iopub.execute_input": "2024-09-27T13:48:41.196238Z", + "iopub.status.busy": "2024-09-27T13:48:41.195805Z", + "iopub.status.idle": "2024-09-27T13:48:41.199937Z", + "shell.execute_reply": "2024-09-27T13:48:41.199359Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.763566Z", - "iopub.status.busy": "2024-09-26T17:02:13.763110Z", - "iopub.status.idle": "2024-09-26T17:02:13.766236Z", - "shell.execute_reply": "2024-09-26T17:02:13.765787Z" + "iopub.execute_input": "2024-09-27T13:48:41.201902Z", + "iopub.status.busy": "2024-09-27T13:48:41.201575Z", + "iopub.status.idle": "2024-09-27T13:48:41.204610Z", + "shell.execute_reply": "2024-09-27T13:48:41.204162Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.767931Z", - "iopub.status.busy": "2024-09-26T17:02:13.767610Z", - "iopub.status.idle": "2024-09-26T17:02:17.637562Z", - "shell.execute_reply": "2024-09-26T17:02:17.636903Z" + "iopub.execute_input": "2024-09-27T13:48:41.206413Z", + "iopub.status.busy": "2024-09-27T13:48:41.206079Z", + "iopub.status.idle": "2024-09-27T13:48:45.163696Z", + "shell.execute_reply": "2024-09-27T13:48:45.163141Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:17.639989Z", - "iopub.status.busy": "2024-09-26T17:02:17.639568Z", - "iopub.status.idle": "2024-09-26T17:02:18.534074Z", - "shell.execute_reply": "2024-09-26T17:02:18.533483Z" + "iopub.execute_input": "2024-09-27T13:48:45.165987Z", + "iopub.status.busy": "2024-09-27T13:48:45.165561Z", + "iopub.status.idle": "2024-09-27T13:48:46.068707Z", + "shell.execute_reply": "2024-09-27T13:48:46.068104Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.536535Z", - "iopub.status.busy": "2024-09-26T17:02:18.536141Z", - "iopub.status.idle": "2024-09-26T17:02:18.539097Z", - "shell.execute_reply": "2024-09-26T17:02:18.538594Z" + "iopub.execute_input": "2024-09-27T13:48:46.071667Z", + "iopub.status.busy": "2024-09-27T13:48:46.070894Z", + "iopub.status.idle": "2024-09-27T13:48:46.074612Z", + "shell.execute_reply": "2024-09-27T13:48:46.074101Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.541035Z", - "iopub.status.busy": "2024-09-26T17:02:18.540659Z", - "iopub.status.idle": "2024-09-26T17:02:20.483284Z", - "shell.execute_reply": "2024-09-26T17:02:20.482560Z" + "iopub.execute_input": "2024-09-27T13:48:46.077488Z", + "iopub.status.busy": "2024-09-27T13:48:46.076743Z", + "iopub.status.idle": "2024-09-27T13:48:48.102638Z", + "shell.execute_reply": "2024-09-27T13:48:48.101922Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.486447Z", - "iopub.status.busy": "2024-09-26T17:02:20.486003Z", - "iopub.status.idle": "2024-09-26T17:02:20.511442Z", - "shell.execute_reply": "2024-09-26T17:02:20.510928Z" + "iopub.execute_input": "2024-09-27T13:48:48.106046Z", + "iopub.status.busy": "2024-09-27T13:48:48.104814Z", + "iopub.status.idle": "2024-09-27T13:48:48.130901Z", + "shell.execute_reply": "2024-09-27T13:48:48.130366Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.514446Z", - "iopub.status.busy": "2024-09-26T17:02:20.513683Z", - "iopub.status.idle": "2024-09-26T17:02:20.524155Z", - "shell.execute_reply": "2024-09-26T17:02:20.523745Z" + "iopub.execute_input": "2024-09-27T13:48:48.133937Z", + "iopub.status.busy": "2024-09-27T13:48:48.133159Z", + "iopub.status.idle": "2024-09-27T13:48:48.143530Z", + "shell.execute_reply": "2024-09-27T13:48:48.143089Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.525970Z", - "iopub.status.busy": "2024-09-26T17:02:20.525788Z", - "iopub.status.idle": "2024-09-26T17:02:20.530473Z", - "shell.execute_reply": "2024-09-26T17:02:20.529997Z" + "iopub.execute_input": "2024-09-27T13:48:48.145142Z", + "iopub.status.busy": "2024-09-27T13:48:48.144964Z", + "iopub.status.idle": "2024-09-27T13:48:48.149332Z", + "shell.execute_reply": "2024-09-27T13:48:48.148851Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.532181Z", - "iopub.status.busy": "2024-09-26T17:02:20.531868Z", - "iopub.status.idle": "2024-09-26T17:02:20.538319Z", - "shell.execute_reply": "2024-09-26T17:02:20.537858Z" + "iopub.execute_input": "2024-09-27T13:48:48.151063Z", + "iopub.status.busy": "2024-09-27T13:48:48.150710Z", + "iopub.status.idle": "2024-09-27T13:48:48.156987Z", + "shell.execute_reply": "2024-09-27T13:48:48.156523Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.539829Z", - "iopub.status.busy": "2024-09-26T17:02:20.539657Z", - "iopub.status.idle": "2024-09-26T17:02:20.546053Z", - "shell.execute_reply": "2024-09-26T17:02:20.545618Z" + "iopub.execute_input": "2024-09-27T13:48:48.158687Z", + "iopub.status.busy": "2024-09-27T13:48:48.158353Z", + "iopub.status.idle": "2024-09-27T13:48:48.164503Z", + "shell.execute_reply": "2024-09-27T13:48:48.164070Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.547624Z", - "iopub.status.busy": "2024-09-26T17:02:20.547452Z", - "iopub.status.idle": "2024-09-26T17:02:20.553718Z", - "shell.execute_reply": "2024-09-26T17:02:20.553293Z" + "iopub.execute_input": "2024-09-27T13:48:48.166263Z", + "iopub.status.busy": "2024-09-27T13:48:48.165891Z", + "iopub.status.idle": "2024-09-27T13:48:48.171483Z", + "shell.execute_reply": "2024-09-27T13:48:48.171050Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.555248Z", - "iopub.status.busy": "2024-09-26T17:02:20.555076Z", - "iopub.status.idle": "2024-09-26T17:02:20.563590Z", - "shell.execute_reply": "2024-09-26T17:02:20.563144Z" + "iopub.execute_input": "2024-09-27T13:48:48.173156Z", + "iopub.status.busy": "2024-09-27T13:48:48.172819Z", + "iopub.status.idle": "2024-09-27T13:48:48.180987Z", + "shell.execute_reply": "2024-09-27T13:48:48.180558Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.565315Z", - "iopub.status.busy": "2024-09-26T17:02:20.564973Z", - "iopub.status.idle": "2024-09-26T17:02:20.570343Z", - "shell.execute_reply": "2024-09-26T17:02:20.569902Z" + "iopub.execute_input": "2024-09-27T13:48:48.182819Z", + "iopub.status.busy": "2024-09-27T13:48:48.182411Z", + "iopub.status.idle": "2024-09-27T13:48:48.187916Z", + "shell.execute_reply": "2024-09-27T13:48:48.187364Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.571994Z", - "iopub.status.busy": "2024-09-26T17:02:20.571657Z", - "iopub.status.idle": "2024-09-26T17:02:20.576878Z", - "shell.execute_reply": "2024-09-26T17:02:20.576423Z" + "iopub.execute_input": "2024-09-27T13:48:48.189674Z", + "iopub.status.busy": "2024-09-27T13:48:48.189285Z", + "iopub.status.idle": "2024-09-27T13:48:48.194675Z", + "shell.execute_reply": "2024-09-27T13:48:48.194131Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.578582Z", - "iopub.status.busy": "2024-09-26T17:02:20.578244Z", - "iopub.status.idle": "2024-09-26T17:02:20.581841Z", - "shell.execute_reply": "2024-09-26T17:02:20.581279Z" + "iopub.execute_input": "2024-09-27T13:48:48.196499Z", + "iopub.status.busy": "2024-09-27T13:48:48.196169Z", + "iopub.status.idle": "2024-09-27T13:48:48.199803Z", + "shell.execute_reply": "2024-09-27T13:48:48.199234Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.583557Z", - "iopub.status.busy": "2024-09-26T17:02:20.583273Z", - "iopub.status.idle": "2024-09-26T17:02:20.588436Z", - "shell.execute_reply": "2024-09-26T17:02:20.587875Z" + "iopub.execute_input": "2024-09-27T13:48:48.201595Z", + "iopub.status.busy": "2024-09-27T13:48:48.201275Z", + "iopub.status.idle": "2024-09-27T13:48:48.206336Z", + "shell.execute_reply": "2024-09-27T13:48:48.205863Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0841a1abf..a1e0d1e42 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:24.778635Z", - "iopub.status.busy": "2024-09-26T17:02:24.778451Z", - "iopub.status.idle": "2024-09-26T17:02:25.474946Z", - "shell.execute_reply": "2024-09-26T17:02:25.474332Z" + "iopub.execute_input": "2024-09-27T13:48:51.496056Z", + "iopub.status.busy": "2024-09-27T13:48:51.495876Z", + "iopub.status.idle": "2024-09-27T13:48:52.184420Z", + "shell.execute_reply": "2024-09-27T13:48:52.183872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.477084Z", - "iopub.status.busy": "2024-09-26T17:02:25.476819Z", - "iopub.status.idle": "2024-09-26T17:02:25.608315Z", - "shell.execute_reply": "2024-09-26T17:02:25.607729Z" + "iopub.execute_input": "2024-09-27T13:48:52.186744Z", + "iopub.status.busy": "2024-09-27T13:48:52.186314Z", + "iopub.status.idle": "2024-09-27T13:48:52.317662Z", + "shell.execute_reply": "2024-09-27T13:48:52.317086Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.610318Z", - "iopub.status.busy": "2024-09-26T17:02:25.609878Z", - "iopub.status.idle": "2024-09-26T17:02:25.633373Z", - "shell.execute_reply": "2024-09-26T17:02:25.632806Z" + "iopub.execute_input": "2024-09-27T13:48:52.319925Z", + "iopub.status.busy": "2024-09-27T13:48:52.319422Z", + "iopub.status.idle": "2024-09-27T13:48:52.343036Z", + "shell.execute_reply": "2024-09-27T13:48:52.342381Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.635543Z", - "iopub.status.busy": "2024-09-26T17:02:25.635055Z", - "iopub.status.idle": "2024-09-26T17:02:28.161306Z", - "shell.execute_reply": "2024-09-26T17:02:28.160724Z" + "iopub.execute_input": "2024-09-27T13:48:52.345328Z", + "iopub.status.busy": "2024-09-27T13:48:52.344798Z", + "iopub.status.idle": "2024-09-27T13:48:54.885695Z", + "shell.execute_reply": "2024-09-27T13:48:54.885077Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:28.163661Z", - "iopub.status.busy": "2024-09-26T17:02:28.163055Z", - "iopub.status.idle": "2024-09-26T17:02:36.892887Z", - "shell.execute_reply": "2024-09-26T17:02:36.892386Z" + "iopub.execute_input": "2024-09-27T13:48:54.888111Z", + "iopub.status.busy": "2024-09-27T13:48:54.887560Z", + "iopub.status.idle": "2024-09-27T13:49:03.631088Z", + "shell.execute_reply": "2024-09-27T13:49:03.630566Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:36.894869Z", - "iopub.status.busy": "2024-09-26T17:02:36.894502Z", - "iopub.status.idle": "2024-09-26T17:02:37.053891Z", - "shell.execute_reply": "2024-09-26T17:02:37.053318Z" + "iopub.execute_input": "2024-09-27T13:49:03.633038Z", + "iopub.status.busy": "2024-09-27T13:49:03.632663Z", + "iopub.status.idle": "2024-09-27T13:49:03.795547Z", + "shell.execute_reply": "2024-09-27T13:49:03.794905Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:37.055816Z", - "iopub.status.busy": "2024-09-26T17:02:37.055631Z", - "iopub.status.idle": "2024-09-26T17:02:38.527977Z", - "shell.execute_reply": "2024-09-26T17:02:38.527389Z" + "iopub.execute_input": "2024-09-27T13:49:03.797652Z", + "iopub.status.busy": "2024-09-27T13:49:03.797275Z", + "iopub.status.idle": "2024-09-27T13:49:05.326251Z", + "shell.execute_reply": "2024-09-27T13:49:05.325634Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:38.529829Z", - "iopub.status.busy": "2024-09-26T17:02:38.529535Z", - "iopub.status.idle": "2024-09-26T17:02:39.100506Z", - "shell.execute_reply": "2024-09-26T17:02:39.099974Z" + "iopub.execute_input": "2024-09-27T13:49:05.328218Z", + "iopub.status.busy": "2024-09-27T13:49:05.327762Z", + "iopub.status.idle": "2024-09-27T13:49:05.849926Z", + "shell.execute_reply": "2024-09-27T13:49:05.849331Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.102597Z", - "iopub.status.busy": "2024-09-26T17:02:39.102150Z", - "iopub.status.idle": "2024-09-26T17:02:39.116273Z", - "shell.execute_reply": "2024-09-26T17:02:39.115754Z" + "iopub.execute_input": "2024-09-27T13:49:05.852040Z", + "iopub.status.busy": "2024-09-27T13:49:05.851525Z", + "iopub.status.idle": "2024-09-27T13:49:05.866255Z", + "shell.execute_reply": "2024-09-27T13:49:05.865737Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.118338Z", - "iopub.status.busy": "2024-09-26T17:02:39.117938Z", - "iopub.status.idle": "2024-09-26T17:02:39.136893Z", - "shell.execute_reply": "2024-09-26T17:02:39.136335Z" + "iopub.execute_input": "2024-09-27T13:49:05.868138Z", + "iopub.status.busy": "2024-09-27T13:49:05.867678Z", + "iopub.status.idle": "2024-09-27T13:49:05.886264Z", + "shell.execute_reply": "2024-09-27T13:49:05.885683Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.138729Z", - "iopub.status.busy": "2024-09-26T17:02:39.138427Z", - "iopub.status.idle": "2024-09-26T17:02:39.386313Z", - "shell.execute_reply": "2024-09-26T17:02:39.385663Z" + "iopub.execute_input": "2024-09-27T13:49:05.888344Z", + "iopub.status.busy": "2024-09-27T13:49:05.887777Z", + "iopub.status.idle": "2024-09-27T13:49:06.118006Z", + "shell.execute_reply": "2024-09-27T13:49:06.117350Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.388687Z", - "iopub.status.busy": "2024-09-26T17:02:39.388276Z", - "iopub.status.idle": "2024-09-26T17:02:39.407274Z", - "shell.execute_reply": "2024-09-26T17:02:39.406806Z" + "iopub.execute_input": "2024-09-27T13:49:06.120304Z", + "iopub.status.busy": "2024-09-27T13:49:06.119967Z", + "iopub.status.idle": "2024-09-27T13:49:06.139235Z", + "shell.execute_reply": "2024-09-27T13:49:06.138785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.409088Z", - "iopub.status.busy": "2024-09-26T17:02:39.408745Z", - "iopub.status.idle": "2024-09-26T17:02:39.577750Z", - "shell.execute_reply": "2024-09-26T17:02:39.577160Z" + "iopub.execute_input": "2024-09-27T13:49:06.140987Z", + "iopub.status.busy": "2024-09-27T13:49:06.140668Z", + "iopub.status.idle": "2024-09-27T13:49:06.310511Z", + "shell.execute_reply": "2024-09-27T13:49:06.309966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.579768Z", - "iopub.status.busy": "2024-09-26T17:02:39.579483Z", - "iopub.status.idle": "2024-09-26T17:02:39.589520Z", - "shell.execute_reply": "2024-09-26T17:02:39.589043Z" + "iopub.execute_input": "2024-09-27T13:49:06.312450Z", + "iopub.status.busy": "2024-09-27T13:49:06.312126Z", + "iopub.status.idle": "2024-09-27T13:49:06.322584Z", + "shell.execute_reply": "2024-09-27T13:49:06.322028Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.591438Z", - "iopub.status.busy": "2024-09-26T17:02:39.590922Z", - "iopub.status.idle": "2024-09-26T17:02:39.600829Z", - "shell.execute_reply": "2024-09-26T17:02:39.600331Z" + "iopub.execute_input": "2024-09-27T13:49:06.324337Z", + "iopub.status.busy": "2024-09-27T13:49:06.324008Z", + "iopub.status.idle": "2024-09-27T13:49:06.333763Z", + "shell.execute_reply": "2024-09-27T13:49:06.333320Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.602860Z", - "iopub.status.busy": "2024-09-26T17:02:39.602471Z", - "iopub.status.idle": "2024-09-26T17:02:39.629873Z", - "shell.execute_reply": "2024-09-26T17:02:39.629375Z" + "iopub.execute_input": "2024-09-27T13:49:06.335525Z", + "iopub.status.busy": "2024-09-27T13:49:06.335189Z", + "iopub.status.idle": "2024-09-27T13:49:06.362958Z", + "shell.execute_reply": "2024-09-27T13:49:06.362463Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.631810Z", - "iopub.status.busy": "2024-09-26T17:02:39.631461Z", - "iopub.status.idle": "2024-09-26T17:02:39.634313Z", - "shell.execute_reply": "2024-09-26T17:02:39.633858Z" + "iopub.execute_input": "2024-09-27T13:49:06.364868Z", + "iopub.status.busy": "2024-09-27T13:49:06.364520Z", + "iopub.status.idle": "2024-09-27T13:49:06.367266Z", + "shell.execute_reply": "2024-09-27T13:49:06.366815Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.635838Z", - "iopub.status.busy": "2024-09-26T17:02:39.635659Z", - "iopub.status.idle": "2024-09-26T17:02:39.655327Z", - "shell.execute_reply": "2024-09-26T17:02:39.654863Z" + "iopub.execute_input": "2024-09-27T13:49:06.369082Z", + "iopub.status.busy": "2024-09-27T13:49:06.368636Z", + "iopub.status.idle": "2024-09-27T13:49:06.388912Z", + "shell.execute_reply": "2024-09-27T13:49:06.388311Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.657166Z", - "iopub.status.busy": "2024-09-26T17:02:39.656832Z", - "iopub.status.idle": "2024-09-26T17:02:39.661109Z", - "shell.execute_reply": "2024-09-26T17:02:39.660645Z" + "iopub.execute_input": "2024-09-27T13:49:06.390933Z", + "iopub.status.busy": "2024-09-27T13:49:06.390590Z", + "iopub.status.idle": "2024-09-27T13:49:06.395045Z", + "shell.execute_reply": "2024-09-27T13:49:06.394578Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.662859Z", - "iopub.status.busy": "2024-09-26T17:02:39.662510Z", - "iopub.status.idle": "2024-09-26T17:02:39.689643Z", - "shell.execute_reply": "2024-09-26T17:02:39.689166Z" + "iopub.execute_input": "2024-09-27T13:49:06.396786Z", + "iopub.status.busy": "2024-09-27T13:49:06.396435Z", + "iopub.status.idle": "2024-09-27T13:49:06.424718Z", + "shell.execute_reply": "2024-09-27T13:49:06.424137Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.691433Z", - "iopub.status.busy": "2024-09-26T17:02:39.691099Z", - "iopub.status.idle": "2024-09-26T17:02:40.010447Z", - "shell.execute_reply": "2024-09-26T17:02:40.009941Z" + "iopub.execute_input": "2024-09-27T13:49:06.426619Z", + "iopub.status.busy": "2024-09-27T13:49:06.426287Z", + "iopub.status.idle": "2024-09-27T13:49:06.743211Z", + "shell.execute_reply": "2024-09-27T13:49:06.742598Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.012296Z", - "iopub.status.busy": "2024-09-26T17:02:40.011936Z", - "iopub.status.idle": "2024-09-26T17:02:40.015264Z", - "shell.execute_reply": "2024-09-26T17:02:40.014692Z" + "iopub.execute_input": "2024-09-27T13:49:06.745276Z", + "iopub.status.busy": "2024-09-27T13:49:06.744881Z", + "iopub.status.idle": "2024-09-27T13:49:06.748268Z", + "shell.execute_reply": "2024-09-27T13:49:06.747713Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.016986Z", - "iopub.status.busy": "2024-09-26T17:02:40.016665Z", - "iopub.status.idle": "2024-09-26T17:02:40.029777Z", - "shell.execute_reply": "2024-09-26T17:02:40.029286Z" + "iopub.execute_input": "2024-09-27T13:49:06.750100Z", + "iopub.status.busy": "2024-09-27T13:49:06.749661Z", + "iopub.status.idle": "2024-09-27T13:49:06.762637Z", + "shell.execute_reply": "2024-09-27T13:49:06.762172Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.031319Z", - "iopub.status.busy": "2024-09-26T17:02:40.031147Z", - "iopub.status.idle": "2024-09-26T17:02:40.044461Z", - "shell.execute_reply": "2024-09-26T17:02:40.044001Z" + "iopub.execute_input": "2024-09-27T13:49:06.764357Z", + "iopub.status.busy": "2024-09-27T13:49:06.764029Z", + "iopub.status.idle": "2024-09-27T13:49:06.777313Z", + "shell.execute_reply": "2024-09-27T13:49:06.776869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.045959Z", - "iopub.status.busy": "2024-09-26T17:02:40.045789Z", - "iopub.status.idle": "2024-09-26T17:02:40.055654Z", - "shell.execute_reply": "2024-09-26T17:02:40.055208Z" + "iopub.execute_input": "2024-09-27T13:49:06.779116Z", + "iopub.status.busy": "2024-09-27T13:49:06.778790Z", + "iopub.status.idle": "2024-09-27T13:49:06.788739Z", + "shell.execute_reply": "2024-09-27T13:49:06.788301Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.057463Z", - "iopub.status.busy": "2024-09-26T17:02:40.057040Z", - "iopub.status.idle": "2024-09-26T17:02:40.066461Z", - "shell.execute_reply": "2024-09-26T17:02:40.066024Z" + "iopub.execute_input": "2024-09-27T13:49:06.790547Z", + "iopub.status.busy": "2024-09-27T13:49:06.790222Z", + "iopub.status.idle": "2024-09-27T13:49:06.799443Z", + "shell.execute_reply": "2024-09-27T13:49:06.798885Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.068180Z", - "iopub.status.busy": "2024-09-26T17:02:40.067865Z", - "iopub.status.idle": "2024-09-26T17:02:40.071589Z", - "shell.execute_reply": "2024-09-26T17:02:40.071132Z" + "iopub.execute_input": "2024-09-27T13:49:06.801301Z", + "iopub.status.busy": "2024-09-27T13:49:06.800918Z", + "iopub.status.idle": "2024-09-27T13:49:06.804814Z", + "shell.execute_reply": "2024-09-27T13:49:06.804343Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.073193Z", - "iopub.status.busy": "2024-09-26T17:02:40.073018Z", - "iopub.status.idle": "2024-09-26T17:02:40.124206Z", - "shell.execute_reply": "2024-09-26T17:02:40.123615Z" + "iopub.execute_input": "2024-09-27T13:49:06.806422Z", + "iopub.status.busy": "2024-09-27T13:49:06.806251Z", + "iopub.status.idle": "2024-09-27T13:49:06.857449Z", + "shell.execute_reply": "2024-09-27T13:49:06.856916Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.126151Z", - "iopub.status.busy": "2024-09-26T17:02:40.125730Z", - "iopub.status.idle": "2024-09-26T17:02:40.131441Z", - "shell.execute_reply": "2024-09-26T17:02:40.130972Z" + "iopub.execute_input": "2024-09-27T13:49:06.859420Z", + "iopub.status.busy": "2024-09-27T13:49:06.859015Z", + "iopub.status.idle": "2024-09-27T13:49:06.864670Z", + "shell.execute_reply": "2024-09-27T13:49:06.864242Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.133105Z", - "iopub.status.busy": "2024-09-26T17:02:40.132773Z", - "iopub.status.idle": "2024-09-26T17:02:40.143871Z", - "shell.execute_reply": "2024-09-26T17:02:40.143281Z" + "iopub.execute_input": "2024-09-27T13:49:06.866287Z", + "iopub.status.busy": "2024-09-27T13:49:06.866115Z", + "iopub.status.idle": "2024-09-27T13:49:06.876920Z", + "shell.execute_reply": "2024-09-27T13:49:06.876434Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.145630Z", - "iopub.status.busy": "2024-09-26T17:02:40.145214Z", - "iopub.status.idle": "2024-09-26T17:02:40.325382Z", - "shell.execute_reply": "2024-09-26T17:02:40.324770Z" + "iopub.execute_input": "2024-09-27T13:49:06.878558Z", + "iopub.status.busy": "2024-09-27T13:49:06.878380Z", + "iopub.status.idle": "2024-09-27T13:49:07.060650Z", + "shell.execute_reply": "2024-09-27T13:49:07.060030Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.327253Z", - "iopub.status.busy": "2024-09-26T17:02:40.327068Z", - "iopub.status.idle": "2024-09-26T17:02:40.334965Z", - "shell.execute_reply": "2024-09-26T17:02:40.334498Z" + "iopub.execute_input": "2024-09-27T13:49:07.062718Z", + "iopub.status.busy": "2024-09-27T13:49:07.062539Z", + "iopub.status.idle": "2024-09-27T13:49:07.070338Z", + "shell.execute_reply": "2024-09-27T13:49:07.069829Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.336727Z", - "iopub.status.busy": "2024-09-26T17:02:40.336548Z", - "iopub.status.idle": "2024-09-26T17:02:40.688647Z", - "shell.execute_reply": "2024-09-26T17:02:40.687981Z" + "iopub.execute_input": "2024-09-27T13:49:07.072127Z", + "iopub.status.busy": "2024-09-27T13:49:07.071792Z", + "iopub.status.idle": "2024-09-27T13:49:07.476374Z", + "shell.execute_reply": "2024-09-27T13:49:07.475651Z" } }, "outputs": [ @@ -3767,10 +3767,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:02:40-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-27 13:49:07-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", @@ -3785,7 +3792,7 @@ "\r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3808,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.690797Z", - "iopub.status.busy": "2024-09-26T17:02:40.690582Z", - "iopub.status.idle": "2024-09-26T17:02:42.601575Z", - "shell.execute_reply": "2024-09-26T17:02:42.601019Z" + "iopub.execute_input": "2024-09-27T13:49:07.478778Z", + "iopub.status.busy": "2024-09-27T13:49:07.478350Z", + "iopub.status.idle": "2024-09-27T13:49:09.398148Z", + "shell.execute_reply": "2024-09-27T13:49:09.397605Z" } }, "outputs": [], @@ -3850,10 +3857,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:42.603741Z", - "iopub.status.busy": "2024-09-26T17:02:42.603283Z", - "iopub.status.idle": "2024-09-26T17:02:43.250432Z", - "shell.execute_reply": "2024-09-26T17:02:43.249848Z" + "iopub.execute_input": "2024-09-27T13:49:09.400590Z", + "iopub.status.busy": "2024-09-27T13:49:09.400073Z", + "iopub.status.idle": "2024-09-27T13:49:10.030817Z", + "shell.execute_reply": "2024-09-27T13:49:10.030212Z" } }, "outputs": [ @@ -3868,7 +3875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b9834476d6492a83139db43a944e0e", + "model_id": "8e1f9b96233947f6b3a427e71e7dfaeb", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4015,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.252987Z", - "iopub.status.busy": "2024-09-26T17:02:43.252430Z", - "iopub.status.idle": "2024-09-26T17:02:43.265787Z", - "shell.execute_reply": "2024-09-26T17:02:43.265283Z" + "iopub.execute_input": "2024-09-27T13:49:10.033073Z", + "iopub.status.busy": "2024-09-27T13:49:10.032625Z", + "iopub.status.idle": "2024-09-27T13:49:10.046468Z", + "shell.execute_reply": "2024-09-27T13:49:10.045870Z" } }, "outputs": [ @@ -4130,35 +4137,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4167,28 +4174,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4196,18 +4203,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4257,10 +4264,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.267822Z", - "iopub.status.busy": "2024-09-26T17:02:43.267336Z", - "iopub.status.idle": "2024-09-26T17:02:43.416210Z", - "shell.execute_reply": "2024-09-26T17:02:43.415723Z" + "iopub.execute_input": "2024-09-27T13:49:10.049069Z", + "iopub.status.busy": "2024-09-27T13:49:10.048871Z", + "iopub.status.idle": "2024-09-27T13:49:10.200506Z", + "shell.execute_reply": "2024-09-27T13:49:10.199945Z" } }, "outputs": [ @@ -4325,10 +4332,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.417926Z", - "iopub.status.busy": "2024-09-26T17:02:43.417762Z", - "iopub.status.idle": "2024-09-26T17:02:43.921803Z", - "shell.execute_reply": "2024-09-26T17:02:43.921142Z" + "iopub.execute_input": "2024-09-27T13:49:10.202250Z", + "iopub.status.busy": "2024-09-27T13:49:10.202069Z", + "iopub.status.idle": "2024-09-27T13:49:10.721292Z", + "shell.execute_reply": "2024-09-27T13:49:10.720636Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3c15ea55fcb40aabc8074ab6ffea568", + "model_id": "26b36add52da4112a035f44e319d71b1", "version_major": 2, "version_minor": 0 }, @@ -4473,35 +4480,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4510,28 +4517,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4539,18 +4546,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4598,10 +4605,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.923933Z", - "iopub.status.busy": "2024-09-26T17:02:43.923568Z", - "iopub.status.idle": "2024-09-26T17:02:44.073210Z", - "shell.execute_reply": "2024-09-26T17:02:44.072669Z" + "iopub.execute_input": "2024-09-27T13:49:10.723313Z", + "iopub.status.busy": "2024-09-27T13:49:10.723116Z", + "iopub.status.idle": "2024-09-27T13:49:10.876739Z", + "shell.execute_reply": "2024-09-27T13:49:10.876250Z" }, "nbsphinx": "hidden" }, @@ -4653,49 +4660,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e740c2d1ad4ce5a790babbad1a7a44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d45b3340a2f45e894572fdb7227cad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b82154b9b89449ccb7991242504f019f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e740c2d1ad4ce5a790babbad1a7a44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "17637fd97d794f1484b8d827f4b7071d": { + "00f543c6d4fe4b9c87127e99d81bcb56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4713,7 +4678,7 @@ "text_color": null } }, - "3ad50386530f49c8a766d426ae0cff17": { + "15322e1f9fc841ec94366898b88e7974": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,48 +4731,31 @@ "width": null } }, - "4087b33fc2d24559b56ed69ce9b4cfcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "478f35d4014e419785fc626f1903c45b": { + "26b36add52da4112a035f44e319d71b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffb786b50a824c8d894769a9444ff34f", - "placeholder": "​", - "style": "IPY_MODEL_b2d9cc6ea5c04ef09b2141a3e151c3ad", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91c583132bd64a11ad21964364c042e5", + "IPY_MODEL_93b05aaa0ef5484fb99187905101ecf7", + "IPY_MODEL_92cb9c1d41d14d5f8a158ce007f825e3" + ], + "layout": "IPY_MODEL_afa25d583ad94d24825c08705279088b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "585be98b5f9a4ab7aa67a879906fa19a": { + "2bd019eae91047bab06ebcae4fdcc656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4825,7 +4773,7 @@ "text_color": null } }, - "625a7d4fc79f41f2a0247635be08467c": { + "2fdd00670d4b4d7f8a4fb924330db3f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4878,30 +4826,23 @@ "width": null } }, - "7c043d610e054733bf00e10d52a14072": { + "30848fed2eae4492a503a37c674a72d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1539ff4c8ef473783f55dba9ebdd6be", - "placeholder": "​", - "style": "IPY_MODEL_585be98b5f9a4ab7aa67a879906fa19a", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 707.69it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a65f2f21a79245a7b40c9fd256031840": { + "586568b828a144edbc73b4c68db32154": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,31 +4895,30 @@ "width": null } }, - "b2b9834476d6492a83139db43a944e0e": { + "5ebba9b71afa4a7fa599d36b29f98e58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d981f6091a084df4b39cd8fc9990f867", - "IPY_MODEL_0d45b3340a2f45e894572fdb7227cad6", - "IPY_MODEL_fb31467058e741cb9eae03eb807fb42c" - ], - "layout": "IPY_MODEL_b6cad30966d74ceda8da8dad5c36175a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fdd00670d4b4d7f8a4fb924330db3f3", + "placeholder": "​", + "style": "IPY_MODEL_f1f181a3a0a14127bb356925adebd4da", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 798.61it/s]" } }, - "b2d9cc6ea5c04ef09b2141a3e151c3ad": { + "87522669ac8140519e1c560f30fd9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4996,7 +4936,54 @@ "text_color": null } }, - "b6cad30966d74ceda8da8dad5c36175a": { + "8e1f9b96233947f6b3a427e71e7dfaeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eca917ff8b294f91b70d3a766dce356b", + "IPY_MODEL_e72487e7516a4e3cb1d6ae5235dd6b91", + "IPY_MODEL_5ebba9b71afa4a7fa599d36b29f98e58" + ], + "layout": "IPY_MODEL_925ca2cf3c4b4f299c37d44bb4ee4fa9", + "tabbable": null, + "tooltip": null + } + }, + "91c583132bd64a11ad21964364c042e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8bcd20c9e8d4e298260f7cedb8c6862", + "placeholder": "​", + "style": "IPY_MODEL_2bd019eae91047bab06ebcae4fdcc656", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "925ca2cf3c4b4f299c37d44bb4ee4fa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,7 +5036,7 @@ "width": null } }, - "b82154b9b89449ccb7991242504f019f": { + "9261380574e74d7b930f02999b245f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,54 +5089,72 @@ "width": null } }, - "d3c15ea55fcb40aabc8074ab6ffea568": { + "92cb9c1d41d14d5f8a158ce007f825e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_478f35d4014e419785fc626f1903c45b", - "IPY_MODEL_f8bcd49b06674d8295365b9e5701de5e", - "IPY_MODEL_7c043d610e054733bf00e10d52a14072" - ], - "layout": "IPY_MODEL_3ad50386530f49c8a766d426ae0cff17", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9261380574e74d7b930f02999b245f81", + "placeholder": "​", + "style": "IPY_MODEL_00f543c6d4fe4b9c87127e99d81bcb56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 693.55it/s]" } }, - "d981f6091a084df4b39cd8fc9990f867": { + "93b05aaa0ef5484fb99187905101ecf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_625a7d4fc79f41f2a0247635be08467c", - "placeholder": "​", - "style": "IPY_MODEL_4087b33fc2d24559b56ed69ce9b4cfcf", + "layout": "IPY_MODEL_b9ddd6efa82d4d39bae57e7099340a78", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aebc4648fbf64400a539523e1dc4ce7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "ddb2a771afd34214b4936ae6ca4b8d91": { + "aebc4648fbf64400a539523e1dc4ce7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "afa25d583ad94d24825c08705279088b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5202,23 +5207,7 @@ "width": null } }, - "e6b72ea07d9a475f8269916a0267f20e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f1539ff4c8ef473783f55dba9ebdd6be": { + "b9ddd6efa82d4d39bae57e7099340a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5271,7 +5260,7 @@ "width": null } }, - "f8bcd49b06674d8295365b9e5701de5e": { + "e72487e7516a4e3cb1d6ae5235dd6b91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5287,40 +5276,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddb2a771afd34214b4936ae6ca4b8d91", + "layout": "IPY_MODEL_586568b828a144edbc73b4c68db32154", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e6b72ea07d9a475f8269916a0267f20e", + "style": "IPY_MODEL_30848fed2eae4492a503a37c674a72d6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "fb31467058e741cb9eae03eb807fb42c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a65f2f21a79245a7b40c9fd256031840", - "placeholder": "​", - "style": "IPY_MODEL_17637fd97d794f1484b8d827f4b7071d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 718.33it/s]" - } - }, - "ffb786b50a824c8d894769a9444ff34f": { + "e8bcd20c9e8d4e298260f7cedb8c6862": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5372,6 +5338,47 @@ "visibility": null, "width": null } + }, + "eca917ff8b294f91b70d3a766dce356b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15322e1f9fc841ec94366898b88e7974", + "placeholder": "​", + "style": "IPY_MODEL_87522669ac8140519e1c560f30fd9dca", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f1f181a3a0a14127bb356925adebd4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 0f1a9673c..7a4a275e8 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:48.026780Z", - "iopub.status.busy": "2024-09-26T17:02:48.026603Z", - "iopub.status.idle": "2024-09-26T17:02:49.199322Z", - "shell.execute_reply": "2024-09-26T17:02:49.198698Z" + "iopub.execute_input": "2024-09-27T13:49:14.981020Z", + "iopub.status.busy": "2024-09-27T13:49:14.980618Z", + "iopub.status.idle": "2024-09-27T13:49:16.174240Z", + "shell.execute_reply": "2024-09-27T13:49:16.173656Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.201404Z", - "iopub.status.busy": "2024-09-26T17:02:49.201072Z", - "iopub.status.idle": "2024-09-26T17:02:49.204495Z", - "shell.execute_reply": "2024-09-26T17:02:49.203935Z" + "iopub.execute_input": "2024-09-27T13:49:16.176497Z", + "iopub.status.busy": "2024-09-27T13:49:16.176040Z", + "iopub.status.idle": "2024-09-27T13:49:16.178778Z", + "shell.execute_reply": "2024-09-27T13:49:16.178331Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.206494Z", - "iopub.status.busy": "2024-09-26T17:02:49.206146Z", - "iopub.status.idle": "2024-09-26T17:02:49.218110Z", - "shell.execute_reply": "2024-09-26T17:02:49.217517Z" + "iopub.execute_input": "2024-09-27T13:49:16.180625Z", + "iopub.status.busy": "2024-09-27T13:49:16.180310Z", + "iopub.status.idle": "2024-09-27T13:49:16.192112Z", + "shell.execute_reply": "2024-09-27T13:49:16.191578Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.219988Z", - "iopub.status.busy": "2024-09-26T17:02:49.219651Z", - "iopub.status.idle": "2024-09-26T17:02:54.126698Z", - "shell.execute_reply": "2024-09-26T17:02:54.126225Z" + "iopub.execute_input": "2024-09-27T13:49:16.193883Z", + "iopub.status.busy": "2024-09-27T13:49:16.193570Z", + "iopub.status.idle": "2024-09-27T13:49:21.858596Z", + "shell.execute_reply": "2024-09-27T13:49:21.858120Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index edab415e1..5566fbc6f 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:56.360615Z", - "iopub.status.busy": "2024-09-26T17:02:56.360206Z", - "iopub.status.idle": "2024-09-26T17:02:57.593148Z", - "shell.execute_reply": "2024-09-26T17:02:57.592592Z" + "iopub.execute_input": "2024-09-27T13:49:24.275648Z", + "iopub.status.busy": "2024-09-27T13:49:24.275473Z", + "iopub.status.idle": "2024-09-27T13:49:25.502999Z", + "shell.execute_reply": "2024-09-27T13:49:25.502358Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.595634Z", - "iopub.status.busy": "2024-09-26T17:02:57.595168Z", - "iopub.status.idle": "2024-09-26T17:02:57.598583Z", - "shell.execute_reply": "2024-09-26T17:02:57.598123Z" + "iopub.execute_input": "2024-09-27T13:49:25.505303Z", + "iopub.status.busy": "2024-09-27T13:49:25.505015Z", + "iopub.status.idle": "2024-09-27T13:49:25.508248Z", + "shell.execute_reply": "2024-09-27T13:49:25.507786Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.600444Z", - "iopub.status.busy": "2024-09-26T17:02:57.600102Z", - "iopub.status.idle": "2024-09-26T17:03:00.936555Z", - "shell.execute_reply": "2024-09-26T17:03:00.935769Z" + "iopub.execute_input": "2024-09-27T13:49:25.509903Z", + "iopub.status.busy": "2024-09-27T13:49:25.509725Z", + "iopub.status.idle": "2024-09-27T13:49:28.910277Z", + "shell.execute_reply": "2024-09-27T13:49:28.909577Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.939323Z", - "iopub.status.busy": "2024-09-26T17:03:00.938653Z", - "iopub.status.idle": "2024-09-26T17:03:00.983835Z", - "shell.execute_reply": "2024-09-26T17:03:00.983085Z" + "iopub.execute_input": "2024-09-27T13:49:28.913026Z", + "iopub.status.busy": "2024-09-27T13:49:28.912182Z", + "iopub.status.idle": "2024-09-27T13:49:28.961330Z", + "shell.execute_reply": "2024-09-27T13:49:28.960694Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.985981Z", - "iopub.status.busy": "2024-09-26T17:03:00.985722Z", - "iopub.status.idle": "2024-09-26T17:03:01.026561Z", - "shell.execute_reply": "2024-09-26T17:03:01.025789Z" + "iopub.execute_input": "2024-09-27T13:49:28.963581Z", + "iopub.status.busy": "2024-09-27T13:49:28.963253Z", + "iopub.status.idle": "2024-09-27T13:49:29.011303Z", + "shell.execute_reply": "2024-09-27T13:49:29.010628Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.028998Z", - "iopub.status.busy": "2024-09-26T17:03:01.028581Z", - "iopub.status.idle": "2024-09-26T17:03:01.031727Z", - "shell.execute_reply": "2024-09-26T17:03:01.031258Z" + "iopub.execute_input": "2024-09-27T13:49:29.013523Z", + "iopub.status.busy": "2024-09-27T13:49:29.013179Z", + "iopub.status.idle": "2024-09-27T13:49:29.016591Z", + "shell.execute_reply": "2024-09-27T13:49:29.016042Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.033482Z", - "iopub.status.busy": "2024-09-26T17:03:01.033113Z", - "iopub.status.idle": "2024-09-26T17:03:01.035872Z", - "shell.execute_reply": "2024-09-26T17:03:01.035414Z" + "iopub.execute_input": "2024-09-27T13:49:29.018358Z", + "iopub.status.busy": "2024-09-27T13:49:29.018018Z", + "iopub.status.idle": "2024-09-27T13:49:29.020804Z", + "shell.execute_reply": "2024-09-27T13:49:29.020221Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.037562Z", - "iopub.status.busy": "2024-09-26T17:03:01.037369Z", - "iopub.status.idle": "2024-09-26T17:03:01.061451Z", - "shell.execute_reply": "2024-09-26T17:03:01.060849Z" + "iopub.execute_input": "2024-09-27T13:49:29.022876Z", + "iopub.status.busy": "2024-09-27T13:49:29.022566Z", + "iopub.status.idle": "2024-09-27T13:49:29.047765Z", + "shell.execute_reply": "2024-09-27T13:49:29.047140Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7633e799bda141e28661514bf3a1704c", + "model_id": "8da4bd0f9f64487483493ffdb6f429e8", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d55f75476cc642e590dfea2b8badf09b", + "model_id": "4fc6a038626e4490a9d76f3f9359ae82", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.063656Z", - "iopub.status.busy": "2024-09-26T17:03:01.063472Z", - "iopub.status.idle": "2024-09-26T17:03:01.070092Z", - "shell.execute_reply": "2024-09-26T17:03:01.069533Z" + "iopub.execute_input": "2024-09-27T13:49:29.050320Z", + "iopub.status.busy": "2024-09-27T13:49:29.050093Z", + "iopub.status.idle": "2024-09-27T13:49:29.057387Z", + "shell.execute_reply": "2024-09-27T13:49:29.056903Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.071690Z", - "iopub.status.busy": "2024-09-26T17:03:01.071525Z", - "iopub.status.idle": "2024-09-26T17:03:01.074898Z", - "shell.execute_reply": "2024-09-26T17:03:01.074458Z" + "iopub.execute_input": "2024-09-27T13:49:29.059162Z", + "iopub.status.busy": "2024-09-27T13:49:29.058979Z", + "iopub.status.idle": "2024-09-27T13:49:29.062842Z", + "shell.execute_reply": "2024-09-27T13:49:29.062400Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.076464Z", - "iopub.status.busy": "2024-09-26T17:03:01.076289Z", - "iopub.status.idle": "2024-09-26T17:03:01.082573Z", - "shell.execute_reply": "2024-09-26T17:03:01.082136Z" + "iopub.execute_input": "2024-09-27T13:49:29.064535Z", + "iopub.status.busy": "2024-09-27T13:49:29.064203Z", + "iopub.status.idle": "2024-09-27T13:49:29.070891Z", + "shell.execute_reply": "2024-09-27T13:49:29.070295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.084058Z", - "iopub.status.busy": "2024-09-26T17:03:01.083885Z", - "iopub.status.idle": "2024-09-26T17:03:01.129493Z", - "shell.execute_reply": "2024-09-26T17:03:01.128813Z" + "iopub.execute_input": "2024-09-27T13:49:29.072733Z", + "iopub.status.busy": "2024-09-27T13:49:29.072387Z", + "iopub.status.idle": "2024-09-27T13:49:29.118212Z", + "shell.execute_reply": "2024-09-27T13:49:29.117539Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.131673Z", - "iopub.status.busy": "2024-09-26T17:03:01.131282Z", - "iopub.status.idle": "2024-09-26T17:03:01.174982Z", - "shell.execute_reply": "2024-09-26T17:03:01.174379Z" + "iopub.execute_input": "2024-09-27T13:49:29.120347Z", + "iopub.status.busy": "2024-09-27T13:49:29.119989Z", + "iopub.status.idle": "2024-09-27T13:49:29.166190Z", + "shell.execute_reply": "2024-09-27T13:49:29.165389Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.177397Z", - "iopub.status.busy": "2024-09-26T17:03:01.176899Z", - "iopub.status.idle": "2024-09-26T17:03:01.309798Z", - "shell.execute_reply": "2024-09-26T17:03:01.309219Z" + "iopub.execute_input": "2024-09-27T13:49:29.168576Z", + "iopub.status.busy": "2024-09-27T13:49:29.168187Z", + "iopub.status.idle": "2024-09-27T13:49:29.304197Z", + "shell.execute_reply": "2024-09-27T13:49:29.303502Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.312323Z", - "iopub.status.busy": "2024-09-26T17:03:01.311542Z", - "iopub.status.idle": "2024-09-26T17:03:04.449275Z", - "shell.execute_reply": "2024-09-26T17:03:04.448739Z" + "iopub.execute_input": "2024-09-27T13:49:29.306632Z", + "iopub.status.busy": "2024-09-27T13:49:29.305854Z", + "iopub.status.idle": "2024-09-27T13:49:32.396057Z", + "shell.execute_reply": "2024-09-27T13:49:32.395396Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.451450Z", - "iopub.status.busy": "2024-09-26T17:03:04.451054Z", - "iopub.status.idle": "2024-09-26T17:03:04.509327Z", - "shell.execute_reply": "2024-09-26T17:03:04.508783Z" + "iopub.execute_input": "2024-09-27T13:49:32.398059Z", + "iopub.status.busy": "2024-09-27T13:49:32.397754Z", + "iopub.status.idle": "2024-09-27T13:49:32.455992Z", + "shell.execute_reply": "2024-09-27T13:49:32.455418Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.511187Z", - "iopub.status.busy": "2024-09-26T17:03:04.510686Z", - "iopub.status.idle": "2024-09-26T17:03:04.551738Z", - "shell.execute_reply": "2024-09-26T17:03:04.551149Z" + "iopub.execute_input": "2024-09-27T13:49:32.457640Z", + "iopub.status.busy": "2024-09-27T13:49:32.457454Z", + "iopub.status.idle": "2024-09-27T13:49:32.498172Z", + "shell.execute_reply": "2024-09-27T13:49:32.497565Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "185ea250", + "id": "110863a4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "c50f3d96", + "id": "65add30a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "84fafb96", + "id": "bf7fb938", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "eed28ebf", + "id": "14dba376", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.553540Z", - "iopub.status.busy": "2024-09-26T17:03:04.553194Z", - "iopub.status.idle": "2024-09-26T17:03:04.560950Z", - "shell.execute_reply": "2024-09-26T17:03:04.560391Z" + "iopub.execute_input": "2024-09-27T13:49:32.500172Z", + "iopub.status.busy": "2024-09-27T13:49:32.499847Z", + "iopub.status.idle": "2024-09-27T13:49:32.507587Z", + "shell.execute_reply": "2024-09-27T13:49:32.507101Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "b5e76c72", + "id": "a88e3681", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "187a70e9", + "id": "044361a4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.562840Z", - "iopub.status.busy": "2024-09-26T17:03:04.562495Z", - "iopub.status.idle": "2024-09-26T17:03:04.581313Z", - "shell.execute_reply": "2024-09-26T17:03:04.580823Z" + "iopub.execute_input": "2024-09-27T13:49:32.509236Z", + "iopub.status.busy": "2024-09-27T13:49:32.509060Z", + "iopub.status.idle": "2024-09-27T13:49:32.529248Z", + "shell.execute_reply": "2024-09-27T13:49:32.528751Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4f59575", + "id": "c93a5fc5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.582943Z", - "iopub.status.busy": "2024-09-26T17:03:04.582603Z", - "iopub.status.idle": "2024-09-26T17:03:04.585954Z", - "shell.execute_reply": "2024-09-26T17:03:04.585510Z" + "iopub.execute_input": "2024-09-27T13:49:32.531186Z", + "iopub.status.busy": "2024-09-27T13:49:32.530847Z", + "iopub.status.idle": "2024-09-27T13:49:32.533889Z", + "shell.execute_reply": "2024-09-27T13:49:32.533450Z" } }, "outputs": [ @@ -1622,33 +1622,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027b49213cf14d6f9cae1c522d69a94d": { + "1c1f69ce05ca41e2ab42ccc79d49b185": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c77305186841c8990219341fe2c985", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1f946f65a3064858bdc4d0b84b3e37fe", + "layout": "IPY_MODEL_89502115592c4197b735017806292967", + "placeholder": "​", + "style": "IPY_MODEL_67e9d04cd96c445c8005acfc36ae7e29", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "16c77305186841c8990219341fe2c985": { + "1e9e281acb8f4c05a040cc2f0d19a987": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,23 +1698,25 @@ "width": null } }, - "1f946f65a3064858bdc4d0b84b3e37fe": { + "32cebcf584a04d9794e7cd675f1cf965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fbb7a81a12049598efe0429bad742f5": { + "363e09fca0754055b1fb0a23c154fbad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,43 +1769,70 @@ "width": null } }, - "20a93723642e4c60a25be8cddfa5f862": { + "4fc6a038626e4490a9d76f3f9359ae82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fcba4714fba74b85af11a93938110f06", + "IPY_MODEL_7b414d5e5d744644b8330103365ce506", + "IPY_MODEL_519bf913af144fcea3d83180f3ae1150" + ], + "layout": "IPY_MODEL_6ab1ba108939480bbd60600a002b25cb", + "tabbable": null, + "tooltip": null } }, - "249e12cb3e404e84b62ee17c2a8ee91c": { + "519bf913af144fcea3d83180f3ae1150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3acab4d72dd4ada9a7b5d09d252f1e6", + "placeholder": "​", + "style": "IPY_MODEL_32cebcf584a04d9794e7cd675f1cf965", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1569019.90it/s]" + } + }, + "537971263b13437cbc2e8d270657a96f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "26fc21435c414965bb4fad79b3f9d46a": { + "5b46bacaa39b448a83cdc1b8b3090aa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1859,30 +1885,7 @@ "width": null } }, - "297ab574c00643e48ce44ee6cc78961f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecfe75f6dedb497a8ae75da5827d89f9", - "placeholder": "​", - "style": "IPY_MODEL_20a93723642e4c60a25be8cddfa5f862", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "35b7e773a8644fc9bbe62ca8dc8f77c8": { + "67e9d04cd96c445c8005acfc36ae7e29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1900,7 +1903,7 @@ "text_color": null } }, - "5e634c9387184fc2987a0af6f800548a": { + "6ab1ba108939480bbd60600a002b25cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,103 +1956,92 @@ "width": null } }, - "6cc76bea445c41c493f3b2acd04406b4": { + "6bdc1c15df354d60806f9f8b743a5127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26fc21435c414965bb4fad79b3f9d46a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a8633f13ed4ba4a549b9eb5d299249", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7633e799bda141e28661514bf3a1704c": { + "74618b1ea3a14f318fd439352bd763f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_297ab574c00643e48ce44ee6cc78961f", - "IPY_MODEL_027b49213cf14d6f9cae1c522d69a94d", - "IPY_MODEL_932461911f37410c90d83477c498bda7" - ], - "layout": "IPY_MODEL_bd01f47230b04888942468812505fd19", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e9e281acb8f4c05a040cc2f0d19a987", + "placeholder": "​", + "style": "IPY_MODEL_88c6b62022f342478878c9f95dc5d0ac", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 995184.36it/s]" } }, - "932461911f37410c90d83477c498bda7": { + "7b414d5e5d744644b8330103365ce506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b595c73dc553457cbb4ce82e7819ebb5", - "placeholder": "​", - "style": "IPY_MODEL_35b7e773a8644fc9bbe62ca8dc8f77c8", + "layout": "IPY_MODEL_8f5c14af127b4dfa80a803f558c65990", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_537971263b13437cbc2e8d270657a96f", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1033563.49it/s]" + "value": 50.0 } }, - "a6f5f93e1e074668b651f896ea64b8cf": { + "88c6b62022f342478878c9f95dc5d0ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e634c9387184fc2987a0af6f800548a", - "placeholder": "​", - "style": "IPY_MODEL_f4d800ccc5cd4a60b3671bb890b23752", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539081.17it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b595c73dc553457cbb4ce82e7819ebb5": { + "89502115592c4197b735017806292967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2102,7 +2094,7 @@ "width": null } }, - "b9a8633f13ed4ba4a549b9eb5d299249": { + "8c4164034e9c40f29c2793fa40f5b09a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2118,7 +2110,31 @@ "description_width": "" } }, - "baffbefc025a453aa10961ae95b22fdb": { + "8da4bd0f9f64487483493ffdb6f429e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c1f69ce05ca41e2ab42ccc79d49b185", + "IPY_MODEL_f17397c213f443d9bd7fe0a113c23c83", + "IPY_MODEL_74618b1ea3a14f318fd439352bd763f8" + ], + "layout": "IPY_MODEL_e395efb2609a4c51ad8b5843bef284fd", + "tabbable": null, + "tooltip": null + } + }, + "8f5c14af127b4dfa80a803f558c65990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2171,7 +2187,7 @@ "width": null } }, - "bd01f47230b04888942468812505fd19": { + "c3acab4d72dd4ada9a7b5d09d252f1e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,54 +2240,7 @@ "width": null } }, - "d55f75476cc642e590dfea2b8badf09b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6bdfa8ac0f24d1e92a159e2eae5f82e", - "IPY_MODEL_6cc76bea445c41c493f3b2acd04406b4", - "IPY_MODEL_a6f5f93e1e074668b651f896ea64b8cf" - ], - "layout": "IPY_MODEL_1fbb7a81a12049598efe0429bad742f5", - "tabbable": null, - "tooltip": null - } - }, - "e6bdfa8ac0f24d1e92a159e2eae5f82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baffbefc025a453aa10961ae95b22fdb", - "placeholder": "​", - "style": "IPY_MODEL_249e12cb3e404e84b62ee17c2a8ee91c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ecfe75f6dedb497a8ae75da5827d89f9": { + "e395efb2609a4c51ad8b5843bef284fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2293,53 @@ "width": null } }, - "f4d800ccc5cd4a60b3671bb890b23752": { + "f17397c213f443d9bd7fe0a113c23c83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5b46bacaa39b448a83cdc1b8b3090aa0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c4164034e9c40f29c2793fa40f5b09a", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "fcba4714fba74b85af11a93938110f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_363e09fca0754055b1fb0a23c154fbad", + "placeholder": "​", + "style": "IPY_MODEL_6bdc1c15df354d60806f9f8b743a5127", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index ade9796c5..cc4cd8fd6 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:07.887828Z", - "iopub.status.busy": "2024-09-26T17:03:07.887658Z", - "iopub.status.idle": "2024-09-26T17:03:09.081593Z", - "shell.execute_reply": "2024-09-26T17:03:09.080934Z" + "iopub.execute_input": "2024-09-27T13:49:36.063407Z", + "iopub.status.busy": "2024-09-27T13:49:36.062942Z", + "iopub.status.idle": "2024-09-27T13:49:37.284451Z", + "shell.execute_reply": "2024-09-27T13:49:37.283796Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.083776Z", - "iopub.status.busy": "2024-09-26T17:03:09.083483Z", - "iopub.status.idle": "2024-09-26T17:03:09.087386Z", - "shell.execute_reply": "2024-09-26T17:03:09.086916Z" + "iopub.execute_input": "2024-09-27T13:49:37.286562Z", + "iopub.status.busy": "2024-09-27T13:49:37.286237Z", + "iopub.status.idle": "2024-09-27T13:49:37.290149Z", + "shell.execute_reply": "2024-09-27T13:49:37.289659Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.089162Z", - "iopub.status.busy": "2024-09-26T17:03:09.088717Z", - "iopub.status.idle": "2024-09-26T17:03:09.465002Z", - "shell.execute_reply": "2024-09-26T17:03:09.464428Z" + "iopub.execute_input": "2024-09-27T13:49:37.291825Z", + "iopub.status.busy": "2024-09-27T13:49:37.291654Z", + "iopub.status.idle": "2024-09-27T13:49:37.556624Z", + "shell.execute_reply": "2024-09-27T13:49:37.555994Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.466895Z", - "iopub.status.busy": "2024-09-26T17:03:09.466533Z", - "iopub.status.idle": "2024-09-26T17:03:09.473520Z", - "shell.execute_reply": "2024-09-26T17:03:09.473021Z" + "iopub.execute_input": "2024-09-27T13:49:37.558867Z", + "iopub.status.busy": "2024-09-27T13:49:37.558381Z", + "iopub.status.idle": "2024-09-27T13:49:37.565980Z", + "shell.execute_reply": "2024-09-27T13:49:37.565444Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.475071Z", - "iopub.status.busy": "2024-09-26T17:03:09.474893Z", - "iopub.status.idle": "2024-09-26T17:03:09.482105Z", - "shell.execute_reply": "2024-09-26T17:03:09.481672Z" + "iopub.execute_input": "2024-09-27T13:49:37.567912Z", + "iopub.status.busy": "2024-09-27T13:49:37.567548Z", + "iopub.status.idle": "2024-09-27T13:49:37.574676Z", + "shell.execute_reply": "2024-09-27T13:49:37.574217Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.483732Z", - "iopub.status.busy": "2024-09-26T17:03:09.483451Z", - "iopub.status.idle": "2024-09-26T17:03:09.488341Z", - "shell.execute_reply": "2024-09-26T17:03:09.487750Z" + "iopub.execute_input": "2024-09-27T13:49:37.576306Z", + "iopub.status.busy": "2024-09-27T13:49:37.576128Z", + "iopub.status.idle": "2024-09-27T13:49:37.580836Z", + "shell.execute_reply": "2024-09-27T13:49:37.580383Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.490181Z", - "iopub.status.busy": "2024-09-26T17:03:09.489852Z", - "iopub.status.idle": "2024-09-26T17:03:09.495449Z", - "shell.execute_reply": "2024-09-26T17:03:09.494981Z" + "iopub.execute_input": "2024-09-27T13:49:37.582420Z", + "iopub.status.busy": "2024-09-27T13:49:37.582243Z", + "iopub.status.idle": "2024-09-27T13:49:37.589097Z", + "shell.execute_reply": "2024-09-27T13:49:37.588424Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.497149Z", - "iopub.status.busy": "2024-09-26T17:03:09.496808Z", - "iopub.status.idle": "2024-09-26T17:03:09.500629Z", - "shell.execute_reply": "2024-09-26T17:03:09.500187Z" + "iopub.execute_input": "2024-09-27T13:49:37.591160Z", + "iopub.status.busy": "2024-09-27T13:49:37.590660Z", + "iopub.status.idle": "2024-09-27T13:49:37.594897Z", + "shell.execute_reply": "2024-09-27T13:49:37.594465Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.502161Z", - "iopub.status.busy": "2024-09-26T17:03:09.501984Z", - "iopub.status.idle": "2024-09-26T17:03:09.567841Z", - "shell.execute_reply": "2024-09-26T17:03:09.567143Z" + "iopub.execute_input": "2024-09-27T13:49:37.596387Z", + "iopub.status.busy": "2024-09-27T13:49:37.596214Z", + "iopub.status.idle": "2024-09-27T13:49:37.663767Z", + "shell.execute_reply": "2024-09-27T13:49:37.663142Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.570224Z", - "iopub.status.busy": "2024-09-26T17:03:09.569621Z", - "iopub.status.idle": "2024-09-26T17:03:09.580875Z", - "shell.execute_reply": "2024-09-26T17:03:09.580332Z" + "iopub.execute_input": "2024-09-27T13:49:37.665990Z", + "iopub.status.busy": "2024-09-27T13:49:37.665506Z", + "iopub.status.idle": "2024-09-27T13:49:37.676792Z", + "shell.execute_reply": "2024-09-27T13:49:37.676215Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.582934Z", - "iopub.status.busy": "2024-09-26T17:03:09.582524Z", - "iopub.status.idle": "2024-09-26T17:03:09.602617Z", - "shell.execute_reply": "2024-09-26T17:03:09.602091Z" + "iopub.execute_input": "2024-09-27T13:49:37.679527Z", + "iopub.status.busy": "2024-09-27T13:49:37.678642Z", + "iopub.status.idle": "2024-09-27T13:49:37.700788Z", + "shell.execute_reply": "2024-09-27T13:49:37.700250Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.604629Z", - "iopub.status.busy": "2024-09-26T17:03:09.604227Z", - "iopub.status.idle": "2024-09-26T17:03:09.608565Z", - "shell.execute_reply": "2024-09-26T17:03:09.608048Z" + "iopub.execute_input": "2024-09-27T13:49:37.703850Z", + "iopub.status.busy": "2024-09-27T13:49:37.703099Z", + "iopub.status.idle": "2024-09-27T13:49:37.708579Z", + "shell.execute_reply": "2024-09-27T13:49:37.708087Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.611201Z", - "iopub.status.busy": "2024-09-26T17:03:09.610448Z", - "iopub.status.idle": "2024-09-26T17:03:09.616047Z", - "shell.execute_reply": "2024-09-26T17:03:09.615544Z" + "iopub.execute_input": "2024-09-27T13:49:37.711439Z", + "iopub.status.busy": "2024-09-27T13:49:37.710701Z", + "iopub.status.idle": "2024-09-27T13:49:37.716299Z", + "shell.execute_reply": "2024-09-27T13:49:37.715801Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.618936Z", - "iopub.status.busy": "2024-09-26T17:03:09.618195Z", - "iopub.status.idle": "2024-09-26T17:03:09.629920Z", - "shell.execute_reply": "2024-09-26T17:03:09.629486Z" + "iopub.execute_input": "2024-09-27T13:49:37.719140Z", + "iopub.status.busy": "2024-09-27T13:49:37.718400Z", + "iopub.status.idle": "2024-09-27T13:49:37.728871Z", + "shell.execute_reply": "2024-09-27T13:49:37.728441Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.631452Z", - "iopub.status.busy": "2024-09-26T17:03:09.631282Z", - "iopub.status.idle": "2024-09-26T17:03:09.635503Z", - "shell.execute_reply": "2024-09-26T17:03:09.635082Z" + "iopub.execute_input": "2024-09-27T13:49:37.730868Z", + "iopub.status.busy": "2024-09-27T13:49:37.730485Z", + "iopub.status.idle": "2024-09-27T13:49:37.735531Z", + "shell.execute_reply": "2024-09-27T13:49:37.734968Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.637074Z", - "iopub.status.busy": "2024-09-26T17:03:09.636920Z", - "iopub.status.idle": "2024-09-26T17:03:09.751705Z", - "shell.execute_reply": "2024-09-26T17:03:09.751197Z" + "iopub.execute_input": "2024-09-27T13:49:37.737395Z", + "iopub.status.busy": "2024-09-27T13:49:37.737079Z", + "iopub.status.idle": "2024-09-27T13:49:37.860657Z", + "shell.execute_reply": "2024-09-27T13:49:37.860138Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.753780Z", - "iopub.status.busy": "2024-09-26T17:03:09.753473Z", - "iopub.status.idle": "2024-09-26T17:03:09.763869Z", - "shell.execute_reply": "2024-09-26T17:03:09.763379Z" + "iopub.execute_input": "2024-09-27T13:49:37.862530Z", + "iopub.status.busy": "2024-09-27T13:49:37.862209Z", + "iopub.status.idle": "2024-09-27T13:49:37.868653Z", + "shell.execute_reply": "2024-09-27T13:49:37.868170Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.765757Z", - "iopub.status.busy": "2024-09-26T17:03:09.765399Z", - "iopub.status.idle": "2024-09-26T17:03:11.745053Z", - "shell.execute_reply": "2024-09-26T17:03:11.744416Z" + "iopub.execute_input": "2024-09-27T13:49:37.871135Z", + "iopub.status.busy": "2024-09-27T13:49:37.870425Z", + "iopub.status.idle": "2024-09-27T13:49:39.894594Z", + "shell.execute_reply": "2024-09-27T13:49:39.893912Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.747529Z", - "iopub.status.busy": "2024-09-26T17:03:11.746976Z", - "iopub.status.idle": "2024-09-26T17:03:11.760015Z", - "shell.execute_reply": "2024-09-26T17:03:11.759505Z" + "iopub.execute_input": "2024-09-27T13:49:39.898305Z", + "iopub.status.busy": "2024-09-27T13:49:39.897216Z", + "iopub.status.idle": "2024-09-27T13:49:39.912953Z", + "shell.execute_reply": "2024-09-27T13:49:39.912405Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.762003Z", - "iopub.status.busy": "2024-09-26T17:03:11.761617Z", - "iopub.status.idle": "2024-09-26T17:03:11.764511Z", - "shell.execute_reply": "2024-09-26T17:03:11.764016Z" + "iopub.execute_input": "2024-09-27T13:49:39.916108Z", + "iopub.status.busy": "2024-09-27T13:49:39.915341Z", + "iopub.status.idle": "2024-09-27T13:49:39.919141Z", + "shell.execute_reply": "2024-09-27T13:49:39.918633Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.766401Z", - "iopub.status.busy": "2024-09-26T17:03:11.766021Z", - "iopub.status.idle": "2024-09-26T17:03:11.770493Z", - "shell.execute_reply": "2024-09-26T17:03:11.769981Z" + "iopub.execute_input": "2024-09-27T13:49:39.922032Z", + "iopub.status.busy": "2024-09-27T13:49:39.921249Z", + "iopub.status.idle": "2024-09-27T13:49:39.926585Z", + "shell.execute_reply": "2024-09-27T13:49:39.926073Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.772408Z", - "iopub.status.busy": "2024-09-26T17:03:11.772028Z", - "iopub.status.idle": "2024-09-26T17:03:11.807613Z", - "shell.execute_reply": "2024-09-26T17:03:11.807086Z" + "iopub.execute_input": "2024-09-27T13:49:39.929683Z", + "iopub.status.busy": "2024-09-27T13:49:39.928826Z", + "iopub.status.idle": "2024-09-27T13:49:39.959231Z", + "shell.execute_reply": "2024-09-27T13:49:39.958525Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.809511Z", - "iopub.status.busy": "2024-09-26T17:03:11.809134Z", - "iopub.status.idle": "2024-09-26T17:03:12.338745Z", - "shell.execute_reply": "2024-09-26T17:03:12.338192Z" + "iopub.execute_input": "2024-09-27T13:49:39.961458Z", + "iopub.status.busy": "2024-09-27T13:49:39.961156Z", + "iopub.status.idle": "2024-09-27T13:49:40.480334Z", + "shell.execute_reply": "2024-09-27T13:49:40.479746Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.341049Z", - "iopub.status.busy": "2024-09-26T17:03:12.340668Z", - "iopub.status.idle": "2024-09-26T17:03:12.477140Z", - "shell.execute_reply": "2024-09-26T17:03:12.476474Z" + "iopub.execute_input": "2024-09-27T13:49:40.483535Z", + "iopub.status.busy": "2024-09-27T13:49:40.482730Z", + "iopub.status.idle": "2024-09-27T13:49:40.622832Z", + "shell.execute_reply": "2024-09-27T13:49:40.622203Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.480251Z", - "iopub.status.busy": "2024-09-26T17:03:12.479457Z", - "iopub.status.idle": "2024-09-26T17:03:12.487761Z", - "shell.execute_reply": "2024-09-26T17:03:12.487250Z" + "iopub.execute_input": "2024-09-27T13:49:40.625866Z", + "iopub.status.busy": "2024-09-27T13:49:40.625069Z", + "iopub.status.idle": "2024-09-27T13:49:40.633744Z", + "shell.execute_reply": "2024-09-27T13:49:40.633225Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.490696Z", - "iopub.status.busy": "2024-09-26T17:03:12.489940Z", - "iopub.status.idle": "2024-09-26T17:03:12.497460Z", - "shell.execute_reply": "2024-09-26T17:03:12.496930Z" + "iopub.execute_input": "2024-09-27T13:49:40.636749Z", + "iopub.status.busy": "2024-09-27T13:49:40.635964Z", + "iopub.status.idle": "2024-09-27T13:49:40.644199Z", + "shell.execute_reply": "2024-09-27T13:49:40.643667Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.500342Z", - "iopub.status.busy": "2024-09-26T17:03:12.499582Z", - "iopub.status.idle": "2024-09-26T17:03:12.506416Z", - "shell.execute_reply": "2024-09-26T17:03:12.505903Z" + "iopub.execute_input": "2024-09-27T13:49:40.647316Z", + "iopub.status.busy": "2024-09-27T13:49:40.646527Z", + "iopub.status.idle": "2024-09-27T13:49:40.653984Z", + "shell.execute_reply": "2024-09-27T13:49:40.653441Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.509304Z", - "iopub.status.busy": "2024-09-26T17:03:12.508532Z", - "iopub.status.idle": "2024-09-26T17:03:12.514132Z", - "shell.execute_reply": "2024-09-26T17:03:12.513613Z" + "iopub.execute_input": "2024-09-27T13:49:40.656969Z", + "iopub.status.busy": "2024-09-27T13:49:40.656207Z", + "iopub.status.idle": "2024-09-27T13:49:40.662089Z", + "shell.execute_reply": "2024-09-27T13:49:40.661547Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.516950Z", - "iopub.status.busy": "2024-09-26T17:03:12.516208Z", - "iopub.status.idle": "2024-09-26T17:03:12.521433Z", - "shell.execute_reply": "2024-09-26T17:03:12.520973Z" + "iopub.execute_input": "2024-09-27T13:49:40.664042Z", + "iopub.status.busy": "2024-09-27T13:49:40.663625Z", + "iopub.status.idle": "2024-09-27T13:49:40.668487Z", + "shell.execute_reply": "2024-09-27T13:49:40.668031Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.523760Z", - "iopub.status.busy": "2024-09-26T17:03:12.523152Z", - "iopub.status.idle": "2024-09-26T17:03:12.600802Z", - "shell.execute_reply": "2024-09-26T17:03:12.600279Z" + "iopub.execute_input": "2024-09-27T13:49:40.670335Z", + "iopub.status.busy": "2024-09-27T13:49:40.670148Z", + "iopub.status.idle": "2024-09-27T13:49:40.750849Z", + "shell.execute_reply": "2024-09-27T13:49:40.750346Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.602889Z", - "iopub.status.busy": "2024-09-26T17:03:12.602578Z", - "iopub.status.idle": "2024-09-26T17:03:12.611123Z", - "shell.execute_reply": "2024-09-26T17:03:12.610650Z" + "iopub.execute_input": "2024-09-27T13:49:40.752897Z", + "iopub.status.busy": "2024-09-27T13:49:40.752625Z", + "iopub.status.idle": "2024-09-27T13:49:40.761488Z", + "shell.execute_reply": "2024-09-27T13:49:40.761000Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.613116Z", - "iopub.status.busy": "2024-09-26T17:03:12.612781Z", - "iopub.status.idle": "2024-09-26T17:03:12.616227Z", - "shell.execute_reply": "2024-09-26T17:03:12.615762Z" + "iopub.execute_input": "2024-09-27T13:49:40.763717Z", + "iopub.status.busy": "2024-09-27T13:49:40.763403Z", + "iopub.status.idle": "2024-09-27T13:49:40.766376Z", + "shell.execute_reply": "2024-09-27T13:49:40.765784Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.617893Z", - "iopub.status.busy": "2024-09-26T17:03:12.617563Z", - "iopub.status.idle": "2024-09-26T17:03:12.626852Z", - "shell.execute_reply": "2024-09-26T17:03:12.626412Z" + "iopub.execute_input": "2024-09-27T13:49:40.768367Z", + "iopub.status.busy": "2024-09-27T13:49:40.767967Z", + "iopub.status.idle": "2024-09-27T13:49:40.778395Z", + "shell.execute_reply": "2024-09-27T13:49:40.777797Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.628682Z", - "iopub.status.busy": "2024-09-26T17:03:12.628351Z", - "iopub.status.idle": "2024-09-26T17:03:12.634666Z", - "shell.execute_reply": "2024-09-26T17:03:12.634214Z" + "iopub.execute_input": "2024-09-27T13:49:40.780256Z", + "iopub.status.busy": "2024-09-27T13:49:40.779904Z", + "iopub.status.idle": "2024-09-27T13:49:40.786750Z", + "shell.execute_reply": "2024-09-27T13:49:40.786242Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.636358Z", - "iopub.status.busy": "2024-09-26T17:03:12.636021Z", - "iopub.status.idle": "2024-09-26T17:03:12.639149Z", - "shell.execute_reply": "2024-09-26T17:03:12.638707Z" + "iopub.execute_input": "2024-09-27T13:49:40.788328Z", + "iopub.status.busy": "2024-09-27T13:49:40.788149Z", + "iopub.status.idle": "2024-09-27T13:49:40.791623Z", + "shell.execute_reply": "2024-09-27T13:49:40.791149Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.640826Z", - "iopub.status.busy": "2024-09-26T17:03:12.640500Z", - "iopub.status.idle": "2024-09-26T17:03:16.698340Z", - "shell.execute_reply": "2024-09-26T17:03:16.697800Z" + "iopub.execute_input": "2024-09-27T13:49:40.793340Z", + "iopub.status.busy": "2024-09-27T13:49:40.792984Z", + "iopub.status.idle": "2024-09-27T13:49:44.842085Z", + "shell.execute_reply": "2024-09-27T13:49:44.841530Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.700392Z", - "iopub.status.busy": "2024-09-26T17:03:16.700018Z", - "iopub.status.idle": "2024-09-26T17:03:16.703134Z", - "shell.execute_reply": "2024-09-26T17:03:16.702726Z" + "iopub.execute_input": "2024-09-27T13:49:44.844374Z", + "iopub.status.busy": "2024-09-27T13:49:44.843980Z", + "iopub.status.idle": "2024-09-27T13:49:44.847177Z", + "shell.execute_reply": "2024-09-27T13:49:44.846779Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.704961Z", - "iopub.status.busy": "2024-09-26T17:03:16.704501Z", - "iopub.status.idle": "2024-09-26T17:03:16.707303Z", - "shell.execute_reply": "2024-09-26T17:03:16.706855Z" + "iopub.execute_input": "2024-09-27T13:49:44.848611Z", + "iopub.status.busy": "2024-09-27T13:49:44.848437Z", + "iopub.status.idle": "2024-09-27T13:49:44.851280Z", + "shell.execute_reply": "2024-09-27T13:49:44.850836Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 79a94be48..3db453a12 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:19.757523Z", - "iopub.status.busy": "2024-09-26T17:03:19.757004Z", - "iopub.status.idle": "2024-09-26T17:03:20.993835Z", - "shell.execute_reply": "2024-09-26T17:03:20.993263Z" + "iopub.execute_input": "2024-09-27T13:49:47.955203Z", + "iopub.status.busy": "2024-09-27T13:49:47.954713Z", + "iopub.status.idle": "2024-09-27T13:49:49.202564Z", + "shell.execute_reply": "2024-09-27T13:49:49.201984Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:20.995910Z", - "iopub.status.busy": "2024-09-26T17:03:20.995628Z", - "iopub.status.idle": "2024-09-26T17:03:21.177031Z", - "shell.execute_reply": "2024-09-26T17:03:21.176503Z" + "iopub.execute_input": "2024-09-27T13:49:49.204710Z", + "iopub.status.busy": "2024-09-27T13:49:49.204267Z", + "iopub.status.idle": "2024-09-27T13:49:49.385602Z", + "shell.execute_reply": "2024-09-27T13:49:49.385040Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.179276Z", - "iopub.status.busy": "2024-09-26T17:03:21.178912Z", - "iopub.status.idle": "2024-09-26T17:03:21.190441Z", - "shell.execute_reply": "2024-09-26T17:03:21.189979Z" + "iopub.execute_input": "2024-09-27T13:49:49.387603Z", + "iopub.status.busy": "2024-09-27T13:49:49.387414Z", + "iopub.status.idle": "2024-09-27T13:49:49.399128Z", + "shell.execute_reply": "2024-09-27T13:49:49.398649Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.192354Z", - "iopub.status.busy": "2024-09-26T17:03:21.191924Z", - "iopub.status.idle": "2024-09-26T17:03:21.428342Z", - "shell.execute_reply": "2024-09-26T17:03:21.427841Z" + "iopub.execute_input": "2024-09-27T13:49:49.401113Z", + "iopub.status.busy": "2024-09-27T13:49:49.400681Z", + "iopub.status.idle": "2024-09-27T13:49:49.640205Z", + "shell.execute_reply": "2024-09-27T13:49:49.639632Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.430456Z", - "iopub.status.busy": "2024-09-26T17:03:21.430000Z", - "iopub.status.idle": "2024-09-26T17:03:21.460872Z", - "shell.execute_reply": "2024-09-26T17:03:21.460382Z" + "iopub.execute_input": "2024-09-27T13:49:49.642136Z", + "iopub.status.busy": "2024-09-27T13:49:49.641924Z", + "iopub.status.idle": "2024-09-27T13:49:49.668753Z", + "shell.execute_reply": "2024-09-27T13:49:49.668289Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.462907Z", - "iopub.status.busy": "2024-09-26T17:03:21.462542Z", - "iopub.status.idle": "2024-09-26T17:03:23.537686Z", - "shell.execute_reply": "2024-09-26T17:03:23.536960Z" + "iopub.execute_input": "2024-09-27T13:49:49.670405Z", + "iopub.status.busy": "2024-09-27T13:49:49.670225Z", + "iopub.status.idle": "2024-09-27T13:49:51.756166Z", + "shell.execute_reply": "2024-09-27T13:49:51.755567Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.540024Z", - "iopub.status.busy": "2024-09-26T17:03:23.539501Z", - "iopub.status.idle": "2024-09-26T17:03:23.557520Z", - "shell.execute_reply": "2024-09-26T17:03:23.557017Z" + "iopub.execute_input": "2024-09-27T13:49:51.758458Z", + "iopub.status.busy": "2024-09-27T13:49:51.757901Z", + "iopub.status.idle": "2024-09-27T13:49:51.776156Z", + "shell.execute_reply": "2024-09-27T13:49:51.775703Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.559289Z", - "iopub.status.busy": "2024-09-26T17:03:23.558937Z", - "iopub.status.idle": "2024-09-26T17:03:25.143810Z", - "shell.execute_reply": "2024-09-26T17:03:25.143145Z" + "iopub.execute_input": "2024-09-27T13:49:51.777989Z", + "iopub.status.busy": "2024-09-27T13:49:51.777684Z", + "iopub.status.idle": "2024-09-27T13:49:53.370088Z", + "shell.execute_reply": "2024-09-27T13:49:53.369508Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.146384Z", - "iopub.status.busy": "2024-09-26T17:03:25.145553Z", - "iopub.status.idle": "2024-09-26T17:03:25.159570Z", - "shell.execute_reply": "2024-09-26T17:03:25.159091Z" + "iopub.execute_input": "2024-09-27T13:49:53.372684Z", + "iopub.status.busy": "2024-09-27T13:49:53.371801Z", + "iopub.status.idle": "2024-09-27T13:49:53.386003Z", + "shell.execute_reply": "2024-09-27T13:49:53.385496Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.161037Z", - "iopub.status.busy": "2024-09-26T17:03:25.160870Z", - "iopub.status.idle": "2024-09-26T17:03:25.243567Z", - "shell.execute_reply": "2024-09-26T17:03:25.242905Z" + "iopub.execute_input": "2024-09-27T13:49:53.387980Z", + "iopub.status.busy": "2024-09-27T13:49:53.387516Z", + "iopub.status.idle": "2024-09-27T13:49:53.473842Z", + "shell.execute_reply": "2024-09-27T13:49:53.473196Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.245411Z", - "iopub.status.busy": "2024-09-26T17:03:25.245158Z", - "iopub.status.idle": "2024-09-26T17:03:25.460426Z", - "shell.execute_reply": "2024-09-26T17:03:25.459911Z" + "iopub.execute_input": "2024-09-27T13:49:53.475651Z", + "iopub.status.busy": "2024-09-27T13:49:53.475421Z", + "iopub.status.idle": "2024-09-27T13:49:53.690965Z", + "shell.execute_reply": "2024-09-27T13:49:53.690348Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.462274Z", - "iopub.status.busy": "2024-09-26T17:03:25.461916Z", - "iopub.status.idle": "2024-09-26T17:03:25.479129Z", - "shell.execute_reply": "2024-09-26T17:03:25.478671Z" + "iopub.execute_input": "2024-09-27T13:49:53.692793Z", + "iopub.status.busy": "2024-09-27T13:49:53.692463Z", + "iopub.status.idle": "2024-09-27T13:49:53.710417Z", + "shell.execute_reply": "2024-09-27T13:49:53.709980Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.480874Z", - "iopub.status.busy": "2024-09-26T17:03:25.480537Z", - "iopub.status.idle": "2024-09-26T17:03:25.490089Z", - "shell.execute_reply": "2024-09-26T17:03:25.489515Z" + "iopub.execute_input": "2024-09-27T13:49:53.712127Z", + "iopub.status.busy": "2024-09-27T13:49:53.711811Z", + "iopub.status.idle": "2024-09-27T13:49:53.721449Z", + "shell.execute_reply": "2024-09-27T13:49:53.720996Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.491899Z", - "iopub.status.busy": "2024-09-26T17:03:25.491571Z", - "iopub.status.idle": "2024-09-26T17:03:25.588418Z", - "shell.execute_reply": "2024-09-26T17:03:25.587869Z" + "iopub.execute_input": "2024-09-27T13:49:53.723130Z", + "iopub.status.busy": "2024-09-27T13:49:53.722857Z", + "iopub.status.idle": "2024-09-27T13:49:53.817375Z", + "shell.execute_reply": "2024-09-27T13:49:53.816703Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.590607Z", - "iopub.status.busy": "2024-09-26T17:03:25.590219Z", - "iopub.status.idle": "2024-09-26T17:03:25.732483Z", - "shell.execute_reply": "2024-09-26T17:03:25.731847Z" + "iopub.execute_input": "2024-09-27T13:49:53.819544Z", + "iopub.status.busy": "2024-09-27T13:49:53.819159Z", + "iopub.status.idle": "2024-09-27T13:49:53.965240Z", + "shell.execute_reply": "2024-09-27T13:49:53.964595Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.734544Z", - "iopub.status.busy": "2024-09-26T17:03:25.734306Z", - "iopub.status.idle": "2024-09-26T17:03:25.738188Z", - "shell.execute_reply": "2024-09-26T17:03:25.737635Z" + "iopub.execute_input": "2024-09-27T13:49:53.967132Z", + "iopub.status.busy": "2024-09-27T13:49:53.966887Z", + "iopub.status.idle": "2024-09-27T13:49:53.970653Z", + "shell.execute_reply": "2024-09-27T13:49:53.970184Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.739991Z", - "iopub.status.busy": "2024-09-26T17:03:25.739693Z", - "iopub.status.idle": "2024-09-26T17:03:25.743518Z", - "shell.execute_reply": "2024-09-26T17:03:25.742969Z" + "iopub.execute_input": "2024-09-27T13:49:53.972544Z", + "iopub.status.busy": "2024-09-27T13:49:53.972211Z", + "iopub.status.idle": "2024-09-27T13:49:53.975811Z", + "shell.execute_reply": "2024-09-27T13:49:53.975375Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.745282Z", - "iopub.status.busy": "2024-09-26T17:03:25.744869Z", - "iopub.status.idle": "2024-09-26T17:03:25.782713Z", - "shell.execute_reply": "2024-09-26T17:03:25.782255Z" + "iopub.execute_input": "2024-09-27T13:49:53.977483Z", + "iopub.status.busy": "2024-09-27T13:49:53.977162Z", + "iopub.status.idle": "2024-09-27T13:49:54.014798Z", + "shell.execute_reply": "2024-09-27T13:49:54.014320Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.784359Z", - "iopub.status.busy": "2024-09-26T17:03:25.784047Z", - "iopub.status.idle": "2024-09-26T17:03:25.825993Z", - "shell.execute_reply": "2024-09-26T17:03:25.825399Z" + "iopub.execute_input": "2024-09-27T13:49:54.016309Z", + "iopub.status.busy": "2024-09-27T13:49:54.016153Z", + "iopub.status.idle": "2024-09-27T13:49:54.058592Z", + "shell.execute_reply": "2024-09-27T13:49:54.058128Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.827788Z", - "iopub.status.busy": "2024-09-26T17:03:25.827395Z", - "iopub.status.idle": "2024-09-26T17:03:25.929754Z", - "shell.execute_reply": "2024-09-26T17:03:25.929087Z" + "iopub.execute_input": "2024-09-27T13:49:54.060328Z", + "iopub.status.busy": "2024-09-27T13:49:54.059989Z", + "iopub.status.idle": "2024-09-27T13:49:54.162310Z", + "shell.execute_reply": "2024-09-27T13:49:54.161576Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.931922Z", - "iopub.status.busy": "2024-09-26T17:03:25.931548Z", - "iopub.status.idle": "2024-09-26T17:03:26.038825Z", - "shell.execute_reply": "2024-09-26T17:03:26.038172Z" + "iopub.execute_input": "2024-09-27T13:49:54.164584Z", + "iopub.status.busy": "2024-09-27T13:49:54.164238Z", + "iopub.status.idle": "2024-09-27T13:49:54.272152Z", + "shell.execute_reply": "2024-09-27T13:49:54.271584Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.040684Z", - "iopub.status.busy": "2024-09-26T17:03:26.040446Z", - "iopub.status.idle": "2024-09-26T17:03:26.253554Z", - "shell.execute_reply": "2024-09-26T17:03:26.252936Z" + "iopub.execute_input": "2024-09-27T13:49:54.274181Z", + "iopub.status.busy": "2024-09-27T13:49:54.273772Z", + "iopub.status.idle": "2024-09-27T13:49:54.485007Z", + "shell.execute_reply": "2024-09-27T13:49:54.484491Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.255496Z", - "iopub.status.busy": "2024-09-26T17:03:26.255135Z", - "iopub.status.idle": "2024-09-26T17:03:26.476149Z", - "shell.execute_reply": "2024-09-26T17:03:26.475467Z" + "iopub.execute_input": "2024-09-27T13:49:54.486961Z", + "iopub.status.busy": "2024-09-27T13:49:54.486600Z", + "iopub.status.idle": "2024-09-27T13:49:54.707860Z", + "shell.execute_reply": "2024-09-27T13:49:54.707182Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.478208Z", - "iopub.status.busy": "2024-09-26T17:03:26.477882Z", - "iopub.status.idle": "2024-09-26T17:03:26.484331Z", - "shell.execute_reply": "2024-09-26T17:03:26.483897Z" + "iopub.execute_input": "2024-09-27T13:49:54.709923Z", + "iopub.status.busy": "2024-09-27T13:49:54.709461Z", + "iopub.status.idle": "2024-09-27T13:49:54.716021Z", + "shell.execute_reply": "2024-09-27T13:49:54.715572Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.485988Z", - "iopub.status.busy": "2024-09-26T17:03:26.485677Z", - "iopub.status.idle": "2024-09-26T17:03:26.705415Z", - "shell.execute_reply": "2024-09-26T17:03:26.704879Z" + "iopub.execute_input": "2024-09-27T13:49:54.717563Z", + "iopub.status.busy": "2024-09-27T13:49:54.717397Z", + "iopub.status.idle": "2024-09-27T13:49:54.936984Z", + "shell.execute_reply": "2024-09-27T13:49:54.936390Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.707343Z", - "iopub.status.busy": "2024-09-26T17:03:26.706986Z", - "iopub.status.idle": "2024-09-26T17:03:27.770864Z", - "shell.execute_reply": "2024-09-26T17:03:27.770364Z" + "iopub.execute_input": "2024-09-27T13:49:54.938887Z", + "iopub.status.busy": "2024-09-27T13:49:54.938530Z", + "iopub.status.idle": "2024-09-27T13:49:56.008191Z", + "shell.execute_reply": "2024-09-27T13:49:56.007633Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 0a628ca80..066a3be3f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:32.155568Z", - "iopub.status.busy": "2024-09-26T17:03:32.155382Z", - "iopub.status.idle": "2024-09-26T17:03:33.322663Z", - "shell.execute_reply": "2024-09-26T17:03:33.322106Z" + "iopub.execute_input": "2024-09-27T13:50:00.283031Z", + "iopub.status.busy": "2024-09-27T13:50:00.282850Z", + "iopub.status.idle": "2024-09-27T13:50:01.529982Z", + "shell.execute_reply": "2024-09-27T13:50:01.529363Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.325051Z", - "iopub.status.busy": "2024-09-26T17:03:33.324543Z", - "iopub.status.idle": "2024-09-26T17:03:33.327571Z", - "shell.execute_reply": "2024-09-26T17:03:33.327125Z" + "iopub.execute_input": "2024-09-27T13:50:01.532249Z", + "iopub.status.busy": "2024-09-27T13:50:01.531766Z", + "iopub.status.idle": "2024-09-27T13:50:01.535029Z", + "shell.execute_reply": "2024-09-27T13:50:01.534558Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.329481Z", - "iopub.status.busy": "2024-09-26T17:03:33.329106Z", - "iopub.status.idle": "2024-09-26T17:03:33.337328Z", - "shell.execute_reply": "2024-09-26T17:03:33.336753Z" + "iopub.execute_input": "2024-09-27T13:50:01.537031Z", + "iopub.status.busy": "2024-09-27T13:50:01.536667Z", + "iopub.status.idle": "2024-09-27T13:50:01.544914Z", + "shell.execute_reply": "2024-09-27T13:50:01.544396Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.338976Z", - "iopub.status.busy": "2024-09-26T17:03:33.338803Z", - "iopub.status.idle": "2024-09-26T17:03:33.384904Z", - "shell.execute_reply": "2024-09-26T17:03:33.384320Z" + "iopub.execute_input": "2024-09-27T13:50:01.546711Z", + "iopub.status.busy": "2024-09-27T13:50:01.546356Z", + "iopub.status.idle": "2024-09-27T13:50:01.593910Z", + "shell.execute_reply": "2024-09-27T13:50:01.593338Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.386626Z", - "iopub.status.busy": "2024-09-26T17:03:33.386442Z", - "iopub.status.idle": "2024-09-26T17:03:33.403626Z", - "shell.execute_reply": "2024-09-26T17:03:33.403085Z" + "iopub.execute_input": "2024-09-27T13:50:01.595899Z", + "iopub.status.busy": "2024-09-27T13:50:01.595701Z", + "iopub.status.idle": "2024-09-27T13:50:01.614081Z", + "shell.execute_reply": "2024-09-27T13:50:01.613547Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.405451Z", - "iopub.status.busy": "2024-09-26T17:03:33.405118Z", - "iopub.status.idle": "2024-09-26T17:03:33.409011Z", - "shell.execute_reply": "2024-09-26T17:03:33.408476Z" + "iopub.execute_input": "2024-09-27T13:50:01.615863Z", + "iopub.status.busy": "2024-09-27T13:50:01.615656Z", + "iopub.status.idle": "2024-09-27T13:50:01.619883Z", + "shell.execute_reply": "2024-09-27T13:50:01.619423Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.410796Z", - "iopub.status.busy": "2024-09-26T17:03:33.410382Z", - "iopub.status.idle": "2024-09-26T17:03:33.427653Z", - "shell.execute_reply": "2024-09-26T17:03:33.427072Z" + "iopub.execute_input": "2024-09-27T13:50:01.621805Z", + "iopub.status.busy": "2024-09-27T13:50:01.621459Z", + "iopub.status.idle": "2024-09-27T13:50:01.636304Z", + "shell.execute_reply": "2024-09-27T13:50:01.635842Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.429482Z", - "iopub.status.busy": "2024-09-26T17:03:33.429162Z", - "iopub.status.idle": "2024-09-26T17:03:33.455291Z", - "shell.execute_reply": "2024-09-26T17:03:33.454811Z" + "iopub.execute_input": "2024-09-27T13:50:01.638170Z", + "iopub.status.busy": "2024-09-27T13:50:01.637803Z", + "iopub.status.idle": "2024-09-27T13:50:01.664411Z", + "shell.execute_reply": "2024-09-27T13:50:01.663771Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.456954Z", - "iopub.status.busy": "2024-09-26T17:03:33.456624Z", - "iopub.status.idle": "2024-09-26T17:03:35.369827Z", - "shell.execute_reply": "2024-09-26T17:03:35.369227Z" + "iopub.execute_input": "2024-09-27T13:50:01.666543Z", + "iopub.status.busy": "2024-09-27T13:50:01.666195Z", + "iopub.status.idle": "2024-09-27T13:50:03.656395Z", + "shell.execute_reply": "2024-09-27T13:50:03.655827Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.372127Z", - "iopub.status.busy": "2024-09-26T17:03:35.371668Z", - "iopub.status.idle": "2024-09-26T17:03:35.378386Z", - "shell.execute_reply": "2024-09-26T17:03:35.377922Z" + "iopub.execute_input": "2024-09-27T13:50:03.658501Z", + "iopub.status.busy": "2024-09-27T13:50:03.658175Z", + "iopub.status.idle": "2024-09-27T13:50:03.665262Z", + "shell.execute_reply": "2024-09-27T13:50:03.664800Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.380068Z", - "iopub.status.busy": "2024-09-26T17:03:35.379731Z", - "iopub.status.idle": "2024-09-26T17:03:35.392208Z", - "shell.execute_reply": "2024-09-26T17:03:35.391671Z" + "iopub.execute_input": "2024-09-27T13:50:03.666987Z", + "iopub.status.busy": "2024-09-27T13:50:03.666805Z", + "iopub.status.idle": "2024-09-27T13:50:03.679807Z", + "shell.execute_reply": "2024-09-27T13:50:03.679246Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.393975Z", - "iopub.status.busy": "2024-09-26T17:03:35.393668Z", - "iopub.status.idle": "2024-09-26T17:03:35.399995Z", - "shell.execute_reply": "2024-09-26T17:03:35.399449Z" + "iopub.execute_input": "2024-09-27T13:50:03.681542Z", + "iopub.status.busy": "2024-09-27T13:50:03.681289Z", + "iopub.status.idle": "2024-09-27T13:50:03.687949Z", + "shell.execute_reply": "2024-09-27T13:50:03.687503Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.401696Z", - "iopub.status.busy": "2024-09-26T17:03:35.401521Z", - "iopub.status.idle": "2024-09-26T17:03:35.404204Z", - "shell.execute_reply": "2024-09-26T17:03:35.403751Z" + "iopub.execute_input": "2024-09-27T13:50:03.689686Z", + "iopub.status.busy": "2024-09-27T13:50:03.689509Z", + "iopub.status.idle": "2024-09-27T13:50:03.692058Z", + "shell.execute_reply": "2024-09-27T13:50:03.691626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.405738Z", - "iopub.status.busy": "2024-09-26T17:03:35.405571Z", - "iopub.status.idle": "2024-09-26T17:03:35.409161Z", - "shell.execute_reply": "2024-09-26T17:03:35.408696Z" + "iopub.execute_input": "2024-09-27T13:50:03.693849Z", + "iopub.status.busy": "2024-09-27T13:50:03.693409Z", + "iopub.status.idle": "2024-09-27T13:50:03.697114Z", + "shell.execute_reply": "2024-09-27T13:50:03.696549Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.410672Z", - "iopub.status.busy": "2024-09-26T17:03:35.410505Z", - "iopub.status.idle": "2024-09-26T17:03:35.413101Z", - "shell.execute_reply": "2024-09-26T17:03:35.412663Z" + "iopub.execute_input": "2024-09-27T13:50:03.698776Z", + "iopub.status.busy": "2024-09-27T13:50:03.698468Z", + "iopub.status.idle": "2024-09-27T13:50:03.701226Z", + "shell.execute_reply": "2024-09-27T13:50:03.700662Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.414705Z", - "iopub.status.busy": "2024-09-26T17:03:35.414538Z", - "iopub.status.idle": "2024-09-26T17:03:35.418607Z", - "shell.execute_reply": "2024-09-26T17:03:35.418062Z" + "iopub.execute_input": "2024-09-27T13:50:03.703170Z", + "iopub.status.busy": "2024-09-27T13:50:03.702730Z", + "iopub.status.idle": "2024-09-27T13:50:03.706827Z", + "shell.execute_reply": "2024-09-27T13:50:03.706370Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.420421Z", - "iopub.status.busy": "2024-09-26T17:03:35.420103Z", - "iopub.status.idle": "2024-09-26T17:03:35.449647Z", - "shell.execute_reply": "2024-09-26T17:03:35.449056Z" + "iopub.execute_input": "2024-09-27T13:50:03.708679Z", + "iopub.status.busy": "2024-09-27T13:50:03.708375Z", + "iopub.status.idle": "2024-09-27T13:50:03.737494Z", + "shell.execute_reply": "2024-09-27T13:50:03.736888Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.451503Z", - "iopub.status.busy": "2024-09-26T17:03:35.451157Z", - "iopub.status.idle": "2024-09-26T17:03:35.455545Z", - "shell.execute_reply": "2024-09-26T17:03:35.455091Z" + "iopub.execute_input": "2024-09-27T13:50:03.739537Z", + "iopub.status.busy": "2024-09-27T13:50:03.739354Z", + "iopub.status.idle": "2024-09-27T13:50:03.743924Z", + "shell.execute_reply": "2024-09-27T13:50:03.743478Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 9ceb5596d..15ae19f22 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:38.235356Z", - "iopub.status.busy": "2024-09-26T17:03:38.235187Z", - "iopub.status.idle": "2024-09-26T17:03:39.464936Z", - "shell.execute_reply": "2024-09-26T17:03:39.464384Z" + "iopub.execute_input": "2024-09-27T13:50:06.725990Z", + "iopub.status.busy": "2024-09-27T13:50:06.725779Z", + "iopub.status.idle": "2024-09-27T13:50:07.973724Z", + "shell.execute_reply": "2024-09-27T13:50:07.973155Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.467094Z", - "iopub.status.busy": "2024-09-26T17:03:39.466633Z", - "iopub.status.idle": "2024-09-26T17:03:39.661808Z", - "shell.execute_reply": "2024-09-26T17:03:39.661225Z" + "iopub.execute_input": "2024-09-27T13:50:07.975731Z", + "iopub.status.busy": "2024-09-27T13:50:07.975460Z", + "iopub.status.idle": "2024-09-27T13:50:08.171427Z", + "shell.execute_reply": "2024-09-27T13:50:08.170874Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.663940Z", - "iopub.status.busy": "2024-09-26T17:03:39.663552Z", - "iopub.status.idle": "2024-09-26T17:03:39.676592Z", - "shell.execute_reply": "2024-09-26T17:03:39.676141Z" + "iopub.execute_input": "2024-09-27T13:50:08.173720Z", + "iopub.status.busy": "2024-09-27T13:50:08.173246Z", + "iopub.status.idle": "2024-09-27T13:50:08.186415Z", + "shell.execute_reply": "2024-09-27T13:50:08.185928Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.678430Z", - "iopub.status.busy": "2024-09-26T17:03:39.678069Z", - "iopub.status.idle": "2024-09-26T17:03:42.338055Z", - "shell.execute_reply": "2024-09-26T17:03:42.337536Z" + "iopub.execute_input": "2024-09-27T13:50:08.188193Z", + "iopub.status.busy": "2024-09-27T13:50:08.187863Z", + "iopub.status.idle": "2024-09-27T13:50:10.832960Z", + "shell.execute_reply": "2024-09-27T13:50:10.832424Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:42.339955Z", - "iopub.status.busy": "2024-09-26T17:03:42.339587Z", - "iopub.status.idle": "2024-09-26T17:03:43.681959Z", - "shell.execute_reply": "2024-09-26T17:03:43.681410Z" + "iopub.execute_input": "2024-09-27T13:50:10.834988Z", + "iopub.status.busy": "2024-09-27T13:50:10.834545Z", + "iopub.status.idle": "2024-09-27T13:50:12.182428Z", + "shell.execute_reply": "2024-09-27T13:50:12.181868Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.683980Z", - "iopub.status.busy": "2024-09-26T17:03:43.683614Z", - "iopub.status.idle": "2024-09-26T17:03:43.687775Z", - "shell.execute_reply": "2024-09-26T17:03:43.687305Z" + "iopub.execute_input": "2024-09-27T13:50:12.184478Z", + "iopub.status.busy": "2024-09-27T13:50:12.184103Z", + "iopub.status.idle": "2024-09-27T13:50:12.187833Z", + "shell.execute_reply": "2024-09-27T13:50:12.187391Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.689610Z", - "iopub.status.busy": "2024-09-26T17:03:43.689277Z", - "iopub.status.idle": "2024-09-26T17:03:45.722043Z", - "shell.execute_reply": "2024-09-26T17:03:45.721346Z" + "iopub.execute_input": "2024-09-27T13:50:12.189617Z", + "iopub.status.busy": "2024-09-27T13:50:12.189276Z", + "iopub.status.idle": "2024-09-27T13:50:14.250365Z", + "shell.execute_reply": "2024-09-27T13:50:14.249644Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.724606Z", - "iopub.status.busy": "2024-09-26T17:03:45.723934Z", - "iopub.status.idle": "2024-09-26T17:03:45.733795Z", - "shell.execute_reply": "2024-09-26T17:03:45.733323Z" + "iopub.execute_input": "2024-09-27T13:50:14.253014Z", + "iopub.status.busy": "2024-09-27T13:50:14.252227Z", + "iopub.status.idle": "2024-09-27T13:50:14.261829Z", + "shell.execute_reply": "2024-09-27T13:50:14.261366Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.735506Z", - "iopub.status.busy": "2024-09-26T17:03:45.735322Z", - "iopub.status.idle": "2024-09-26T17:03:48.302047Z", - "shell.execute_reply": "2024-09-26T17:03:48.301457Z" + "iopub.execute_input": "2024-09-27T13:50:14.263623Z", + "iopub.status.busy": "2024-09-27T13:50:14.263292Z", + "iopub.status.idle": "2024-09-27T13:50:16.825728Z", + "shell.execute_reply": "2024-09-27T13:50:16.825201Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.303862Z", - "iopub.status.busy": "2024-09-26T17:03:48.303674Z", - "iopub.status.idle": "2024-09-26T17:03:48.306897Z", - "shell.execute_reply": "2024-09-26T17:03:48.306449Z" + "iopub.execute_input": "2024-09-27T13:50:16.827773Z", + "iopub.status.busy": "2024-09-27T13:50:16.827410Z", + "iopub.status.idle": "2024-09-27T13:50:16.830659Z", + "shell.execute_reply": "2024-09-27T13:50:16.830226Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.308470Z", - "iopub.status.busy": "2024-09-26T17:03:48.308294Z", - "iopub.status.idle": "2024-09-26T17:03:48.311851Z", - "shell.execute_reply": "2024-09-26T17:03:48.311399Z" + "iopub.execute_input": "2024-09-27T13:50:16.832389Z", + "iopub.status.busy": "2024-09-27T13:50:16.832049Z", + "iopub.status.idle": "2024-09-27T13:50:16.835392Z", + "shell.execute_reply": "2024-09-27T13:50:16.834951Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.313429Z", - "iopub.status.busy": "2024-09-26T17:03:48.313238Z", - "iopub.status.idle": "2024-09-26T17:03:48.316359Z", - "shell.execute_reply": "2024-09-26T17:03:48.315904Z" + "iopub.execute_input": "2024-09-27T13:50:16.837072Z", + "iopub.status.busy": "2024-09-27T13:50:16.836730Z", + "iopub.status.idle": "2024-09-27T13:50:16.839731Z", + "shell.execute_reply": "2024-09-27T13:50:16.839294Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 4cf1baa9c..74581ae08 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:50.872695Z", - "iopub.status.busy": "2024-09-26T17:03:50.872527Z", - "iopub.status.idle": "2024-09-26T17:03:52.108435Z", - "shell.execute_reply": "2024-09-26T17:03:52.107922Z" + "iopub.execute_input": "2024-09-27T13:50:19.443579Z", + "iopub.status.busy": "2024-09-27T13:50:19.443403Z", + "iopub.status.idle": "2024-09-27T13:50:20.702879Z", + "shell.execute_reply": "2024-09-27T13:50:20.702310Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:52.110652Z", - "iopub.status.busy": "2024-09-26T17:03:52.110373Z", - "iopub.status.idle": "2024-09-26T17:03:53.718304Z", - "shell.execute_reply": "2024-09-26T17:03:53.717592Z" + "iopub.execute_input": "2024-09-27T13:50:20.705084Z", + "iopub.status.busy": "2024-09-27T13:50:20.704636Z", + "iopub.status.idle": "2024-09-27T13:50:22.822151Z", + "shell.execute_reply": "2024-09-27T13:50:22.821410Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.720333Z", - "iopub.status.busy": "2024-09-26T17:03:53.720131Z", - "iopub.status.idle": "2024-09-26T17:03:53.723716Z", - "shell.execute_reply": "2024-09-26T17:03:53.723249Z" + "iopub.execute_input": "2024-09-27T13:50:22.824450Z", + "iopub.status.busy": "2024-09-27T13:50:22.823982Z", + "iopub.status.idle": "2024-09-27T13:50:22.827315Z", + "shell.execute_reply": "2024-09-27T13:50:22.826864Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.725367Z", - "iopub.status.busy": "2024-09-26T17:03:53.725176Z", - "iopub.status.idle": "2024-09-26T17:03:53.731881Z", - "shell.execute_reply": "2024-09-26T17:03:53.731422Z" + "iopub.execute_input": "2024-09-27T13:50:22.829177Z", + "iopub.status.busy": "2024-09-27T13:50:22.828729Z", + "iopub.status.idle": "2024-09-27T13:50:22.835505Z", + "shell.execute_reply": "2024-09-27T13:50:22.835064Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.733470Z", - "iopub.status.busy": "2024-09-26T17:03:53.733289Z", - "iopub.status.idle": "2024-09-26T17:03:54.226908Z", - "shell.execute_reply": "2024-09-26T17:03:54.226298Z" + "iopub.execute_input": "2024-09-27T13:50:22.837239Z", + "iopub.status.busy": "2024-09-27T13:50:22.836893Z", + "iopub.status.idle": "2024-09-27T13:50:23.331183Z", + "shell.execute_reply": "2024-09-27T13:50:23.330607Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.228918Z", - "iopub.status.busy": "2024-09-26T17:03:54.228500Z", - "iopub.status.idle": "2024-09-26T17:03:54.233862Z", - "shell.execute_reply": "2024-09-26T17:03:54.233427Z" + "iopub.execute_input": "2024-09-27T13:50:23.333657Z", + "iopub.status.busy": "2024-09-27T13:50:23.333258Z", + "iopub.status.idle": "2024-09-27T13:50:23.338644Z", + "shell.execute_reply": "2024-09-27T13:50:23.338176Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.235629Z", - "iopub.status.busy": "2024-09-26T17:03:54.235308Z", - "iopub.status.idle": "2024-09-26T17:03:54.239163Z", - "shell.execute_reply": "2024-09-26T17:03:54.238723Z" + "iopub.execute_input": "2024-09-27T13:50:23.340282Z", + "iopub.status.busy": "2024-09-27T13:50:23.339946Z", + "iopub.status.idle": "2024-09-27T13:50:23.343951Z", + "shell.execute_reply": "2024-09-27T13:50:23.343382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.240884Z", - "iopub.status.busy": "2024-09-26T17:03:54.240539Z", - "iopub.status.idle": "2024-09-26T17:03:55.132461Z", - "shell.execute_reply": "2024-09-26T17:03:55.131884Z" + "iopub.execute_input": "2024-09-27T13:50:23.345634Z", + "iopub.status.busy": "2024-09-27T13:50:23.345444Z", + "iopub.status.idle": "2024-09-27T13:50:24.311351Z", + "shell.execute_reply": "2024-09-27T13:50:24.310678Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.134485Z", - "iopub.status.busy": "2024-09-26T17:03:55.134101Z", - "iopub.status.idle": "2024-09-26T17:03:55.344926Z", - "shell.execute_reply": "2024-09-26T17:03:55.344350Z" + "iopub.execute_input": "2024-09-27T13:50:24.313472Z", + "iopub.status.busy": "2024-09-27T13:50:24.313086Z", + "iopub.status.idle": "2024-09-27T13:50:24.522945Z", + "shell.execute_reply": "2024-09-27T13:50:24.522473Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.347039Z", - "iopub.status.busy": "2024-09-26T17:03:55.346617Z", - "iopub.status.idle": "2024-09-26T17:03:55.351223Z", - "shell.execute_reply": "2024-09-26T17:03:55.350673Z" + "iopub.execute_input": "2024-09-27T13:50:24.524988Z", + "iopub.status.busy": "2024-09-27T13:50:24.524624Z", + "iopub.status.idle": "2024-09-27T13:50:24.529040Z", + "shell.execute_reply": "2024-09-27T13:50:24.528463Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.353046Z", - "iopub.status.busy": "2024-09-26T17:03:55.352712Z", - "iopub.status.idle": "2024-09-26T17:03:55.808907Z", - "shell.execute_reply": "2024-09-26T17:03:55.808307Z" + "iopub.execute_input": "2024-09-27T13:50:24.530989Z", + "iopub.status.busy": "2024-09-27T13:50:24.530646Z", + "iopub.status.idle": "2024-09-27T13:50:24.991345Z", + "shell.execute_reply": "2024-09-27T13:50:24.990700Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.811591Z", - "iopub.status.busy": "2024-09-26T17:03:55.811241Z", - "iopub.status.idle": "2024-09-26T17:03:56.145507Z", - "shell.execute_reply": "2024-09-26T17:03:56.144909Z" + "iopub.execute_input": "2024-09-27T13:50:24.994317Z", + "iopub.status.busy": "2024-09-27T13:50:24.993692Z", + "iopub.status.idle": "2024-09-27T13:50:25.302482Z", + "shell.execute_reply": "2024-09-27T13:50:25.301826Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.147534Z", - "iopub.status.busy": "2024-09-26T17:03:56.147172Z", - "iopub.status.idle": "2024-09-26T17:03:56.522806Z", - "shell.execute_reply": "2024-09-26T17:03:56.522185Z" + "iopub.execute_input": "2024-09-27T13:50:25.304445Z", + "iopub.status.busy": "2024-09-27T13:50:25.304098Z", + "iopub.status.idle": "2024-09-27T13:50:25.672846Z", + "shell.execute_reply": "2024-09-27T13:50:25.672241Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.525094Z", - "iopub.status.busy": "2024-09-26T17:03:56.524803Z", - "iopub.status.idle": "2024-09-26T17:03:56.938146Z", - "shell.execute_reply": "2024-09-26T17:03:56.937571Z" + "iopub.execute_input": "2024-09-27T13:50:25.675532Z", + "iopub.status.busy": "2024-09-27T13:50:25.675160Z", + "iopub.status.idle": "2024-09-27T13:50:26.138514Z", + "shell.execute_reply": "2024-09-27T13:50:26.137926Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.942264Z", - "iopub.status.busy": "2024-09-26T17:03:56.941870Z", - "iopub.status.idle": "2024-09-26T17:03:57.370517Z", - "shell.execute_reply": "2024-09-26T17:03:57.369935Z" + "iopub.execute_input": "2024-09-27T13:50:26.142672Z", + "iopub.status.busy": "2024-09-27T13:50:26.142279Z", + "iopub.status.idle": "2024-09-27T13:50:26.594693Z", + "shell.execute_reply": "2024-09-27T13:50:26.594081Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.373172Z", - "iopub.status.busy": "2024-09-26T17:03:57.372782Z", - "iopub.status.idle": "2024-09-26T17:03:57.563441Z", - "shell.execute_reply": "2024-09-26T17:03:57.562843Z" + "iopub.execute_input": "2024-09-27T13:50:26.597306Z", + "iopub.status.busy": "2024-09-27T13:50:26.597107Z", + "iopub.status.idle": "2024-09-27T13:50:26.821495Z", + "shell.execute_reply": "2024-09-27T13:50:26.820944Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.565901Z", - "iopub.status.busy": "2024-09-26T17:03:57.565444Z", - "iopub.status.idle": "2024-09-26T17:03:57.769189Z", - "shell.execute_reply": "2024-09-26T17:03:57.768596Z" + "iopub.execute_input": "2024-09-27T13:50:26.823432Z", + "iopub.status.busy": "2024-09-27T13:50:26.823089Z", + "iopub.status.idle": "2024-09-27T13:50:27.023714Z", + "shell.execute_reply": "2024-09-27T13:50:27.023125Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.771705Z", - "iopub.status.busy": "2024-09-26T17:03:57.771376Z", - "iopub.status.idle": "2024-09-26T17:03:57.774381Z", - "shell.execute_reply": "2024-09-26T17:03:57.773929Z" + "iopub.execute_input": "2024-09-27T13:50:27.025739Z", + "iopub.status.busy": "2024-09-27T13:50:27.025301Z", + "iopub.status.idle": "2024-09-27T13:50:27.028302Z", + "shell.execute_reply": "2024-09-27T13:50:27.027862Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.775799Z", - "iopub.status.busy": "2024-09-26T17:03:57.775632Z", - "iopub.status.idle": "2024-09-26T17:03:58.717491Z", - "shell.execute_reply": "2024-09-26T17:03:58.716886Z" + "iopub.execute_input": "2024-09-27T13:50:27.030091Z", + "iopub.status.busy": "2024-09-27T13:50:27.029679Z", + "iopub.status.idle": "2024-09-27T13:50:28.012427Z", + "shell.execute_reply": "2024-09-27T13:50:28.011865Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.719646Z", - "iopub.status.busy": "2024-09-26T17:03:58.719200Z", - "iopub.status.idle": "2024-09-26T17:03:58.860617Z", - "shell.execute_reply": "2024-09-26T17:03:58.860127Z" + "iopub.execute_input": "2024-09-27T13:50:28.014834Z", + "iopub.status.busy": "2024-09-27T13:50:28.014455Z", + "iopub.status.idle": "2024-09-27T13:50:28.134002Z", + "shell.execute_reply": "2024-09-27T13:50:28.133439Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.862547Z", - "iopub.status.busy": "2024-09-26T17:03:58.862194Z", - "iopub.status.idle": "2024-09-26T17:03:58.994557Z", - "shell.execute_reply": "2024-09-26T17:03:58.994095Z" + "iopub.execute_input": "2024-09-27T13:50:28.136003Z", + "iopub.status.busy": "2024-09-27T13:50:28.135574Z", + "iopub.status.idle": "2024-09-27T13:50:28.317635Z", + "shell.execute_reply": "2024-09-27T13:50:28.317140Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.996401Z", - "iopub.status.busy": "2024-09-26T17:03:58.996000Z", - "iopub.status.idle": "2024-09-26T17:03:59.724120Z", - "shell.execute_reply": "2024-09-26T17:03:59.723503Z" + "iopub.execute_input": "2024-09-27T13:50:28.319646Z", + "iopub.status.busy": "2024-09-27T13:50:28.319301Z", + "iopub.status.idle": "2024-09-27T13:50:29.078487Z", + "shell.execute_reply": "2024-09-27T13:50:29.077858Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:59.725920Z", - "iopub.status.busy": "2024-09-26T17:03:59.725591Z", - "iopub.status.idle": "2024-09-26T17:03:59.729320Z", - "shell.execute_reply": "2024-09-26T17:03:59.728740Z" + "iopub.execute_input": "2024-09-27T13:50:29.080254Z", + "iopub.status.busy": "2024-09-27T13:50:29.080059Z", + "iopub.status.idle": "2024-09-27T13:50:29.083764Z", + "shell.execute_reply": "2024-09-27T13:50:29.083320Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 178f049b6..a22f47f5c 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:01.971300Z", - "iopub.status.busy": "2024-09-26T17:04:01.971121Z", - "iopub.status.idle": "2024-09-26T17:04:04.854776Z", - "shell.execute_reply": "2024-09-26T17:04:04.854218Z" + "iopub.execute_input": "2024-09-27T13:50:31.336559Z", + "iopub.status.busy": "2024-09-27T13:50:31.336374Z", + "iopub.status.idle": "2024-09-27T13:50:34.288125Z", + "shell.execute_reply": "2024-09-27T13:50:34.287547Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:04.856883Z", - "iopub.status.busy": "2024-09-26T17:04:04.856573Z", - "iopub.status.idle": "2024-09-26T17:04:05.177735Z", - "shell.execute_reply": "2024-09-26T17:04:05.177154Z" + "iopub.execute_input": "2024-09-27T13:50:34.290281Z", + "iopub.status.busy": "2024-09-27T13:50:34.289977Z", + "iopub.status.idle": "2024-09-27T13:50:34.624581Z", + "shell.execute_reply": "2024-09-27T13:50:34.624016Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.180049Z", - "iopub.status.busy": "2024-09-26T17:04:05.179567Z", - "iopub.status.idle": "2024-09-26T17:04:05.183627Z", - "shell.execute_reply": "2024-09-26T17:04:05.183194Z" + "iopub.execute_input": "2024-09-27T13:50:34.626906Z", + "iopub.status.busy": "2024-09-27T13:50:34.626293Z", + "iopub.status.idle": "2024-09-27T13:50:34.630537Z", + "shell.execute_reply": "2024-09-27T13:50:34.629977Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.185553Z", - "iopub.status.busy": "2024-09-26T17:04:05.185191Z", - "iopub.status.idle": "2024-09-26T17:04:09.811124Z", - "shell.execute_reply": "2024-09-26T17:04:09.810509Z" + "iopub.execute_input": "2024-09-27T13:50:34.632208Z", + "iopub.status.busy": "2024-09-27T13:50:34.631889Z", + "iopub.status.idle": "2024-09-27T13:50:40.167372Z", + "shell.execute_reply": "2024-09-27T13:50:40.166857Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 2064384/170498071 [00:00<00:08, 20630382.53it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17324553.72it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:03, 52270442.86it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:02, 56350581.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17498112/170498071 [00:00<00:02, 64734739.67it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:02, 58867112.24it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29163520/170498071 [00:00<00:01, 85142994.91it/s]" + " 14%|█▎ | 23298048/170498071 [00:00<00:02, 62722855.85it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40796160/170498071 [00:00<00:01, 96352842.59it/s]" + " 18%|█▊ | 29884416/170498071 [00:00<00:02, 63725820.45it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52461568/170498071 [00:00<00:01, 103238176.66it/s]" + " 21%|██▏ | 36569088/170498071 [00:00<00:02, 64687801.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64094208/170498071 [00:00<00:00, 107007260.86it/s]" + " 25%|██▌ | 43057152/170498071 [00:00<00:01, 64045274.16it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75857920/170498071 [00:00<00:00, 110372379.91it/s]" + " 29%|██▉ | 49479680/170498071 [00:00<00:01, 63636758.17it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87588864/170498071 [00:00<00:00, 112453756.10it/s]" + " 33%|███▎ | 55869440/170498071 [00:00<00:01, 63530849.98it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99287040/170498071 [00:01<00:00, 113788226.67it/s]" + " 37%|███▋ | 62324736/170498071 [00:01<00:01, 63773721.91it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 110952448/170498071 [00:01<00:00, 114500206.50it/s]" + " 40%|████ | 68714496/170498071 [00:01<00:01, 63611956.56it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122650624/170498071 [00:01<00:00, 115205361.57it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:01, 63340021.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134381568/170498071 [00:01<00:00, 115630678.67it/s]" + " 48%|████▊ | 81592320/170498071 [00:01<00:01, 63646571.47it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146079744/170498071 [00:01<00:00, 115905368.54it/s]" + " 52%|█████▏ | 88145920/170498071 [00:01<00:01, 64135061.04it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 157777920/170498071 [00:01<00:00, 116224092.07it/s]" + " 56%|█████▌ | 95059968/170498071 [00:01<00:01, 65506735.07it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 169443328/170498071 [00:01<00:00, 116343059.81it/s]" + " 60%|█████▉ | 101777408/170498071 [00:01<00:01, 65926861.28it/s]" ] }, { @@ -380,7 +380,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]" + " 64%|██████▎ | 108593152/170498071 [00:01<00:00, 66500282.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115245056/170498071 [00:01<00:00, 66172108.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 66238030.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▌ | 128581632/170498071 [00:02<00:00, 66297330.54it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135430144/170498071 [00:02<00:00, 66911084.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142147584/170498071 [00:02<00:00, 66229052.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148930560/170498071 [00:02<00:00, 66687006.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155615232/170498071 [00:02<00:00, 65733593.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162201600/170498071 [00:02<00:00, 65517357.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168787968/170498071 [00:02<00:00, 64819767.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]" ] }, { @@ -498,10 +578,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.813180Z", - "iopub.status.busy": "2024-09-26T17:04:09.812843Z", - "iopub.status.idle": "2024-09-26T17:04:09.817679Z", - "shell.execute_reply": "2024-09-26T17:04:09.817089Z" + "iopub.execute_input": "2024-09-27T13:50:40.169405Z", + "iopub.status.busy": "2024-09-27T13:50:40.168936Z", + "iopub.status.idle": "2024-09-27T13:50:40.173943Z", + "shell.execute_reply": "2024-09-27T13:50:40.173496Z" }, "nbsphinx": "hidden" }, @@ -552,10 +632,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.819327Z", - "iopub.status.busy": "2024-09-26T17:04:09.819007Z", - "iopub.status.idle": "2024-09-26T17:04:10.358798Z", - "shell.execute_reply": "2024-09-26T17:04:10.358317Z" + "iopub.execute_input": "2024-09-27T13:50:40.175648Z", + "iopub.status.busy": "2024-09-27T13:50:40.175466Z", + "iopub.status.idle": "2024-09-27T13:50:40.714706Z", + "shell.execute_reply": "2024-09-27T13:50:40.714068Z" } }, "outputs": [ @@ -588,10 +668,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.360475Z", - "iopub.status.busy": "2024-09-26T17:04:10.360295Z", - "iopub.status.idle": "2024-09-26T17:04:10.842081Z", - "shell.execute_reply": "2024-09-26T17:04:10.841507Z" + "iopub.execute_input": "2024-09-27T13:50:40.716536Z", + "iopub.status.busy": "2024-09-27T13:50:40.716348Z", + "iopub.status.idle": "2024-09-27T13:50:41.219660Z", + "shell.execute_reply": "2024-09-27T13:50:41.219126Z" } }, "outputs": [ @@ -629,10 +709,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.843865Z", - "iopub.status.busy": "2024-09-26T17:04:10.843673Z", - "iopub.status.idle": "2024-09-26T17:04:10.847312Z", - "shell.execute_reply": "2024-09-26T17:04:10.846740Z" + "iopub.execute_input": "2024-09-27T13:50:41.221397Z", + "iopub.status.busy": "2024-09-27T13:50:41.221191Z", + "iopub.status.idle": "2024-09-27T13:50:41.225060Z", + "shell.execute_reply": "2024-09-27T13:50:41.224590Z" } }, "outputs": [], @@ -655,17 +735,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.849081Z", - "iopub.status.busy": "2024-09-26T17:04:10.848761Z", - "iopub.status.idle": "2024-09-26T17:04:23.742842Z", - "shell.execute_reply": "2024-09-26T17:04:23.742223Z" + "iopub.execute_input": "2024-09-27T13:50:41.226609Z", + "iopub.status.busy": "2024-09-27T13:50:41.226428Z", + "iopub.status.idle": "2024-09-27T13:50:53.794332Z", + "shell.execute_reply": "2024-09-27T13:50:53.793704Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "481cf30bee6943db835bc9693b38b7d0", + "model_id": "8e59a7f076e448cbb05804524a137e75", "version_major": 2, "version_minor": 0 }, @@ -724,10 +804,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:23.745010Z", - "iopub.status.busy": "2024-09-26T17:04:23.744585Z", - "iopub.status.idle": "2024-09-26T17:04:25.839364Z", - "shell.execute_reply": "2024-09-26T17:04:25.838719Z" + "iopub.execute_input": "2024-09-27T13:50:53.796281Z", + "iopub.status.busy": "2024-09-27T13:50:53.796075Z", + "iopub.status.idle": "2024-09-27T13:50:55.839092Z", + "shell.execute_reply": "2024-09-27T13:50:55.838479Z" } }, "outputs": [ @@ -771,10 +851,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:25.841749Z", - "iopub.status.busy": "2024-09-26T17:04:25.841296Z", - "iopub.status.idle": "2024-09-26T17:04:26.096812Z", - "shell.execute_reply": "2024-09-26T17:04:26.096240Z" + "iopub.execute_input": "2024-09-27T13:50:55.841077Z", + "iopub.status.busy": "2024-09-27T13:50:55.840883Z", + "iopub.status.idle": "2024-09-27T13:50:56.068164Z", + "shell.execute_reply": "2024-09-27T13:50:56.067368Z" } }, "outputs": [ @@ -810,10 +890,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.099329Z", - "iopub.status.busy": "2024-09-26T17:04:26.098877Z", - "iopub.status.idle": "2024-09-26T17:04:26.766406Z", - "shell.execute_reply": "2024-09-26T17:04:26.765862Z" + "iopub.execute_input": "2024-09-27T13:50:56.070248Z", + "iopub.status.busy": "2024-09-27T13:50:56.070059Z", + "iopub.status.idle": "2024-09-27T13:50:56.719579Z", + "shell.execute_reply": "2024-09-27T13:50:56.718990Z" } }, "outputs": [ @@ -863,10 +943,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.768620Z", - "iopub.status.busy": "2024-09-26T17:04:26.768224Z", - "iopub.status.idle": "2024-09-26T17:04:27.108073Z", - "shell.execute_reply": "2024-09-26T17:04:27.107473Z" + "iopub.execute_input": "2024-09-27T13:50:56.722081Z", + "iopub.status.busy": "2024-09-27T13:50:56.721673Z", + "iopub.status.idle": "2024-09-27T13:50:57.069923Z", + "shell.execute_reply": "2024-09-27T13:50:57.069392Z" } }, "outputs": [ @@ -914,10 +994,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.109834Z", - "iopub.status.busy": "2024-09-26T17:04:27.109650Z", - "iopub.status.idle": "2024-09-26T17:04:27.351524Z", - "shell.execute_reply": "2024-09-26T17:04:27.350876Z" + "iopub.execute_input": "2024-09-27T13:50:57.071861Z", + "iopub.status.busy": "2024-09-27T13:50:57.071481Z", + "iopub.status.idle": "2024-09-27T13:50:57.316398Z", + "shell.execute_reply": "2024-09-27T13:50:57.315816Z" } }, "outputs": [ @@ -973,10 +1053,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.354053Z", - "iopub.status.busy": "2024-09-26T17:04:27.353600Z", - "iopub.status.idle": "2024-09-26T17:04:27.447892Z", - "shell.execute_reply": "2024-09-26T17:04:27.447384Z" + "iopub.execute_input": "2024-09-27T13:50:57.318975Z", + "iopub.status.busy": "2024-09-27T13:50:57.318496Z", + "iopub.status.idle": "2024-09-27T13:50:57.417331Z", + "shell.execute_reply": "2024-09-27T13:50:57.416812Z" } }, "outputs": [], @@ -997,10 +1077,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.449743Z", - "iopub.status.busy": "2024-09-26T17:04:27.449562Z", - "iopub.status.idle": "2024-09-26T17:04:38.184870Z", - "shell.execute_reply": "2024-09-26T17:04:38.184254Z" + "iopub.execute_input": "2024-09-27T13:50:57.419373Z", + "iopub.status.busy": "2024-09-27T13:50:57.419019Z", + "iopub.status.idle": "2024-09-27T13:51:08.254190Z", + "shell.execute_reply": "2024-09-27T13:51:08.253562Z" } }, "outputs": [ @@ -1037,10 +1117,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:38.186868Z", - "iopub.status.busy": "2024-09-26T17:04:38.186659Z", - "iopub.status.idle": "2024-09-26T17:04:40.383970Z", - "shell.execute_reply": "2024-09-26T17:04:40.383460Z" + "iopub.execute_input": "2024-09-27T13:51:08.256355Z", + "iopub.status.busy": "2024-09-27T13:51:08.255957Z", + "iopub.status.idle": "2024-09-27T13:51:10.500115Z", + "shell.execute_reply": "2024-09-27T13:51:10.499556Z" } }, "outputs": [ @@ -1071,10 +1151,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.386614Z", - "iopub.status.busy": "2024-09-26T17:04:40.385949Z", - "iopub.status.idle": "2024-09-26T17:04:40.607538Z", - "shell.execute_reply": "2024-09-26T17:04:40.607022Z" + "iopub.execute_input": "2024-09-27T13:51:10.502313Z", + "iopub.status.busy": "2024-09-27T13:51:10.501787Z", + "iopub.status.idle": "2024-09-27T13:51:10.707690Z", + "shell.execute_reply": "2024-09-27T13:51:10.707063Z" } }, "outputs": [], @@ -1088,10 +1168,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.609616Z", - "iopub.status.busy": "2024-09-26T17:04:40.609228Z", - "iopub.status.idle": "2024-09-26T17:04:40.612336Z", - "shell.execute_reply": "2024-09-26T17:04:40.611909Z" + "iopub.execute_input": "2024-09-27T13:51:10.709735Z", + "iopub.status.busy": "2024-09-27T13:51:10.709439Z", + "iopub.status.idle": "2024-09-27T13:51:10.712726Z", + "shell.execute_reply": "2024-09-27T13:51:10.712173Z" } }, "outputs": [], @@ -1129,10 +1209,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.614035Z", - "iopub.status.busy": "2024-09-26T17:04:40.613703Z", - "iopub.status.idle": "2024-09-26T17:04:40.622171Z", - "shell.execute_reply": "2024-09-26T17:04:40.621706Z" + "iopub.execute_input": "2024-09-27T13:51:10.714435Z", + "iopub.status.busy": "2024-09-27T13:51:10.714266Z", + "iopub.status.idle": "2024-09-27T13:51:10.722614Z", + "shell.execute_reply": "2024-09-27T13:51:10.722178Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1257,56 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016906c40ec04434a96f0c6da6967bef": { + "1adbfa3fbfa54ba293de2b9b03f71b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb0db3b827c74f38b4b1991b101e964f", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7849ac70397848e496266851c5d956d1", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "28c0621e5d2b4951ab66ed9e5bc81fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5672ddb7d62c425e94757073a3500d04", + "placeholder": "​", + "style": "IPY_MODEL_bb17fd7956a84dbdb54505cd8cfb07c7", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "4d294500e0514c7e887575b26cc73e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,72 +1359,7 @@ "width": null } }, - "14c69cfacf3e48d2b95f46cd54e49c9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3972814dcab04892afc1ac1440552ac5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb5438c747049e5968c73417456b937", - "placeholder": "​", - "style": "IPY_MODEL_9362062e23974e61900f7a5522a0189b", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 129MB/s]" - } - }, - "481cf30bee6943db835bc9693b38b7d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_850360c1166847dfa53976aad59ff517", - "IPY_MODEL_8f07b9affc9c4c4a84fe88f43b488473", - "IPY_MODEL_3972814dcab04892afc1ac1440552ac5" - ], - "layout": "IPY_MODEL_adac6f450dbc46f989ade8c2425b2515", - "tabbable": null, - "tooltip": null - } - }, - "4bb5438c747049e5968c73417456b937": { + "5672ddb7d62c425e94757073a3500d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1348,90 +1412,65 @@ "width": null } }, - "6983437a251a418689409a3191804389": { + "5a69fbb1a7434f11b05d70b97ab05535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "850360c1166847dfa53976aad59ff517": { + "7849ac70397848e496266851c5d956d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_016906c40ec04434a96f0c6da6967bef", - "placeholder": "​", - "style": "IPY_MODEL_14c69cfacf3e48d2b95f46cd54e49c9b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f07b9affc9c4c4a84fe88f43b488473": { + "8e59a7f076e448cbb05804524a137e75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1c50b96b69e4282b9a88b0b784c08bf", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6983437a251a418689409a3191804389", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28c0621e5d2b4951ab66ed9e5bc81fc0", + "IPY_MODEL_1adbfa3fbfa54ba293de2b9b03f71b7b", + "IPY_MODEL_d63681a72bc34d61ad7e193ef1396969" + ], + "layout": "IPY_MODEL_4d294500e0514c7e887575b26cc73e59", "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "9362062e23974e61900f7a5522a0189b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "adac6f450dbc46f989ade8c2425b2515": { + "9de99fa1656b4220b4b86019adf6b18f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1523,48 @@ "width": null } }, - "b1c50b96b69e4282b9a88b0b784c08bf": { + "bb17fd7956a84dbdb54505cd8cfb07c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d63681a72bc34d61ad7e193ef1396969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9de99fa1656b4220b4b86019adf6b18f", + "placeholder": "​", + "style": "IPY_MODEL_5a69fbb1a7434f11b05d70b97ab05535", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "eb0db3b827c74f38b4b1991b101e964f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 4e0f503ec..a781c88d1 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:45.045613Z", - "iopub.status.busy": "2024-09-26T17:04:45.045449Z", - "iopub.status.idle": "2024-09-26T17:04:46.356026Z", - "shell.execute_reply": "2024-09-26T17:04:46.355424Z" + "iopub.execute_input": "2024-09-27T13:51:15.149161Z", + "iopub.status.busy": "2024-09-27T13:51:15.148999Z", + "iopub.status.idle": "2024-09-27T13:51:16.418985Z", + "shell.execute_reply": "2024-09-27T13:51:16.418425Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.358207Z", - "iopub.status.busy": "2024-09-26T17:04:46.357894Z", - "iopub.status.idle": "2024-09-26T17:04:46.377349Z", - "shell.execute_reply": "2024-09-26T17:04:46.376818Z" + "iopub.execute_input": "2024-09-27T13:51:16.420957Z", + "iopub.status.busy": "2024-09-27T13:51:16.420681Z", + "iopub.status.idle": "2024-09-27T13:51:16.439104Z", + "shell.execute_reply": "2024-09-27T13:51:16.438650Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.379468Z", - "iopub.status.busy": "2024-09-26T17:04:46.378978Z", - "iopub.status.idle": "2024-09-26T17:04:46.382061Z", - "shell.execute_reply": "2024-09-26T17:04:46.381595Z" + "iopub.execute_input": "2024-09-27T13:51:16.441018Z", + "iopub.status.busy": "2024-09-27T13:51:16.440605Z", + "iopub.status.idle": "2024-09-27T13:51:16.443577Z", + "shell.execute_reply": "2024-09-27T13:51:16.443113Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.383663Z", - "iopub.status.busy": "2024-09-26T17:04:46.383479Z", - "iopub.status.idle": "2024-09-26T17:04:46.481470Z", - "shell.execute_reply": "2024-09-26T17:04:46.480877Z" + "iopub.execute_input": "2024-09-27T13:51:16.445299Z", + "iopub.status.busy": "2024-09-27T13:51:16.444975Z", + "iopub.status.idle": "2024-09-27T13:51:16.552085Z", + "shell.execute_reply": "2024-09-27T13:51:16.551626Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.483670Z", - "iopub.status.busy": "2024-09-26T17:04:46.483192Z", - "iopub.status.idle": "2024-09-26T17:04:46.669376Z", - "shell.execute_reply": "2024-09-26T17:04:46.668677Z" + "iopub.execute_input": "2024-09-27T13:51:16.554009Z", + "iopub.status.busy": "2024-09-27T13:51:16.553632Z", + "iopub.status.idle": "2024-09-27T13:51:16.737330Z", + "shell.execute_reply": "2024-09-27T13:51:16.736689Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.671709Z", - "iopub.status.busy": "2024-09-26T17:04:46.671318Z", - "iopub.status.idle": "2024-09-26T17:04:46.889372Z", - "shell.execute_reply": "2024-09-26T17:04:46.888829Z" + "iopub.execute_input": "2024-09-27T13:51:16.739654Z", + "iopub.status.busy": "2024-09-27T13:51:16.739277Z", + "iopub.status.idle": "2024-09-27T13:51:16.985723Z", + "shell.execute_reply": "2024-09-27T13:51:16.985100Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.891445Z", - "iopub.status.busy": "2024-09-26T17:04:46.890916Z", - "iopub.status.idle": "2024-09-26T17:04:46.895690Z", - "shell.execute_reply": "2024-09-26T17:04:46.895219Z" + "iopub.execute_input": "2024-09-27T13:51:16.987526Z", + "iopub.status.busy": "2024-09-27T13:51:16.987225Z", + "iopub.status.idle": "2024-09-27T13:51:16.991621Z", + "shell.execute_reply": "2024-09-27T13:51:16.991153Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.897480Z", - "iopub.status.busy": "2024-09-26T17:04:46.897178Z", - "iopub.status.idle": "2024-09-26T17:04:46.903377Z", - "shell.execute_reply": "2024-09-26T17:04:46.902787Z" + "iopub.execute_input": "2024-09-27T13:51:16.993248Z", + "iopub.status.busy": "2024-09-27T13:51:16.992898Z", + "iopub.status.idle": "2024-09-27T13:51:16.998722Z", + "shell.execute_reply": "2024-09-27T13:51:16.998268Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.905000Z", - "iopub.status.busy": "2024-09-26T17:04:46.904823Z", - "iopub.status.idle": "2024-09-26T17:04:46.907722Z", - "shell.execute_reply": "2024-09-26T17:04:46.907293Z" + "iopub.execute_input": "2024-09-27T13:51:17.000381Z", + "iopub.status.busy": "2024-09-27T13:51:17.000114Z", + "iopub.status.idle": "2024-09-27T13:51:17.002650Z", + "shell.execute_reply": "2024-09-27T13:51:17.002204Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.909599Z", - "iopub.status.busy": "2024-09-26T17:04:46.909131Z", - "iopub.status.idle": "2024-09-26T17:04:55.883286Z", - "shell.execute_reply": "2024-09-26T17:04:55.882633Z" + "iopub.execute_input": "2024-09-27T13:51:17.004391Z", + "iopub.status.busy": "2024-09-27T13:51:17.003946Z", + "iopub.status.idle": "2024-09-27T13:51:26.067326Z", + "shell.execute_reply": "2024-09-27T13:51:26.066758Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.885851Z", - "iopub.status.busy": "2024-09-26T17:04:55.885210Z", - "iopub.status.idle": "2024-09-26T17:04:55.892917Z", - "shell.execute_reply": "2024-09-26T17:04:55.892454Z" + "iopub.execute_input": "2024-09-27T13:51:26.069894Z", + "iopub.status.busy": "2024-09-27T13:51:26.069345Z", + "iopub.status.idle": "2024-09-27T13:51:26.076338Z", + "shell.execute_reply": "2024-09-27T13:51:26.075881Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.894663Z", - "iopub.status.busy": "2024-09-26T17:04:55.894322Z", - "iopub.status.idle": "2024-09-26T17:04:55.897834Z", - "shell.execute_reply": "2024-09-26T17:04:55.897377Z" + "iopub.execute_input": "2024-09-27T13:51:26.078018Z", + "iopub.status.busy": "2024-09-27T13:51:26.077730Z", + "iopub.status.idle": "2024-09-27T13:51:26.081236Z", + "shell.execute_reply": "2024-09-27T13:51:26.080792Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.899532Z", - "iopub.status.busy": "2024-09-26T17:04:55.899211Z", - "iopub.status.idle": "2024-09-26T17:04:55.902535Z", - "shell.execute_reply": "2024-09-26T17:04:55.901994Z" + "iopub.execute_input": "2024-09-27T13:51:26.082932Z", + "iopub.status.busy": "2024-09-27T13:51:26.082598Z", + "iopub.status.idle": "2024-09-27T13:51:26.085987Z", + "shell.execute_reply": "2024-09-27T13:51:26.085516Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.904316Z", - "iopub.status.busy": "2024-09-26T17:04:55.903915Z", - "iopub.status.idle": "2024-09-26T17:04:55.906956Z", - "shell.execute_reply": "2024-09-26T17:04:55.906478Z" + "iopub.execute_input": "2024-09-27T13:51:26.087772Z", + "iopub.status.busy": "2024-09-27T13:51:26.087368Z", + "iopub.status.idle": "2024-09-27T13:51:26.090518Z", + "shell.execute_reply": "2024-09-27T13:51:26.090064Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.908409Z", - "iopub.status.busy": "2024-09-26T17:04:55.908236Z", - "iopub.status.idle": "2024-09-26T17:04:55.916410Z", - "shell.execute_reply": "2024-09-26T17:04:55.915860Z" + "iopub.execute_input": "2024-09-27T13:51:26.092191Z", + "iopub.status.busy": "2024-09-27T13:51:26.091860Z", + "iopub.status.idle": "2024-09-27T13:51:26.099609Z", + "shell.execute_reply": "2024-09-27T13:51:26.099158Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.918227Z", - "iopub.status.busy": "2024-09-26T17:04:55.917906Z", - "iopub.status.idle": "2024-09-26T17:04:55.920593Z", - "shell.execute_reply": "2024-09-26T17:04:55.920127Z" + "iopub.execute_input": "2024-09-27T13:51:26.101260Z", + "iopub.status.busy": "2024-09-27T13:51:26.100944Z", + "iopub.status.idle": "2024-09-27T13:51:26.103665Z", + "shell.execute_reply": "2024-09-27T13:51:26.103114Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.922554Z", - "iopub.status.busy": "2024-09-26T17:04:55.922044Z", - "iopub.status.idle": "2024-09-26T17:04:56.045940Z", - "shell.execute_reply": "2024-09-26T17:04:56.045422Z" + "iopub.execute_input": "2024-09-27T13:51:26.105327Z", + "iopub.status.busy": "2024-09-27T13:51:26.105016Z", + "iopub.status.idle": "2024-09-27T13:51:26.230588Z", + "shell.execute_reply": "2024-09-27T13:51:26.229994Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.047840Z", - "iopub.status.busy": "2024-09-26T17:04:56.047468Z", - "iopub.status.idle": "2024-09-26T17:04:56.167819Z", - "shell.execute_reply": "2024-09-26T17:04:56.167293Z" + "iopub.execute_input": "2024-09-27T13:51:26.232496Z", + "iopub.status.busy": "2024-09-27T13:51:26.232118Z", + "iopub.status.idle": "2024-09-27T13:51:26.342308Z", + "shell.execute_reply": "2024-09-27T13:51:26.341751Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.169945Z", - "iopub.status.busy": "2024-09-26T17:04:56.169503Z", - "iopub.status.idle": "2024-09-26T17:04:56.685934Z", - "shell.execute_reply": "2024-09-26T17:04:56.685296Z" + "iopub.execute_input": "2024-09-27T13:51:26.344213Z", + "iopub.status.busy": "2024-09-27T13:51:26.343885Z", + "iopub.status.idle": "2024-09-27T13:51:26.866342Z", + "shell.execute_reply": "2024-09-27T13:51:26.865682Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.688248Z", - "iopub.status.busy": "2024-09-26T17:04:56.687817Z", - "iopub.status.idle": "2024-09-26T17:04:56.783644Z", - "shell.execute_reply": "2024-09-26T17:04:56.783001Z" + "iopub.execute_input": "2024-09-27T13:51:26.868362Z", + "iopub.status.busy": "2024-09-27T13:51:26.868178Z", + "iopub.status.idle": "2024-09-27T13:51:26.964126Z", + "shell.execute_reply": "2024-09-27T13:51:26.963551Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.785728Z", - "iopub.status.busy": "2024-09-26T17:04:56.785306Z", - "iopub.status.idle": "2024-09-26T17:04:56.793844Z", - "shell.execute_reply": "2024-09-26T17:04:56.793274Z" + "iopub.execute_input": "2024-09-27T13:51:26.966053Z", + "iopub.status.busy": "2024-09-27T13:51:26.965821Z", + "iopub.status.idle": "2024-09-27T13:51:26.974429Z", + "shell.execute_reply": "2024-09-27T13:51:26.973838Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.795479Z", - "iopub.status.busy": "2024-09-26T17:04:56.795160Z", - "iopub.status.idle": "2024-09-26T17:04:56.797955Z", - "shell.execute_reply": "2024-09-26T17:04:56.797402Z" + "iopub.execute_input": "2024-09-27T13:51:26.976211Z", + "iopub.status.busy": "2024-09-27T13:51:26.975775Z", + "iopub.status.idle": "2024-09-27T13:51:26.978660Z", + "shell.execute_reply": "2024-09-27T13:51:26.978085Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.799958Z", - "iopub.status.busy": "2024-09-26T17:04:56.799621Z", - "iopub.status.idle": "2024-09-26T17:05:02.434662Z", - "shell.execute_reply": "2024-09-26T17:05:02.434117Z" + "iopub.execute_input": "2024-09-27T13:51:26.980464Z", + "iopub.status.busy": "2024-09-27T13:51:26.980130Z", + "iopub.status.idle": "2024-09-27T13:51:32.684948Z", + "shell.execute_reply": "2024-09-27T13:51:32.684334Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.436647Z", - "iopub.status.busy": "2024-09-26T17:05:02.436258Z", - "iopub.status.idle": "2024-09-26T17:05:02.444773Z", - "shell.execute_reply": "2024-09-26T17:05:02.444312Z" + "iopub.execute_input": "2024-09-27T13:51:32.686957Z", + "iopub.status.busy": "2024-09-27T13:51:32.686573Z", + "iopub.status.idle": "2024-09-27T13:51:32.695195Z", + "shell.execute_reply": "2024-09-27T13:51:32.694586Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.446489Z", - "iopub.status.busy": "2024-09-26T17:05:02.446154Z", - "iopub.status.idle": "2024-09-26T17:05:02.514195Z", - "shell.execute_reply": "2024-09-26T17:05:02.513712Z" + "iopub.execute_input": "2024-09-27T13:51:32.696968Z", + "iopub.status.busy": "2024-09-27T13:51:32.696618Z", + "iopub.status.idle": "2024-09-27T13:51:32.764496Z", + "shell.execute_reply": "2024-09-27T13:51:32.763852Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 0c953a37d..9dca2eb7d 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:05.717015Z", - "iopub.status.busy": "2024-09-26T17:05:05.716843Z", - "iopub.status.idle": "2024-09-26T17:05:08.037778Z", - "shell.execute_reply": "2024-09-26T17:05:08.037084Z" + "iopub.execute_input": "2024-09-27T13:51:35.933316Z", + "iopub.status.busy": "2024-09-27T13:51:35.933122Z", + "iopub.status.idle": "2024-09-27T13:51:38.270090Z", + "shell.execute_reply": "2024-09-27T13:51:38.269373Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:08.040304Z", - "iopub.status.busy": "2024-09-26T17:05:08.039827Z", - "iopub.status.idle": "2024-09-26T17:06:15.788536Z", - "shell.execute_reply": "2024-09-26T17:06:15.787814Z" + "iopub.execute_input": "2024-09-27T13:51:38.272195Z", + "iopub.status.busy": "2024-09-27T13:51:38.271991Z", + "iopub.status.idle": "2024-09-27T13:52:43.930890Z", + "shell.execute_reply": "2024-09-27T13:52:43.930121Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:15.791492Z", - "iopub.status.busy": "2024-09-26T17:06:15.790929Z", - "iopub.status.idle": "2024-09-26T17:06:17.030438Z", - "shell.execute_reply": "2024-09-26T17:06:17.029934Z" + "iopub.execute_input": "2024-09-27T13:52:43.933175Z", + "iopub.status.busy": "2024-09-27T13:52:43.932718Z", + "iopub.status.idle": "2024-09-27T13:52:45.152829Z", + "shell.execute_reply": "2024-09-27T13:52:45.152260Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.032578Z", - "iopub.status.busy": "2024-09-26T17:06:17.032181Z", - "iopub.status.idle": "2024-09-26T17:06:17.035397Z", - "shell.execute_reply": "2024-09-26T17:06:17.034940Z" + "iopub.execute_input": "2024-09-27T13:52:45.154808Z", + "iopub.status.busy": "2024-09-27T13:52:45.154531Z", + "iopub.status.idle": "2024-09-27T13:52:45.158007Z", + "shell.execute_reply": "2024-09-27T13:52:45.157435Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.037239Z", - "iopub.status.busy": "2024-09-26T17:06:17.036895Z", - "iopub.status.idle": "2024-09-26T17:06:17.040814Z", - "shell.execute_reply": "2024-09-26T17:06:17.040350Z" + "iopub.execute_input": "2024-09-27T13:52:45.159874Z", + "iopub.status.busy": "2024-09-27T13:52:45.159484Z", + "iopub.status.idle": "2024-09-27T13:52:45.163392Z", + "shell.execute_reply": "2024-09-27T13:52:45.162836Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.042465Z", - "iopub.status.busy": "2024-09-26T17:06:17.042192Z", - "iopub.status.idle": "2024-09-26T17:06:17.045640Z", - "shell.execute_reply": "2024-09-26T17:06:17.045177Z" + "iopub.execute_input": "2024-09-27T13:52:45.165264Z", + "iopub.status.busy": "2024-09-27T13:52:45.164843Z", + "iopub.status.idle": "2024-09-27T13:52:45.168434Z", + "shell.execute_reply": "2024-09-27T13:52:45.168001Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.047315Z", - "iopub.status.busy": "2024-09-26T17:06:17.046980Z", - "iopub.status.idle": "2024-09-26T17:06:17.049687Z", - "shell.execute_reply": "2024-09-26T17:06:17.049193Z" + "iopub.execute_input": "2024-09-27T13:52:45.170026Z", + "iopub.status.busy": "2024-09-27T13:52:45.169831Z", + "iopub.status.idle": "2024-09-27T13:52:45.172854Z", + "shell.execute_reply": "2024-09-27T13:52:45.172440Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.051353Z", - "iopub.status.busy": "2024-09-26T17:06:17.051011Z", - "iopub.status.idle": "2024-09-26T17:06:55.164616Z", - "shell.execute_reply": "2024-09-26T17:06:55.163984Z" + "iopub.execute_input": "2024-09-27T13:52:45.174469Z", + "iopub.status.busy": "2024-09-27T13:52:45.174131Z", + "iopub.status.idle": "2024-09-27T13:53:23.240572Z", + "shell.execute_reply": "2024-09-27T13:53:23.239851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9433b8180b7c45728863cb9c40d5e567", + "model_id": "0cacd283386e42a5bdc7ef667a30ed27", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "069caa427ad347c5bd1333db3bd5ec8b", + "model_id": "4644996a967241dfa8d773a9ca551092", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.166835Z", - "iopub.status.busy": "2024-09-26T17:06:55.166581Z", - "iopub.status.idle": "2024-09-26T17:06:55.838631Z", - "shell.execute_reply": "2024-09-26T17:06:55.838008Z" + "iopub.execute_input": "2024-09-27T13:53:23.243096Z", + "iopub.status.busy": "2024-09-27T13:53:23.242875Z", + "iopub.status.idle": "2024-09-27T13:53:23.927697Z", + "shell.execute_reply": "2024-09-27T13:53:23.927078Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.840661Z", - "iopub.status.busy": "2024-09-26T17:06:55.840128Z", - "iopub.status.idle": "2024-09-26T17:06:58.654558Z", - "shell.execute_reply": "2024-09-26T17:06:58.653954Z" + "iopub.execute_input": "2024-09-27T13:53:23.929799Z", + "iopub.status.busy": "2024-09-27T13:53:23.929338Z", + "iopub.status.idle": "2024-09-27T13:53:26.776889Z", + "shell.execute_reply": "2024-09-27T13:53:26.776303Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:58.656660Z", - "iopub.status.busy": "2024-09-26T17:06:58.656193Z", - "iopub.status.idle": "2024-09-26T17:07:31.282511Z", - "shell.execute_reply": "2024-09-26T17:07:31.282022Z" + "iopub.execute_input": "2024-09-27T13:53:26.778857Z", + "iopub.status.busy": "2024-09-27T13:53:26.778501Z", + "iopub.status.idle": "2024-09-27T13:54:00.727701Z", + "shell.execute_reply": "2024-09-27T13:54:00.727143Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "419483351ddf440f89b247293c5dcdc0", + "model_id": "ba6bd71b6bee41189f78a1c572677822", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:31.284330Z", - "iopub.status.busy": "2024-09-26T17:07:31.283976Z", - "iopub.status.idle": "2024-09-26T17:07:47.118288Z", - "shell.execute_reply": "2024-09-26T17:07:47.117716Z" + "iopub.execute_input": "2024-09-27T13:54:00.729587Z", + "iopub.status.busy": "2024-09-27T13:54:00.729293Z", + "iopub.status.idle": "2024-09-27T13:54:16.723181Z", + "shell.execute_reply": "2024-09-27T13:54:16.722543Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:47.120299Z", - "iopub.status.busy": "2024-09-26T17:07:47.119974Z", - "iopub.status.idle": "2024-09-26T17:07:50.977077Z", - "shell.execute_reply": "2024-09-26T17:07:50.976571Z" + "iopub.execute_input": "2024-09-27T13:54:16.725370Z", + "iopub.status.busy": "2024-09-27T13:54:16.725011Z", + "iopub.status.idle": "2024-09-27T13:54:20.576835Z", + "shell.execute_reply": "2024-09-27T13:54:20.576292Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:50.978894Z", - "iopub.status.busy": "2024-09-26T17:07:50.978599Z", - "iopub.status.idle": "2024-09-26T17:07:52.469581Z", - "shell.execute_reply": "2024-09-26T17:07:52.468926Z" + "iopub.execute_input": "2024-09-27T13:54:20.578749Z", + "iopub.status.busy": "2024-09-27T13:54:20.578398Z", + "iopub.status.idle": "2024-09-27T13:54:22.071673Z", + "shell.execute_reply": "2024-09-27T13:54:22.071167Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5a1fa9574814a138f8b11ada26aa7ce", + "model_id": "d5ee6722fdee41c9a5f051d5f4bc9eff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.471634Z", - "iopub.status.busy": "2024-09-26T17:07:52.471286Z", - "iopub.status.idle": "2024-09-26T17:07:52.502859Z", - "shell.execute_reply": "2024-09-26T17:07:52.502297Z" + "iopub.execute_input": "2024-09-27T13:54:22.073573Z", + "iopub.status.busy": "2024-09-27T13:54:22.073206Z", + "iopub.status.idle": "2024-09-27T13:54:22.104042Z", + "shell.execute_reply": "2024-09-27T13:54:22.103489Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.505051Z", - "iopub.status.busy": "2024-09-26T17:07:52.504670Z", - "iopub.status.idle": "2024-09-26T17:07:58.645124Z", - "shell.execute_reply": "2024-09-26T17:07:58.644610Z" + "iopub.execute_input": "2024-09-27T13:54:22.106225Z", + "iopub.status.busy": "2024-09-27T13:54:22.105837Z", + "iopub.status.idle": "2024-09-27T13:54:28.273568Z", + "shell.execute_reply": "2024-09-27T13:54:28.273000Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:58.646914Z", - "iopub.status.busy": "2024-09-26T17:07:58.646726Z", - "iopub.status.idle": "2024-09-26T17:07:58.703002Z", - "shell.execute_reply": "2024-09-26T17:07:58.702503Z" + "iopub.execute_input": "2024-09-27T13:54:28.275502Z", + "iopub.status.busy": "2024-09-27T13:54:28.275151Z", + "iopub.status.idle": "2024-09-27T13:54:28.331073Z", + "shell.execute_reply": "2024-09-27T13:54:28.330504Z" }, "nbsphinx": "hidden" }, @@ -1038,51 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010b8225b6d644ccabdfd571da8a8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "01cec593b4a8405da7b3c690d0e52a52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0517b037a82440458d02ea86105f06d8": { + "0203b35b408140bab3d7c2a3022596ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1135,7 +1091,48 @@ "width": null } }, - "069caa427ad347c5bd1333db3bd5ec8b": { + "097e65cda3524af0905ade254303944d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", + "placeholder": "​", + "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.13it/s]" + } + }, + "0b5b1e2e2b08468b89e5133045604b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0cacd283386e42a5bdc7ef667a30ed27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1150,32 +1147,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5cb76de001c842278b1d786d5a645fac", - "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", - "IPY_MODEL_6b40d316ff104deb90302ab718996261" + "IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", + "IPY_MODEL_bb81abffee574a08838324a05306fee5", + "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9" ], - "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", + "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null } }, - "081848e4dbc24107bd57eb8c702bd684": { + "0f8b6a653a2f4f39afc4a68e4562f8c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", + "placeholder": "​", + "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 796.57it/s]" + } + }, + "128282009133450bb17bacece244696d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "17297470645a4db58aed91eed1a148be": { + "1f59ad6477954ccdb68838abe6de8461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,25 +1250,60 @@ "width": null } }, - "192f38f69433493bbd3eeffe870e0abf": { - "model_module": "@jupyter-widgets/controls", + "2350f154084b4431bc8dc7aa3d7b707d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1b492cce44314110abd310d191addb69": { + "26ae1571806b4102a738df4d53c727cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1299,7 +1356,7 @@ "width": null } }, - "2414eb65ad8d4b00b3ea3d85c9bb9d16": { + "3122d5a201ad446fa1be25d4b21acc06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1314,38 +1371,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", + "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "​", - "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", + "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.14it/s]" + "value": " 30/30 [00:01<00:00, 20.64it/s]" } }, - "24272bf2500848a5bcf2d55525f3a0f9": { + "3c336c8b7a3b4cb59ec5f9f24031e6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", - "placeholder": "​", - "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", + "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 789.56it/s]" + "value": 4997683.0 + } + }, + "4644996a967241dfa8d773a9ca551092": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", + "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", + "IPY_MODEL_097e65cda3524af0905ade254303944d" + ], + "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", + "tabbable": null, + "tooltip": null } }, - "26346b2762a446b3852dd6fc6794aee5": { + "4775464e0f1042de98b0e5962d567596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1398,7 +1482,23 @@ "width": null } }, - "30b8f1a9ff53472095e7c2a925cb7b4f": { + "53c5265699634e29a6682fe80468d7c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5948a70e11d04859b1e2b8b837fb140f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1451,7 +1551,7 @@ "width": null } }, - "34abae56904c4b1bb3364dd32eb17639": { + "5c4c694a56634ea0a695dac6f2a36795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1469,7 +1569,7 @@ "text_color": null } }, - "3c78a7ea81274c7ab75aad3c51051fca": { + "5fbe8a5f1e7f4dfeb36f47d3f14ece88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1522,47 +1622,43 @@ "width": null } }, - "41247db7415843a19203dea65c75a294": { + "68adef88f65c4a45bd1410adbc35fdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "419483351ddf440f89b247293c5dcdc0": { + "74279ce0a6444b85a63f9df791957b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", - "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", - "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70" - ], - "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "46241f4b5b034271b6b861ea2799165d": { + "780258fed6944d3cbee72b74d6ec1757": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,56 +1674,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", - "max": 4997683.0, + "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", + "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "4f22d093744347f3b34a78e1d9fddc5c": { + "7b2a798493d54864b1c2c54e441dd6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5cb76de001c842278b1d786d5a645fac": { - "model_module": "@jupyter-widgets/controls", + "7bc851f2a1a84711b61cce3293e573e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", - "placeholder": "​", - "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "61df8743d35a43c98e0022ff4bc97293": { + "7f50700f58f74bcf874d2f107ce9d245": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1642,15 +1770,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", + "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "​", - "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", + "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "69bb131944b64f9999675a9ef28e496f": { + "84fbc4b7384b4f32ad612456874e559c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1665,79 +1793,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", + "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "​", - "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", + "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "6b40d316ff104deb90302ab718996261": { + "99eeb655b5874902944d39a1906553c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", - "placeholder": "​", - "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.15it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b7aa1adb8d04265acda6569262d2b70": { + "9f6962414e7246219b6d8d7d1e22b96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", - "placeholder": "​", - "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150688.70it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "704f533bc271466791f4aed2ff606b9f": { + "a6b9386ba4bd4ef382728a8509ff9733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "761e7aa8f1fd44fc9b5324d18d7cc6f0": { + "a84d7163b7a34ae3a5db5e214e41505f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", + "placeholder": "​", + "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "af09b1cee1824c9dbea2ba4a3df827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1927,7 @@ "width": null } }, - "8748256d360d48058ef6b131aab916a1": { + "b03044509d8e445ba8aede58ad56b8ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,33 +1980,7 @@ "width": null } }, - "8c95ca6d393b43da8b16aed149c46f65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8df337a907d546958dee64127541ca0c": { + "b39e88ec9789404db8f52fe3fad91062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,110 +2033,77 @@ "width": null } }, - "9433b8180b7c45728863cb9c40d5e567": { + "b49455ea450540e083563000c3fff983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", - "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", - "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9" - ], - "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", + "placeholder": "​", + "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:33<00:00, 147202.41it/s]" } }, - "9c63f3dd112d4cd188297907c9dc0947": { + "b5e463cc2461436bbdd695f021b40430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", + "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", + "placeholder": "​", + "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "100%" } }, - "9cc9bcba55184478a96ee6f5db50d92b": { - "model_module": "@jupyter-widgets/base", + "ba6bd71b6bee41189f78a1c572677822": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5e463cc2461436bbdd695f021b40430", + "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", + "IPY_MODEL_b49455ea450540e083563000c3fff983" + ], + "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", + "tabbable": null, + "tooltip": null } }, - "9ea0920685234045bf68210b35f9cadc": { + "bac053573d6d41a1a54925af41d6af17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,60 +2156,57 @@ "width": null } }, - "a011a519ef08415e9947399082ef4823": { - "model_module": "@jupyter-widgets/base", + "bb81abffee574a08838324a05306fee5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "d5ee6722fdee41c9a5f051d5f4bc9eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", + "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", + "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06" + ], + "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", + "tabbable": null, + "tooltip": null } }, - "a171038c0af1477c8a19cfa21eb51810": { + "d8d7e1a536fa4ed695fd3e65770925ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2184,7 +2259,7 @@ "width": null } }, - "adc4d154c7ff4de08c98e30f3e42eeb6": { + "dc7c8ce9cbda4e2ea98b9c02eba16a10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,7 +2277,33 @@ "text_color": null } }, - "af9ecce7424246c7b19990283f91d514": { + "eaf56531a9604d9b8b406e1e02d9f203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ee0e7b61c689421686d277113f1ec067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2255,7 +2356,7 @@ "width": null } }, - "c88cab906e394a4a84904cc6c17850f0": { + "f8793ef7a8f54cf1875b005a6c1f7124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2271,90 +2372,7 @@ "description_width": "" } }, - "d5a1fa9574814a138f8b11ada26aa7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69bb131944b64f9999675a9ef28e496f", - "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", - "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16" - ], - "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", - "tabbable": null, - "tooltip": null - } - }, - "d6dd9c9d112440f3bc8d3d30e256ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "daf32bd5ad8e47cbb62b30e0cc60714c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", - "placeholder": "​", - "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e2fcbf282272460dbb60c23ea7337738": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ead2da2da60e4805a2043cd58fc66569": { + "fa32975e7754475ba3d7e3d4cae1cee7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2425,7 @@ "width": null } }, - "f68fd43ccb474f5d9dd542f446750d8c": { + "fdddcd906c904034b566400adef66822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,24 +2477,6 @@ "visibility": null, "width": null } - }, - "f9cbc0159e8e401daeafe1258f07445e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index d173b02c1..77eaf7ec4 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:01.172227Z", - "iopub.status.busy": "2024-09-26T17:08:01.172043Z", - "iopub.status.idle": "2024-09-26T17:08:03.693417Z", - "shell.execute_reply": "2024-09-26T17:08:03.692836Z" + "iopub.execute_input": "2024-09-27T13:54:30.682391Z", + "iopub.status.busy": "2024-09-27T13:54:30.682226Z", + "iopub.status.idle": "2024-09-27T13:54:32.499916Z", + "shell.execute_reply": "2024-09-27T13:54:32.499221Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-27 13:54:30-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.105, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.105|:443... connected.\r\n", + "185.93.1.244, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.72MB/s in 0.2s \r\n", "\r\n", - "2024-09-26 17:08:01 (95.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-27 13:54:31 (5.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,16 +131,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.64, 3.5.16.102, 3.5.29.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.64|:443... " + "--2024-09-27 13:54:31-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.1.185, 3.5.27.97, 3.5.28.23, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.1.185|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -161,7 +160,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 391.92K 1.81MB/s " + "pred_probs.npz 10%[=> ] 1.67M 8.13MB/s " ] }, { @@ -169,7 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 6%[> ] 1.02M 2.40MB/s " + "pred_probs.npz 30%[=====> ] 4.95M 12.0MB/s " ] }, { @@ -177,7 +176,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 12%[=> ] 1.98M 3.12MB/s " + "pred_probs.npz 63%[===========> ] 10.30M 16.7MB/s " ] }, { @@ -185,41 +184,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 21%[===> ] 3.50M 4.13MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 36%[======> ] 5.85M 5.49MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 58%[==========> ] 9.48M 7.48MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 89%[================> ] 14.59M 9.94MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 10.7MB/s in 1.5s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 21.2MB/s in 0.8s \r\n", "\r\n", - "2024-09-26 17:08:03 (10.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-27 13:54:32 (21.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -236,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:03.695462Z", - "iopub.status.busy": "2024-09-26T17:08:03.695082Z", - "iopub.status.idle": "2024-09-26T17:08:05.014993Z", - "shell.execute_reply": "2024-09-26T17:08:05.014477Z" + "iopub.execute_input": "2024-09-27T13:54:32.502093Z", + "iopub.status.busy": "2024-09-27T13:54:32.501871Z", + "iopub.status.idle": "2024-09-27T13:54:33.874271Z", + "shell.execute_reply": "2024-09-27T13:54:33.873712Z" }, "nbsphinx": "hidden" }, @@ -250,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -276,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.017376Z", - "iopub.status.busy": "2024-09-26T17:08:05.016785Z", - "iopub.status.idle": "2024-09-26T17:08:05.020348Z", - "shell.execute_reply": "2024-09-26T17:08:05.019888Z" + "iopub.execute_input": "2024-09-27T13:54:33.876182Z", + "iopub.status.busy": "2024-09-27T13:54:33.875906Z", + "iopub.status.idle": "2024-09-27T13:54:33.879350Z", + "shell.execute_reply": "2024-09-27T13:54:33.878885Z" } }, "outputs": [], @@ -329,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.022091Z", - "iopub.status.busy": "2024-09-26T17:08:05.021753Z", - "iopub.status.idle": "2024-09-26T17:08:05.024810Z", - "shell.execute_reply": "2024-09-26T17:08:05.024352Z" + "iopub.execute_input": "2024-09-27T13:54:33.880907Z", + "iopub.status.busy": "2024-09-27T13:54:33.880727Z", + "iopub.status.idle": "2024-09-27T13:54:33.883843Z", + "shell.execute_reply": "2024-09-27T13:54:33.883277Z" }, "nbsphinx": "hidden" }, @@ -350,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.026456Z", - "iopub.status.busy": "2024-09-26T17:08:05.026117Z", - "iopub.status.idle": "2024-09-26T17:08:14.109789Z", - "shell.execute_reply": "2024-09-26T17:08:14.109088Z" + "iopub.execute_input": "2024-09-27T13:54:33.885688Z", + "iopub.status.busy": "2024-09-27T13:54:33.885271Z", + "iopub.status.idle": "2024-09-27T13:54:43.002666Z", + "shell.execute_reply": "2024-09-27T13:54:43.002108Z" } }, "outputs": [], @@ -427,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.112027Z", - "iopub.status.busy": "2024-09-26T17:08:14.111813Z", - "iopub.status.idle": "2024-09-26T17:08:14.117508Z", - "shell.execute_reply": "2024-09-26T17:08:14.117014Z" + "iopub.execute_input": "2024-09-27T13:54:43.004773Z", + "iopub.status.busy": "2024-09-27T13:54:43.004417Z", + "iopub.status.idle": "2024-09-27T13:54:43.010152Z", + "shell.execute_reply": "2024-09-27T13:54:43.009564Z" }, "nbsphinx": "hidden" }, @@ -470,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.119321Z", - "iopub.status.busy": "2024-09-26T17:08:14.118911Z", - "iopub.status.idle": "2024-09-26T17:08:14.502060Z", - "shell.execute_reply": "2024-09-26T17:08:14.501537Z" + "iopub.execute_input": "2024-09-27T13:54:43.011857Z", + "iopub.status.busy": "2024-09-27T13:54:43.011526Z", + "iopub.status.idle": "2024-09-27T13:54:43.353802Z", + "shell.execute_reply": "2024-09-27T13:54:43.353253Z" } }, "outputs": [], @@ -510,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.504135Z", - "iopub.status.busy": "2024-09-26T17:08:14.503821Z", - "iopub.status.idle": "2024-09-26T17:08:14.508644Z", - "shell.execute_reply": "2024-09-26T17:08:14.508165Z" + "iopub.execute_input": "2024-09-27T13:54:43.355704Z", + "iopub.status.busy": "2024-09-27T13:54:43.355518Z", + "iopub.status.idle": "2024-09-27T13:54:43.359631Z", + "shell.execute_reply": "2024-09-27T13:54:43.359167Z" } }, "outputs": [ @@ -585,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.510434Z", - "iopub.status.busy": "2024-09-26T17:08:14.510026Z", - "iopub.status.idle": "2024-09-26T17:08:17.327713Z", - "shell.execute_reply": "2024-09-26T17:08:17.326897Z" + "iopub.execute_input": "2024-09-27T13:54:43.361213Z", + "iopub.status.busy": "2024-09-27T13:54:43.361042Z", + "iopub.status.idle": "2024-09-27T13:54:45.990197Z", + "shell.execute_reply": "2024-09-27T13:54:45.989515Z" } }, "outputs": [], @@ -610,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.330466Z", - "iopub.status.busy": "2024-09-26T17:08:17.329827Z", - "iopub.status.idle": "2024-09-26T17:08:17.334402Z", - "shell.execute_reply": "2024-09-26T17:08:17.333930Z" + "iopub.execute_input": "2024-09-27T13:54:45.992775Z", + "iopub.status.busy": "2024-09-27T13:54:45.992168Z", + "iopub.status.idle": "2024-09-27T13:54:45.996546Z", + "shell.execute_reply": "2024-09-27T13:54:45.995970Z" } }, "outputs": [ @@ -649,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.335919Z", - "iopub.status.busy": "2024-09-26T17:08:17.335751Z", - "iopub.status.idle": "2024-09-26T17:08:17.341503Z", - "shell.execute_reply": "2024-09-26T17:08:17.341006Z" + "iopub.execute_input": "2024-09-27T13:54:45.998310Z", + "iopub.status.busy": "2024-09-27T13:54:45.998135Z", + "iopub.status.idle": "2024-09-27T13:54:46.003376Z", + "shell.execute_reply": "2024-09-27T13:54:46.002924Z" } }, "outputs": [ @@ -830,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.343180Z", - "iopub.status.busy": "2024-09-26T17:08:17.342845Z", - "iopub.status.idle": "2024-09-26T17:08:17.369375Z", - "shell.execute_reply": "2024-09-26T17:08:17.368871Z" + "iopub.execute_input": "2024-09-27T13:54:46.004939Z", + "iopub.status.busy": "2024-09-27T13:54:46.004762Z", + "iopub.status.idle": "2024-09-27T13:54:46.031322Z", + "shell.execute_reply": "2024-09-27T13:54:46.030837Z" } }, "outputs": [ @@ -935,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.371259Z", - "iopub.status.busy": "2024-09-26T17:08:17.370906Z", - "iopub.status.idle": "2024-09-26T17:08:17.375750Z", - "shell.execute_reply": "2024-09-26T17:08:17.375279Z" + "iopub.execute_input": "2024-09-27T13:54:46.032945Z", + "iopub.status.busy": "2024-09-27T13:54:46.032771Z", + "iopub.status.idle": "2024-09-27T13:54:46.036702Z", + "shell.execute_reply": "2024-09-27T13:54:46.036275Z" } }, "outputs": [ @@ -1012,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.377603Z", - "iopub.status.busy": "2024-09-26T17:08:17.377268Z", - "iopub.status.idle": "2024-09-26T17:08:18.815313Z", - "shell.execute_reply": "2024-09-26T17:08:18.814781Z" + "iopub.execute_input": "2024-09-27T13:54:46.038328Z", + "iopub.status.busy": "2024-09-27T13:54:46.038152Z", + "iopub.status.idle": "2024-09-27T13:54:47.420865Z", + "shell.execute_reply": "2024-09-27T13:54:47.420360Z" } }, "outputs": [ @@ -1187,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:18.817270Z", - "iopub.status.busy": "2024-09-26T17:08:18.816826Z", - "iopub.status.idle": "2024-09-26T17:08:18.820963Z", - "shell.execute_reply": "2024-09-26T17:08:18.820481Z" + "iopub.execute_input": "2024-09-27T13:54:47.422597Z", + "iopub.status.busy": "2024-09-27T13:54:47.422413Z", + "iopub.status.idle": "2024-09-27T13:54:47.426601Z", + "shell.execute_reply": "2024-09-27T13:54:47.426150Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 13f3cc7cd4b44c8a24c3e6693db32e03f8e8c4a3..62f36c5d0dbcf016b209f19951f8bc828f5cf2bf 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;?SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvHtep-A(E~BAIL4I*nx_OemL0XDwqCu)jvYD~5NlK!Tg-N1`iIGLJfvKsHfk~1@ RVv?b8in(#>=6Q^|TmWxY5_JFo diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 5fc5f68e48930086c9353c33b5b7ce1219f62327..938cfbb81d128bf80cf39d58e25a4dc9fbfee40d 100644 GIT binary patch delta 221 zcmaFyo%zLg<_%{!4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4GcH`<&1cwU}R!oWMH0>WS(YWWRjR{oRpMeXl`j?kd|bUoR(yiwz>4p hL?$Ids%jJ_Pkgg<^4a&jgbl3v@Q|Ibs_GxP%m7lDN(le} delta 221 zcmaFyo%zLg<_%{!4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ-)O<&1cwU}K|><(+h?D#oyMGH;*-hg%XFse z?0@}h{onV0|F@?PJhbkCht?f_`Xu`4Tl}Y@y5-vKToX&U2s(vmJ)=Hq8j|$NE337O zHj6|gp-29H(w}b_owa9a^vgYGj10am?`cL??zy0S>I2n=(cf-6fAqqhb4CaEoICpG z9{=Ahy#0<>PQNPMeDgKeUA1G^O}pKVX~(YMZX7ks8%E#XyRlvO@#@Uc^1g-9MfNcT0@>&Jo3)NDtHlKo01nibBi0rJ*%iB2~uf1?auO| z?r|$Wdg;WWbuk1HB9%g9ntT+*Q0s*ciUwvUdn>K!9`^84e>ia{q7dANAfw7ccyF`T zCUc%NQ%=y)4Ug_`3Tx7+d)m%luYXHpX!Mo{rnpan8gDfVF=(MI50r~O)6$|NJ+gv2h9yVlmR$)Ob&bvrx##dF@$#Aq4OHW4cDCwmhm_ZA=%JPIo1 z0+re@9xQWq{Ne-Em+RuHyAM^eDy?c?ez1DF zVNsf#RgOAR5uCJ6$tdvypB+)$jQ8DNU$?L%X%tq`XtI$4wP8$R(HYCL6FRl)cMcZY z*S=PtF}~y5)n}?kX6r4@N@Zn5l*ua`63#njl&PYAy#C_BU#ep8cIlDoL#5a&VQ^l1 z_>pR{aXOhOv{^|=f=30k2PjY_z*M4cs4qL93C+Edo-^{h1L|{4SIa&>iUVQ7`Hw6d_{_3*S~u}+wcFd8ZP0O zQs$^Z6sC}1XRk@19e-=3*m(KIdiTQ6TjwQnGBWA}(y=9OodoGAd)^pBnGER-JI8yzr0%T`}CGGXDW*~`KQAPWn!}UkEE49sD z`@Zcr?c99(?OU78T39NWwqBze6iUNT?;}T97_E}$(|ak9W4nH(UK}@ns_v@x&b}75 z89_gA`A2tMdf7$q|KP4tF|J)*I;_n*w>ItlC)bO^LR#&6@22ChvK70E_MA zKd9D^5B{Y3YBiKWimVx<0tHPGfw}A*j!;UM4Q*e(7K4Y>C8 z=c`Ma>{Zkn`;>uUo7N=mkPNbkHu6aOLT$L_=++VF0j)$U95b0xpHfapE12=ht%D~j zAQasgC`McM0>o#e<4Ok~fxy5*&og}zrNDg>rMMmVRQt}CE42hcM+lhQpc;s$9vC1N zR7bMaL5-L1udiQNnynuu#WsHQ7aiUT_o3H9s8E&1!Lx8o34m+wJGnk{I6EiVUE#Ss z-Uu?)f@O|gEL@Uk^D@~e0yIQSZjACl`ciobOj>6p7cK%i67o3GXdM{!c&sf&)U9Ex zJJ2Xt%r+XR8ST;eO%Uzd?gTsaP%DJj?VGQ6ZEbe=3D)jisTP+siHQam3^b2G|8Y!u zla)?Zvf$c-SJ#U`*^UKtD;jAgma72KhC-t$Iwzqa5~YIlW!V6#LKzZ`_C_e~9LUsU z8B`RI9!B=vpqU+2u=e#wYg!7~-3e*$d8692DOj44Odv9f7Db%33U>sm;wqW;hR3RD z5>TJSD+*DJje3b@ZW5K)FnXPdQ*1RBEzJisv>+62I2gxqLLxD=^rYBo5@}}CtotMi zA$wSTbx?2FdTdwoE=nk&PW6ETEC*T8Ac1*GxiZ2}$$}Il^Z1Y(e52Z1x|OvEn_Y`p ztX*9?tSQ3IXi6y^h1inu%0xnNz)1^-+w>5Ii6)gKA-sJXdUa3z1}qr?M#lv-7-6_E zClZG$gzn;b!h*+0#~~$L5t@N3Gz+Vgu@rhZ2he^DIrh{)ZD}+2Aanc4)9VipOB;ah zBJHUg>eGfw5f?mT+USn{nbB6|kV2 zUwUh~5Rfp$xlDwUXyux>E3a0IeMcS^Lbu<1zM?}{i2T%L5KqnC!Q0zs&m6pCs}+|X z)sqzZf?=vOBoNW<13YJiOqxQdXVKGpX#(xr@3g(mz9_dAPK63Rt{Kigx6D_;H!Nh; z;zTZJIL0n7NRk+JL}nO@eW2)U7DKIdgiJ{X8aqO}fEyt=F@rnnF+pTV8b=wr;P}vK z^#j$C%YZAyI3{Y8aaSK6K*R8_80uoY?>E(7t76FZ6Oqp#$2w#m_Lf{JS(C!JtbRLyOM> z#s%sUgN;xUE=a^e#-`&F7jDK#5=@GVfaY22}k~_1j2-*)oGEGdu*eO(>0sZ_(!< zi4&vK4qb}f?#94Y2z}wu85-tTEhh3eAE+oJ*7*Xgi=gKrKPi z+i97?o`EJqw^B^Ne!zhk2NW47ZeVZHGmdR`MlhHfr_;au2*WKT@AGq!6Lr{rnWt8c1-#Fg=)9PDQQwS~l z{zhlV4(*e!zH*p#f;}0zP9Os)dK(>uM~RaJNI2=>)VJv-s=z6xuI?T?FU=F_qbJET z<0&>jRm70Ponfaq<4763GQdn>K~PIV#K*?;AJr4pQX%Zh7i(IK*lWq3?-*>^ZnqJ0 zj7dVl(n8{DY=nAu$p;Gq3vMy!856dhnj{5hvYWXV$A^DWeF2hk_Vwho5GoYragwrh zWUGKfSDTqu``YtWZ;~`HLoz&F4HAd?q67?}Ouz&!Fp|MMnjQf0XisoiJ9#5Gp%4-n z&p809aNDpV0iZR2BSKneFW6Q9Tx59pflol-MYw$?A8V16cF_L*R&=_;21F0I&)rt9 zTY}qxaYWe6lVIF=bZ@vGjAr32qeuOb1_LKxOd*S5`X&Mbfm@^%Y$6*O=CWy_W++X9 zfi9rwV3;*v8nnmGMRNeQCaaBMcHC7q1E$}B`mCYtUJ2l35ye~v)sf&OAS~QO z7c-`~$(c`taRUcR!Y2jMcP_un&O@h22M-l4C75EG2wm z$umu)5LbNVLX4n=h&|#y3omXPr`yaiEiO7_5b-)JX($X8U;$Vb;NW3WU>-0Z?U&Lt_G*ec+fLRJ%}>)iIY_tjr2+V4H$O8)!Y`=9mBp;wiqR}ORU zfA&kyx%WT!{^#ERtalD`?|<(7&%OV-_doakyY~-s?|<(7&-m@Lx%WT!{@1*6n0xPI6APvr79^m^_4Y z*|Yz>*80E8|Lt@1iIqp6Sb6-#6;#aKcIVx@wckQ=l#V136z3v3W`q-hnLwmuM0n#o zch0#x(vDrh-4Xlu?Z3Q#a{tEu759Fs z&kpo12)DRByYb7pTle&54t%=5{lG*2^BqJpXR8(c3lAO|J@qw*FYP~jXib0q;F|uj z!|SoURSzCs)*RnmtzCKLruxd!GYlVL>)~EM9oqU|e(tjQ#}6OBx(-5$+ucgdEa;~)VLIfKP4mBs^eMnJqHo9H$qV{&D ze|c(oPbcPMWYi=sw9qCbp0Y3keZypkc(_BwYucMVdGd|rwG~oo%cWyn3(mP`j9X%4 zG$y5B-EgVJi`v`m{Nv1dbx@i(o0SY2ZELNOR-Th{v&HN>=Z#b`KgZCtIDHHcX;U-@Cn1oS0F=9gh zU2IzEng>p?c7ZMGr^Ws-^3cugsDL^I(Ar*7=dE$bzn1YtA~<^|KC?FbrUQjW5qydE68 zxO24X1*|(6OLG=PprehIk}~Wpl{sQdMOFE*~-)$yQQ=0x#y~{FY6Tua`4RM-J{k1!uiYui@Nsy&c^1kYrCJA4Pb(lKvaq_k#z7{ z1?SM3hIwn6;~P4whpVrZQA(zaZj4+AC9G2(bkhDLl91^F&^WO?XGxNb=x%N!OIGrb zBUePI#Xy@}I`ihpOVzesq3j4}n_jLi=t-lYH0|@VC_IRiD$l*6k{iRbZDtNGoTR2q z^H!cxD^7-3G_ML;YNt(>h=~W1L6uS(W5FOU z8A=TGP{=WN5O^tV!GFm|kyWtZmkdh9r*d|2fL=dQ)rGQZOdExg&F7DIRCCpvmFndb zDfeD`?SzS>WpZyMh4!k%1Z!F2wq@%k`i189XR0-W9fRx_S8g&gz;J7S*2M6+?*CK10a8MMFjg$|GpgL_nJ^Q%4n*gPD_9e~&kq znJ92HK13s|;6_3Kf@eN^!kKUGy#s>$gFkeBS``bA`mt1ZBx6V3uhz{Pj=uAbB@PEE z1=hrrw2mhHbFoD;yud#@JC?13i^vuWQBexUxx+E0Xr0tl8Pd#L0I99t>O57=N`>do z+!MP(iV>yd6}<7dqx9V5YJXEck6Mz|#i zbBcuVzztf-o3rd!lY*BX9CO_tR{IMl zKt-zFgv+KD$7m%rmN)^J zWhY0g=;4R(iQGEPvVf_#=x2jz%?MBhO(Xbx^fUU{Pl8p^ltMKoRni zr5oF-1o}gdCXgGOLA+<^xnuqK$a!jQGa*VUm`7Fg*sV|paUD~lT zI4i6woyA!XMj0+$gQhW8vstEoM?#_Y?LO7HsD@wEB=H|bM=e^a+id$>=jOWYN5KQt8JPn~&ME9R#$6aLZIm1@qDMe;PzENs z1Y@9O@%TE#*di(jGJLwlo)>xu53O_-kY`W9E{0)%ix|hDp0+vm5^y>9eDxzt%!MZy z18(vIq!HkbT;JKaMQk>75#$hD1d+HknQ81XgT|uWxK{zpmz5qLQz?cS&f=|h;27&IgSp^>I7~E92h9EvRLT@xXi~^o!i*qk2EQWfz{CP4 zqAf;t?UK$5U^5mm3g|x|KFdb>Oku)WxfGe=W}m#i`}e9?v$_1n?$)|ga)h)GzuH-` z4$5q0)C!}c0cxZ}Vv#V!VDRU%nS;3pXYN=wi^MP?`GAvxRfafcObG-hj_x&(wXr zhlQa!iLq%cm2Bo*hn6aiu=Tqg-Hlt+X0zBfDxY(Nl@CBv%Qxt=gz#6x8UgZYp}Pu^ zBdC1n84HJUPWT}w_o7&eEu>D9w(E>%>=l;OMnR+S1Bn5LmOE>pPBAqb)*m)R3qYQZogwV8hro z7V4(vwYys(E7Tmp>pOcpD|^r)v?O{mgBLLWTd9GYYzWK=Mwl@{BHVD6U>fxfeT*bS zYJ5XQFnC6TvmPdlvxr6zFS3?6xIpI9ULO^N&PAe9bNZcX^>{K%g}OuH?-k0n=Rup> z4tFlADYg%8Rc40a5LrA7E-?ni0og8sodqdFK!;>QYUa?iL|MxXrcpO3$_@~27uG|69*`%jbnkGwz_$=Ni?pCyK%YKTYzdN&cBXW1J@W mAO8knn&eND{EzCg8EdyjNCbpHh!&mBtu diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 5016ffb5a788b19f62bb955843b4981f7ee87d01..e3f95b09a537d888944da0080488f15378f88bcd 100644 GIT binary patch delta 8793 zcmeHLONgXb6}GG!$4-ptAsvxfbp2@)qd4^3$GI;d;44DFm<-uW(4oCg2V!0d*$qZq z%pz`rBR?XFu0~u$BjOK=8rP!YLNE(sT#3$Rf_wG*>#y!~A=cfvtcGs7tN*HV&pqdR zob&sa_kR2G-j9B^Bc6Ibej%IZpS++f_gqo3C1oF_h}nu%bTrX;YeV*x3fEkG_2$mC zn>#anzkRs5Grw`~Y(9MbL-YM>v%mE}JYo+oWX>rCEo}*!bdg>-%SGV47zz}JkA9Io z!xp|8TV-)InL;)SCu6WxaOVRh9s8I5INuxiHTL4H3)vNC6fe9~Qi=!dv@k|wt`SJ) z{*~X%?;f80IQ!GAYXn#QGgsK7T_ZT}|N8U!hZl*Q308aJ65mw>qlB?Kd8aZrp?_tU z?fvx4`DfTdXi;1Wj*trlQ@rqmcM9ohRNVI8JHy^Pyz%P%#%y6+s4kGpP9SewGv%PN z%E<&*s_w-<+1~JxH`otmT_b+%&)%Ag#pckZ|HE_aVrNa#Tq>TT4kR>1qmm6ZdyRh> zZHBWCvZq-WtBzWD6}-q~jdm`}sALtw73sJhe*I(i%h`UVh_c$?V+?m)*Pq6kE2OEOt`nRs>% zU5mt&)T^Ytm$+nYN(`Q?6+sE~p;X@H8t~Ha=4aWrXJ2j<#vUNz!;d|2^vI*1c<56{ zt)5(edh>;;ba456zjuzkr)#A&Hs*czFSD1ySebm*=q1uQdn;ANk1TxEDX+5M_vEY1 zCWR~nB_tWN3MCf2AqC%m_Y7*agxNyd5vY=ITYyGI}Ba%q8+8 zu~eUGQfkEG3T2%zE|+SpD_&EoAp*hRq6|P6fY%S8j9-9RHpk^tdp6?6u|0YJ!gY54 zzAoTU$2pHqfe4Jlxm*ccY9T@z?s||t%etUcjUj0gAV}$w3mok!(7FZ?@^wO47gDOK zNI=yP;X{4W$z^iHuNSaIGY$rPzeG9^p_etOc!H&2aC6eP`C86M#Z%iLxWB zJZKm_;%nem7hKqB32O!Z##8LER@ezzcg)xwT?Usc0cnv%5|0Wh8*9w9fDKCG%RE5+ zz*Y(1kE#VaSLw*LRK&TFnle?lYD#1mksenzDsnbBo@$MTc))Aq^{OdbLHn;f$K?Lz zh!d>-y~7^p2>!#S5?vk7l8VRgg@ordlk<61i+!GyabDUODv{(K6^j5oP)Nm!rL^{t zRyKU@1MK^=1o}h zp(p~xOHLbCis1>si)a<}+k~-&BPF@vRo9YQ%Iy@`01ZniI^aSQ^e0+_QU~co5DunlMK#vRW5x3IWPbq{x8%t${fc@M5IpZ4 zdmp>2D>jo97DcX-a7aHMGeQtb6iT0X5au%EkcWWsibBGlWW`(u_SHscm zIlz4@nBC-+a2W=UbcLy2p{*5kl7Lps{^DyOmXL6>IBy6k0^mNv_Is!oDI=1lr3+Y^ z-hK35#X;~d(qy#v+&U#C#I6J(hl}52ug*Gw`shLcE<75_8J$>a1R6aB;g3Pqh+38z zG$Qs#x8}aTuG#w!;dD>wSds9C1qus$N?c*O2`RukIXIlE(s6SoI9i9CGo}j~UAoL6 zM3*y%iYen)KCxAkb+9yAk*`19x~&svwNhF_tAF|&d&h!n6=8Z3B#A(x93kV$EFo0G@O4UvUvN|VS$8kZqm5xFDFsN1hz#Z}GT(sJSB4yEdk*Cu-23x){ za)0F^OeU?s6Sm&@Np|NVK`50HS{k@^1!FZ@RUb0P(28V+-K8KCPZ(EGupBLntivQA zszB1dU^J-1MZtbG>o5i>_+M|~APF5FG^}r}J}NlR4AU|h#74-KxoU(|lal@G)9he@ zGfCs%B2-eOF(PAXG07!dCq#DTbUS#wA}Eh@rzI{bCPR)X&FGS>5MYsM4&&egRd_A{ zALRo5HUcg!Nm-#~{Y&Rg=CDRsJ~2cq?3jn`cQ3K~4%H!@hL|_wn1LafpvYA#uemOQ zY}X*$HOTtnWxED>YqPUmgKXCz+cn5?Gq>(5|Nm<5bltcZv}riODdV5gCT6I#n4^GGnq4 zCCtLbfDt4Z{mDXbBZ`3`f^fm0PS#PxMNk(?bfaN5vvXzQckh3D(mjj&Z(ZD`n}(*k zPo2m2sMCMAaq^EhPQLQ%Jxy1yJo~MuLO!dSxTGo-Z!JkOOo_;FQO+4fnN!wQg00`V zwRip2-V9&wUEbQ8|LpXvTmImo`Kjx(e-AeMbobj?j{+L4W67=<%G$7L0m5Ih?pXSH0KUV-5+Ye)LRtdVyGic4pkLkqSDuM69!Om7-2{c-Ti zI6|BBd^GHGXeCt)c1($cv%$a@S9J@^Z~P0_y*AaSeMEiq$*){`{E06-^4O*AbE(5! zr?;2R?q7U(xc`m$M;6<&T2JQ#!|ngfkM*oFqXdCT3^`+>3aVt4O>w%4S0mK=5JV@% zzIr2Mq(xz4t5MoF3Bc2U>AQc#8iq?+uBM`#je_G;wNDCT;hF{t%`&|`zcrhTJiPU{ z`T6O<0NUB%`M=MPFPi2U#FxN&HJePT)q)@CU|GqAG-J zVFNcCS}-ms!u%7)G6KZ-1(j{}z=1k|+eFZDIHzK+;Wk`*vHN6iywh%1V;Frr2bQ_BGg4OSH-lFMJHBeDi$w@@zp3Ok%|Yw28cz zsFY}3Y(yZ}((u9?^OMV)-|T(?q)o&glhNB_(<+&ZXPiHy9)A~SwsMU*7cEW`Mb9ls z66Ycn_AVW!5g&28YF)!+LDdq255fuvW!F@Y4bG+-bQC#LGkNs%M9tg=XCLk-(y}WV z*Z|EE8)F-^5VU6^@(1&I%_T?{6U*4xMT#~!3dT|+kRq2D@kwUQ!O9%QnRP~IoD3jZ zY9QuhiBjgO8eozu|&+_Ktmbc5SLNM*%Z6ibqew#%wLw z9e7P;^)9>?$bkyFg4{7lsD85vJni5qsug#bV2o)tR8wH3BBhvP^@8e!oILDmltUO> z=$zqRgmpBT6wHj0Y(zV+LHr~`x&WdbjpM`(?C{opcfOwtKI+*gy8C)4Crc4!D;%G9 zCVI*#!ArIRRmy2Iq~LpdBtnpdb13@cQ;NmdJHdk^!LkAfA(jxpa zsFpWSn+iJ4=~T>(p#8P$dnYBq#-cGWdfKT3-&@&7S78dZIq>q$`Q)53&MWk-x)j;s z0RU&%N=RYki-p8gR?gj(Xo$g{VjAcING|YWb$R;FE2}&ea?D{O;+ihP@cn;wpZW}V z>yVbU=yW6r%G%X84boCJCE-%IuwFt@uXMdl$Ty2ta7RESv%vq0GU8Kc+|)+KrrL5B za<-3SJbHSfTKW#oCNgq|a3*LE#D?(_AY$-6T!mfDBcXZPF98T7uZ;@U=!Py?N`+!E zcxQQyM*-wdsXGw+-fZFF)(mOoiV&?{cq<&ELU?x=D8a@pPQ;DFQ;&4#787xYH(#Br z;hrycALv2Xcup1%n-|Ey5Q5elR7z)?0%PDt1po~~@9mFCLzd!R|-9*%}~h0u?jx zhOxB5X+>FelTIO@EKDsp1o#2DMU;Le8xcZ{j#$%f&@F?3^2izKRL zpdT~==2tMz4sNlb4;)a2(cq4vHqoYb6h0vNt&@4z>FqTucfdB4)(EzCspI26U%qGk zarvH$FJ3-zVYeOGZAW(7kvm(v-F9TR9ocP1cH5ENc4YfTX7pjZ?Z|FBvfGaAwj;ak j$mU;fyY0wbTbbQKO z_#0vowz9FbFwsWvtr7wjrje8uaq=M~)uypav&C{}=RD`!!)`5)Z7q*2t)5a(7s8X| z79P(UFHstZo@2tGRY+b%w!sC5-c!O1EUi?pt6^6St9##TD`S=k*pOwAiBO_VA$Xm! zyvnkDzE-{Jo$4;GS93pW43rsdOk6&x8bleaLS_}wG>yde+PXO3o!b@Eo0+>K$CTpq79fRK+@0^+dfwP8h-x}a-Dl062!4?fF5qZ;; zwRA;_kQ5d<1iJ(?yF0UwMk8n;sIgQ;!t6_|6vRRc1#Nu%fP;;{ zAr|3OHkKA9+6dk%Az)z|Nof&pl3T>;q_Io?!FC1YBPthxNC5`NLF#06ep&U~s$bpuUKgpn^17&C3nq|(*%2#@mSi?YHc!^7 z7oDi~?0U8Evrgo}YRA@vh$&LA1Ym$5U@S>Nb7@_iX-{p7J4b3y4k%Me0TfCZLntN| zE|{Z@Lq2=hnJ?mPRTEpSY>+Y)LSs#!61>aOvp1QP*~K=WSH(oTy&^tU-9*;DiW>)@ zFc5Rivu~nbJL$4=A!H2>Q;N)9M}r{+SqNO*r)-KLDN|S}j}~1_JoK?>8#zie$u}Q1 z#dvdZO`L9*dcAj5jb0}#nONF@go-H!Ho+-?f}CwTbnRo+P2u+s0iDO^2jcNm@K7iK zmf|Bi?Kv3bR5Y9zlZ0k|U5t-nVl(Vf(oS0|QH9LGDs2))&?zD9#x&Vn_#;k?)I_6- zA{muT28VGmc}j+JGA3K=^hiwyh1~3@sk^Ta1T^nA#LQ8x>AaWC%7&P%y@yyL810=y zqmqxr+LMpLISJYAORKZmJJ|7db*%Tgdft`P^lUwS_2%ux>kF5!TwCmF?Z4tdylrgf3o-H_+Ki6OjG~> diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 9b466ad73ab10d4c3c97530a696114804be58f9a..e414c8597f4b07305296125e44986167b4d1be10 100644 GIT binary patch delta 234 zcmZ4Tg=5JVjty5h4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4Gf!Ex!PH|7`L->F)=DAq@|=88<-iVrWu+Vm>48lTBMqqTUZzyCK{zC tCmN?FZdcP{YGP6%q^w3^y0sS5(&_oSOudB7l+k1Q%}!XExf#=2W&n4NLp}fi delta 234 zcmZ4Tg=5JVjty5h4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ>Rhx!PH|7`L->F)=DAq?%YJr=*&jrkIZdcP{YGP6%q^w3^y0sS5(&_oSOudB7l+k1Q%}!XExf#=2W&jL)MN|L) diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index c0c799872ffc6ae8be08d8a0d318b5d4377f0932..f49a4ab00bdebbea18001ee31eb3fddf4c596d00 100644 GIT binary patch delta 26514 zcmeI4YpiWoRmZdMK7AmiwAcq0diL(Ml*cWnbIs?PprIwLN#)T8(F9sT=3^}$E%X`) zYGNss4?ap1xPcW7A6gOCB7Oj*s0j)F=3eWZyU*cv z&(9|NHa)%FXPq^lWBmW)KgKwp|JI8>|E(8&_6yHx-u?b~f41+x?mCHh}URQmnyzbS%%=Q3R(}ud6;(UU$Wt zUU%`*3#VJ7UF%JwrBki%tkk*lF^JZhyn0>jp(n1p_r2FFqfcG(z2sN|FOZmq&b;PpuRi+mjZb{zYo9!^)LL2Hdg&XlwdkY|I)@;%j-Al5bE}nBA1W)o z`|Foovea!(GMV0UFLV$#cxhW@MXxo7qQ{M^K2%=kzjMb$C$v8Eo*$aIGws^OU32Dx z|HWbszxBk!-@9ry{{NAkD?fE~=YIA3>|FV|^E~$-Yi}GLyL@(%ZR3azM=773dgAO4 z*|XNPF1A>vX16-!ea5hK?=e!}ML+IY^`WxJTmR?hE?FkoIOm!^n6}X&#ONB~Oe12G zZD&KfI)ds$yl!7#Fnj$)7nr?9is7A?&+Lh|S>Lze#>;2zPkmbsfBwALx6XZhYWUKn zvrEd4u5aE$=YQa~;quF7pE~!wGUUPTU2~rC_Swa+oLFL8U6-3=0@p5E>v1AMX@>zv ziPeouu02$i{F*CgTsu5m5W(o+a*NwczIeT^>vLn1Q(YL}S9xgv@{_X%-O@+X>b~=B z_DOflOGXY^N3FQPx*z9OeTcdJPWP7Ce)pCW-~IA3rq*$?vJGw0xoLckZDTv3I@?H@ z)&65*{+^vBZZCJ8X&F#z<(tqo$tD$Ike#rN8F=hx_djym{E^u*Mx7Kl#w4e?hi&L` zYgE8t;Z*ye$7lck`uRWcY-RZ2D>uyVSX4$I9((JKIORoS_QZn^-ncxeqA{JaD)qV3 zUbMh~w7s#Z!GUMrO^fo@#@@6bUT$=3nO<6Mic zP{3cCj4{9s-l-iPesJfC{iU1#*=$)Gc=)xa=VDnKcX*PghHu_IzkGO?m|wkcS-H?? z!*r9j1xlRFfMnB#)LS>q-Z8)8b8p|dcW0L?7E{yakb4atdTo{DALSFc9ri!_$@!ON zi>NHCh&d#jpG^hHU2Ae1e9WEjpL^ZT7iY`Lm}#|=MZbB#)xiu8e0hG+aN5sbamu{m zwKu)@ttVG!RD6CIc#oqX$!!;{axZ}Bg=l1#YmwlT&sM+TP!NE28&Nn$J z+4dS1ncQe<3kS@$+_c_1rFCOltX07JAV$F?v$CN98`>GfkLQ=}-~74xAI%m$&cXxu z8Ee#C#Bh^nTYQj_UF+0ncz0g7^O@PAGKc6Y-P_tsi2WYf!p;lZwS zN@rk&lLyf_VO)Bv6CR{@*@wtaDd;pG7(IEArR!YO@H5=Lgi?2qNe(e$!yJCwwfnQz z?ff;4X7ixK>8Iz-vNq(nh|^!5UpPE-&-|q~DZ6*X>>{wn0SG9N7FxtE*=Q0sCpNBY z4*Y$Md9NE@<(Q5cUgetRqlQ=8xdX#nRF+kC<@(`{G{0b>9Zu3pn_}m6pSZj_3f1>E zHr^Y#f7b_h9@trMlr}mcV>BHgD+mS*Se|XNUPLwU)D;un0hWDeBhHk7$rB-jpe@^( zAos1xlaY>iR~g(7e|O*f?&{#Td;om7|Ni-+C#KIjJ0_60%cWr^`KM zH6lhKg*GuME!z}Q(#$yZ$vfE#Hv-+#ISauyA}e4s${a*8s+Gxc>2;85yr$JLM`&m_ zk2&1+sU0zV!Om&^$+*>w%j%#{RHeKz>G6u>Xty8W|1DQob_v-=(JhRvjismZ=2 zq*JXCs?`%%LsOd|WNJW5uDRyh!8nMkhS}*6D<`n7jXOFGQ5kp5-hSf)*qc;)Vh!dJ zS4dck>DxwUY05Afm<#Fs_Z>Lb;AWof1e6 z*lH&e--%FG50v88JU9w>xa;h^KwV|v;f;SVfBm8|?h5K&CMROq+SX->-wv>D8F3+m z+T28+Q}4W4nHy}G3*Gn#T8ErrI ziVgdZ{~=UtQ5myb(`Hc_alEDfGR$ATYnoQYzLC9y@q4&=hd=X8@00`vhR43XbL9d1 zU}3m2?7!#aJQxPGRKCLv1}T!7Ope{>ZrhYx50lGHYf~?~EHdP}Nn+$PBR}3ew(BOG zu8g~8azA)+t|C{f z+1~t5XUp2SBiL1j9h%1h?C(82f5GtfFU*%qf=Qf{6J3<}FaD!JZ!b|^U19A9BrLR$ zPG@=%m?DxxRK1Tb#w2tu676JvuI(HbT=q8LZSaATfSl+rC@zfC`yYKXQEYY0)k1bR z4>{cVshy_8b2nW~6e{$dY=)b^O@vB-0!3(LhmC2(lNJw|BLZwwl!|6#>ZeZ;qAn`R z>blWwJ|(M1Xgmh8kG>7C z4G;grfoCNg5-10v#mO7ak_cRKay=RZ`mpu`!S7^xyUrtvN2LO9(o&R{%3z^1DK;_; z*WJ!bN6Xthd^g;W0%f3B- z*~Lbpb?qs=vc;v422w%%QOG`VUT8@d;N+6E_zf{}ltm@oFna$7J~aRR*+aE+J7!rM zFRU_0pRR1)A^267RUl)E@FYS~L=gxbyee4&fNV1w1u_fvX4eH4gUdGt(!$NwDnmd^ z;9!y@H-pfvh67#m!?RsP5yFT}*iHo5=KvcD#9ApQT%A48S2mBGhW`ft7PV0e{GD2d zKk0~tm?TjcD5Y{MBk3PFWA1Ss_qQ^GH1fAcelovdiKg1CMiS6D!fc~REGmR$ zLHtaFuEPZD)_Ln2j;6@Z1mUR81P_RX#0Q%5m>dizO@b0eZn@_M8YeNOjIGC>bf!88 zU~7Yp4yH2Z7{G#sFCPB#;++>fOzYIv4US9Qs1m(m=X{1{l23xku_Z z*djvUy2mBw?7hq+UCPCF1Qu9UCNf5lftwA4atAt#CyoX)dkYF`a1s{S_i)mT{sy%> zmsj}b*<$kq#PF}L+IhpZ8^<2L`1D-9Ods&i01ij6*9C%6u3;b;LLKZ=MD9uP$dX`a ztW-cujV@cj!FR$H-;+iX~H^REOsQK4532DVF-e!z{xe&vv_&o%RID2=+ia zsv?C4p=VLh^pOXR>P2k=Bl=aw=Zz)1SB!5-fZim@{vr!$l6%NqC=no*EH;m?hQEPj4=c0#s|PSU)2^8vy9f+4rlhV5IVS&|DOe#&HIy8o#jNtn5TcFM z86yk;g^!dxU-7HYc3#J@t#U_?DKWK8!|0a7$8MNkxx0B;gLr&?Ls363+|`mGFi4~^ z$e4}zSGIvals(~S_gC@LF3!Fexk#g;(+LGI`PgAxN;M&e;pWG1!lMwA8`qEzG#o!+ zr2_sER5wdivVJ-2lZ!_A1ROVwnhX5B@!HLUEA>o8y`SXXO7K(vlMd#^5{27U%q=!7RO!M!JZ*Ap=8Jy+yC5s08Mg z5OJCV#H$TDlC{d1qX6@+TX&wjU_Mz8Aq94gGNK$DegQEavr_!6oXF{&-QY^4R{<)H zDp52jh*NP2`-f2jyg6c(Z)(TrYTY77}SrRq%w&q#AR+9 zXMx`5hD%QETqlg(bAHY08j?3KPHs=4Vxt5LWJ_FXm=bztx5~0 zbQxsq-jVSm_&aBK%j{4QNZ&eDVn9KGAtf%}kWMQ_ATbWBKygg+)dpWd-nE;DK9Bif zCYB_$q=FbT2@3&U>Nb;{%uj;VXb}<@QNj+2U#O{oI>D72IyogDDr1h;R~d2)m5TK(3-rJmDL2K=TS!Rj34%x&be7V*c#uFz zJ^2H^*F!G}3k&zA8j$n}CR&u0Dc+NX!DY^l%TD%_(vg--1-T6pOCjZhsI@leh}*R> zN8Db)95#1y55+~Tn_Oos`AD2P3=?UKNX3^To!qw$e={Q3XFpRU&`MR^y4lrE>6qD7 zF6q&yYrA*O>?%tG|3|Z1$Y5~iWc$e5>V$TVz=?~^2-F-(9yehOCvc3^bVAEGFkCVr zgpmA9QB56nTPqhkCD?lkKQaul?`N%kEv zEp-SD3u3W72nh60gLR;Z0#X~NFxp{l1}maAGEa}NS<=!#wWfryq|9>%UCbRxJ3TSa z1^L?GQ_1d8wG(~YA}(T!&Otp??9PjW*LI%d3TG*TrGOk+i6ZQ5r0*!5ZFaLXRHgu+UM;W2qiTDd5Zb!42VVoqB1<%lzTWNMgC4TpLhpHHHj5e1~7TB4IQ7( z0;&sRM0yI`U|jQ535mxcr-(v@^b1syvxtU*9gwEy%On(!jBWGCVXBA3iZ%_qDkd0K zG?aY=t*E#nb|sh<)aO|KCQ&6Q1~k**P;g9g0nBVlh7m}VWULJ}eE>Fxuqt|?qOn>B=xyi9$`*plq+K>ti9Lcs*#t{iBC>t%AXG?nzi9Ga9Bo$I5>VRre zEk;czM3O@%xGyD>WPytSk8p|ZGSM_r6lnJ34j_}io*VL6n>w-dohgiTds5UKB*yBN5k3QNTEQ0!23UM9f?v$GfG)cH9^`6X>it)hg z#wu_UB3LH%t42}FiOdD2cVw6-)IVCw0_-DmV04lvmk6dq6jr zn-_*#E}6cMKXk!ItK9=rL{w=XSQj<7%?r=oH8Eb>ZSw+s1l#6?ZS%smd12eUaIDAX zSn^@pyl}qGiK4A+n-{jt3+L}KIm$4%%?r=gHL-18*fuY0n-{jt3)|*}(lD_KO}EVp zQ^&`)d12eUux(zLDyO&23%AX;%?tc`h2^$+;jm$1+q`hBBV*gVFeT0_tpn$;@~;)b zZ<`mya@)LcuIu9<)wkF-FKn9^w#^HN%_hh42ixX_^R!HCn-{jt3#;F0wQXM5+(EEy zURZ3K7Y-UG4vWbyEDb~3=7n>88QbQC@(X?!wbp^shrexJ*fuXrEjP!~^qV?9w#^IE xuQ1!(La=RK*fuY0Y_2(Ka@*#Gsb^x_ys&Lv7=Ho$|DWcC{nz~4g}?c{{{ytrrm6q{ delta 26852 zcmeI4Ys_U=S;upFPA_OLjP^!L-*Y;t1)MUo)?RmNLTg%+a_fa)0&PRqUTbZHA{_&X zm!y>14_=7cI)N?7hnB=Ik{C#pLx>`!A$;(I)*3Mi0ir=78e42p6B7LGz0W&y-gkz* zKl$w>(6n>*IqR~Y%m4p>o@YMyt!qE`t!qF1`Ikw3^1=82+PhqRLNwV#QFO9O=^QJs zqt=yA!k9|v+Q(X|>{NN`yD$6HYnNFSr)|hhm9(+K2bW|p$rhP}5bD&!_x}2-Og(h{ zeOEm7UcbC(#jjMMwyC(_bW^EVH_{oFP~K}k=znhVq3-AEThF^_nLS^2#_23;ZTXF8 z8l8&~F3VW*sSn=!=;Sl2`>uTI<~Q(TmGMd|S*cR2&cgX@ylY~%#TAZx>XCnabT#oz zbE@0gY=BuzwiCmtd!uAgw&zfthJ9Z z>QWbHmGf2wQ}>rP`B1mB2Y&h3z3tLKQ~B?19eMKhQ#btm zAMJnMuiHL(WOnq_RWDw1>h)i}`K(WlJ@t*Re&W0p=WMDHOr=$$o9LnzG3zEZ#kgdX z=+8a*P$_0dz0Jb&eE`0r!eH`sma;0^x#3%CBr=l*T$7x!=OZHNBs*i+BG z$eo488mV1qYO8cpr1y2IYf(vC)%bmPXOAwYp6Skb+yA`c;#FlUDO6GXs?@csBOYQ? z&3h0wDy#b|n|z3$TkG>@Z@Tb&eLPs-zWd0`o+s?~wY4`LnfbFmuG&AjWcIBye|)U{ z%S&e$cVFGUyNA#H!0qjkm(M5n}5P@ z6g4*-ed5v^ohp+=W!BgK0cTm&Q8wJ3FI5$I!;v^GU38*RCfCxI^=CdY|H5p^7b-%m zjE%F}k|c>eWWVf$?reWJ^UBTtc(xi})|K{`zBU)jiFMmAer+z>Z{9OM(!NK`uUZyG zcEj+3%-p%tb=@SDDlJPbQW5K0pPWCqSaQO;=xEuxz%5NwDcev?P*IS!TCV%@mR&Ad z@q_uL>svlM|JZDmMIw=;s*cHPopT_}<~o0|EAKYQZ+_aE)wSMtRrGMl!>Ya?B)lHmZVva*=0hdX}aGxK{F%L$Cp ze)<#hE7m6;o&VPC;fXhAj$$cy-1YW%zWL7EZhzA|Ck!?oe0u8Yj^2M$`}mFXD_0Xo z>uvXj_Rcgve=m4jad@9q3c8LqMvogdMwF0pS>N(xXSKo>-hFKvA(gI5;prMruXBgu zly>ctV*ZmGA0%iO)8K7JMh)JIcpgs)&p(TGYuptd9A7qu_UG=Hzjb=u&IjA?+%dmw zSy|x>88!-$vVPK(TO$F;Cd5lw(>KW=r`_}ziQ=5ioi!#G9bYaU$cJRtyNMlayWLCo&R=!Hy5n}+^Q7$JQLw~l?TW2sNWqW^lnT;%*`4#j#ojnv zZ=e1?asR;TO7q{`8fQC4V|g@@-=B>SdGAxn!0$&gT!WW=H zI7F#K=00jtW6DyO{ai7z2|pNZ9^XMV`T&iIT@XOBPNvdfGnFGF_*n=JpHL-^taczL;_nw$9 zVZ`EirQZF4(`eKQ<(poXg5tudysl+qYB-j*yqkST1c~NsoTgHNM%ja^{c&x(8F=W3t0e{o}%6ff9I0G&<{Q3Wp1{Yy!z4vOz5 zSEnK5KL5;|kgKsXxM)gNYq(snE*B7{C$Xs5Z2966$`nkrsEl>iD#04jCwx3Z#$(39<)Z*xBPq+Tnxq%kI24NvWQiiEHbfy zA&ad1_~N}&-rBzF^Yhi7P>nIUF$h{9Z8%~wPN2<5t4vecBTvJHh652#bIj-k#0y_) zSbpVvQ-R4F&5Js8pe11?RTXxH(95scAUld!Blkk{8@uNDFU(fs%WEsh(fGH+r!CM)o~$hhr_t6D zG;0iy8*!rxL`Vcaw71@~xbmZKSR7eD@j#bChy`9Y%3`e`C?6YDI{-c84558nq8Z;n z9PsINql>rydG(@dpGT!x)l@&~)S%yy?i7(hHKdBB0)qOOof}g85)4uly1%dRHs>X> zSZ*u<5lsoF>aBAtDYmefhWNuf7O4Ed6n1dQaR_ER86U8cRM@B*Iu4TLGi6A?4af{&xShEhj1& zrNjq&@lZ-s_gm>jF25zA<=NLe=cp|3ULbTLffR0 zVYWBEgZ5n; zYhoa;;ICW($`Z%!h2Ir)f)t3Sf^T7yqiETth3yQn?L39BoK}1%(big35^A zs1jA0PS%G0c|lPl9Y}#(q>Qx#F`=VUo(P?>NZItNsvn@!zzruhP`6)y-Qvy5iM9J2 z_-efmMd1sCKijzwcScB8WGzz}WFm^q2cV73m4!iukntN}DsUT<_5e{u$-=I``QqY> zvppp!**NDUY9!d84xNY(BEegjE(!jh5Ca zX+i`XAFWp?wF!)S8R(Wg9~9s=&=YPfDK}8o4Yn@pXMcxNEDfOr=<0zt2*ni2sUM+$ zL>dxm^tY{~x0+bB8nEa1s;M51(HA8yKDIb|Q+3>#Ehb2)Hw_$tA{a~neuGj-4*nJ?xDeS;^{3l3Wtm+j=jKXafB{~tsi(Df) z8$>!#YNHT2C5;wMr+?=Grw*=%Iyt(0?|Rd#_vOLUz6Xj#531+_04N8zehp)9;1`vs zI;nqs!QhPJ8vtvb zsSy78gNvgl+;Qo)oUx*h!BGLC_G5K|0}gGCEeEKC=?!>9OOW9;X0jXCS5!rLrv=7~6S@=tcpV&1`#w0a{s7x3dX8 z1w5!@|D}NnPVQoG#7@T=*~O;(ayl!X5XYt7aztNDgh%6oNO%;OJ%N+5pR)*R=+>Kf zGueW)ofPxLTRZ4m6Lx!u3{G5MwGT>{6X)t6+=dI%42a+-K;Xz});2wdDAADW8oK&A z>xB!#nb7LJ@mccHl8O!`t-$|j+oL2fM54hHrIutRIv6dF!kfs8f`o{vqs~|uPFG+Z za^l3=X>iAhwFfeI#vN&VGYAx!<{wx_16^TdI*E8Mz)!zvGD(%k6{9q@LYHeuYLY^C zNU3W?Bqw$n?%@=&gk>QOO9^>F8-)?)Y-7T)JT0en*%oIecF{MQ$i0b8z}RKm15@7s zKOM~yR9|&4_!k@sme+x~OuFgy!@v1c^j>PGe8?M0D8t%-X6T+lrBW3ll1clmKpX|$ zXG+6+#?=wyG94Rq!||S_+|(i;`^fxLv*q~GJ;?4(GPdf_2-JIFpAN%u@3*`VVojW} zz7z_#02d_eOoLe$Oakv^UwfM9${Td|4Ko~nQ->6p36r%4U3TK?ntdl+O&x11AJWzZ z&7p-k^+ro~300{?heq8P$koQOIz4|$7U}w?8iSoS4t$y;<;8*-2QR|`d`ch(=g|7# zXub(}v#j`ohJubI1eXno-1y@74$R<-n92C+9X>tdi=OruN-e_D@C6!Y2!R%7^U+1*&ou6cP(=U4Us_w)px^INcD|~w5p)d-}&tP%ELamgmF@Y zq_E)xb$pScLuLdbkP>MD5Q81ub;06Ov%T>h4C1JDBRinsZy;4&KHQ^_ml`VB)R5p( ziZ*VV=eu${|4U~5#qV>TC4@H-L2?&H2#&t%WFrw~q#Bxw&Mo#XZ6g}+Hp3i56Y5hj z)A3i+)eJfyLT@9~@lE7SY?;`_M)EzK8(-^>8@rVosXfDo1>F&-giZD+_gya*|6wVB z_EodK6Y9FrrtFqJ;VU+6Z4+T3L07~C1I*!4#?kbBvQ8u0u; z?>}jRUhXd3yMZgNXgwzir-~{RRIzKLvH!wUJ(^y0Oc*%q)vT(iw0e| zC|ysGkTcCR%Zau7Y6bH|qf2*fLE=F5zLL3NkfEaKB7(_iM#0QVL}~JsEO|Il=UrW0 z8z9uRX@fTdWwZeH44LT}e>jKi(QXBmp`nO+q`+v&AxsQ8Iy?=wGSrO+-E?C8jo>)3 z{w9(1jFBip#mB0y9fHOeDh%B~P}eHYYzxCFgKR@Z30X%mz`@W8UBMlTfPPU}V&bQc zw6)Pvcvg@x=vflDP7hmGnZyrLlaL8AO|x2<;aq)?Sx)R?$n_JO*yMWr@!Hn?@8a?k z)*jafv>QiDBHM?O0{|Eup~tIhJ4Bvfgdhz1^dRC-4L5AlMl{H=*LR2rj$82Iwwj46 z>=A1x;9NI)wD$34apOlGKL7FEfW>aWVmDwhG7)sB@Ua`PI6Tvrqy8(;+uC|H! zhK-uC8?gA;Y&T%BKX$(xuoxTg*bP|h1}t_17P|q9-GIf98tK>#SZvRvoUY#Q1}t_1 z7P|q9bIrmWsx#~cEXL+Lh6c9D@s2~CGrIwc-GIgLmqG0YEOrAH=N$0Z4Ondc3Yu>0 za5rGl502~xEOrAHy8(;Se0gLUw)p|EzF*fC~8?ZQg sJY_dv(f=jv69W#r0gJ6Jq2=B{=#{rA=>;L(JU%ll20IcT@A^-pY diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 0a0cecdfd55c6643c65691cae6415ab8b3f11d4a..2054f06b73ab3d2cdb00b9f201cea672dd777324 100644 GIT binary patch delta 62 zcmZ23wOndLBBNn$SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvH=1GiGxdB~^5`+K% diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 3f654a523986e98144427532eb5ceb81e5ad3611..a29589b35fb7714325a5c4d43ee330d3de27b73c 100644 GIT binary patch delta 223 zcmbQWjeXWO_6_?u4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4Gf##b8dgn$@u4hLUNLUsbyMnvO%h`rHO@sNusG~in+0AnsJ(Ws+ozg j<#z7Vj1!p%E8BCH(S(tpvgHEj894~5+HP>2@f9-wl(9ov delta 223 zcmbQWjeXWO_6_?u4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ>T7b8dgn$@u4hf~iq*Qld#>igBvBp-HlVrDbYjvazWp5SdyUr6rqg i=RVCik%_RfJ!ctB7zrv{E^wZagP^MI2G<#1F#`Z@+e3%| diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 34311077b593946576da5ef4f74878c34f7a8054..4a44fc91073284ab1685045aed0d2d3231940bbe 100644 GIT binary patch delta 610 zcmex8i}Uv^&J8;_4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4GcHGeB;D86_thWU}xlXC&sOr^dt=Wag;@B_{X3l%AZIF3A*AJN=>>lgwnR zj3}CzEH=HMl96-r?#yPOFXbl7=g2^UWLCD+i%lO?i6CU44;b%Jb*)o&2 zWD8H$$u=cJTeE-8cK;kkuZs$n$)={MrY6QoDV8QCsTOHTX_iSzNhYaADaI)VX(`Fu gciJ*dWFo9A%Yn&+k+8CTj!ehd2`gLb$#jhw08t^>W&i*H delta 684 zcmex8i}Uv^&J8;_4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ-(j9nWVy*3Q^Y41rpQhX zO;MgKn4&uQMzZwe9mxul%~B*LpGa{dU$aNrxyk)6rCHQ<6x65N?_gAv0I|w4ixXqw z^NV8Qa}$e8Qj3xki&7>xW=aYH<&rZJ^U_me;tMkKz?uR}86_vzrK?VU{z7oFdAi(m zvrMA6a$vFQbsjGU8qXEp=FKpGfkN|V=Riz%e1mXu`XrNT7#N!;CYx>FY0ET`iLkOP2PP9n!pinJG970p LtZb<#(=}!QAJOPf diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 165a37e50b8e727b214bdbaa206c3c292b2557e1..2bd6294ff9a69e8ef627949a9506e39956a8ec4c 100644 GIT binary patch delta 12489 zcmeHNd2C$88PBfgInIW|COC;HAsbTy2|i}#&3kXgbsRgfa}bi))E)viPfn2M?uZAei6D2+r3YJt*{OI0bY5OntK^X$P^ zTd9aD)mpMN?|a|O@Avz@`R3T&KOe5RaJXXhXOrgL)n{#U^uDdNssR~PiEX&H!z_#} z$3V8LS-Pb&!!RA@5f^F@)jBb|r?w~7+iknUJBljrn-zIrRwN|;!|_>>qPD+>Cd7L} zz`K4ByOdh(-LZbyZpXI4s_6Br+cRw_hYjbjsX1&UhfPbj4aWLW4q)Gw;TY@3IsANE zmYyn(^7Cz3em=zvKM@<> znC0m6&Tx$N`?f4UEuk;V&$ngy={fv-+hCTXk;BoqW%bL9nPBxYMs8R*lg5$VsB8k8$HNn!DQhjA%wus|9ab1*Y=B8ldpkZ7?JK&1iq}&CGNo zBIEAs9dKO$y2k-)f@Wi_WHrl`_$O*XV`>z{pI8c}@frxO4|=`tjt7#DK(HXN?)BsV zFM6OZuzu`;`9bq2lDJQOS>m?gbcL9Q)+H#bLgCU*aNQ)So$pvFSokmYcY>M0n4_Jb zB}EnUp{8W-8-w>vn9b%RAIr8+;pMJOGa2W|>f zoR}wjl{KUXMNbB$s{zanTn{(MB<H`Z>6pbVaDXg+@ns1KSS z-vXL4h7q9|2fIhI8(AjVon4kvJ|yEYa4Tp^JKipEEI|31m(@fDKG8!IH2=l97pZCfc}mfbIFKh!F%XYQBahgv20o2{TJ z2+B{sDtE)7Hn23Xo@|q7&psfPcibks)jtRpr^QlDt{7LWl2!iNgA(|$RTB8rDmlW@ zha_;x!xDIGwFDk{SOT}Lk=?2v$p9uv;7`^_;HtF}_@1>A_@%XSgs1mQ;D79wz{hWw zz)w6Xj0g0)Rq^H z!sQ})@yb3P<~SPXI>qKX#AcjfgCp#xPq2l{#rWyIaJdKyyKuR%c;Rw!v~anQ2aLky zBJmLnFI+APmy5#X!Y_rw<-)(k^8eN4A}%f$W8p~}p$uJN@`f|j($Z$Al6OqOq9 z12=yVp25E{3|41Y%iayo)W6?q3ht=;KQ7{>iBQp z0p)yjYth8d3$3@JOyun|%-Bo({2xG7PI;7fya!4?Pr&$|zkmHOwi zT*#Tl$L!FgczvI;Fg#^*PrGAwZ*AY))6?rlqlxzLsh7+7q0^y~2&}=XftVf<-<6yW zm5XP@42)R>k3VCLAW9>ue8vnJFhcz2Nuocb3>uN)v3I|~8=J#`&lplB4i~?2bVYfO_vacO%1B1YS_9#OanXO`?435De>R`MtLL@bq!3Y*v>Sh zo5WRZ3pu*!YFO1AN4FSC`p*BM@_HyQJb&%l;uZPP(d^<{zI{erD9%^V9>pC-SiU`yYbCE4pLr;aC!yMc6Ir6TbE8xd(DBl&DY*Vba zo<}Xrh{up+Ku0wVU3Y9()pRSVN%((1l$Qd3>xN<&&C5V&s*7UJaUj$M8nK9Dc+@1G z#V}D-C=%qU@nm{DZwJeia1~NTUB+xT8#vD}_ z;ygxOji$@VMkIw266n#x2;xyZ4J z?Hb7p2L;Gf3u>lmLe~@bti*(2h#E{xb0{jp6JIhXid7Wg??N;4peO4uFL6qzF%dGw-ID2|wuuc1cD1CWWc}r%kesl28Tj?bu#Qv;HG{Z@s6UH|1p@V{4um4os;xW3bBV=lYKS6qMNLs;*;WoY*cM*MA;>|*5d)b>qqYm7sBo;gYPy_! z6q0iCG8nJFIY?(}ji#j)pjZU3=7{);UnderEZ(9ZAvK_e#iS9RE(Rj8xTxr+<7n71 z2}0O}s^*D3Lq$yd#?cDa^<)9&%U5Pe<(sfs-g$zTD8Q!6il@!YBa63PRF3A|fdcV` v4Y05Q{+m6xumNTs9ts;^VFN5|fO!rqSzB736I+(|XSe}wh`*;7hbsOBy)=9b delta 13561 zcmeHNdu$xV8Rwi?J2oQkK#XF1PJoicKF{pV?(78Hu@gHF^0M%UwNH{>M}0!@n%8$KBE12k$3lEp%)60p z)-9;2GQ_5Cm`JgS;?&wvtGBi{+Sg+_gWE?qa47VEJHEcFXzznWLbJj z4n0qnrH2!GH>P>acC7~y$#b4PzaA{jijAJmJD^Q+$g=c2idlM|EKAR$n4!mG;|a4A zJ>D6L(SA>srKcwR%hK~?S$bLyJx>JZ#W&byPGT=_ z1PwtghC0B)V7ROUEDnYzJHXOlc(ntp3Wke1!TMnMlTL7NFpSOu^Mhfl0agUV@ztO| z7(P)g6t{3sj`f4EOspmFYr+lj`ei za9aSn*9NPDVPmaeRpki$^R=KcWd*Tgi@+@`0>SiP)yGaUkZcHoxq)<_D-68ig4u!e z3m41@hNqFhefEBV+a{-bD6`Po1Z9PLxTp)hQ+m~Yx7NL^M0scI}pbz?!Qb2C_wq`FxwyRuo73ECo-T~tK~UfCi-(5~??C4$BF2Ly`>U9jlX!JL%Km|b(Y%dM1y+_w$f z5rACL!Q3-o?go>UA&v4{kU6X;q`7| zW8C)igs6T(xPCGr&ute?wV_Usc(zU$xKt-dT<8JwQ=V#UWHa}4s2A0f^zn|;%zw4 z1{MX!5(>KEtnC+Z0b4z+`Uc!kE|0Go;V6tutoQQJF^bZX-92w;V4`#{EJui@i52H zIM*pQ*C96J3>zF_zj}f#TrQHQ`@-cSXzaq}!eWKX#p%N3LL4v(my5(lFsyL7C|oWI zmkX~I3YQE2^YL%%auMg3i*rS#NJX}V4aH__o&qgtk3V_}oWD`b!Uksitf+!LGYD2? zNXP%asFK}s9K_O=o;nWX)MNae<6y_a%BrFpZm8?-aT>~MYGf$m8c1toEsV%)D9^@_ zJ@76tZ$~JCRQ}%|NLM3>(g=e5H&dXqs!L!_5kd@p1YTu-c@NZ%O_>Sbg&<+i{SM4# z+b)7J-wJ98`{DawYv_J9?gRc&Pl{W@#nr6hLonfA^Yh{dpgG~^GarIabGf*j4R0A$ za{Y16l#k=N`wwRAaxQQ5s^eWH8;*C4U;B-q#Si`od^(vO_;aYF^!uCC&<%;7_~DRb z6@^XNq`HDJ(QFM<+0YfFP}{_cK{0lq!)^l7!Ms}WGeDZr#qRBqCJhelEM@h4z^1O1 z=CJk$qzQv(4^LvVP|-|wI{Eb3tk6vMdGhHj`|+cVj-sfTiQMk!KQ1Q(UF zz8%s;c47xttR9@4FnKHcb>eB?#wmm62FCi5seRG}Hjn>FDMb^arxT)CyMuL|-CXpC zgy{39C$rD`qz2ZwF;o(NuUl#l{qK4b=bjucirGfbmX2O4+T(=7n|eFE$4$MxeNGt+ zdp|HDD+E!^fAapW>fzHUIgKchWtu%LC#Pi1co=yUK)_5Ft{Z&noWFAy15YOaQHe0dOSO~NBV&m==M}e zw|h0+-tkQp_1y_S|E;2qL-wT79mbQT~hC1O4UG9pERh62m=GYpw9BN|AwOqy>naD1^Cjs{6yV4kTVnm9wIn##jv9g|4mMBi8tu1oIQ(E<$$xW$vP( zsjlqGJmQpdH;BnILS0+tM6U$b*i}@J&F6Je~UA(Ur=@CWQw4=6n!?b<-s>9PvjaQ5U zsixV4mz-_r-alKl6b%uT9s32pp+s*h9veSbQM?4?z2W$7*Qmuev6;6Qzs@3R@klIR zKBsXai(1!pEM4B*vZNzVd25;4`2sm@LpA%=8`8~{`8+-Pnsmo>FDABa$_63GaBT(4 z2%DHHn&I$BC34K*&!x%fA#pU`d5!^zO$|&`SC=*3+!}8Ujkq#&;$GK=UEQ>7Oiie1 z1oKLvs-mep?<#@Fc2vjDIB(mxL*cJyK#||K`GC{<)^$yyYo-bfUB(tKRLa|yCho4- zbrtLeMQzG9-<&kZP%XYGxR9FMePk#O|Io)$_}23EeT#|iDyoek!VcyaBVBbZP1amQ zp8xN_s(%KQHZX%s%o1CbxhmVOviVzQq}opMRikk zdA1Cb7=}g+oo~lba}7k}yx?C6g$egxu{8u8sB&Y9=|borXsfb;FeGw@CwYK9Px9e1 zUViH#BoU3KbtezG3Kd;b73lKUhHenvrΚrbt|BuJaBSV-kbOV diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 647139408b11d31e21cb656cb69bbde70938b560..da24732e388756ea34fe9773556fb80c5dd0d033 100644 GIT binary patch delta 236 zcmdnlFS4^=WWyd#!`!l@oD{RNY<**M14{#AlVtPMBz=Rl6w^e5RFh;gV`Gz)L?a86L=zJui(~^+QzHYD zB#Xo(L*o>47p{_71X3aPXi-!Dfw-wf&>{#o(jo#kN$1U*kuiw74(9O|58mN>&gXo7ocF$6 z-Z@&{`PIsH`Nm>=J=?|C=CuO?jmediDJmJWlc|_!qb27;riuj&$n&=zn7MLm`{ISp z=YTOorD_qqL$8r^tvT9?ii$t~(dX|qi>|<>-?w#GlMSG~Rkk1!1j^1??d{LR*+EyO)8vwpx*}>`Tz0iUkWwe5 zlh>2lKfV(`585-_en%W?cb~Z^{LqsDC8aT>cv^DNY39axu!MF~K^bR`XpeLiVfI#p6h1 zq{sc*zPd2~_L13Br{=oZqREsRm1PZKGBRWzjYl0zRUT^|&vQqE4R4KWcaK(o5+4kf zTFlLI?}LY5I(F#!XP$lTSWB^YSGRUJdt|QvdR6T0n&4Qr`yN}{gRdq@3{@%@G1uUM z-?|#Z)Ec7AUK|?j$Vp{&lp3{5F{$FSa$t=Mtn*!e@){;qu#I#YXemkFD5gs|!#~0h~cFCdwKiu=}OK8pCE!%LHaSj1jRs1r;ZrfkkJHf7hC zz>P7@k6rm>|L%&I>5}HuWSX4H8AA>fTx6qBRz_7>*0;*R`O5TAr4mzRNwa@5Il|&n zw$4C@rz}AKA8i#7@LXL0#)`i^oO?S5?w=U#=pXaR$xpg7e|HA!$FQgl7`&%5H j+I#NalMD3;|LOA6JMLL~oqP27$%SQ@dgN+9HM`>>E+U3RcOo&=$E~27jASAzgaLJz zL6F!yTx4a;LWl?FU<5K6II``c3CgVe2 zjSqc!c~!yY=`-)1a&beJj6pIaYYgO|Jp=&llSI@Kq7PA->#=}t588KCMYK%UHI_R_nJjl<)vTm?J{C<2+pQtK{Jxfg@cYhhFm1Y*-_0R zdFi3|Z(W((x-!^&c`&&4nz*?+__=@fO>tzXY;w*>RNi_}$rDMf$bc%W6Zu~KE*_k8 zABb1)?o=VL#bPkhf=3^7f-IwlXxO;I{Y%^8fr>oGEST64Of|E&=}dLoJ+vst)5h3yMv*wr$ls+WaV!dd}09RDvk4GRsX{; z^~9UMiO&aJ1DyKnp9$HuaQn*UjsA=8#8bnFgvptl5DlP9F+yUm*?C1A}m%NwW#Kvmh`CgFSW&7f-lK(Esz8-MMhV_~g4&$-N~6S*)uLD}b4{*)BrXoN z8)B7FMLlx-m6J!0J@@>JCtKsXzq)mGqZ5bwZbz(j4O%q4mM8n+PvStQZAn^z!2}A( zVimZA>?oQ-8ElxFYi7h@q^hkkMH$Wz0|W$$bqp|TA`SD~n)`4%oHlaZSkr^6wx*b< zL&_3B+6e#hVY82!4;vlKh|PW2#ZXG*lBC7}XhKl3nk6t{)Vk!jK&;b1taPgT1SD`> zELJlsmvr#Vq|)B#vW?Z6J|tN*WW}U|LSoH zR7s2Lq=`Ob(!yOdAsUiitt+=+LRDg{dr}2ebB&NZ7nY!@MvVhq7I#c5arR8u5^BG# zTC=*px^aDF&x8*T|C<%gJ$T~};rhoX;+|zLE^~32i_2V`{>v`@pDuIpA6dN2#s5Jr oPHHZWSJuWa9K37x>>N0|Ri5!5?>u(;?ACaF<&kUSmC?b!04XuPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp jk}MLF42@IFjZ>Q$x!M`I7=f4xh?#+yWjiAmYxoiXsx}wN diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 71eddd9d65e6cc796c87385be9defb574f390b89..c7181e247a9590673a67f35c26c04fb2845c51cd 100644 GIT binary patch delta 238 zcmZ2@jd$TS-VFyh4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4GfzuPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ>RHa<+fuWCUWS?H@UrB|Q|lRq!^?nTcnsI vnOG#7n^|tx3Sw?zQX-_RMq#>r5cAUM#i7i-gw0e4WB$xeSebDg^E(~@$f`)h diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 2f6c69fe56a1e6ee567f77d1aeb3e6e150f947ea..0e584f3841a7060f8621309651401624674216ac 100644 GIT binary patch delta 62 zcmaDW@m69(AfsV!SyE1lSy{HevAKbzfw4)ld1`WsWs;F$Qi{1@a;j;PS(2Hhxp`uW RWtvH<|fA1TmX8~6F~p~ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 87311552d3abfb15bb36f7f410e718da9f4dab90..e019a9e5e55127e997e1dd1270914694bbf467d3 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# c6H_eHOi~R@4Gf##a<;$aWZeFilc|#r0J3x#jsO4v delta 72 zcmeyif#cf-jtzS_4NVI2i>uPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp ck}MLF42@IFjZ>T7a<;$aWZeFilc|#r0HSRe7ytkO diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 1c650c04e23bdd0da21605d29538181eb10a7333..782faccbf7c1e6548be4c48de8e8a7532cc174a3 100644 GIT binary patch delta 238 zcmexAh2{SgmJOFUZF9?#a#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4Gi^D@{^18i}Op1l2a!aGHY$NOcsVrZ0_WMOG) yk&>2XWS(e}W?^EvIrCQ&lM*3SH42mKel4B6>2EJ#1LOZaVkf9-dmuPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ^hg@{^18i}Op1l2a!aGHY$NsmUgrGk-NPDG^dtqcFMd*V4(G{`L|!F#g{oc7m$5C$cfhu>b(VuPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp ck}MLF42@IFjZ>RHa<+fuWZeFdlWB=00DCGIx&QzG diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index f93569c2cc21d7b66021e3c5ca67b9e850c16a3d..0974b495e6e5afb89083a3fdda9f14be0b0c6a3f 100644 GIT binary patch delta 2389 zcmeHI&x@5+819vu(^SR`jk<7gKQ9#o7w`G~!v+Upqyj|=WYn1Kyyr(VjMmtggfLUN zY0*g19XYf})CdZtk|DmO5VX;St7sYh2T3azf@iMILNdOsi}@CZvv|(?KF@j1^L}@4 zZvOY?=GJFVUl_XHx;9KtoW|opou2D)O)TNU>*#|;MlopWqeO+uYVCqeA`(gH>fghM zrr`bl4{ox{UO9g1H9~e1(yf%BN*l#@F*$pxw=n(ecyIorxMyW%XnJL4ba`-K`~Mv1 zx9}7ArayYM+u!FW#@P6OYxXbs9r^sLFw~4Y15^E<+@8+k$_%Kja~i-N+imrB_-?#1 zQCg=H(JBgIJR*^X2+4$_Tt_YYUtd1k2wD|a{+!;n{7gJCKjRi=7gqW!7Y={_)ZqJd zCtRGYto4#xtE^E{$b^p2L>X6T1don}`maeiyQvxW`5Pdh5tjdW6MnBEl7Jiy(_V|j z4GN^zQlx}Nt3;|tBYe=Rv=P>MO}H&P6NObwDI=+u!AccqF0dEtcTd8X(55b6ay*qq z3Uti!5E)t|JZXwLpPYiRd~X4^)xCr88?+lJOGh15K>sx6(esnm8_aFHl2k2Pq5R=cv3Jdeb6NmWo>nF3_!xd^Hlrz5pI zCd$hzRCeHMF7jJ>;wTK)^GD!YXgBc4y(OTHEdH5;m)GplyBM?kUoUf_v$)u;IwCMz zEFfjX(6t$4Oz}-3Q{HP{V))RvhC~iT=5yy@OMPP&7U9zd^GK((e(T_oWBU(G?%j8+ z;RWNP=%!ojOn3990NdLQ($@UGwh_pUKyC!mKQV!Pr#|o%+!|{9o7THCOuTR(_=}&; delta 2402 zcmeHIOKVkE6n07K3sg!m3W7OYsROx9);@dfS4|C+TQHy~f>aAZ_tOYIqF15#tU6F^ zN(VP`P()G5Kq(YS<<1Ko)D9eq6Tv@FC>@A1w>OFkku!3ZGum*zwa)i_Ykg<`|7g+6 zM~nJ?`t0h02YtUSWi)Z5eR98YLzsfF7|Bb{DcDkzB`UQ?Axb2ttz$eW9%r5}-Ss_; zca&{?#Wox~z6tSb#Ad-zNKs172Bki5e5gIPYv$9Y}K5w&JBMOc6Yw9o7d0zzQ^t@tsZXfJ~MxZyTb)( z<`YL3qcp^W(_A=jq~VThrvi2+Z(pbd%?#doGS+`JPA}*^lS|^EiE-OL(4Oi{JzNVn zTLp!foo1+Fc3T8xB@@z<=OJhrOW%Fkf(r{9b+FS#^=}KNtHu`irM74FcnkbhIOYX9 zBb_uc54?27YVFV|O&+yN-RCFZa9<&f=ERjP1+&Do)P~Sl&J5E?T$?JxzUb~g3O_@k z6RO-MC2z6>vYJxVIuUoIH7VZ1RxjGn-)*+xPZ+4-P%S?JyXqO7+X*8DGHEb7htVSu zCu?LvFN2jvDi`0%VR_MwPd3jsk`7t5NF;p_6v=qwW-0DF4Sm)2Q?R0Y>mpps!US@O zo-rx2j*zV2MoDXfFewS9W=+Ud_hF!hNW}uMqLxP1G*sO?3+oGVPGqCKB86n4FfyMx zF-1Z;!&P^7PKL`8Wf{xNjG|-)F)5ovTv}xMW5P1H)Qp0+4oRERCeN&AM6cs-y?9Sp zEs<*DS-_%}M^D)wm!LVwO0(_T{KsgVInyi}Hdrqc2@KAYOhy|UqV^?~!sX=?Z* za+dM$lW+yj)s3x@KRdc(&)#j@TiOToiAEMCi6$mS7Rd&trbY%P UNfwDohQ=x8#;KdL8MpfZ0F`zVp8x;= diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index cc5cf1f54ce01be3d2c453ee05256a145a750da8..e6d83059fb498edbc70c0ef9c7ddeb7bd656e208 100644 GIT binary patch delta 224 zcmX@|fbGZwwhdc24Rgzqa#GC7vh|J44J-|eO_I%1lT$2{j0}@f%ng%MO_R)$%q-2# z6H_eHOi~R@4Gf!~a&CXh$;dHX!93N}FvZL?F(uK`+$7E1Aj!JPIkh|?yOuPjlk^SJQcM#KQcaT0jEzlF5{)cO5=~5uERqdOO^pmp zk}MLF42@IFjZ>SSa&CXh$;dHX!8kG5$Rf!i)g;X<4X83T$t=mj#4Op|&^$54#M0Ps hJMTiqCMLql)-Pr>VI-`Kc`4&gcEZZ;tYOSx1^{Q!Ln#0N diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index cadb4401d9ecd92940be209e92baeffe8c34b43a..3056ebf85c92b96af7f86e17efffa09533f7efc5 100644 GIT binary patch delta 7671 zcmeHLO^lso70%UBS^+_sPLa-c@5ewfrX%zIob&!jw8qGS1W;Ji7$EKY8;K}1LQNM9 z3JW8QQxHdlDy)(%jBYih6Z<>=dlXt%JKJPit z^PDsLH!ttsy!`e%$L04f#TT-<^xZveg%_HVEh+n`WXx8k!qG(Itqs{%DuRW4egF7R z_K!~xA47Z`v4Qvm;**Hm5XTVXnNJ~ZN8Ew96Y*)pU5L98pFw;UaSvh>aRRZ0IElCy z@j1kOh*R_Z6_H4e@3!MD!#F_`hW@K&Xel+IV{f=q0cvDT@@ zw_aHU>0@*< z#9B*XOF=lNomTh{YhlJ84%c7m?wR*L>~2i@M)o?)9-BVVOgy}Qu5-PO$+4^|$l%CI zytz!NXyr97qKlm)@Ao&RXpiJl@hRp&MU~)P^hu}^gEV2d`19_>{H?!qzn#qR8I;cG zh*qLdbl@DhC`ovE7Cb)9z4Hq{>V7?G<{qwnrxUYVrB+?T2@P!a`w$Tckmw;wAqG;Zc*O|!~iZZFhxFmWvn>>7YquX2}>P2%$%69wZ6u~F3}Kfn6Z?oX&nBk=+aFyAt-9ILW7oPECg!k#w|vwi;My&pWcbLGlz zzZ11D&Xwe?^CT!oS6S7fE5t+!GkiEf)BW>u_w2^3#cteqbGY``?vDA*Q`0MxR~tpE zJ4pZ7H@|)UiEn)U(Z|oXdiCh(*7NN=w>$jnXWdrcz^BHidGPe&DTER_YL2L~BoRYI zb(4a2DaGEDGQTLMFK$eoMH^Qe@KBVhbe5wK988kcN;O>Hm~IYxm%6R_T@OrOK|ea7 z*wvDaC(1fOeXNR>vMEVgwyPX$-C)VVdg~j|f`hY~bB0L>le{2!Mr311h>%A`c4}GJ zrJ6|P@J|RYwI&uZN*hBesVE}j(YL7V$@$ygn*IiGDhn$_1tbfh!(Aw=Duo4)vm!p| z+eUV^?AvDIMc;yk7of`tvIX@3k4QpTn7rap!7LN1Jdl*$xDlXp)iC%(upkL34LK&w zHCML^MR;3qECjO$y$cf6-bOA zl?!B06ttYmY%KfX>bsDQMX6>DLtIw%y;IXSCa<l~yo3)@_Ki{2x zaKS$I?8%zcozTv~z(6u;02J=BWaKD*OTASoX z&xn*F`;xf&s=x+WOc}1dG(PLX{2IyY@cW0RPxr07!~LJ1ez~s!MrXNw5l*wwLWra*1{kLg0JSnN0W}jJQt!6mtA2Xlqxzv2UVcP~ zFA1^x>?@ExE6FOM9wxcMNv^RtjC8VCj9|4yZ7SIe%miU{?!fUIL**(TTSYv|utxKi zqo-rzJrDWVw_vT<;aI!^ods}AXN!i*8iHxDgFt!XK_7cxN;J%oVFg~Oh0FOM;XDk& z9FC$TRK~O;G0J1g@L)CxQ)CeeOACy5)dpLcmp0f+ytKh6v>>#Z&zP;?2f>As3&SSZ zL|5hzffqM=OUn9GKtdvl4sNci&((VA*+yqqd)HBoi6Vw`%z{;`kd1`#8Ne^hJ{|OK zBQfL$b7(v9qIZAy^z`gZR`$pRMfDgwQjTVv=R+(e7e{7};Sxwhb7V(a4mlK-Pc3ELHpqTEo$?qck0xs`o6E~ z9^HEF=+^-pe!nR=VgS{Vi7wimd^!WhnZrDArdto1heF%0R?8C5+!0w0bz|O*UVdr2Ez&;9l z5O#iXw7vJ4&-I>_icUC+HnFzSIiphai7D%%jUAqOeee5iuj|k4on8Fx!bP3d>UBaQ)Bo2NrKW-~D3N8<8unsIt<5)#yhg zCH@wZ9}Bp+{-gOHW_=@U9d3MmPJK8%t{L8bZhmq2@x9&S!{LkbNBa`8L``!r03NCm zfHak|b~PEJjbBwoafkt3KGuSxh*2rSIV)MButxa-cRaVsN1~%;tWpy>c0tEfW!Av3 zt}0OVt9)9Kr+k`$m-$?JY5oav{xNM{diCNfFC1LEcGw?~7B-Ty!ASsuwaX++a7K`> zWU^blOx=~O?sQlWFMpvsJKT6@e$V38`R>~6yRB*+Ao7!6`ts$czxeqlp1Ry>({=CG z%N@LMIQ;7;^WDCc+F0d>A6~wKKnq#6WEkC*qjo@v7X?rWf?ZtPxH`YG)f0$~U4cWA zEXaa^Y>6&ek}(^{6YBO!q>}UqIpC6X4mPTUrpQ#Z3;^9$x3dCWBW_uOt{Hbs#Py;2 zl2WmZ2V#?K6yAH1PE{|m7Cbd6ZUBhT z&OZ4p#Mru3#pE*hfeHvTMCDGx%|s}W5~fx`U>Z=TA{n9;&U+(`Sf$d6Jf+eMdh`9pmIZ`O!nLjX6{%v_U?T1k+g%NG0%=AHs?|D%8Z9c`9lLZO; z72wUs!*3qxp2eVWdf?%qk9VK$eM0?G3>tT4 zwk~*6im4h5LfOl>f*h`0F&db0IAZWZ%&L@Hi?dWH!~t5kvzQ>4LscLX9Wr>vrWlQk z=x9Q3kQICkxmMt*PaART5^|3o2%-y<7)YboL}`u0OlbfiEps*yIg2Ty6g}p1WozH3 zm`G?}a7O}hlu(P1P(!lJx~$_4&5nU6LRVNC9TG$o3Mq}uGFn>Ut`&I72k1XN@G&snp?bZ9J!=#I&z zJrmvm$W|rSA=c{Pb#D_-f7N3^_O0ZW5;!5!<*G0Sc(Tafcnkt)Wx&8{7Aer}cc@Zk z@(Pv4TnEy{>|tFI+1H$tPAd)cSWl|TBR6MGpf?AB#o3_iM8NI4v+nPhIU6x2`Qt{& zmHZI~Z!LVO7^s9U-m_H@KqpJZOs!T}w1gsKM@gUwHfU_{2E-ndq#+ai2`ug#AIH(# zGe^S}V(QTn0RbfX-kZtwpQiietPhRgWB-c%(?d^i9De<5cd1tiWMVOg;r%fkL#TAX z{*yGuGEq~QlIe@A2{R<*+(PmxgDxmZRf0t+?V1AagCV&@ATYbkk)Wm}sO&TtEJ8yU zn6>|i`MD8z0%9}nF%ZuUfBQ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 056cf538e1fda829cc4cbdc0bd38f24575aa5c8c..6351c4726ef5d054ce83ea839b9e6cab4bbe37dc 100644 GIT binary patch delta 1630 zcmezSnCtjsE|vz?sf-(0j&K_0mL=t+n3ZMg8=D(g8W@`-o2MqHSSA@6CZ(7gCa0Pv znI)N7nwux4Sf-hz8kiawZvM&n+f-hIm4U&gpeWUjOIO#(z{o_`z*5)9T*1)T%GAWl z*kE#iYm|b8sh*{=o}r$RiHVMak%@tUm8nsxft6t*kY#0QVla84g9$g1qR9eo$Mj6~ z%#D1V^otdMATv+FK+mX{iwn~RLj?_x%E`Gwe>maRPQK^sHaWl}LE2Ey(85$l!5C`V zFR}CK{xgB%2u5|k z83NN15+IZBNGDyD^sIX11rNsAj`_oz|4H|L01z# zRE3k=j_K>_>gjqr=@%;iL1vzUfu4b3F&7sW+Y~e`P4$c?e+>V_33tL||6sSt_8tj} zMwWVJCOQhndZv1YAU7C6*g#=Za~%bs8z(D-gtLHDP5$rdGdaz(5vWMd+!tZ7p`IyL zdyN$|Kq@Ccba5XI4`8e#!oy*5s8=>)$K-=vR$TBH0VRrf71U_PogR2m6i)u&7dF}3 zEqrpmj}pb{VvP*GG%>l`FOe0jVDd-5Yow-yhEV_M{;5ptBh>TjBxQjG1C5G=@WT{G zJ()#9(d6C!JftRthc4!dQ!?0Nr(_65jD`xLa4_GTmQX&QbE+>hBLfIbzWZN)@&+lD MR!hdMmP~yc0jD>iivR!s diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 18235ca5f..9660e8c4c 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index e595ac996..8f12b18d3 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 9ed73d61e..96f365a6d 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 2a38619dd..082aad5a2 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 290d2d68e..a6323a6fc 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 1a72cc0e5..2cce8dad7 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 43236d6a2..624ffee91 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 4a0863913..15e6e837c 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 23cfb45bd..f7773bd33 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index fe6e0dd4b..a0a135a40 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index b5d9c7ad8..627ac5c8e 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 5b85852ef..0a42c04eb 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 09816c99e..dabee06ee 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index e7633fa88..84e31edbd 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index c853be875..0e6481870 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index c583fedf7..60ceff194 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index e030a0975..ca01c8f89 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 83e19088d..30df2fc81 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105, 110], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105, 106, 110], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108, 110], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "card_about_to_expir": [89, 96], "getting_spare_card": [89, 96], "visa_or_mastercard": [89, 96], "supported_cards_and_curr": [89, 96], "lost_or_stolen_phon": [89, 96], "card_payment_fee_charg": [89, 96], "change_pin": [89, 96], "beneficiary_not_allow": [89, 96], "apple_pay_or_google_pai": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 97, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105], "039122": 91, "044598": 91, "105": [91, 105, 110], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105, 110], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "020": [93, 98, 101], "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "710": 93, "493": 93, "060": 93, "163": [93, 100, 101], "330": [93, 100, 105], "505": 93, "662": 93, "476": [93, 100], "340": [93, 100], "968": [93, 104], "328": [93, 105], "310": 93, "706": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101, 110], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "009": 97, "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105, 110], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105, 110], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105, 110], "169": [101, 110], "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": 105, "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "110": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "105652681": 106, "68it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "1067": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "7mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108, 110], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105, 110], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105, 106], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108, 110], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 93, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "getting_spare_card": [89, 96], "change_pin": [89, 96], "visa_or_mastercard": [89, 96], "lost_or_stolen_phon": [89, 96], "supported_cards_and_curr": [89, 96], "card_about_to_expir": [89, 96], "beneficiary_not_allow": [89, 96], "card_payment_fee_charg": [89, 96], "apple_pay_or_google_pai": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108, 110], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105, 110], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "049": 93, "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "896": 93, "493": 93, "060": 93, "144": 93, "330": [93, 100, 105], "505": 93, "758": 93, "476": [93, 100], "340": [93, 100], "328": [93, 105], "310": 93, "781": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105, 110], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105, 110], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "153": [97, 100, 105], "110": [97, 105], "111": [97, 103, 108], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": 97, "009": 97, "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105, 110], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105], "169": 101, "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": 105, "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "64167863": 106, "25it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "940": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "72mb": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "2mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index b648c52ba..388c995f2 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:46.905901Z", - "iopub.status.busy": "2024-09-26T16:57:46.905412Z", - "iopub.status.idle": "2024-09-26T16:57:48.220424Z", - "shell.execute_reply": "2024-09-26T16:57:48.219845Z" + "iopub.execute_input": "2024-09-27T13:44:12.200916Z", + "iopub.status.busy": "2024-09-27T13:44:12.200561Z", + "iopub.status.idle": "2024-09-27T13:44:13.479668Z", + "shell.execute_reply": "2024-09-27T13:44:13.479088Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.222820Z", - "iopub.status.busy": "2024-09-26T16:57:48.222253Z", - "iopub.status.idle": "2024-09-26T16:57:48.241708Z", - "shell.execute_reply": "2024-09-26T16:57:48.241070Z" + "iopub.execute_input": "2024-09-27T13:44:13.482034Z", + "iopub.status.busy": "2024-09-27T13:44:13.481452Z", + "iopub.status.idle": "2024-09-27T13:44:13.500047Z", + "shell.execute_reply": "2024-09-27T13:44:13.499596Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.243929Z", - "iopub.status.busy": "2024-09-26T16:57:48.243487Z", - "iopub.status.idle": "2024-09-26T16:57:48.451471Z", - "shell.execute_reply": "2024-09-26T16:57:48.450893Z" + "iopub.execute_input": "2024-09-27T13:44:13.502039Z", + "iopub.status.busy": "2024-09-27T13:44:13.501593Z", + "iopub.status.idle": "2024-09-27T13:44:13.696938Z", + "shell.execute_reply": "2024-09-27T13:44:13.696313Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.483707Z", - "iopub.status.busy": "2024-09-26T16:57:48.483195Z", - "iopub.status.idle": "2024-09-26T16:57:48.487154Z", - "shell.execute_reply": "2024-09-26T16:57:48.486583Z" + "iopub.execute_input": "2024-09-27T13:44:13.729165Z", + "iopub.status.busy": "2024-09-27T13:44:13.728951Z", + "iopub.status.idle": "2024-09-27T13:44:13.732830Z", + "shell.execute_reply": "2024-09-27T13:44:13.732365Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.488961Z", - "iopub.status.busy": "2024-09-26T16:57:48.488621Z", - "iopub.status.idle": "2024-09-26T16:57:48.496919Z", - "shell.execute_reply": "2024-09-26T16:57:48.496323Z" + "iopub.execute_input": "2024-09-27T13:44:13.734478Z", + "iopub.status.busy": "2024-09-27T13:44:13.734300Z", + "iopub.status.idle": "2024-09-27T13:44:13.742648Z", + "shell.execute_reply": "2024-09-27T13:44:13.742221Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.498974Z", - "iopub.status.busy": "2024-09-26T16:57:48.498629Z", - "iopub.status.idle": "2024-09-26T16:57:48.500983Z", - "shell.execute_reply": "2024-09-26T16:57:48.500538Z" + "iopub.execute_input": "2024-09-27T13:44:13.744355Z", + "iopub.status.busy": "2024-09-27T13:44:13.744172Z", + "iopub.status.idle": "2024-09-27T13:44:13.746680Z", + "shell.execute_reply": "2024-09-27T13:44:13.746217Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:48.502678Z", - "iopub.status.busy": "2024-09-26T16:57:48.502341Z", - "iopub.status.idle": "2024-09-26T16:57:49.032323Z", - "shell.execute_reply": "2024-09-26T16:57:49.031807Z" + "iopub.execute_input": "2024-09-27T13:44:13.748214Z", + "iopub.status.busy": "2024-09-27T13:44:13.748042Z", + "iopub.status.idle": "2024-09-27T13:44:14.270554Z", + "shell.execute_reply": "2024-09-27T13:44:14.269884Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:49.034548Z", - "iopub.status.busy": "2024-09-26T16:57:49.034196Z", - "iopub.status.idle": "2024-09-26T16:57:50.968947Z", - "shell.execute_reply": "2024-09-26T16:57:50.968319Z" + "iopub.execute_input": "2024-09-27T13:44:14.272696Z", + "iopub.status.busy": "2024-09-27T13:44:14.272497Z", + "iopub.status.idle": "2024-09-27T13:44:16.167242Z", + "shell.execute_reply": "2024-09-27T13:44:16.166648Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.971511Z", - "iopub.status.busy": "2024-09-26T16:57:50.970708Z", - "iopub.status.idle": "2024-09-26T16:57:50.981203Z", - "shell.execute_reply": "2024-09-26T16:57:50.980707Z" + "iopub.execute_input": "2024-09-27T13:44:16.169775Z", + "iopub.status.busy": "2024-09-27T13:44:16.169000Z", + "iopub.status.idle": "2024-09-27T13:44:16.179484Z", + "shell.execute_reply": "2024-09-27T13:44:16.179037Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.983160Z", - "iopub.status.busy": "2024-09-26T16:57:50.982812Z", - "iopub.status.idle": "2024-09-26T16:57:50.986985Z", - "shell.execute_reply": "2024-09-26T16:57:50.986552Z" + "iopub.execute_input": "2024-09-27T13:44:16.181448Z", + "iopub.status.busy": "2024-09-27T13:44:16.181041Z", + "iopub.status.idle": "2024-09-27T13:44:16.185086Z", + "shell.execute_reply": "2024-09-27T13:44:16.184632Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.988771Z", - "iopub.status.busy": "2024-09-26T16:57:50.988449Z", - "iopub.status.idle": "2024-09-26T16:57:50.996238Z", - "shell.execute_reply": "2024-09-26T16:57:50.995660Z" + "iopub.execute_input": "2024-09-27T13:44:16.186814Z", + "iopub.status.busy": "2024-09-27T13:44:16.186483Z", + "iopub.status.idle": "2024-09-27T13:44:16.194898Z", + "shell.execute_reply": "2024-09-27T13:44:16.194442Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:50.998409Z", - "iopub.status.busy": "2024-09-26T16:57:50.997938Z", - "iopub.status.idle": "2024-09-26T16:57:51.112743Z", - "shell.execute_reply": "2024-09-26T16:57:51.112140Z" + "iopub.execute_input": "2024-09-27T13:44:16.196580Z", + "iopub.status.busy": "2024-09-27T13:44:16.196252Z", + "iopub.status.idle": "2024-09-27T13:44:16.309588Z", + "shell.execute_reply": "2024-09-27T13:44:16.309001Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.114671Z", - "iopub.status.busy": "2024-09-26T16:57:51.114330Z", - "iopub.status.idle": "2024-09-26T16:57:51.117374Z", - "shell.execute_reply": "2024-09-26T16:57:51.116803Z" + "iopub.execute_input": "2024-09-27T13:44:16.311378Z", + "iopub.status.busy": "2024-09-27T13:44:16.311198Z", + "iopub.status.idle": "2024-09-27T13:44:16.314110Z", + "shell.execute_reply": "2024-09-27T13:44:16.313548Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:51.119122Z", - "iopub.status.busy": "2024-09-26T16:57:51.118777Z", - "iopub.status.idle": "2024-09-26T16:57:53.250696Z", - "shell.execute_reply": "2024-09-26T16:57:53.249828Z" + "iopub.execute_input": "2024-09-27T13:44:16.315717Z", + "iopub.status.busy": "2024-09-27T13:44:16.315450Z", + "iopub.status.idle": "2024-09-27T13:44:18.461870Z", + "shell.execute_reply": "2024-09-27T13:44:18.461184Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.253432Z", - "iopub.status.busy": "2024-09-26T16:57:53.252773Z", - "iopub.status.idle": "2024-09-26T16:57:53.264456Z", - "shell.execute_reply": "2024-09-26T16:57:53.263964Z" + "iopub.execute_input": "2024-09-27T13:44:18.464456Z", + "iopub.status.busy": "2024-09-27T13:44:18.463827Z", + "iopub.status.idle": "2024-09-27T13:44:18.475330Z", + "shell.execute_reply": "2024-09-27T13:44:18.474881Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:53.266337Z", - "iopub.status.busy": "2024-09-26T16:57:53.265982Z", - "iopub.status.idle": "2024-09-26T16:57:53.320394Z", - "shell.execute_reply": "2024-09-26T16:57:53.319936Z" + "iopub.execute_input": "2024-09-27T13:44:18.476970Z", + "iopub.status.busy": "2024-09-27T13:44:18.476794Z", + "iopub.status.idle": "2024-09-27T13:44:18.534040Z", + "shell.execute_reply": "2024-09-27T13:44:18.533545Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index c663bca7f..102113368 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -830,7 +830,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}
+Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

@@ -893,43 +893,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1232,7 +1232,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 1b9d62b84..ee987f2db 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:56.582392Z", - "iopub.status.busy": "2024-09-26T16:57:56.581922Z", - "iopub.status.idle": "2024-09-26T16:57:59.568352Z", - "shell.execute_reply": "2024-09-26T16:57:59.567688Z" + "iopub.execute_input": "2024-09-27T13:44:21.818795Z", + "iopub.status.busy": "2024-09-27T13:44:21.818359Z", + "iopub.status.idle": "2024-09-27T13:44:25.172344Z", + "shell.execute_reply": "2024-09-27T13:44:25.171708Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.570666Z", - "iopub.status.busy": "2024-09-26T16:57:59.570348Z", - "iopub.status.idle": "2024-09-26T16:57:59.573999Z", - "shell.execute_reply": "2024-09-26T16:57:59.573434Z" + "iopub.execute_input": "2024-09-27T13:44:25.174634Z", + "iopub.status.busy": "2024-09-27T13:44:25.174327Z", + "iopub.status.idle": "2024-09-27T13:44:25.177811Z", + "shell.execute_reply": "2024-09-27T13:44:25.177332Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.575790Z", - "iopub.status.busy": "2024-09-26T16:57:59.575346Z", - "iopub.status.idle": "2024-09-26T16:57:59.578505Z", - "shell.execute_reply": "2024-09-26T16:57:59.578059Z" + "iopub.execute_input": "2024-09-27T13:44:25.179604Z", + "iopub.status.busy": "2024-09-27T13:44:25.179228Z", + "iopub.status.idle": "2024-09-27T13:44:25.182428Z", + "shell.execute_reply": "2024-09-27T13:44:25.181941Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.580278Z", - "iopub.status.busy": "2024-09-26T16:57:59.579942Z", - "iopub.status.idle": "2024-09-26T16:57:59.637557Z", - "shell.execute_reply": "2024-09-26T16:57:59.636941Z" + "iopub.execute_input": "2024-09-27T13:44:25.183984Z", + "iopub.status.busy": "2024-09-27T13:44:25.183812Z", + "iopub.status.idle": "2024-09-27T13:44:25.249858Z", + "shell.execute_reply": "2024-09-27T13:44:25.249370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.639548Z", - "iopub.status.busy": "2024-09-26T16:57:59.639173Z", - "iopub.status.idle": "2024-09-26T16:57:59.643067Z", - "shell.execute_reply": "2024-09-26T16:57:59.642599Z" + "iopub.execute_input": "2024-09-27T13:44:25.251675Z", + "iopub.status.busy": "2024-09-27T13:44:25.251321Z", + "iopub.status.idle": "2024-09-27T13:44:25.254967Z", + "shell.execute_reply": "2024-09-27T13:44:25.254497Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.644820Z", - "iopub.status.busy": "2024-09-26T16:57:59.644426Z", - "iopub.status.idle": "2024-09-26T16:57:59.648173Z", - "shell.execute_reply": "2024-09-26T16:57:59.647692Z" + "iopub.execute_input": "2024-09-27T13:44:25.256494Z", + "iopub.status.busy": "2024-09-27T13:44:25.256317Z", + "iopub.status.idle": "2024-09-27T13:44:25.259546Z", + "shell.execute_reply": "2024-09-27T13:44:25.259112Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.649862Z", - "iopub.status.busy": "2024-09-26T16:57:59.649584Z", - "iopub.status.idle": "2024-09-26T16:57:59.652681Z", - "shell.execute_reply": "2024-09-26T16:57:59.652224Z" + "iopub.execute_input": "2024-09-27T13:44:25.261161Z", + "iopub.status.busy": "2024-09-27T13:44:25.260831Z", + "iopub.status.idle": "2024-09-27T13:44:25.264077Z", + "shell.execute_reply": "2024-09-27T13:44:25.263614Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.654524Z", - "iopub.status.busy": "2024-09-26T16:57:59.654184Z", - "iopub.status.idle": "2024-09-26T16:57:59.657522Z", - "shell.execute_reply": "2024-09-26T16:57:59.657025Z" + "iopub.execute_input": "2024-09-27T13:44:25.265683Z", + "iopub.status.busy": "2024-09-27T13:44:25.265493Z", + "iopub.status.idle": "2024-09-27T13:44:25.268752Z", + "shell.execute_reply": "2024-09-27T13:44:25.268295Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:57:59.659231Z", - "iopub.status.busy": "2024-09-26T16:57:59.658903Z", - "iopub.status.idle": "2024-09-26T16:58:04.690826Z", - "shell.execute_reply": "2024-09-26T16:58:04.690184Z" + "iopub.execute_input": "2024-09-27T13:44:25.270462Z", + "iopub.status.busy": "2024-09-27T13:44:25.270157Z", + "iopub.status.idle": "2024-09-27T13:44:29.935939Z", + "shell.execute_reply": "2024-09-27T13:44:29.935366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c454eb6f366f411e9e5a792ee1c9e53e", + "model_id": "0b869b8329164886999ca781a3f1f88f", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55fc53367ab44c9d8da2fe8bbced532e", + "model_id": "2f7c87a3feeb43f391ce3706d650c567", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07e2bdd218e347478ce3ef4840fd25cd", + "model_id": "09adcc4cd1544f1ebd40819b4bc61c29", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94557935a2374333b2239085d88eec9a", + "model_id": "4d443bcc5d6f44bb9f778f33e726a41e", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c670a9f65c784a998597204abdd99c6c", + "model_id": "81db904263be418b972cdc74693c1347", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e4bb31413f5b49d5a94609831a4b36f7", + "model_id": "857f6827f751492d8e4455d6dcc779a2", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9cbb0d355e3b4631ab5bde4863e208c9", + "model_id": "dd92079e014444fb8d53b9ecd43d4155", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.693169Z", - "iopub.status.busy": "2024-09-26T16:58:04.692979Z", - "iopub.status.idle": "2024-09-26T16:58:04.696816Z", - "shell.execute_reply": "2024-09-26T16:58:04.696217Z" + "iopub.execute_input": "2024-09-27T13:44:29.938477Z", + "iopub.status.busy": "2024-09-27T13:44:29.938022Z", + "iopub.status.idle": "2024-09-27T13:44:29.941082Z", + "shell.execute_reply": "2024-09-27T13:44:29.940499Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.698945Z", - "iopub.status.busy": "2024-09-26T16:58:04.698555Z", - "iopub.status.idle": "2024-09-26T16:58:04.701698Z", - "shell.execute_reply": "2024-09-26T16:58:04.701079Z" + "iopub.execute_input": "2024-09-27T13:44:29.942910Z", + "iopub.status.busy": "2024-09-27T13:44:29.942537Z", + "iopub.status.idle": "2024-09-27T13:44:29.945282Z", + "shell.execute_reply": "2024-09-27T13:44:29.944823Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:04.703349Z", - "iopub.status.busy": "2024-09-26T16:58:04.703169Z", - "iopub.status.idle": "2024-09-26T16:58:07.638950Z", - "shell.execute_reply": "2024-09-26T16:58:07.638268Z" + "iopub.execute_input": "2024-09-27T13:44:29.947025Z", + "iopub.status.busy": "2024-09-27T13:44:29.946610Z", + "iopub.status.idle": "2024-09-27T13:44:32.703158Z", + "shell.execute_reply": "2024-09-27T13:44:32.702446Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.641750Z", - "iopub.status.busy": "2024-09-26T16:58:07.641028Z", - "iopub.status.idle": "2024-09-26T16:58:07.649310Z", - "shell.execute_reply": "2024-09-26T16:58:07.648709Z" + "iopub.execute_input": "2024-09-27T13:44:32.705934Z", + "iopub.status.busy": "2024-09-27T13:44:32.705115Z", + "iopub.status.idle": "2024-09-27T13:44:32.713403Z", + "shell.execute_reply": "2024-09-27T13:44:32.712933Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.651234Z", - "iopub.status.busy": "2024-09-26T16:58:07.650776Z", - "iopub.status.idle": "2024-09-26T16:58:07.654975Z", - "shell.execute_reply": "2024-09-26T16:58:07.654450Z" + "iopub.execute_input": "2024-09-27T13:44:32.715431Z", + "iopub.status.busy": "2024-09-27T13:44:32.715087Z", + "iopub.status.idle": "2024-09-27T13:44:32.719832Z", + "shell.execute_reply": "2024-09-27T13:44:32.719339Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.656848Z", - "iopub.status.busy": "2024-09-26T16:58:07.656512Z", - "iopub.status.idle": "2024-09-26T16:58:07.659918Z", - "shell.execute_reply": "2024-09-26T16:58:07.659369Z" + "iopub.execute_input": "2024-09-27T13:44:32.721313Z", + "iopub.status.busy": "2024-09-27T13:44:32.721134Z", + "iopub.status.idle": "2024-09-27T13:44:32.724562Z", + "shell.execute_reply": "2024-09-27T13:44:32.724100Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.662038Z", - "iopub.status.busy": "2024-09-26T16:58:07.661635Z", - "iopub.status.idle": "2024-09-26T16:58:07.664815Z", - "shell.execute_reply": "2024-09-26T16:58:07.664344Z" + "iopub.execute_input": "2024-09-27T13:44:32.726129Z", + "iopub.status.busy": "2024-09-27T13:44:32.725939Z", + "iopub.status.idle": "2024-09-27T13:44:32.728884Z", + "shell.execute_reply": "2024-09-27T13:44:32.728424Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.666617Z", - "iopub.status.busy": "2024-09-26T16:58:07.666279Z", - "iopub.status.idle": "2024-09-26T16:58:07.673548Z", - "shell.execute_reply": "2024-09-26T16:58:07.672928Z" + "iopub.execute_input": "2024-09-27T13:44:32.730636Z", + "iopub.status.busy": "2024-09-27T13:44:32.730297Z", + "iopub.status.idle": "2024-09-27T13:44:32.737194Z", + "shell.execute_reply": "2024-09-27T13:44:32.736719Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.675394Z", - "iopub.status.busy": "2024-09-26T16:58:07.675051Z", - "iopub.status.idle": "2024-09-26T16:58:07.909209Z", - "shell.execute_reply": "2024-09-26T16:58:07.908613Z" + "iopub.execute_input": "2024-09-27T13:44:32.739037Z", + "iopub.status.busy": "2024-09-27T13:44:32.738695Z", + "iopub.status.idle": "2024-09-27T13:44:32.967915Z", + "shell.execute_reply": "2024-09-27T13:44:32.967330Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:07.912237Z", - "iopub.status.busy": "2024-09-26T16:58:07.911438Z", - "iopub.status.idle": "2024-09-26T16:58:08.105044Z", - "shell.execute_reply": "2024-09-26T16:58:08.104481Z" + "iopub.execute_input": "2024-09-27T13:44:32.970125Z", + "iopub.status.busy": "2024-09-27T13:44:32.969750Z", + "iopub.status.idle": "2024-09-27T13:44:33.182474Z", + "shell.execute_reply": "2024-09-27T13:44:33.181896Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:08.108440Z", - "iopub.status.busy": "2024-09-26T16:58:08.107647Z", - "iopub.status.idle": "2024-09-26T16:58:08.112497Z", - "shell.execute_reply": "2024-09-26T16:58:08.111965Z" + "iopub.execute_input": "2024-09-27T13:44:33.184797Z", + "iopub.status.busy": "2024-09-27T13:44:33.184365Z", + "iopub.status.idle": "2024-09-27T13:44:33.188436Z", + "shell.execute_reply": "2024-09-27T13:44:33.187921Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03a9fcdeeb9f4795928321d22c20b1f7": { + "0071d1f0936c4bccbd1edaa5a6ae1140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,25 @@ "text_color": null } }, - "03b1560a105349118e85e5322a8057be": { + "01540b61781c4eb58c18e156802a58d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "07d077e0c6b44e658f800f4771886c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1153,38 +1171,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58744c76ca2d4b4bb16b3ba153883f90", + "layout": "IPY_MODEL_a7e8d478c1164e08b3fd282538dc8416", "placeholder": "​", - "style": "IPY_MODEL_71273fc53eab44809f296c757a78d589", + "style": "IPY_MODEL_30c76f3386e144e1a905593cb8a7b12e", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": ".gitattributes: 100%" } }, - "0520794e1ebd4f6c921dfb71f4cffad6": { + "09adcc4cd1544f1ebd40819b4bc61c29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_175e8d16291a4560868859b225cdac46", - "placeholder": "​", - "style": "IPY_MODEL_0854de3c0f4c455889479ae81081bfd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4e4680d87b8463aa7d08f5c6d456285", + "IPY_MODEL_dbef822c740d42df9d83e77b0148c4f4", + "IPY_MODEL_901dbc7b9c464aec8a3cac4e2e14e625" + ], + "layout": "IPY_MODEL_bad51eb444f94a938e31c59e3113684b", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" + "tooltip": null } }, - "0544fbd69b124534b049440d1f3e0d41": { + "0ad90065d8c740b1b5f909e1a0f97c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,25 +1256,7 @@ "width": null } }, - "05c30b39421044298e1e8ac7e138767d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e2bdd218e347478ce3ef4840fd25cd": { + "0b869b8329164886999ca781a3f1f88f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1270,70 +1271,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_768d4093bcd8494385059cb2bfb032bb", - "IPY_MODEL_0f51660866534becbe9d4f34c4c432f3", - "IPY_MODEL_c56505f3a8884fce9a47bbe99c1b9422" + "IPY_MODEL_07d077e0c6b44e658f800f4771886c72", + "IPY_MODEL_5f9b91f66f694d5eb6207514df3f361b", + "IPY_MODEL_801dfb197b9a4fffb3406e9b3339e8a6" ], - "layout": "IPY_MODEL_0c9fa872de1d46889ced023c38691b80", + "layout": "IPY_MODEL_74914279b76946f9b81bbd35eb876eb3", "tabbable": null, "tooltip": null } }, - "0854de3c0f4c455889479ae81081bfd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "08a01d42535f45c1afd47cdd82b5c40e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09070af955a14e1c8557d27f12ad54b3": { + "0bf168d57d974301a816bd335166c3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0c9fa872de1d46889ced023c38691b80": { + "0e1a742f353b4ae592d5e9d4c904dea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1349,25 @@ "width": null } }, - "0f51660866534becbe9d4f34c4c432f3": { + "100942b5144f4805a0308187f29c80ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "103601f7b0dd496689126efcf81dcfd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1402,70 +1383,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf9d5b94bbd24770874e0cc5af1a1615", - "max": 665.0, + "layout": "IPY_MODEL_8b68d00ec9e74aa99b854e1e6e50035f", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a0120faf64f6497691116777e44f77aa", + "style": "IPY_MODEL_839cd742a34841029c4a4e34d5a903fe", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 54245363.0 } }, - "0fed13bb7b7a48d08e8db8513746e242": { - "model_module": "@jupyter-widgets/base", + "13c263d5f8be43648b83c74ed95579a2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80896446ef2545c9bbbc50f05e195a0a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66da8b50d05043dba9d9652587054967", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "16d0ccf5f28d488e93908803a2b4c76d": { + "15162f4480c04b0aa1ed945e710c6f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1472,7 @@ "width": null } }, - "175e8d16291a4560868859b225cdac46": { + "15da45f559dc4baebc98b369b1b1bac9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,80 +1525,7 @@ "width": null } }, - "19015823d41c439e9c231621c87bcc79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a376e53928b43568a37bf5c1034a061", - "placeholder": "​", - "style": "IPY_MODEL_03a9fcdeeb9f4795928321d22c20b1f7", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "1e7e4021c02b427c840f1dde6a12c6b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1ecfcaca36e849409b94d9e2b3a6d2df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22a5fe5ff39e4ca2978a0d5638deed64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "264cad247c01411dbbec2aa09c72f96a": { + "165de584f55f4cc4a61989a56f9b49c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,7 +1578,7 @@ "width": null } }, - "2a376e53928b43568a37bf5c1034a061": { + "2062b55baccc4e66b21d4eaf7516bfb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1750,7 +1631,7 @@ "width": null } }, - "2dc0ab7b03f9425ebd4489c94893df8e": { + "2d58ff6fd7d14ca59a65d5f6fbfa0638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,76 +1684,49 @@ "width": null } }, - "31ac4e398f274fa2884c943b6c5bdf67": { - "model_module": "@jupyter-widgets/base", + "2f7c87a3feeb43f391ce3706d650c567": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c54f7221432415ba2afba64455af817", + "IPY_MODEL_13c263d5f8be43648b83c74ed95579a2", + "IPY_MODEL_b9e3785791cb4f3f85a367cbdffbc2ce" + ], + "layout": "IPY_MODEL_0ad90065d8c740b1b5f909e1a0f97c65", + "tabbable": null, + "tooltip": null } }, - "39ee56051f0c4ee8b154fc79d637ae7f": { + "30c76f3386e144e1a905593cb8a7b12e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a682b5847a0438eb5702f512f795f1c": { + "3305b2d61b3f4915bbc3a70282874455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,15 +1741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d9abfaf1d24260b3f87b1ea0c4209a", + "layout": "IPY_MODEL_91544e5b16174f2e909f6bb9aadf6a74", "placeholder": "​", - "style": "IPY_MODEL_09070af955a14e1c8557d27f12ad54b3", + "style": "IPY_MODEL_48b5e652296a41afabe845a77e1a40c6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 117MB/s]" + "value": " 232k/232k [00:00<00:00, 31.8MB/s]" } }, - "42172bed218f48b48601266fd4b31f94": { + "3731f8d339c84d94a28f11beefec8fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1913,7 +1767,7 @@ "text_color": null } }, - "45f797f62ab84a74bc35ca4a2b3595cc": { + "3e2db40e57e84f2b90bc19d497f69a00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1820,48 @@ "width": null } }, - "55fc53367ab44c9d8da2fe8bbced532e": { + "468ecd46323f48c58c97d2c4190cdfa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7ef1ed37e7949049da1bc6875f2930d", + "placeholder": "​", + "style": "IPY_MODEL_d6c315a338314fa6b05bdb0eb28b15f1", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.08kB/s]" + } + }, + "48b5e652296a41afabe845a77e1a40c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d443bcc5d6f44bb9f778f33e726a41e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1981,16 +1876,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03b1560a105349118e85e5322a8057be", - "IPY_MODEL_c3093ff50e5d4a039d2e953cfd360463", - "IPY_MODEL_0520794e1ebd4f6c921dfb71f4cffad6" + "IPY_MODEL_5af95243387d4a879df020d4e1cb9e2a", + "IPY_MODEL_103601f7b0dd496689126efcf81dcfd7", + "IPY_MODEL_ef4c1ce3b993449bb0aaf04a55c873f3" ], - "layout": "IPY_MODEL_0fed13bb7b7a48d08e8db8513746e242", + "layout": "IPY_MODEL_15162f4480c04b0aa1ed945e710c6f47", "tabbable": null, "tooltip": null } }, - "583111a984204d99b91ecb3dfb37bf0e": { + "4dfef38574554577ab70c1090376620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,7 +1938,108 @@ "width": null } }, - "58744c76ca2d4b4bb16b3ba153883f90": { + "506c7f29cf3d491e9d8df294ae722e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8c2df192a274240a738bf66fe3a221b", + "placeholder": "​", + "style": "IPY_MODEL_b58fdee4702849c092df49b1636d2bad", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 5.61MB/s]" + } + }, + "51d4961d8f8541eb88e2da893fa47eed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56b546e9a9534adb835c7ed1d9aa4667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af95243387d4a879df020d4e1cb9e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_660acb2278724be28796fcec6f69d7bf", + "placeholder": "​", + "style": "IPY_MODEL_92f6f017f752469aac3c5c095c42bb92", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "5c54f7221432415ba2afba64455af817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2062b55baccc4e66b21d4eaf7516bfb2", + "placeholder": "​", + "style": "IPY_MODEL_a62d8b73dd434befa5c8f4700fdebb3a", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "5e1fdc7754424b10af668c3784d1d79b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,7 +2092,7 @@ "width": null } }, - "589d98252cef4f85bf193ba74b4f11d4": { + "5f9b91f66f694d5eb6207514df3f361b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2112,17 +2108,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae489b923a8340a3ba0481c4d1ea261d", - "max": 48.0, + "layout": "IPY_MODEL_2d58ff6fd7d14ca59a65d5f6fbfa0638", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_39ee56051f0c4ee8b154fc79d637ae7f", + "style": "IPY_MODEL_51d4961d8f8541eb88e2da893fa47eed", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 391.0 + } + }, + "62a0b42d5f6c4da2ab47c1a7942d3337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5955dd04859341989c951890a4df5fa5": { + "660acb2278724be28796fcec6f69d7bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,114 +2189,168 @@ "width": null } }, - "5a8d7753d65946d9bba9b5af5477e2f0": { + "66da8b50d05043dba9d9652587054967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dc0ab7b03f9425ebd4489c94893df8e", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6501307f5ce34203ab7fdf2215a08557", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5e53f21879bb44d39a75f785746eb86f": { + "6c15800b0d624e8d81d8abfc85f9254f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d0ccf5f28d488e93908803a2b4c76d", - "placeholder": "​", - "style": "IPY_MODEL_e55810572ac94069938f8aa1d5c89733", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f7b4af5f8fb4207a5fc1453ead1657d": { - "model_module": "@jupyter-widgets/controls", + "70de1cac82cd4800a25b8f67e952ca42": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45f797f62ab84a74bc35ca4a2b3595cc", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22a5fe5ff39e4ca2978a0d5638deed64", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6501307f5ce34203ab7fdf2215a08557": { - "model_module": "@jupyter-widgets/controls", + "74914279b76946f9b81bbd35eb876eb3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "674c5467100e43c3a14efcbbaa694b2f": { + "801dfb197b9a4fffb3406e9b3339e8a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dfef38574554577ab70c1090376620e", + "placeholder": "​", + "style": "IPY_MODEL_b9ab52a5d21a46f397d61d32477dd414", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.9kB/s]" } }, - "67c1114ef93e46e4875c1a36196581fe": { + "80896446ef2545c9bbbc50f05e195a0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2335,7 +2403,31 @@ "width": null } }, - "68665ef2c2d344649a6bb5bef2cd0cf1": { + "81db904263be418b972cdc74693c1347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9202292df4544bb09b34656d6dd33226", + "IPY_MODEL_af6e581b18b24606b3bfcf4f16217c63", + "IPY_MODEL_506c7f29cf3d491e9d8df294ae722e21" + ], + "layout": "IPY_MODEL_b7c7600372e74de589a5cfb229cb8728", + "tabbable": null, + "tooltip": null + } + }, + "839cd742a34841029c4a4e34d5a903fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2351,7 +2443,31 @@ "description_width": "" } }, - "6bffd8a3cc944217923e11e74caa87ed": { + "857f6827f751492d8e4455d6dcc779a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5f1210c6850475f951124e6e276868f", + "IPY_MODEL_b45a54addc1642888759cbcda460b064", + "IPY_MODEL_468ecd46323f48c58c97d2c4190cdfa6" + ], + "layout": "IPY_MODEL_15da45f559dc4baebc98b369b1b1bac9", + "tabbable": null, + "tooltip": null + } + }, + "867d9702d3e54bc588e06b3916ce2240": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,71 +2520,7 @@ "width": null } }, - "6ccf6a21dc3945fbb2d43252f575ef5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5955dd04859341989c951890a4df5fa5", - "placeholder": "​", - "style": "IPY_MODEL_951eb939a72f45bd92ba8792847aa1eb", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "71273fc53eab44809f296c757a78d589": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73f23d2d6373465e9dbad61f9ad06ef4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6fd9b1124fc4d558957370f8075ca1f", - "placeholder": "​", - "style": "IPY_MODEL_78da90f9dba54434957f9d14c8d668ed", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "74470f7ecc834ba8b2c48bdabc27a04d": { + "8b68d00ec9e74aa99b854e1e6e50035f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,7 +2573,7 @@ "width": null } }, - "768d4093bcd8494385059cb2bfb032bb": { + "901dbc7b9c464aec8a3cac4e2e14e625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2536,15 +2588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4d73ac4b9df4def8a36beec9df58011", + "layout": "IPY_MODEL_ec91ee5e87014770a996a744ed36e8f7", "placeholder": "​", - "style": "IPY_MODEL_fb9887fc25ab4f2394962edb6a9502f5", + "style": "IPY_MODEL_01540b61781c4eb58c18e156802a58d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "76eba979f94c468e8d98b7112a0724a5": { + "91544e5b16174f2e909f6bb9aadf6a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2649,30 @@ "width": null } }, - "78da90f9dba54434957f9d14c8d668ed": { + "9202292df4544bb09b34656d6dd33226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12fb1a366134caf8620d9c169f63fb1", + "placeholder": "​", + "style": "IPY_MODEL_62a0b42d5f6c4da2ab47c1a7942d3337", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "92f6f017f752469aac3c5c095c42bb92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2615,7 +2690,7 @@ "text_color": null } }, - "79795d7634484b35a621edac0423512e": { + "9883831e5e574351a71cbc22708f91c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2668,7 +2743,25 @@ "width": null } }, - "7c1143c17f2040eaa6e34bdebb77865d": { + "a62d8b73dd434befa5c8f4700fdebb3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7e8d478c1164e08b3fd282538dc8416": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2814,7 @@ "width": null } }, - "86a1f95ab6d54233a5b9ed9a5716805f": { + "a817cdafff274fccbeaceccbaef0ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2739,112 +2832,215 @@ "text_color": null } }, - "94557935a2374333b2239085d88eec9a": { + "aa4c151e344c4e0abf44676bbc9d2d45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6ccf6a21dc3945fbb2d43252f575ef5a", - "IPY_MODEL_5f7b4af5f8fb4207a5fc1453ead1657d", - "IPY_MODEL_3a682b5847a0438eb5702f512f795f1c" - ], - "layout": "IPY_MODEL_67c1114ef93e46e4875c1a36196581fe", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "951eb939a72f45bd92ba8792847aa1eb": { + "af6e581b18b24606b3bfcf4f16217c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2db40e57e84f2b90bc19d497f69a00", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9bde3a464254c5da9b0c1fbe9a12c90", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "9a1b4b67f4494b1a8782e13d9f96e298": { + "b0459879b52642d29b2816724da7b8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c1143c17f2040eaa6e34bdebb77865d", - "placeholder": "​", - "style": "IPY_MODEL_08a01d42535f45c1afd47cdd82b5c40e", + "layout": "IPY_MODEL_5e1fdc7754424b10af668c3784d1d79b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bf168d57d974301a816bd335166c3e4", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.81MB/s]" + "value": 231508.0 } }, - "9cbb0d355e3b4631ab5bde4863e208c9": { + "b45a54addc1642888759cbcda460b064": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73f23d2d6373465e9dbad61f9ad06ef4", - "IPY_MODEL_e6d0b0f32de440cea180d66631646e9c", - "IPY_MODEL_5e53f21879bb44d39a75f785746eb86f" - ], - "layout": "IPY_MODEL_264cad247c01411dbbec2aa09c72f96a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9883831e5e574351a71cbc22708f91c9", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c15800b0d624e8d81d8abfc85f9254f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "b58fdee4702849c092df49b1636d2bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7c7600372e74de589a5cfb229cb8728": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ab52a5d21a46f397d61d32477dd414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0120faf64f6497691116777e44f77aa": { + "b9e3785791cb4f3f85a367cbdffbc2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb6d77b735c24be98e3a75116bd9d3d1", + "placeholder": "​", + "style": "IPY_MODEL_3731f8d339c84d94a28f11beefec8fc8", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 392kB/s]" } }, - "ae489b923a8340a3ba0481c4d1ea261d": { + "bad51eb444f94a938e31c59e3113684b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +3093,7 @@ "width": null } }, - "b0d9abfaf1d24260b3f87b1ea0c4209a": { + "c12fb1a366134caf8620d9c169f63fb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +3146,7 @@ "width": null } }, - "b4fa9e58d31840ddb31dbe586ab1d95e": { + "c4e4680d87b8463aa7d08f5c6d456285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2965,33 +3161,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_74470f7ecc834ba8b2c48bdabc27a04d", + "layout": "IPY_MODEL_70de1cac82cd4800a25b8f67e952ca42", "placeholder": "​", - "style": "IPY_MODEL_42172bed218f48b48601266fd4b31f94", + "style": "IPY_MODEL_0071d1f0936c4bccbd1edaa5a6ae1140", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b533e592f3a247a29f1370a2808a81e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "config.json: 100%" } }, - "bb320defcbac47aeb8b230aae7ef2e42": { + "c5f1210c6850475f951124e6e276868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3006,15 +3184,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0544fbd69b124534b049440d1f3e0d41", + "layout": "IPY_MODEL_165de584f55f4cc4a61989a56f9b49c5", "placeholder": "​", - "style": "IPY_MODEL_1ecfcaca36e849409b94d9e2b3a6d2df", + "style": "IPY_MODEL_100942b5144f4805a0308187f29c80ec", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 6.88kB/s]" + "value": "tokenizer_config.json: 100%" + } + }, + "d6c315a338314fa6b05bdb0eb28b15f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf9d5b94bbd24770874e0cc5af1a1615": { + "dab9adcd9e7c4d6cadb92cc8fbfee50a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,7 +3263,7 @@ "width": null } }, - "c3093ff50e5d4a039d2e953cfd360463": { + "dbef822c740d42df9d83e77b0148c4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3083,64 +3279,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce20eedd96024e7cb76caa10382b98f3", - "max": 2211.0, + "layout": "IPY_MODEL_0e1a742f353b4ae592d5e9d4c904dea7", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_68665ef2c2d344649a6bb5bef2cd0cf1", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "c454eb6f366f411e9e5a792ee1c9e53e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19015823d41c439e9c231621c87bcc79", - "IPY_MODEL_cbdee891ff404e1c89551209815fe333", - "IPY_MODEL_d47720ed569042059b470abcac870e91" - ], - "layout": "IPY_MODEL_e506b0552dce44f58fe55b55001595e6", - "tabbable": null, - "tooltip": null - } - }, - "c56505f3a8884fce9a47bbe99c1b9422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e836e2ba2e3f4854ac42659a1eeeeade", - "placeholder": "​", - "style": "IPY_MODEL_86a1f95ab6d54233a5b9ed9a5716805f", + "style": "IPY_MODEL_56b546e9a9534adb835c7ed1d9aa4667", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" + "value": 665.0 } }, - "c670a9f65c784a998597204abdd99c6c": { + "dd92079e014444fb8d53b9ecd43d4155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3155,42 +3304,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b4fa9e58d31840ddb31dbe586ab1d95e", - "IPY_MODEL_5a8d7753d65946d9bba9b5af5477e2f0", - "IPY_MODEL_9a1b4b67f4494b1a8782e13d9f96e298" + "IPY_MODEL_f9aa0a5acc2d4c988ab5f6b876ade570", + "IPY_MODEL_b0459879b52642d29b2816724da7b8f2", + "IPY_MODEL_3305b2d61b3f4915bbc3a70282874455" ], - "layout": "IPY_MODEL_31ac4e398f274fa2884c943b6c5bdf67", + "layout": "IPY_MODEL_dab9adcd9e7c4d6cadb92cc8fbfee50a", "tabbable": null, "tooltip": null } }, - "cbdee891ff404e1c89551209815fe333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76eba979f94c468e8d98b7112a0724a5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7e4021c02b427c840f1dde6a12c6b7", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "cd63150bb3a1425c9689cc541dcbf29a": { + "e8c2df192a274240a738bf66fe3a221b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,7 +3366,7 @@ "width": null } }, - "ce20eedd96024e7cb76caa10382b98f3": { + "ec91ee5e87014770a996a744ed36e8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3296,54 +3419,7 @@ "width": null } }, - "d47720ed569042059b470abcac870e91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd63150bb3a1425c9689cc541dcbf29a", - "placeholder": "​", - "style": "IPY_MODEL_05c30b39421044298e1e8ac7e138767d", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 54.7kB/s]" - } - }, - "e4bb31413f5b49d5a94609831a4b36f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e81be626ddb14f05bda0812ebd9f1e69", - "IPY_MODEL_589d98252cef4f85bf193ba74b4f11d4", - "IPY_MODEL_bb320defcbac47aeb8b230aae7ef2e42" - ], - "layout": "IPY_MODEL_6bffd8a3cc944217923e11e74caa87ed", - "tabbable": null, - "tooltip": null - } - }, - "e506b0552dce44f58fe55b55001595e6": { + "ed4314e49f3e423ab3e2f4721f4b9212": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,51 +3472,30 @@ "width": null } }, - "e55810572ac94069938f8aa1d5c89733": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e6d0b0f32de440cea180d66631646e9c": { + "ef4c1ce3b993449bb0aaf04a55c873f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_583111a984204d99b91ecb3dfb37bf0e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_674c5467100e43c3a14efcbbaa694b2f", + "layout": "IPY_MODEL_867d9702d3e54bc588e06b3916ce2240", + "placeholder": "​", + "style": "IPY_MODEL_a817cdafff274fccbeaceccbaef0ae77", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": " 54.2M/54.2M [00:00<00:00, 194MB/s]" } }, - "e6fd9b1124fc4d558957370f8075ca1f": { + "f7ef1ed37e7949049da1bc6875f2930d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3548,7 @@ "width": null } }, - "e81be626ddb14f05bda0812ebd9f1e69": { + "f9aa0a5acc2d4c988ab5f6b876ade570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3508,68 +3563,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79795d7634484b35a621edac0423512e", + "layout": "IPY_MODEL_ed4314e49f3e423ab3e2f4721f4b9212", "placeholder": "​", - "style": "IPY_MODEL_b533e592f3a247a29f1370a2808a81e3", + "style": "IPY_MODEL_aa4c151e344c4e0abf44676bbc9d2d45", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "vocab.txt: 100%" } }, - "e836e2ba2e3f4854ac42659a1eeeeade": { - "model_module": "@jupyter-widgets/base", + "f9bde3a464254c5da9b0c1fbe9a12c90": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4d73ac4b9df4def8a36beec9df58011": { + "fb6d77b735c24be98e3a75116bd9d3d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "fb9887fc25ab4f2394962edb6a9502f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index aa62f6c34..1edf7d4a2 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1360,7 +1360,7 @@

5. Use cleanlab to find label issues -{"state": {"d72d99b3b0104e81845d798e3082b95c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a11de9efd4c4eb1bcdb5e0572a7a6cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27c15cee7b864a8bbb79e8a88cb39b17": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", "tabbable": null, "tooltip": null, "value": 2041.0}}, "a8f57adf102641838fd50c8bbaf3c77e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61e09812f1bc40019dcf1e4e5110b6eb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04b2119cb5c24b1282f4651b60c081db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", "placeholder": "\u200b", "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "24bd633b981f4071bfa481b55e491ae3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01dd619d956847aa997ffce9331c6f7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ef3f35a45534012b74dce3efb231dc3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", "placeholder": "\u200b", "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007448kB/s]"}}, "5f4f61eaf6bf46b098b8abb00a3d84bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "069285b7fcae4a49aa4d8b2a0ec5e1f7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3"], "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", "tabbable": null, "tooltip": null}}, "80b84f6784d245229070cb0b2c51ed60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77d1a086e62d42df9d823e2016fd7a8b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "61dfbe2e6b0f4758ae16a0d955f1c152": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "af1897d6c781491a840fec89717380dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8431f88fd57741c591d760cf54e05437": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37f7257044bd41dc9f107740b3e64070": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", "placeholder": "\u200b", "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "2611ff525a1f41f0b9d0440d5259df6d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1689568cadba4428a3c16e73aec93064": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4fe513d681ba466d900d11c396115fa5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", "placeholder": "\u200b", "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200756.0MB/s]"}}, "3e8e9bbc1d5144968fadad5594c865a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "691c3e35f66d4a8d9767d80f6b85f07d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_37f7257044bd41dc9f107740b3e64070", "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", "IPY_MODEL_4fe513d681ba466d900d11c396115fa5"], "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", "tabbable": null, "tooltip": null}}, "348223f05553429fad2b7618c7dbd29c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a937547234f4e3e8c99c9942633b902": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3521b72379974fbfaa344ab8e0fc15a2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", "tabbable": null, "tooltip": null, "value": 3201.0}}, "bd8ed9c113d64a59aed51794c9f93adb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3c6eb59d32548d28aaf3137df63dd43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c0c0f4c36114fdf9aeb5e0e2108452e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", "placeholder": "\u200b", "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "ec1a41355e7f4d23b1bd5a452a1839f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ead2917d2cb47caa5737a8fe7543902": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "119d581cffd34949a8d48c293a69272b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", "placeholder": "\u200b", "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007827kB/s]"}}, "6b3edac5eedd4e929d87d30168008e9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64a71dc2611f471ea0d375c4aa5cc6a5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", "IPY_MODEL_119d581cffd34949a8d48c293a69272b"], "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", "tabbable": null, "tooltip": null}}, "4aa4c543e9214f93af3a4075231e3d53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22f37e2ccb594a9b9e6d3ed7ba64429d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1bb31cd8192b40ce90db2d1561f184d9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "58a8dcd03ec24652964baa102fc44bba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3061b1986853449599f2d06f2326b1e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ced3b9d2c3be456b90083e8f9057f668": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", "placeholder": "\u200b", "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "5dcab6e3e9b74150a77ee8695ec6f12c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f56a5502560a40e5a983b3bdcefc7a73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9acb79e5c9248618d2fe0e135c9aae1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", "placeholder": "\u200b", "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007137MB/s]"}}, "f95194d703394d719ae03aad8cc8c815": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ab74bd10a8b4e988d838d02d6a7f8f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1"], "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", "tabbable": null, "tooltip": null}}, "d0a44fb871b448adbba43c44b4502169": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1207321f92434ac49c2b3961aa955300": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5614924105cd4430824c54f8fbd620e2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", "tabbable": null, "tooltip": null, "value": 128619.0}}, "ffde30c67f7742f88a8ff28a1b3a78a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c0d8e35a50f4d4eb5c8b76fe80c92a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2105f964155648f587a79823e2dc52df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", "placeholder": "\u200b", "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "e67238f3e71a4da182cad9cfc8a90dbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c46a370402f2481bb9924ac5e9f67307": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55987e4ef9f44c18a42f73fe72df11ac": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", "placeholder": "\u200b", "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.68MB/s]"}}, "0d9c93e26d3641af937b86cb28f1043c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad0fb9aac7a14f05a1580ff6488782c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2105f964155648f587a79823e2dc52df", "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac"], "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2ddcca527ea545e2918701a00e64a4b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f67f2e8fc6e47b182ba7f1089a4c5b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ad8e8630e0ef4330a5851661d05cca2d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", "tabbable": null, "tooltip": null, "value": 2041.0}}, "c486a759402940f1a631675c983d06ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "151e8ca846e44a6e9194a75128fb307e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68af8a48d81e4721b4da3d3dc6a8ef57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", "placeholder": "\u200b", "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "76c50230cb5a4154b63c7afd956c5656": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf5b5193a91d476588d2b32f118e2805": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4be297a9bba4232b2b5d09f2781b53c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", "placeholder": "\u200b", "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007444kB/s]"}}, "5be1b1a4405046d392c0d881cefd9325": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "992b4d56eba94771a314a42397dfaa94": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c"], "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", "tabbable": null, "tooltip": null}}, "2a672c9d548d45dd9723f972d19f5cd5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "949f7d6cad114c68aa53aebedd9ca92e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "571870242b4f43aa8e6e1bdd1628ecae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "a62e67926fe849f384b2c354aa669eb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d61231cf2b94494a8c4901a0f9cfc33b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "168def778e954cfab29445ed86ae3d09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "\u200b", "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "5e9038000b834a668c338ea02511ac69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a33fbac541a5428c8a0d561d886f279f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "accf3e2b636443809c5c8d0b8a6ff5bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", "placeholder": "\u200b", "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007123MB/s]"}}, "2c41fc16193949dabc14c8dea52ea0ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "818535aa611c461389a532d95e7c1934": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_168def778e954cfab29445ed86ae3d09", "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf"], "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", "tabbable": null, "tooltip": null}}, "03f302b33f0f499db69c7ab14a1ca2e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c30d7917105425b986c353f9fee84f6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "668f7d7744d84739b5a00b9fa075e89a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d91d31ef52e240b3a7fbfbdfe4c6ec01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "612eaf97f5134a35b05234006254d4f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c3b53f037b3487a80cffb640af03495": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", "placeholder": "\u200b", "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "47ad7ceb8f4d4fce9cebe4190fd489d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10c368927baf4420969cb6ae68c4e717": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c80c47b2a3c54cf787e88de611551989": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", "placeholder": "\u200b", "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007753kB/s]"}}, "762ccb3a102448568ee60cc41b44dc7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8432060f5fed40438f092ea7936c46c7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c3b53f037b3487a80cffb640af03495", "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", "IPY_MODEL_c80c47b2a3c54cf787e88de611551989"], "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", "tabbable": null, "tooltip": null}}, "d7774cb8b5a24b4fb76f4da281a186e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "782c8b9cb2704b4694519195d9c535d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50977494445c4346b297684613074520": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "e7d4217753f2470494b46b000eb13525": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5863021a6f354713830e74ab4fcfa0a6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6d30e9cda9f43ccac9318d15445f701": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", "placeholder": "\u200b", "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "ac04b000aacb4879bf4e95114361c74e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "936f5441144546599078322a02ea1264": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11915e48f4504281b814613868eca199": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "\u200b", "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007230MB/s]"}}, "e2d39e561781403d9baca72c88e6f3c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c97a8b48d85148af82daab8dd0193369": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", "IPY_MODEL_50977494445c4346b297684613074520", "IPY_MODEL_11915e48f4504281b814613868eca199"], "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, "tooltip": null}}, "4053bae3cf9f4d7c99f6bd1bf8fec47a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0af8aaa092d489583a475dc5f415438": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4a182bf1825140f88b758ae22e5f180c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, "value": 128619.0}}, "c89a331526a94333842b49ad04c7fec9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40c77a336db74f489321f1f6b9e81cf3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a43ca99790144e9a5702ff9b3b2cd34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", "placeholder": "\u200b", "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "b74268b143c3457ea3926c8c5144f8b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8ae14d02947401f8ef065665ec71125": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "018d3e0de5994deeaf61abcc22f7e853": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "\u200b", "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20073.40MB/s]"}}, "9649f71e84fd4f539505e104fdc2b949": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df407e638a9648569ea77312b39b3124": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853"], "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index a5325d72b..4d8b78fd5 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:11.666172Z", - "iopub.status.busy": "2024-09-26T16:58:11.665997Z", - "iopub.status.idle": "2024-09-26T16:58:17.115098Z", - "shell.execute_reply": "2024-09-26T16:58:17.114580Z" + "iopub.execute_input": "2024-09-27T13:44:36.603453Z", + "iopub.status.busy": "2024-09-27T13:44:36.603070Z", + "iopub.status.idle": "2024-09-27T13:44:42.107486Z", + "shell.execute_reply": "2024-09-27T13:44:42.106821Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.117549Z", - "iopub.status.busy": "2024-09-26T16:58:17.116881Z", - "iopub.status.idle": "2024-09-26T16:58:17.120196Z", - "shell.execute_reply": "2024-09-26T16:58:17.119731Z" + "iopub.execute_input": "2024-09-27T13:44:42.109797Z", + "iopub.status.busy": "2024-09-27T13:44:42.109442Z", + "iopub.status.idle": "2024-09-27T13:44:42.112852Z", + "shell.execute_reply": "2024-09-27T13:44:42.112294Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.121809Z", - "iopub.status.busy": "2024-09-26T16:58:17.121619Z", - "iopub.status.idle": "2024-09-26T16:58:17.126367Z", - "shell.execute_reply": "2024-09-26T16:58:17.125801Z" + "iopub.execute_input": "2024-09-27T13:44:42.114568Z", + "iopub.status.busy": "2024-09-27T13:44:42.114269Z", + "iopub.status.idle": "2024-09-27T13:44:42.119040Z", + "shell.execute_reply": "2024-09-27T13:44:42.118475Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:17.128273Z", - "iopub.status.busy": "2024-09-26T16:58:17.127955Z", - "iopub.status.idle": "2024-09-26T16:58:18.305634Z", - "shell.execute_reply": "2024-09-26T16:58:18.304924Z" + "iopub.execute_input": "2024-09-27T13:44:42.120949Z", + "iopub.status.busy": "2024-09-27T13:44:42.120568Z", + "iopub.status.idle": "2024-09-27T13:44:43.941703Z", + "shell.execute_reply": "2024-09-27T13:44:43.940859Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.307831Z", - "iopub.status.busy": "2024-09-26T16:58:18.307625Z", - "iopub.status.idle": "2024-09-26T16:58:18.318649Z", - "shell.execute_reply": "2024-09-26T16:58:18.318056Z" + "iopub.execute_input": "2024-09-27T13:44:43.943941Z", + "iopub.status.busy": "2024-09-27T13:44:43.943720Z", + "iopub.status.idle": "2024-09-27T13:44:43.955413Z", + "shell.execute_reply": "2024-09-27T13:44:43.954952Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.320584Z", - "iopub.status.busy": "2024-09-26T16:58:18.320195Z", - "iopub.status.idle": "2024-09-26T16:58:18.325935Z", - "shell.execute_reply": "2024-09-26T16:58:18.325369Z" + "iopub.execute_input": "2024-09-27T13:44:43.957114Z", + "iopub.status.busy": "2024-09-27T13:44:43.956812Z", + "iopub.status.idle": "2024-09-27T13:44:43.962413Z", + "shell.execute_reply": "2024-09-27T13:44:43.961847Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.327582Z", - "iopub.status.busy": "2024-09-26T16:58:18.327252Z", - "iopub.status.idle": "2024-09-26T16:58:18.797178Z", - "shell.execute_reply": "2024-09-26T16:58:18.796545Z" + "iopub.execute_input": "2024-09-27T13:44:43.964221Z", + "iopub.status.busy": "2024-09-27T13:44:43.963888Z", + "iopub.status.idle": "2024-09-27T13:44:44.422014Z", + "shell.execute_reply": "2024-09-27T13:44:44.421486Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:18.799295Z", - "iopub.status.busy": "2024-09-26T16:58:18.798812Z", - "iopub.status.idle": "2024-09-26T16:58:19.937622Z", - "shell.execute_reply": "2024-09-26T16:58:19.936983Z" + "iopub.execute_input": "2024-09-27T13:44:44.423808Z", + "iopub.status.busy": "2024-09-27T13:44:44.423482Z", + "iopub.status.idle": "2024-09-27T13:44:45.385758Z", + "shell.execute_reply": "2024-09-27T13:44:45.385212Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.939805Z", - "iopub.status.busy": "2024-09-26T16:58:19.939457Z", - "iopub.status.idle": "2024-09-26T16:58:19.957921Z", - "shell.execute_reply": "2024-09-26T16:58:19.957472Z" + "iopub.execute_input": "2024-09-27T13:44:45.387774Z", + "iopub.status.busy": "2024-09-27T13:44:45.387444Z", + "iopub.status.idle": "2024-09-27T13:44:45.405880Z", + "shell.execute_reply": "2024-09-27T13:44:45.405337Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.959708Z", - "iopub.status.busy": "2024-09-26T16:58:19.959373Z", - "iopub.status.idle": "2024-09-26T16:58:19.962455Z", - "shell.execute_reply": "2024-09-26T16:58:19.962003Z" + "iopub.execute_input": "2024-09-27T13:44:45.407707Z", + "iopub.status.busy": "2024-09-27T13:44:45.407368Z", + "iopub.status.idle": "2024-09-27T13:44:45.410436Z", + "shell.execute_reply": "2024-09-27T13:44:45.409969Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:19.964013Z", - "iopub.status.busy": "2024-09-26T16:58:19.963713Z", - "iopub.status.idle": "2024-09-26T16:58:34.705096Z", - "shell.execute_reply": "2024-09-26T16:58:34.704532Z" + "iopub.execute_input": "2024-09-27T13:44:45.412058Z", + "iopub.status.busy": "2024-09-27T13:44:45.411732Z", + "iopub.status.idle": "2024-09-27T13:44:59.801008Z", + "shell.execute_reply": "2024-09-27T13:44:59.800349Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.707498Z", - "iopub.status.busy": "2024-09-26T16:58:34.707096Z", - "iopub.status.idle": "2024-09-26T16:58:34.711017Z", - "shell.execute_reply": "2024-09-26T16:58:34.710531Z" + "iopub.execute_input": "2024-09-27T13:44:59.803402Z", + "iopub.status.busy": "2024-09-27T13:44:59.803141Z", + "iopub.status.idle": "2024-09-27T13:44:59.807543Z", + "shell.execute_reply": "2024-09-27T13:44:59.807041Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:34.712913Z", - "iopub.status.busy": "2024-09-26T16:58:34.712565Z", - "iopub.status.idle": "2024-09-26T16:58:35.450910Z", - "shell.execute_reply": "2024-09-26T16:58:35.450314Z" + "iopub.execute_input": "2024-09-27T13:44:59.809665Z", + "iopub.status.busy": "2024-09-27T13:44:59.809247Z", + "iopub.status.idle": "2024-09-27T13:45:00.567639Z", + "shell.execute_reply": "2024-09-27T13:45:00.566984Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.453164Z", - "iopub.status.busy": "2024-09-26T16:58:35.452805Z", - "iopub.status.idle": "2024-09-26T16:58:35.457809Z", - "shell.execute_reply": "2024-09-26T16:58:35.457267Z" + "iopub.execute_input": "2024-09-27T13:45:00.570314Z", + "iopub.status.busy": "2024-09-27T13:45:00.569847Z", + "iopub.status.idle": "2024-09-27T13:45:00.575162Z", + "shell.execute_reply": "2024-09-27T13:45:00.574623Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.459721Z", - "iopub.status.busy": "2024-09-26T16:58:35.459376Z", - "iopub.status.idle": "2024-09-26T16:58:35.584541Z", - "shell.execute_reply": "2024-09-26T16:58:35.583868Z" + "iopub.execute_input": "2024-09-27T13:45:00.577328Z", + "iopub.status.busy": "2024-09-27T13:45:00.576927Z", + "iopub.status.idle": "2024-09-27T13:45:00.691103Z", + "shell.execute_reply": "2024-09-27T13:45:00.690409Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.586408Z", - "iopub.status.busy": "2024-09-26T16:58:35.586206Z", - "iopub.status.idle": "2024-09-26T16:58:35.599540Z", - "shell.execute_reply": "2024-09-26T16:58:35.599063Z" + "iopub.execute_input": "2024-09-27T13:45:00.693335Z", + "iopub.status.busy": "2024-09-27T13:45:00.692963Z", + "iopub.status.idle": "2024-09-27T13:45:00.706085Z", + "shell.execute_reply": "2024-09-27T13:45:00.705457Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.601125Z", - "iopub.status.busy": "2024-09-26T16:58:35.600946Z", - "iopub.status.idle": "2024-09-26T16:58:35.608862Z", - "shell.execute_reply": "2024-09-26T16:58:35.608287Z" + "iopub.execute_input": "2024-09-27T13:45:00.708127Z", + "iopub.status.busy": "2024-09-27T13:45:00.707715Z", + "iopub.status.idle": "2024-09-27T13:45:00.716060Z", + "shell.execute_reply": "2024-09-27T13:45:00.715507Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.610542Z", - "iopub.status.busy": "2024-09-26T16:58:35.610361Z", - "iopub.status.idle": "2024-09-26T16:58:35.614478Z", - "shell.execute_reply": "2024-09-26T16:58:35.614026Z" + "iopub.execute_input": "2024-09-27T13:45:00.717915Z", + "iopub.status.busy": "2024-09-27T13:45:00.717603Z", + "iopub.status.idle": "2024-09-27T13:45:00.722261Z", + "shell.execute_reply": "2024-09-27T13:45:00.721747Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.616016Z", - "iopub.status.busy": "2024-09-26T16:58:35.615841Z", - "iopub.status.idle": "2024-09-26T16:58:35.621639Z", - "shell.execute_reply": "2024-09-26T16:58:35.621174Z" + "iopub.execute_input": "2024-09-27T13:45:00.724102Z", + "iopub.status.busy": "2024-09-27T13:45:00.723755Z", + "iopub.status.idle": "2024-09-27T13:45:00.729426Z", + "shell.execute_reply": "2024-09-27T13:45:00.728942Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.623234Z", - "iopub.status.busy": "2024-09-26T16:58:35.623053Z", - "iopub.status.idle": "2024-09-26T16:58:35.739774Z", - "shell.execute_reply": "2024-09-26T16:58:35.739189Z" + "iopub.execute_input": "2024-09-27T13:45:00.731141Z", + "iopub.status.busy": "2024-09-27T13:45:00.730829Z", + "iopub.status.idle": "2024-09-27T13:45:00.853648Z", + "shell.execute_reply": "2024-09-27T13:45:00.853124Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.741627Z", - "iopub.status.busy": "2024-09-26T16:58:35.741282Z", - "iopub.status.idle": "2024-09-26T16:58:35.848790Z", - "shell.execute_reply": "2024-09-26T16:58:35.848301Z" + "iopub.execute_input": "2024-09-27T13:45:00.855705Z", + "iopub.status.busy": "2024-09-27T13:45:00.855318Z", + "iopub.status.idle": "2024-09-27T13:45:00.964042Z", + "shell.execute_reply": "2024-09-27T13:45:00.963452Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.850804Z", - "iopub.status.busy": "2024-09-26T16:58:35.850284Z", - "iopub.status.idle": "2024-09-26T16:58:35.953589Z", - "shell.execute_reply": "2024-09-26T16:58:35.953058Z" + "iopub.execute_input": "2024-09-27T13:45:00.965938Z", + "iopub.status.busy": "2024-09-27T13:45:00.965576Z", + "iopub.status.idle": "2024-09-27T13:45:01.070709Z", + "shell.execute_reply": "2024-09-27T13:45:01.070224Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:35.955515Z", - "iopub.status.busy": "2024-09-26T16:58:35.955161Z", - "iopub.status.idle": "2024-09-26T16:58:36.069054Z", - "shell.execute_reply": "2024-09-26T16:58:36.068561Z" + "iopub.execute_input": "2024-09-27T13:45:01.072505Z", + "iopub.status.busy": "2024-09-27T13:45:01.072108Z", + "iopub.status.idle": "2024-09-27T13:45:01.175748Z", + "shell.execute_reply": "2024-09-27T13:45:01.175154Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:36.070954Z", - "iopub.status.busy": "2024-09-26T16:58:36.070626Z", - "iopub.status.idle": "2024-09-26T16:58:36.073888Z", - "shell.execute_reply": "2024-09-26T16:58:36.073420Z" + "iopub.execute_input": "2024-09-27T13:45:01.177710Z", + "iopub.status.busy": "2024-09-27T13:45:01.177244Z", + "iopub.status.idle": "2024-09-27T13:45:01.180494Z", + "shell.execute_reply": "2024-09-27T13:45:01.180049Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01dd619d956847aa997ffce9331c6f7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "04b2119cb5c24b1282f4651b60c081db": { + "018d3e0de5994deeaf61abcc22f7e853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1425,39 +1407,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8f57adf102641838fd50c8bbaf3c77e", + "layout": "IPY_MODEL_b74268b143c3457ea3926c8c5144f8b0", "placeholder": "​", - "style": "IPY_MODEL_61e09812f1bc40019dcf1e4e5110b6eb", + "style": "IPY_MODEL_b8ae14d02947401f8ef065665ec71125", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 3.40MB/s]" } }, - "069285b7fcae4a49aa4d8b2a0ec5e1f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04b2119cb5c24b1282f4651b60c081db", - "IPY_MODEL_27c15cee7b864a8bbb79e8a88cb39b17", - "IPY_MODEL_2ef3f35a45534012b74dce3efb231dc3" - ], - "layout": "IPY_MODEL_5f4f61eaf6bf46b098b8abb00a3d84bf", - "tabbable": null, - "tooltip": null - } - }, - "0d9c93e26d3641af937b86cb28f1043c": { + "03f302b33f0f499db69c7ab14a1ca2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,7 +1468,25 @@ "width": null } }, - "119d581cffd34949a8d48c293a69272b": { + "10c368927baf4420969cb6ae68c4e717": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11915e48f4504281b814613868eca199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1525,31 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec1a41355e7f4d23b1bd5a452a1839f7", + "layout": "IPY_MODEL_ac04b000aacb4879bf4e95114361c74e", "placeholder": "​", - "style": "IPY_MODEL_8ead2917d2cb47caa5737a8fe7543902", + "style": "IPY_MODEL_936f5441144546599078322a02ea1264", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 827kB/s]" - } - }, - "1207321f92434ac49c2b3961aa955300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 230MB/s]" } }, - "1689568cadba4428a3c16e73aec93064": { + "151e8ca846e44a6e9194a75128fb307e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1567,49 +1527,7 @@ "text_color": null } }, - "1a937547234f4e3e8c99c9942633b902": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1bb31cd8192b40ce90db2d1561f184d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa4c543e9214f93af3a4075231e3d53", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_22f37e2ccb594a9b9e6d3ed7ba64429d", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "2105f964155648f587a79823e2dc52df": { + "168def778e954cfab29445ed86ae3d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1624,15 +1542,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffde30c67f7742f88a8ff28a1b3a78a7", + "layout": "IPY_MODEL_a62e67926fe849f384b2c354aa669eb0", "placeholder": "​", - "style": "IPY_MODEL_4c0d8e35a50f4d4eb5c8b76fe80c92a7", + "style": "IPY_MODEL_d61231cf2b94494a8c4901a0f9cfc33b", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "22f37e2ccb594a9b9e6d3ed7ba64429d": { + "1c30d7917105425b986c353f9fee84f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1648,7 +1566,7 @@ "description_width": "" } }, - "24bd633b981f4071bfa481b55e491ae3": { + "2a672c9d548d45dd9723f972d19f5cd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1619,7 @@ "width": null } }, - "2611ff525a1f41f0b9d0440d5259df6d": { + "2c41fc16193949dabc14c8dea52ea0ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,74 +1672,7 @@ "width": null } }, - "27c15cee7b864a8bbb79e8a88cb39b17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d72d99b3b0104e81845d798e3082b95c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a11de9efd4c4eb1bcdb5e0572a7a6cf", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "2ef3f35a45534012b74dce3efb231dc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bd633b981f4071bfa481b55e491ae3", - "placeholder": "​", - "style": "IPY_MODEL_01dd619d956847aa997ffce9331c6f7b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 448kB/s]" - } - }, - "3061b1986853449599f2d06f2326b1e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "348223f05553429fad2b7618c7dbd29c": { + "2ddcca527ea545e2918701a00e64a4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,80 +1725,7 @@ "width": null } }, - "3521b72379974fbfaa344ab8e0fc15a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_348223f05553429fad2b7618c7dbd29c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a937547234f4e3e8c99c9942633b902", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "37f7257044bd41dc9f107740b3e64070": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af1897d6c781491a840fec89717380dc", - "placeholder": "​", - "style": "IPY_MODEL_8431f88fd57741c591d760cf54e05437", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "3ab74bd10a8b4e988d838d02d6a7f8f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ced3b9d2c3be456b90083e8f9057f668", - "IPY_MODEL_1bb31cd8192b40ce90db2d1561f184d9", - "IPY_MODEL_d9acb79e5c9248618d2fe0e135c9aae1" - ], - "layout": "IPY_MODEL_f95194d703394d719ae03aad8cc8c815", - "tabbable": null, - "tooltip": null - } - }, - "3e8e9bbc1d5144968fadad5594c865a3": { + "4053bae3cf9f4d7c99f6bd1bf8fec47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1778,25 @@ "width": null } }, - "4aa4c543e9214f93af3a4075231e3d53": { + "40c77a336db74f489321f1f6b9e81cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "47ad7ceb8f4d4fce9cebe4190fd489d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2053,120 +1849,126 @@ "width": null } }, - "4c0c0f4c36114fdf9aeb5e0e2108452e": { + "4a182bf1825140f88b758ae22e5f180c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd8ed9c113d64a59aed51794c9f93adb", - "placeholder": "​", - "style": "IPY_MODEL_d3c6eb59d32548d28aaf3137df63dd43", + "layout": "IPY_MODEL_4053bae3cf9f4d7c99f6bd1bf8fec47a", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0af8aaa092d489583a475dc5f415438", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 128619.0 } }, - "4c0d8e35a50f4d4eb5c8b76fe80c92a7": { + "50977494445c4346b297684613074520": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7774cb8b5a24b4fb76f4da281a186e4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_782c8b9cb2704b4694519195d9c535d9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "4fe513d681ba466d900d11c396115fa5": { + "571870242b4f43aa8e6e1bdd1628ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2611ff525a1f41f0b9d0440d5259df6d", - "placeholder": "​", - "style": "IPY_MODEL_1689568cadba4428a3c16e73aec93064", + "layout": "IPY_MODEL_2a672c9d548d45dd9723f972d19f5cd5", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_949f7d6cad114c68aa53aebedd9ca92e", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 56.0MB/s]" + "value": 16887676.0 } }, - "55987e4ef9f44c18a42f73fe72df11ac": { + "5863021a6f354713830e74ab4fcfa0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e67238f3e71a4da182cad9cfc8a90dbe", - "placeholder": "​", - "style": "IPY_MODEL_c46a370402f2481bb9924ac5e9f67307", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.68MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5614924105cd4430824c54f8fbd620e2": { + "5a43ca99790144e9a5702ff9b3b2cd34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d0a44fb871b448adbba43c44b4502169", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1207321f92434ac49c2b3961aa955300", + "layout": "IPY_MODEL_c89a331526a94333842b49ad04c7fec9", + "placeholder": "​", + "style": "IPY_MODEL_40c77a336db74f489321f1f6b9e81cf3", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "label_encoder.txt: 100%" } }, - "58a8dcd03ec24652964baa102fc44bba": { + "5be1b1a4405046d392c0d881cefd9325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2219,7 +2021,7 @@ "width": null } }, - "5dcab6e3e9b74150a77ee8695ec6f12c": { + "5e9038000b834a668c338ea02511ac69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,60 +2074,25 @@ "width": null } }, - "5f4f61eaf6bf46b098b8abb00a3d84bf": { - "model_module": "@jupyter-widgets/base", + "612eaf97f5134a35b05234006254d4f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "61dfbe2e6b0f4758ae16a0d955f1c152": { + "668f7d7744d84739b5a00b9fa075e89a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2341,83 +2108,116 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80b84f6784d245229070cb0b2c51ed60", - "max": 16887676.0, + "layout": "IPY_MODEL_03f302b33f0f499db69c7ab14a1ca2e1", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_77d1a086e62d42df9d823e2016fd7a8b", + "style": "IPY_MODEL_1c30d7917105425b986c353f9fee84f6", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "61e09812f1bc40019dcf1e4e5110b6eb": { + "68af8a48d81e4721b4da3d3dc6a8ef57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c486a759402940f1a631675c983d06ab", + "placeholder": "​", + "style": "IPY_MODEL_151e8ca846e44a6e9194a75128fb307e", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "64a71dc2611f471ea0d375c4aa5cc6a5": { + "6c3b53f037b3487a80cffb640af03495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c0c0f4c36114fdf9aeb5e0e2108452e", - "IPY_MODEL_3521b72379974fbfaa344ab8e0fc15a2", - "IPY_MODEL_119d581cffd34949a8d48c293a69272b" - ], - "layout": "IPY_MODEL_6b3edac5eedd4e929d87d30168008e9e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d91d31ef52e240b3a7fbfbdfe4c6ec01", + "placeholder": "​", + "style": "IPY_MODEL_612eaf97f5134a35b05234006254d4f8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "691c3e35f66d4a8d9767d80f6b85f07d": { - "model_module": "@jupyter-widgets/controls", + "762ccb3a102448568ee60cc41b44dc7a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37f7257044bd41dc9f107740b3e64070", - "IPY_MODEL_61dfbe2e6b0f4758ae16a0d955f1c152", - "IPY_MODEL_4fe513d681ba466d900d11c396115fa5" - ], - "layout": "IPY_MODEL_3e8e9bbc1d5144968fadad5594c865a3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b3edac5eedd4e929d87d30168008e9e": { + "76c50230cb5a4154b63c7afd956c5656": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,7 +2270,89 @@ "width": null } }, - "77d1a086e62d42df9d823e2016fd7a8b": { + "782c8b9cb2704b4694519195d9c535d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818535aa611c461389a532d95e7c1934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_168def778e954cfab29445ed86ae3d09", + "IPY_MODEL_571870242b4f43aa8e6e1bdd1628ecae", + "IPY_MODEL_accf3e2b636443809c5c8d0b8a6ff5bf" + ], + "layout": "IPY_MODEL_2c41fc16193949dabc14c8dea52ea0ea", + "tabbable": null, + "tooltip": null + } + }, + "8432060f5fed40438f092ea7936c46c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c3b53f037b3487a80cffb640af03495", + "IPY_MODEL_668f7d7744d84739b5a00b9fa075e89a", + "IPY_MODEL_c80c47b2a3c54cf787e88de611551989" + ], + "layout": "IPY_MODEL_762ccb3a102448568ee60cc41b44dc7a", + "tabbable": null, + "tooltip": null + } + }, + "936f5441144546599078322a02ea1264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "949f7d6cad114c68aa53aebedd9ca92e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2486,7 +2368,7 @@ "description_width": "" } }, - "80b84f6784d245229070cb0b2c51ed60": { + "9649f71e84fd4f539505e104fdc2b949": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2539,25 +2421,31 @@ "width": null } }, - "8431f88fd57741c591d760cf54e05437": { + "992b4d56eba94771a314a42397dfaa94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68af8a48d81e4721b4da3d3dc6a8ef57", + "IPY_MODEL_ad8e8630e0ef4330a5851661d05cca2d", + "IPY_MODEL_f4be297a9bba4232b2b5d09f2781b53c" + ], + "layout": "IPY_MODEL_5be1b1a4405046d392c0d881cefd9325", + "tabbable": null, + "tooltip": null } }, - "8a11de9efd4c4eb1bcdb5e0572a7a6cf": { + "9f67f2e8fc6e47b182ba7f1089a4c5b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2573,7 +2461,7 @@ "description_width": "" } }, - "8ead2917d2cb47caa5737a8fe7543902": { + "a33fbac541a5428c8a0d561d886f279f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2591,7 +2479,7 @@ "text_color": null } }, - "a8f57adf102641838fd50c8bbaf3c77e": { + "a62e67926fe849f384b2c354aa669eb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,31 +2532,7 @@ "width": null } }, - "ad0fb9aac7a14f05a1580ff6488782c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2105f964155648f587a79823e2dc52df", - "IPY_MODEL_5614924105cd4430824c54f8fbd620e2", - "IPY_MODEL_55987e4ef9f44c18a42f73fe72df11ac" - ], - "layout": "IPY_MODEL_0d9c93e26d3641af937b86cb28f1043c", - "tabbable": null, - "tooltip": null - } - }, - "af1897d6c781491a840fec89717380dc": { + "ac04b000aacb4879bf4e95114361c74e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2585,56 @@ "width": null } }, - "bd8ed9c113d64a59aed51794c9f93adb": { + "accf3e2b636443809c5c8d0b8a6ff5bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e9038000b834a668c338ea02511ac69", + "placeholder": "​", + "style": "IPY_MODEL_a33fbac541a5428c8a0d561d886f279f", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 123MB/s]" + } + }, + "ad8e8630e0ef4330a5851661d05cca2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ddcca527ea545e2918701a00e64a4b3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f67f2e8fc6e47b182ba7f1089a4c5b0", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "b74268b143c3457ea3926c8c5144f8b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,7 +2687,7 @@ "width": null } }, - "c46a370402f2481bb9924ac5e9f67307": { + "b8ae14d02947401f8ef065665ec71125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2792,30 +2705,25 @@ "text_color": null } }, - "ced3b9d2c3be456b90083e8f9057f668": { + "bf5b5193a91d476588d2b32f118e2805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58a8dcd03ec24652964baa102fc44bba", - "placeholder": "​", - "style": "IPY_MODEL_3061b1986853449599f2d06f2326b1e7", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0a44fb871b448adbba43c44b4502169": { + "c486a759402940f1a631675c983d06ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,25 +2776,30 @@ "width": null } }, - "d3c6eb59d32548d28aaf3137df63dd43": { + "c80c47b2a3c54cf787e88de611551989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47ad7ceb8f4d4fce9cebe4190fd489d1", + "placeholder": "​", + "style": "IPY_MODEL_10c368927baf4420969cb6ae68c4e717", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 753kB/s]" } }, - "d72d99b3b0104e81845d798e3082b95c": { + "c89a331526a94333842b49ad04c7fec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2939,30 +2852,49 @@ "width": null } }, - "d9acb79e5c9248618d2fe0e135c9aae1": { + "c97a8b48d85148af82daab8dd0193369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5dcab6e3e9b74150a77ee8695ec6f12c", - "placeholder": "​", - "style": "IPY_MODEL_f56a5502560a40e5a983b3bdcefc7a73", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6d30e9cda9f43ccac9318d15445f701", + "IPY_MODEL_50977494445c4346b297684613074520", + "IPY_MODEL_11915e48f4504281b814613868eca199" + ], + "layout": "IPY_MODEL_e2d39e561781403d9baca72c88e6f3c4", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + "tooltip": null + } + }, + "d61231cf2b94494a8c4901a0f9cfc33b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e67238f3e71a4da182cad9cfc8a90dbe": { + "d7774cb8b5a24b4fb76f4da281a186e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3015,7 +2947,7 @@ "width": null } }, - "ec1a41355e7f4d23b1bd5a452a1839f7": { + "d91d31ef52e240b3a7fbfbdfe4c6ec01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3068,25 +3000,47 @@ "width": null } }, - "f56a5502560a40e5a983b3bdcefc7a73": { + "df407e638a9648569ea77312b39b3124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a43ca99790144e9a5702ff9b3b2cd34", + "IPY_MODEL_4a182bf1825140f88b758ae22e5f180c", + "IPY_MODEL_018d3e0de5994deeaf61abcc22f7e853" + ], + "layout": "IPY_MODEL_9649f71e84fd4f539505e104fdc2b949", + "tabbable": null, + "tooltip": null + } + }, + "e0af8aaa092d489583a475dc5f415438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f95194d703394d719ae03aad8cc8c815": { + "e2d39e561781403d9baca72c88e6f3c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3093,30 @@ "width": null } }, - "ffde30c67f7742f88a8ff28a1b3a78a7": { + "e6d30e9cda9f43ccac9318d15445f701": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7d4217753f2470494b46b000eb13525", + "placeholder": "​", + "style": "IPY_MODEL_5863021a6f354713830e74ab4fcfa0a6", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "e7d4217753f2470494b46b000eb13525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3168,29 @@ "visibility": null, "width": null } + }, + "f4be297a9bba4232b2b5d09f2781b53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76c50230cb5a4154b63c7afd956c5656", + "placeholder": "​", + "style": "IPY_MODEL_bf5b5193a91d476588d2b32f118e2805", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 444kB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 006197e41..bb7b57343 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1304,7 +1304,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1579,7 +1579,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"d590738a78bc4dc5b75006050b4cfd20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95805e5fdb02411cbbf6cfaf4ec7c3f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5a7327b11df54676b5fb98e19a96e526": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", "tabbable": null, "tooltip": null, "value": 132.0}}, "818e28bbe3084ddcaa93c64bdb1f508c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0d26fa2294748cdae66f37cac146d99": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "493d4fe5a17b4542a5cba6b8200f4ae7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", "placeholder": "\u200b", "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b90f5b04ff9c4839ab6282c6ada4d10e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a64dad38377142beab7236d5c03dd452": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c62f251c21d64f54a595d6aed66e7783": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", "placeholder": "\u200b", "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712335.91\u2007examples/s]"}}, "990cfc063988462d9c5a3959cb8810e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f129293f2b7f4d01baa85a24c751e661": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783"], "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"9bafe95cde0d418990b519ee1c938809": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13e0a4b1bcb64960ae4953c3ec5c1636": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d927327f69d4cdfb32e031a5ee96d57": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", "tabbable": null, "tooltip": null, "value": 132.0}}, "e450d708e2ef4d12b0412b094270b7ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5eafd2215f0341cd91a935914978c169": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5d0a705e9874a42a56adc5b9dab4d24": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", "placeholder": "\u200b", "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "cbaab24fee4e48e29c8c9a265a769a67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7203aad39f349f5a2ab732b1748e935": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74154c49b3f64aa4a35fca171dbe795e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", "placeholder": "\u200b", "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712681.19\u2007examples/s]"}}, "496f194feb564a1daa738de061db6b9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50cf0d4e3a5e40da9095dbb72f93a5f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e"], "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index ffc430e68..f96269130 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:39.586217Z", - "iopub.status.busy": "2024-09-26T16:58:39.585770Z", - "iopub.status.idle": "2024-09-26T16:58:40.868805Z", - "shell.execute_reply": "2024-09-26T16:58:40.868290Z" + "iopub.execute_input": "2024-09-27T13:45:05.545064Z", + "iopub.status.busy": "2024-09-27T13:45:05.544883Z", + "iopub.status.idle": "2024-09-27T13:45:06.777330Z", + "shell.execute_reply": "2024-09-27T13:45:06.776775Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.871104Z", - "iopub.status.busy": "2024-09-26T16:58:40.870653Z", - "iopub.status.idle": "2024-09-26T16:58:40.873864Z", - "shell.execute_reply": "2024-09-26T16:58:40.873292Z" + "iopub.execute_input": "2024-09-27T13:45:06.779593Z", + "iopub.status.busy": "2024-09-27T13:45:06.779069Z", + "iopub.status.idle": "2024-09-27T13:45:06.782274Z", + "shell.execute_reply": "2024-09-27T13:45:06.781769Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.875643Z", - "iopub.status.busy": "2024-09-26T16:58:40.875341Z", - "iopub.status.idle": "2024-09-26T16:58:40.884143Z", - "shell.execute_reply": "2024-09-26T16:58:40.883552Z" + "iopub.execute_input": "2024-09-27T13:45:06.784051Z", + "iopub.status.busy": "2024-09-27T13:45:06.783747Z", + "iopub.status.idle": "2024-09-27T13:45:06.792444Z", + "shell.execute_reply": "2024-09-27T13:45:06.791879Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.885948Z", - "iopub.status.busy": "2024-09-26T16:58:40.885595Z", - "iopub.status.idle": "2024-09-26T16:58:40.890353Z", - "shell.execute_reply": "2024-09-26T16:58:40.889899Z" + "iopub.execute_input": "2024-09-27T13:45:06.794094Z", + "iopub.status.busy": "2024-09-27T13:45:06.793909Z", + "iopub.status.idle": "2024-09-27T13:45:06.798914Z", + "shell.execute_reply": "2024-09-27T13:45:06.798484Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:40.892204Z", - "iopub.status.busy": "2024-09-26T16:58:40.891849Z", - "iopub.status.idle": "2024-09-26T16:58:41.080702Z", - "shell.execute_reply": "2024-09-26T16:58:41.080055Z" + "iopub.execute_input": "2024-09-27T13:45:06.800723Z", + "iopub.status.busy": "2024-09-27T13:45:06.800392Z", + "iopub.status.idle": "2024-09-27T13:45:06.986289Z", + "shell.execute_reply": "2024-09-27T13:45:06.985622Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.083033Z", - "iopub.status.busy": "2024-09-26T16:58:41.082578Z", - "iopub.status.idle": "2024-09-26T16:58:41.413208Z", - "shell.execute_reply": "2024-09-26T16:58:41.412618Z" + "iopub.execute_input": "2024-09-27T13:45:06.988338Z", + "iopub.status.busy": "2024-09-27T13:45:06.988040Z", + "iopub.status.idle": "2024-09-27T13:45:07.366255Z", + "shell.execute_reply": "2024-09-27T13:45:07.365671Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.415261Z", - "iopub.status.busy": "2024-09-26T16:58:41.414880Z", - "iopub.status.idle": "2024-09-26T16:58:41.439241Z", - "shell.execute_reply": "2024-09-26T16:58:41.438758Z" + "iopub.execute_input": "2024-09-27T13:45:07.368186Z", + "iopub.status.busy": "2024-09-27T13:45:07.367830Z", + "iopub.status.idle": "2024-09-27T13:45:07.391565Z", + "shell.execute_reply": "2024-09-27T13:45:07.391095Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.441206Z", - "iopub.status.busy": "2024-09-26T16:58:41.440852Z", - "iopub.status.idle": "2024-09-26T16:58:41.530137Z", - "shell.execute_reply": "2024-09-26T16:58:41.529646Z" + "iopub.execute_input": "2024-09-27T13:45:07.393457Z", + "iopub.status.busy": "2024-09-27T13:45:07.393097Z", + "iopub.status.idle": "2024-09-27T13:45:07.479260Z", + "shell.execute_reply": "2024-09-27T13:45:07.478768Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:41.532252Z", - "iopub.status.busy": "2024-09-26T16:58:41.531887Z", - "iopub.status.idle": "2024-09-26T16:58:43.523076Z", - "shell.execute_reply": "2024-09-26T16:58:43.522490Z" + "iopub.execute_input": "2024-09-27T13:45:07.481318Z", + "iopub.status.busy": "2024-09-27T13:45:07.480967Z", + "iopub.status.idle": "2024-09-27T13:45:09.458434Z", + "shell.execute_reply": "2024-09-27T13:45:09.457792Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.525189Z", - "iopub.status.busy": "2024-09-26T16:58:43.524668Z", - "iopub.status.idle": "2024-09-26T16:58:43.546082Z", - "shell.execute_reply": "2024-09-26T16:58:43.545611Z" + "iopub.execute_input": "2024-09-27T13:45:09.460455Z", + "iopub.status.busy": "2024-09-27T13:45:09.460050Z", + "iopub.status.idle": "2024-09-27T13:45:09.481260Z", + "shell.execute_reply": "2024-09-27T13:45:09.480768Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.547971Z", - "iopub.status.busy": "2024-09-26T16:58:43.547533Z", - "iopub.status.idle": "2024-09-26T16:58:43.565545Z", - "shell.execute_reply": "2024-09-26T16:58:43.564959Z" + "iopub.execute_input": "2024-09-27T13:45:09.483053Z", + "iopub.status.busy": "2024-09-27T13:45:09.482738Z", + "iopub.status.idle": "2024-09-27T13:45:09.500620Z", + "shell.execute_reply": "2024-09-27T13:45:09.500057Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.567356Z", - "iopub.status.busy": "2024-09-26T16:58:43.566943Z", - "iopub.status.idle": "2024-09-26T16:58:43.580877Z", - "shell.execute_reply": "2024-09-26T16:58:43.580421Z" + "iopub.execute_input": "2024-09-27T13:45:09.502444Z", + "iopub.status.busy": "2024-09-27T13:45:09.502128Z", + "iopub.status.idle": "2024-09-27T13:45:09.516645Z", + "shell.execute_reply": "2024-09-27T13:45:09.516087Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.582509Z", - "iopub.status.busy": "2024-09-26T16:58:43.582336Z", - "iopub.status.idle": "2024-09-26T16:58:43.602652Z", - "shell.execute_reply": "2024-09-26T16:58:43.602186Z" + "iopub.execute_input": "2024-09-27T13:45:09.518510Z", + "iopub.status.busy": "2024-09-27T13:45:09.518107Z", + "iopub.status.idle": "2024-09-27T13:45:09.537902Z", + "shell.execute_reply": "2024-09-27T13:45:09.537447Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f129293f2b7f4d01baa85a24c751e661", + "model_id": "50cf0d4e3a5e40da9095dbb72f93a5f0", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.604349Z", - "iopub.status.busy": "2024-09-26T16:58:43.604011Z", - "iopub.status.idle": "2024-09-26T16:58:43.618854Z", - "shell.execute_reply": "2024-09-26T16:58:43.618317Z" + "iopub.execute_input": "2024-09-27T13:45:09.539519Z", + "iopub.status.busy": "2024-09-27T13:45:09.539343Z", + "iopub.status.idle": "2024-09-27T13:45:09.554415Z", + "shell.execute_reply": "2024-09-27T13:45:09.553921Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.620668Z", - "iopub.status.busy": "2024-09-26T16:58:43.620349Z", - "iopub.status.idle": "2024-09-26T16:58:43.626243Z", - "shell.execute_reply": "2024-09-26T16:58:43.625776Z" + "iopub.execute_input": "2024-09-27T13:45:09.555991Z", + "iopub.status.busy": "2024-09-27T13:45:09.555819Z", + "iopub.status.idle": "2024-09-27T13:45:09.561554Z", + "shell.execute_reply": "2024-09-27T13:45:09.561107Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:43.628003Z", - "iopub.status.busy": "2024-09-26T16:58:43.627682Z", - "iopub.status.idle": "2024-09-26T16:58:43.646139Z", - "shell.execute_reply": "2024-09-26T16:58:43.645652Z" + "iopub.execute_input": "2024-09-27T13:45:09.563243Z", + "iopub.status.busy": "2024-09-27T13:45:09.562908Z", + "iopub.status.idle": "2024-09-27T13:45:09.580496Z", + "shell.execute_reply": "2024-09-27T13:45:09.580033Z" } }, "outputs": [ @@ -1447,56 +1447,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "493d4fe5a17b4542a5cba6b8200f4ae7": { + "13e0a4b1bcb64960ae4953c3ec5c1636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_818e28bbe3084ddcaa93c64bdb1f508c", - "placeholder": "​", - "style": "IPY_MODEL_a0d26fa2294748cdae66f37cac146d99", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "5a7327b11df54676b5fb98e19a96e526": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d590738a78bc4dc5b75006050b4cfd20", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95805e5fdb02411cbbf6cfaf4ec7c3f2", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "818e28bbe3084ddcaa93c64bdb1f508c": { + "496f194feb564a1daa738de061db6b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1516,98 @@ "width": null } }, - "95805e5fdb02411cbbf6cfaf4ec7c3f2": { + "4d927327f69d4cdfb32e031a5ee96d57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bafe95cde0d418990b519ee1c938809", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_13e0a4b1bcb64960ae4953c3ec5c1636", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "50cf0d4e3a5e40da9095dbb72f93a5f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5d0a705e9874a42a56adc5b9dab4d24", + "IPY_MODEL_4d927327f69d4cdfb32e031a5ee96d57", + "IPY_MODEL_74154c49b3f64aa4a35fca171dbe795e" + ], + "layout": "IPY_MODEL_496f194feb564a1daa738de061db6b9d", + "tabbable": null, + "tooltip": null + } + }, + "5eafd2215f0341cd91a935914978c169": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "990cfc063988462d9c5a3959cb8810e8": { + "74154c49b3f64aa4a35fca171dbe795e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbaab24fee4e48e29c8c9a265a769a67", + "placeholder": "​", + "style": "IPY_MODEL_e7203aad39f349f5a2ab732b1748e935", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12681.19 examples/s]" + } + }, + "9bafe95cde0d418990b519ee1c938809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,43 +1660,30 @@ "width": null } }, - "a0d26fa2294748cdae66f37cac146d99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64dad38377142beab7236d5c03dd452": { + "a5d0a705e9874a42a56adc5b9dab4d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e450d708e2ef4d12b0412b094270b7ba", + "placeholder": "​", + "style": "IPY_MODEL_5eafd2215f0341cd91a935914978c169", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "b90f5b04ff9c4839ab6282c6ada4d10e": { + "cbaab24fee4e48e29c8c9a265a769a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1707,30 +1736,7 @@ "width": null } }, - "c62f251c21d64f54a595d6aed66e7783": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b90f5b04ff9c4839ab6282c6ada4d10e", - "placeholder": "​", - "style": "IPY_MODEL_a64dad38377142beab7236d5c03dd452", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12335.91 examples/s]" - } - }, - "d590738a78bc4dc5b75006050b4cfd20": { + "e450d708e2ef4d12b0412b094270b7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,28 +1789,22 @@ "width": null } }, - "f129293f2b7f4d01baa85a24c751e661": { + "e7203aad39f349f5a2ab732b1748e935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493d4fe5a17b4542a5cba6b8200f4ae7", - "IPY_MODEL_5a7327b11df54676b5fb98e19a96e526", - "IPY_MODEL_c62f251c21d64f54a595d6aed66e7783" - ], - "layout": "IPY_MODEL_990cfc063988462d9c5a3959cb8810e8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 54e829ffc..ce77562ed 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:46.520582Z", - "iopub.status.busy": "2024-09-26T16:58:46.520135Z", - "iopub.status.idle": "2024-09-26T16:58:47.747238Z", - "shell.execute_reply": "2024-09-26T16:58:47.746611Z" + "iopub.execute_input": "2024-09-27T13:45:12.449349Z", + "iopub.status.busy": "2024-09-27T13:45:12.449169Z", + "iopub.status.idle": "2024-09-27T13:45:13.685579Z", + "shell.execute_reply": "2024-09-27T13:45:13.684973Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.749716Z", - "iopub.status.busy": "2024-09-26T16:58:47.749089Z", - "iopub.status.idle": "2024-09-26T16:58:47.752228Z", - "shell.execute_reply": "2024-09-26T16:58:47.751798Z" + "iopub.execute_input": "2024-09-27T13:45:13.687686Z", + "iopub.status.busy": "2024-09-27T13:45:13.687268Z", + "iopub.status.idle": "2024-09-27T13:45:13.690359Z", + "shell.execute_reply": "2024-09-27T13:45:13.689877Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.754183Z", - "iopub.status.busy": "2024-09-26T16:58:47.753797Z", - "iopub.status.idle": "2024-09-26T16:58:47.762845Z", - "shell.execute_reply": "2024-09-26T16:58:47.762414Z" + "iopub.execute_input": "2024-09-27T13:45:13.692049Z", + "iopub.status.busy": "2024-09-27T13:45:13.691875Z", + "iopub.status.idle": "2024-09-27T13:45:13.700878Z", + "shell.execute_reply": "2024-09-27T13:45:13.700441Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.764312Z", - "iopub.status.busy": "2024-09-26T16:58:47.764139Z", - "iopub.status.idle": "2024-09-26T16:58:47.768778Z", - "shell.execute_reply": "2024-09-26T16:58:47.768359Z" + "iopub.execute_input": "2024-09-27T13:45:13.702335Z", + "iopub.status.busy": "2024-09-27T13:45:13.702155Z", + "iopub.status.idle": "2024-09-27T13:45:13.707197Z", + "shell.execute_reply": "2024-09-27T13:45:13.706613Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.770422Z", - "iopub.status.busy": "2024-09-26T16:58:47.770241Z", - "iopub.status.idle": "2024-09-26T16:58:47.953927Z", - "shell.execute_reply": "2024-09-26T16:58:47.953369Z" + "iopub.execute_input": "2024-09-27T13:45:13.709224Z", + "iopub.status.busy": "2024-09-27T13:45:13.708778Z", + "iopub.status.idle": "2024-09-27T13:45:13.895158Z", + "shell.execute_reply": "2024-09-27T13:45:13.894579Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:47.955878Z", - "iopub.status.busy": "2024-09-26T16:58:47.955545Z", - "iopub.status.idle": "2024-09-26T16:58:48.331139Z", - "shell.execute_reply": "2024-09-26T16:58:48.330595Z" + "iopub.execute_input": "2024-09-27T13:45:13.897147Z", + "iopub.status.busy": "2024-09-27T13:45:13.896877Z", + "iopub.status.idle": "2024-09-27T13:45:14.233059Z", + "shell.execute_reply": "2024-09-27T13:45:14.232489Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.333057Z", - "iopub.status.busy": "2024-09-26T16:58:48.332771Z", - "iopub.status.idle": "2024-09-26T16:58:48.335783Z", - "shell.execute_reply": "2024-09-26T16:58:48.335363Z" + "iopub.execute_input": "2024-09-27T13:45:14.235157Z", + "iopub.status.busy": "2024-09-27T13:45:14.234707Z", + "iopub.status.idle": "2024-09-27T13:45:14.237635Z", + "shell.execute_reply": "2024-09-27T13:45:14.237187Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.337521Z", - "iopub.status.busy": "2024-09-26T16:58:48.337167Z", - "iopub.status.idle": "2024-09-26T16:58:48.371595Z", - "shell.execute_reply": "2024-09-26T16:58:48.371120Z" + "iopub.execute_input": "2024-09-27T13:45:14.239301Z", + "iopub.status.busy": "2024-09-27T13:45:14.239117Z", + "iopub.status.idle": "2024-09-27T13:45:14.273678Z", + "shell.execute_reply": "2024-09-27T13:45:14.273114Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:48.373233Z", - "iopub.status.busy": "2024-09-26T16:58:48.372923Z", - "iopub.status.idle": "2024-09-26T16:58:50.400212Z", - "shell.execute_reply": "2024-09-26T16:58:50.399604Z" + "iopub.execute_input": "2024-09-27T13:45:14.275640Z", + "iopub.status.busy": "2024-09-27T13:45:14.275229Z", + "iopub.status.idle": "2024-09-27T13:45:16.344723Z", + "shell.execute_reply": "2024-09-27T13:45:16.344059Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.402429Z", - "iopub.status.busy": "2024-09-26T16:58:50.401916Z", - "iopub.status.idle": "2024-09-26T16:58:50.420509Z", - "shell.execute_reply": "2024-09-26T16:58:50.420015Z" + "iopub.execute_input": "2024-09-27T13:45:16.347002Z", + "iopub.status.busy": "2024-09-27T13:45:16.346480Z", + "iopub.status.idle": "2024-09-27T13:45:16.365149Z", + "shell.execute_reply": "2024-09-27T13:45:16.364694Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.422399Z", - "iopub.status.busy": "2024-09-26T16:58:50.421975Z", - "iopub.status.idle": "2024-09-26T16:58:50.428339Z", - "shell.execute_reply": "2024-09-26T16:58:50.427906Z" + "iopub.execute_input": "2024-09-27T13:45:16.366944Z", + "iopub.status.busy": "2024-09-27T13:45:16.366625Z", + "iopub.status.idle": "2024-09-27T13:45:16.373078Z", + "shell.execute_reply": "2024-09-27T13:45:16.372627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.430067Z", - "iopub.status.busy": "2024-09-26T16:58:50.429730Z", - "iopub.status.idle": "2024-09-26T16:58:50.435287Z", - "shell.execute_reply": "2024-09-26T16:58:50.434843Z" + "iopub.execute_input": "2024-09-27T13:45:16.374800Z", + "iopub.status.busy": "2024-09-27T13:45:16.374466Z", + "iopub.status.idle": "2024-09-27T13:45:16.380038Z", + "shell.execute_reply": "2024-09-27T13:45:16.379595Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.436910Z", - "iopub.status.busy": "2024-09-26T16:58:50.436575Z", - "iopub.status.idle": "2024-09-26T16:58:50.446601Z", - "shell.execute_reply": "2024-09-26T16:58:50.446159Z" + "iopub.execute_input": "2024-09-27T13:45:16.381766Z", + "iopub.status.busy": "2024-09-27T13:45:16.381371Z", + "iopub.status.idle": "2024-09-27T13:45:16.391456Z", + "shell.execute_reply": "2024-09-27T13:45:16.390908Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.448308Z", - "iopub.status.busy": "2024-09-26T16:58:50.447987Z", - "iopub.status.idle": "2024-09-26T16:58:50.456869Z", - "shell.execute_reply": "2024-09-26T16:58:50.456315Z" + "iopub.execute_input": "2024-09-27T13:45:16.393310Z", + "iopub.status.busy": "2024-09-27T13:45:16.392915Z", + "iopub.status.idle": "2024-09-27T13:45:16.401735Z", + "shell.execute_reply": "2024-09-27T13:45:16.401281Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.458607Z", - "iopub.status.busy": "2024-09-26T16:58:50.458282Z", - "iopub.status.idle": "2024-09-26T16:58:50.465100Z", - "shell.execute_reply": "2024-09-26T16:58:50.464548Z" + "iopub.execute_input": "2024-09-27T13:45:16.403279Z", + "iopub.status.busy": "2024-09-27T13:45:16.403108Z", + "iopub.status.idle": "2024-09-27T13:45:16.409811Z", + "shell.execute_reply": "2024-09-27T13:45:16.409374Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.466816Z", - "iopub.status.busy": "2024-09-26T16:58:50.466493Z", - "iopub.status.idle": "2024-09-26T16:58:50.475579Z", - "shell.execute_reply": "2024-09-26T16:58:50.475136Z" + "iopub.execute_input": "2024-09-27T13:45:16.411631Z", + "iopub.status.busy": "2024-09-27T13:45:16.411232Z", + "iopub.status.idle": "2024-09-27T13:45:16.420514Z", + "shell.execute_reply": "2024-09-27T13:45:16.419938Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:50.477133Z", - "iopub.status.busy": "2024-09-26T16:58:50.476962Z", - "iopub.status.idle": "2024-09-26T16:58:50.493434Z", - "shell.execute_reply": "2024-09-26T16:58:50.492823Z" + "iopub.execute_input": "2024-09-27T13:45:16.422097Z", + "iopub.status.busy": "2024-09-27T13:45:16.421922Z", + "iopub.status.idle": "2024-09-27T13:45:16.439717Z", + "shell.execute_reply": "2024-09-27T13:45:16.439288Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 30e253092..545d19f44 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -740,31 +740,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1077,7 +1077,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1109,7 +1109,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1141,7 +1141,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2111,7 +2111,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 728d586b2..3f66f37a1 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:53.411773Z", - "iopub.status.busy": "2024-09-26T16:58:53.411606Z", - "iopub.status.idle": "2024-09-26T16:58:56.467577Z", - "shell.execute_reply": "2024-09-26T16:58:56.467015Z" + "iopub.execute_input": "2024-09-27T13:45:19.192307Z", + "iopub.status.busy": "2024-09-27T13:45:19.192117Z", + "iopub.status.idle": "2024-09-27T13:45:22.256949Z", + "shell.execute_reply": "2024-09-27T13:45:22.256396Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.469779Z", - "iopub.status.busy": "2024-09-26T16:58:56.469465Z", - "iopub.status.idle": "2024-09-26T16:58:56.473173Z", - "shell.execute_reply": "2024-09-26T16:58:56.472707Z" + "iopub.execute_input": "2024-09-27T13:45:22.259042Z", + "iopub.status.busy": "2024-09-27T13:45:22.258751Z", + "iopub.status.idle": "2024-09-27T13:45:22.262361Z", + "shell.execute_reply": "2024-09-27T13:45:22.261892Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:56.475000Z", - "iopub.status.busy": "2024-09-26T16:58:56.474674Z", - "iopub.status.idle": "2024-09-26T16:58:59.847498Z", - "shell.execute_reply": "2024-09-26T16:58:59.847018Z" + "iopub.execute_input": "2024-09-27T13:45:22.264021Z", + "iopub.status.busy": "2024-09-27T13:45:22.263690Z", + "iopub.status.idle": "2024-09-27T13:45:25.535718Z", + "shell.execute_reply": "2024-09-27T13:45:25.535139Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed3e7469df2c4560897c195c6e1c0003", + "model_id": "e9fb2e15855a495eb8393c8b1c470abe", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2c29b6ce7974f23abf1753e738849b6", + "model_id": "62d0e0c88f1a4c2abca87123937bd572", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d87537574d1b46388a5f4de507d1aedd", + "model_id": "fca7e86a7eb34f15a6e35dfad2b37d04", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "258343123ee64d078d587fad6e7e195f", + "model_id": "aea869f9cc8d44cf80997dc63f1b0a73", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "219ae75bd53e46b39c1ca8d09542d8c6", + "model_id": "907485478951427389e624de9ba0865d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.849333Z", - "iopub.status.busy": "2024-09-26T16:58:59.848963Z", - "iopub.status.idle": "2024-09-26T16:58:59.852849Z", - "shell.execute_reply": "2024-09-26T16:58:59.852310Z" + "iopub.execute_input": "2024-09-27T13:45:25.537751Z", + "iopub.status.busy": "2024-09-27T13:45:25.537387Z", + "iopub.status.idle": "2024-09-27T13:45:25.541431Z", + "shell.execute_reply": "2024-09-27T13:45:25.540977Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:58:59.854463Z", - "iopub.status.busy": "2024-09-26T16:58:59.854166Z", - "iopub.status.idle": "2024-09-26T16:59:11.144483Z", - "shell.execute_reply": "2024-09-26T16:59:11.143910Z" + "iopub.execute_input": "2024-09-27T13:45:25.543067Z", + "iopub.status.busy": "2024-09-27T13:45:25.542758Z", + "iopub.status.idle": "2024-09-27T13:45:36.948754Z", + "shell.execute_reply": "2024-09-27T13:45:36.948076Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30f170149e6d448aaa4ebe763786395b", + "model_id": "b9cec9f2501a478298bdf046984e17af", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:11.146451Z", - "iopub.status.busy": "2024-09-26T16:59:11.146216Z", - "iopub.status.idle": "2024-09-26T16:59:29.523070Z", - "shell.execute_reply": "2024-09-26T16:59:29.522532Z" + "iopub.execute_input": "2024-09-27T13:45:36.951145Z", + "iopub.status.busy": "2024-09-27T13:45:36.950781Z", + "iopub.status.idle": "2024-09-27T13:45:55.344083Z", + "shell.execute_reply": "2024-09-27T13:45:55.343530Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.525358Z", - "iopub.status.busy": "2024-09-26T16:59:29.524954Z", - "iopub.status.idle": "2024-09-26T16:59:29.530885Z", - "shell.execute_reply": "2024-09-26T16:59:29.530434Z" + "iopub.execute_input": "2024-09-27T13:45:55.346499Z", + "iopub.status.busy": "2024-09-27T13:45:55.346039Z", + "iopub.status.idle": "2024-09-27T13:45:55.351081Z", + "shell.execute_reply": "2024-09-27T13:45:55.350506Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.532500Z", - "iopub.status.busy": "2024-09-26T16:59:29.532161Z", - "iopub.status.idle": "2024-09-26T16:59:29.536179Z", - "shell.execute_reply": "2024-09-26T16:59:29.535767Z" + "iopub.execute_input": "2024-09-27T13:45:55.352921Z", + "iopub.status.busy": "2024-09-27T13:45:55.352512Z", + "iopub.status.idle": "2024-09-27T13:45:55.356736Z", + "shell.execute_reply": "2024-09-27T13:45:55.356311Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.538000Z", - "iopub.status.busy": "2024-09-26T16:59:29.537676Z", - "iopub.status.idle": "2024-09-26T16:59:29.546498Z", - "shell.execute_reply": "2024-09-26T16:59:29.546051Z" + "iopub.execute_input": "2024-09-27T13:45:55.358366Z", + "iopub.status.busy": "2024-09-27T13:45:55.358194Z", + "iopub.status.idle": "2024-09-27T13:45:55.367089Z", + "shell.execute_reply": "2024-09-27T13:45:55.366635Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.548140Z", - "iopub.status.busy": "2024-09-26T16:59:29.547810Z", - "iopub.status.idle": "2024-09-26T16:59:29.576281Z", - "shell.execute_reply": "2024-09-26T16:59:29.575747Z" + "iopub.execute_input": "2024-09-27T13:45:55.368819Z", + "iopub.status.busy": "2024-09-27T13:45:55.368623Z", + "iopub.status.idle": "2024-09-27T13:45:55.407222Z", + "shell.execute_reply": "2024-09-27T13:45:55.406716Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T16:59:29.578551Z", - "iopub.status.busy": "2024-09-26T16:59:29.578155Z", - "iopub.status.idle": "2024-09-26T17:00:03.433901Z", - "shell.execute_reply": "2024-09-26T17:00:03.433237Z" + "iopub.execute_input": "2024-09-27T13:45:55.409382Z", + "iopub.status.busy": "2024-09-27T13:45:55.408920Z", + "iopub.status.idle": "2024-09-27T13:46:29.730340Z", + "shell.execute_reply": "2024-09-27T13:46:29.729712Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.020\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.049\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.710\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.896\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa4f2e95243f4fa7a40ad4fcfe57c6c0", + "model_id": "44364892919440e29a4daa044be042e7", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "731f00f919044a8a88cc076b579e46dc", + "model_id": "48dc2c5f935d4a06a9268360f445144f", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.163\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.662\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.758\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9f651479fb634fe188bcbb02162bfd50", + "model_id": "8587b883949a4e399dabc4f91c49eb97", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "262103e39f614b7ba8346cb40a06a364", + "model_id": "c217771fa5814aabb7107510b1d6e6a8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.968\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.120\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.706\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.781\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe416b8103714c939d38072d169f1695", + "model_id": "c9feed1c5a194d669dfaa347748b2250", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de925572cfb54cafa807449424d39b7e", + "model_id": "c88a0a54a7d8495c90e0ceefd16c73ea", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.436161Z", - "iopub.status.busy": "2024-09-26T17:00:03.435771Z", - "iopub.status.idle": "2024-09-26T17:00:03.452443Z", - "shell.execute_reply": "2024-09-26T17:00:03.452024Z" + "iopub.execute_input": "2024-09-27T13:46:29.732349Z", + "iopub.status.busy": "2024-09-27T13:46:29.732107Z", + "iopub.status.idle": "2024-09-27T13:46:29.748596Z", + "shell.execute_reply": "2024-09-27T13:46:29.748051Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.454156Z", - "iopub.status.busy": "2024-09-26T17:00:03.453981Z", - "iopub.status.idle": "2024-09-26T17:00:03.923150Z", - "shell.execute_reply": "2024-09-26T17:00:03.922671Z" + "iopub.execute_input": "2024-09-27T13:46:29.750480Z", + "iopub.status.busy": "2024-09-27T13:46:29.750177Z", + "iopub.status.idle": "2024-09-27T13:46:30.218781Z", + "shell.execute_reply": "2024-09-27T13:46:30.218120Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:00:03.925208Z", - "iopub.status.busy": "2024-09-26T17:00:03.924815Z", - "iopub.status.idle": "2024-09-26T17:01:55.216532Z", - "shell.execute_reply": "2024-09-26T17:01:55.215848Z" + "iopub.execute_input": "2024-09-27T13:46:30.220918Z", + "iopub.status.busy": "2024-09-27T13:46:30.220731Z", + "iopub.status.idle": "2024-09-27T13:48:21.510252Z", + "shell.execute_reply": "2024-09-27T13:48:21.509624Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20ae57fa05ee4e83901a856b849b3891", + "model_id": "9b584fe98d9c4efaa2b4e34b431444f0", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.218688Z", - "iopub.status.busy": "2024-09-26T17:01:55.218316Z", - "iopub.status.idle": "2024-09-26T17:01:55.686428Z", - "shell.execute_reply": "2024-09-26T17:01:55.685792Z" + "iopub.execute_input": "2024-09-27T13:48:21.512469Z", + "iopub.status.busy": "2024-09-27T13:48:21.511882Z", + "iopub.status.idle": "2024-09-27T13:48:21.969651Z", + "shell.execute_reply": "2024-09-27T13:48:21.969088Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.688736Z", - "iopub.status.busy": "2024-09-26T17:01:55.688529Z", - "iopub.status.idle": "2024-09-26T17:01:55.750648Z", - "shell.execute_reply": "2024-09-26T17:01:55.750042Z" + "iopub.execute_input": "2024-09-27T13:48:21.971962Z", + "iopub.status.busy": "2024-09-27T13:48:21.971637Z", + "iopub.status.idle": "2024-09-27T13:48:22.033131Z", + "shell.execute_reply": "2024-09-27T13:48:22.032635Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.752599Z", - "iopub.status.busy": "2024-09-26T17:01:55.752266Z", - "iopub.status.idle": "2024-09-26T17:01:55.761230Z", - "shell.execute_reply": "2024-09-26T17:01:55.760653Z" + "iopub.execute_input": "2024-09-27T13:48:22.035050Z", + "iopub.status.busy": "2024-09-27T13:48:22.034706Z", + "iopub.status.idle": "2024-09-27T13:48:22.043297Z", + "shell.execute_reply": "2024-09-27T13:48:22.042841Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.762949Z", - "iopub.status.busy": "2024-09-26T17:01:55.762675Z", - "iopub.status.idle": "2024-09-26T17:01:55.767458Z", - "shell.execute_reply": "2024-09-26T17:01:55.766879Z" + "iopub.execute_input": "2024-09-27T13:48:22.045108Z", + "iopub.status.busy": "2024-09-27T13:48:22.044706Z", + "iopub.status.idle": "2024-09-27T13:48:22.049614Z", + "shell.execute_reply": "2024-09-27T13:48:22.049150Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:55.769237Z", - "iopub.status.busy": "2024-09-26T17:01:55.768788Z", - "iopub.status.idle": "2024-09-26T17:01:56.270226Z", - "shell.execute_reply": "2024-09-26T17:01:56.269609Z" + "iopub.execute_input": "2024-09-27T13:48:22.051112Z", + "iopub.status.busy": "2024-09-27T13:48:22.050938Z", + "iopub.status.idle": "2024-09-27T13:48:22.550532Z", + "shell.execute_reply": "2024-09-27T13:48:22.549905Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.272148Z", - "iopub.status.busy": "2024-09-26T17:01:56.271744Z", - "iopub.status.idle": "2024-09-26T17:01:56.280250Z", - "shell.execute_reply": "2024-09-26T17:01:56.279691Z" + "iopub.execute_input": "2024-09-27T13:48:22.552263Z", + "iopub.status.busy": "2024-09-27T13:48:22.552084Z", + "iopub.status.idle": "2024-09-27T13:48:22.560446Z", + "shell.execute_reply": "2024-09-27T13:48:22.560005Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.282121Z", - "iopub.status.busy": "2024-09-26T17:01:56.281789Z", - "iopub.status.idle": "2024-09-26T17:01:56.289090Z", - "shell.execute_reply": "2024-09-26T17:01:56.288525Z" + "iopub.execute_input": "2024-09-27T13:48:22.562109Z", + "iopub.status.busy": "2024-09-27T13:48:22.561922Z", + "iopub.status.idle": "2024-09-27T13:48:22.568965Z", + "shell.execute_reply": "2024-09-27T13:48:22.568523Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.291094Z", - "iopub.status.busy": "2024-09-26T17:01:56.290554Z", - "iopub.status.idle": "2024-09-26T17:01:56.760975Z", - "shell.execute_reply": "2024-09-26T17:01:56.760351Z" + "iopub.execute_input": "2024-09-27T13:48:22.570574Z", + "iopub.status.busy": "2024-09-27T13:48:22.570400Z", + "iopub.status.idle": "2024-09-27T13:48:23.038305Z", + "shell.execute_reply": "2024-09-27T13:48:23.037704Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.762860Z", - "iopub.status.busy": "2024-09-26T17:01:56.762505Z", - "iopub.status.idle": "2024-09-26T17:01:56.777586Z", - "shell.execute_reply": "2024-09-26T17:01:56.777116Z" + "iopub.execute_input": "2024-09-27T13:48:23.040310Z", + "iopub.status.busy": "2024-09-27T13:48:23.039947Z", + "iopub.status.idle": "2024-09-27T13:48:23.055305Z", + "shell.execute_reply": "2024-09-27T13:48:23.054831Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.779480Z", - "iopub.status.busy": "2024-09-26T17:01:56.779138Z", - "iopub.status.idle": "2024-09-26T17:01:56.784613Z", - "shell.execute_reply": "2024-09-26T17:01:56.784161Z" + "iopub.execute_input": "2024-09-27T13:48:23.057245Z", + "iopub.status.busy": "2024-09-27T13:48:23.056900Z", + "iopub.status.idle": "2024-09-27T13:48:23.062573Z", + "shell.execute_reply": "2024-09-27T13:48:23.062007Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:56.786223Z", - "iopub.status.busy": "2024-09-26T17:01:56.785890Z", - "iopub.status.idle": "2024-09-26T17:01:57.544005Z", - "shell.execute_reply": "2024-09-26T17:01:57.543433Z" + "iopub.execute_input": "2024-09-27T13:48:23.064087Z", + "iopub.status.busy": "2024-09-27T13:48:23.063915Z", + "iopub.status.idle": "2024-09-27T13:48:23.767378Z", + "shell.execute_reply": "2024-09-27T13:48:23.766755Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.546041Z", - "iopub.status.busy": "2024-09-26T17:01:57.545838Z", - "iopub.status.idle": "2024-09-26T17:01:57.556107Z", - "shell.execute_reply": "2024-09-26T17:01:57.555567Z" + "iopub.execute_input": "2024-09-27T13:48:23.769501Z", + "iopub.status.busy": "2024-09-27T13:48:23.769322Z", + "iopub.status.idle": "2024-09-27T13:48:23.778619Z", + "shell.execute_reply": "2024-09-27T13:48:23.778012Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.558206Z", - "iopub.status.busy": "2024-09-26T17:01:57.558007Z", - "iopub.status.idle": "2024-09-26T17:01:57.564674Z", - "shell.execute_reply": "2024-09-26T17:01:57.564129Z" + "iopub.execute_input": "2024-09-27T13:48:23.780575Z", + "iopub.status.busy": "2024-09-27T13:48:23.780399Z", + "iopub.status.idle": "2024-09-27T13:48:23.785587Z", + "shell.execute_reply": "2024-09-27T13:48:23.785005Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.566774Z", - "iopub.status.busy": "2024-09-26T17:01:57.566367Z", - "iopub.status.idle": "2024-09-26T17:01:57.768978Z", - "shell.execute_reply": "2024-09-26T17:01:57.768415Z" + "iopub.execute_input": "2024-09-27T13:48:23.787352Z", + "iopub.status.busy": "2024-09-27T13:48:23.787182Z", + "iopub.status.idle": "2024-09-27T13:48:23.966439Z", + "shell.execute_reply": "2024-09-27T13:48:23.965775Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.771130Z", - "iopub.status.busy": "2024-09-26T17:01:57.770703Z", - "iopub.status.idle": "2024-09-26T17:01:57.778526Z", - "shell.execute_reply": "2024-09-26T17:01:57.778048Z" + "iopub.execute_input": "2024-09-27T13:48:23.968665Z", + "iopub.status.busy": "2024-09-27T13:48:23.968476Z", + "iopub.status.idle": "2024-09-27T13:48:23.977999Z", + "shell.execute_reply": "2024-09-27T13:48:23.977408Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.780134Z", - "iopub.status.busy": "2024-09-26T17:01:57.779959Z", - "iopub.status.idle": "2024-09-26T17:01:57.951031Z", - "shell.execute_reply": "2024-09-26T17:01:57.950434Z" + "iopub.execute_input": "2024-09-27T13:48:23.979913Z", + "iopub.status.busy": "2024-09-27T13:48:23.979502Z", + "iopub.status.idle": "2024-09-27T13:48:24.151812Z", + "shell.execute_reply": "2024-09-27T13:48:24.151203Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:01:57.952982Z", - "iopub.status.busy": "2024-09-26T17:01:57.952568Z", - "iopub.status.idle": "2024-09-26T17:01:57.957023Z", - "shell.execute_reply": "2024-09-26T17:01:57.956578Z" + "iopub.execute_input": "2024-09-27T13:48:24.153793Z", + "iopub.status.busy": "2024-09-27T13:48:24.153384Z", + "iopub.status.idle": "2024-09-27T13:48:24.157912Z", + "shell.execute_reply": "2024-09-27T13:48:24.157350Z" }, "nbsphinx": "hidden" }, @@ -2555,136 +2555,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02526371af764684aad4897d7046a365": { + "002c47d512744c3fb829f25bccd29856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2c0b351610b424a8cb54f4c25c0257e", - "placeholder": "​", - "style": "IPY_MODEL_ba1f4e88e2294c9a9ae17a70f35db16e", + "layout": "IPY_MODEL_d3d80ec4b9644c34aa7dec8beecea5f1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3df19d52b5fc4a0386413fdd1a5664b9", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "035f34e6a54c4b3f92421455a5670762": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "03c5fbd3c4ce4ea3984de19281b147af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 60000.0 } }, - "03f55df51f0c402d9c5708341635fe40": { + "025f175b1bc3460aa89f24cec6604d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2634,7 @@ "width": null } }, - "04922fddf2054ab9878395aa1dc5e2f3": { + "02853640143d49f7b2b53d5367f5366c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2752,15 +2649,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb652988afd24cf39d30d03f9b269bcc", + "layout": "IPY_MODEL_c879a51624034291b6cdf7b3b37731ac", "placeholder": "​", - "style": "IPY_MODEL_08a40c06549e498fa902f8ad4a556c8d", + "style": "IPY_MODEL_02ca223a4d244a87ba6bbf44a8020805", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5604.15 examples/s]" + "value": "100%" } }, - "0650dd8061c74475b7cdbeae70782dba": { + "02ca223a4d244a87ba6bbf44a8020805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2778,7 +2675,7 @@ "text_color": null } }, - "06e241b5f01342ee8d3b0aebd6334347": { + "08efa39df96a4a8a920c810498a698dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2794,30 +2691,7 @@ "description_width": "" } }, - "0770995c96e7450eb9dd81b263cd14e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d048bd8c5542b6b70d1e261b8dc718", - "placeholder": "​", - "style": "IPY_MODEL_d0536047d0804b29a6ffc9d1743720b2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "0889c9fe4bbf404ab1eff02e6fd5ffb9": { + "09c9d6cec18948cb9ab2f8fca3850384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2835,7 +2709,7 @@ "text_color": null } }, - "08a40c06549e498fa902f8ad4a556c8d": { + "0a7525dabaae4dca8e04969f7126849d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2853,30 +2727,7 @@ "text_color": null } }, - "0987ec15d6064297a9565901e22c60ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9627b06404dc417283abd3bbd64bcd8f", - "placeholder": "​", - "style": "IPY_MODEL_8263a572de4e4c51a641723f1be42eb8", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "09e50636d37d4ddc95009d6c95403302": { + "0b9d536d30c348e1b0ee4b0e6fd7f865": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2929,7 +2780,7 @@ "width": null } }, - "130a697771f84e80b9ea4c02d03ff62a": { + "0ed7f54f7cb54b18a2f8364afef47f0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2944,41 +2795,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41f6476f5f3049ca937e85253a058768", + "layout": "IPY_MODEL_4a5b873579bc440fb5e928cbcd9e8234", "placeholder": "​", - "style": "IPY_MODEL_6d26f9d99de84cd8ae50d08e423a9a63", + "style": "IPY_MODEL_922fec678412462e833e856911d44510", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1415e475761d42f1aa1007fae7458666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad687e0e218b466f8fa90ea5d77f2d8c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d2592a858d1d4bc3a7166e7814eb9d4c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "146da5ec780b4aac90aa3bbe92293e2f": { + "0f922409e00c49d9a9eeec3cde61b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,7 +2856,7 @@ "width": null } }, - "19d4d84dc95d4fb280f602be22e0c3cc": { + "12da9f31adcb4e82baab27c1b7261fe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3084,124 +2909,67 @@ "width": null } }, - "1a786c5ee7b14db9a60268ce2d3b9d35": { - "model_module": "@jupyter-widgets/controls", + "1333c86767824ba2bfdc4b6770dbafa9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cecba2ddba24988b0c32a3d2ee48be6": { - "model_module": "@jupyter-widgets/controls", + "14216ca27f61486ba99444444f1a70dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20ae57fa05ee4e83901a856b849b3891": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37e7fc65d04d40c6af6a1ae75c0546ef", - "IPY_MODEL_e027fdb1fd7e4cb8ad7d32a540884a3f", - "IPY_MODEL_5fa31c28566b44368ecfc567dacb405f" - ], - "layout": "IPY_MODEL_2754204b7400466cb5c5a6ffe197c89a", - "tabbable": null, - "tooltip": null - } - }, - "210e5f58051a429ba35833408833e675": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98625178d3c94ba6aa8694f50e9cdea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06e241b5f01342ee8d3b0aebd6334347", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "219ae75bd53e46b39c1ca8d09542d8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7647881f3689427e8af3b75d42cf0955", - "IPY_MODEL_d8c0fe97e2c044588249051a7efa85af", - "IPY_MODEL_3d99c44fdd794cda8666e6a73ca9c36b" - ], - "layout": "IPY_MODEL_36e63c9cf648431a8aef6237de973774", - "tabbable": null, - "tooltip": null - } - }, - "21dffe123dda45ca921adea1ee821ed2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3247,33 +3015,7 @@ "width": null } }, - "2215a31e00c54862aaf7ac054bbc1aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d92644c603c4714a4323cbd5c7def02", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ea2add80ce54083878a4116c9ef864c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "24fe7aabcef64c109f622061e0158fe0": { + "15e69809c93145258a4330c0e888e019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3326,31 +3068,7 @@ "width": null } }, - "258343123ee64d078d587fad6e7e195f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0987ec15d6064297a9565901e22c60ad", - "IPY_MODEL_89795a6284bd43cc835148fe363e72a4", - "IPY_MODEL_68bc22f66089416691ac84bc6e9e2f68" - ], - "layout": "IPY_MODEL_9b592443fd5c4a3fad02fe6396ff2168", - "tabbable": null, - "tooltip": null - } - }, - "2607500fa00c409ca1c6a4d2a5b954ec": { + "16090d1c79bc4d79944c3db2302e3ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,31 +3121,92 @@ "width": null } }, - "262103e39f614b7ba8346cb40a06a364": { + "184f9afe203d4b1da69ecfc142c87d3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54947a11404642838dd6ac6508a28be5", - "IPY_MODEL_1415e475761d42f1aa1007fae7458666", - "IPY_MODEL_5492f35efd7742c48dd625ba8592112f" - ], - "layout": "IPY_MODEL_c2946c68ee174245bcdd55745289e1b7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71dbb609000745ee81c749a485c20ca4", + "placeholder": "​", + "style": "IPY_MODEL_d2308e6aa2c346db8e5f494a09a900df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "1943f172c86b499fa74d2c6a950c476a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8687d2dd5a4b42bcbeb9c9ab9dcf7954", + "placeholder": "​", + "style": "IPY_MODEL_34619bf82add4c5b9cec777474318ba8", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "1b0dee58b4e24391ae1c6c3aba2e0615": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1e2228f9753b442bb900eae6d16b0696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c771392a402e4f02a8adc98797fbbcf2", + "placeholder": "​", + "style": "IPY_MODEL_bc749c7612fa4072b6e6984641f56a13", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1129.56it/s]" } }, - "2754204b7400466cb5c5a6ffe197c89a": { + "1e56f8f70dda4ab08089dd57df8705ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,7 +3259,7 @@ "width": null } }, - "2895596c7bce4e01bf33024c61fa1430": { + "1ec68b1b3e0b4beba1dbb2306c65cb25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3495,15 +3274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cd770306d9140b38f9f6769c71463c6", + "layout": "IPY_MODEL_a797bb167a3a464eab4111ffcbbaacb0", "placeholder": "​", - "style": "IPY_MODEL_61cb09df6d6b46d6b0e7e6fe2dba2b8c", + "style": "IPY_MODEL_bbbc5680d7f54c4ba83de0786a5d362d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "28d048bd8c5542b6b70d1e261b8dc718": { + "21273b24249c4cf494228a97e6e6323c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3556,7 +3335,7 @@ "width": null } }, - "28dda56b04364578939536044765661e": { + "220c8d108a9f4d709a8fe4f12c10acd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,39 +3350,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_146da5ec780b4aac90aa3bbe92293e2f", + "layout": "IPY_MODEL_f2e4496d9bd04825889b9c186e65f9b4", "placeholder": "​", - "style": "IPY_MODEL_0889c9fe4bbf404ab1eff02e6fd5ffb9", + "style": "IPY_MODEL_cfed0889f9f74e5797b43674331d24cb", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 36.6MB/s]" - } - }, - "30f170149e6d448aaa4ebe763786395b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5372f1d6c299485e8680e9d5eace8471", - "IPY_MODEL_2215a31e00c54862aaf7ac054bbc1aa9", - "IPY_MODEL_04922fddf2054ab9878395aa1dc5e2f3" - ], - "layout": "IPY_MODEL_ca12b0b5aa404384aed47c6ee217cbac", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 63.33it/s]" } }, - "3239d991ce634399b2910d27bfcb746f": { + "22a42e320abb49f8adc090a7ffb13967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3621,30 +3376,25 @@ "text_color": null } }, - "3267636d8cfe4aefb95062323b8beed3": { + "2506ec2e415149d0821f3541b2eaaf74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55e4a7231fac49038bc8cfa3f2024501", - "placeholder": "​", - "style": "IPY_MODEL_3239d991ce634399b2910d27bfcb746f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "332e863acfa84fbfa8f23f214c0afded": { + "273f714dbdd749fda418a3dbcdcdb56d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3660,91 +3410,24 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6b7b4edf0b54766bb2595264c412440", - "max": 40.0, + "layout": "IPY_MODEL_281cb8c9ae6b4c68a5d6d8df2286a56c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c087d94edd244d06bc339ae3eae373b3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "341ba052899a46a39f6a75bbeff09cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ee4e9762e70467191acd8fe944bb30c", - "placeholder": "​", - "style": "IPY_MODEL_ce2bdbdf7ffa4ed793d5d360fa121258", + "style": "IPY_MODEL_548655fd1e9243dc9415665c2e9b5103", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.75it/s]" + "value": 60000.0 } }, - "3580f919b155455397a655ec3658894f": { - "model_module": "@jupyter-widgets/controls", + "279461e9a239483d82ba4799fdf324d6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "369a2a2d596c42679bd5d6150343580a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a334bd3b18749a694dbba7cc4ccfd20", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1a3ba97be74a5497c8c8323f7d9e25", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "36e63c9cf648431a8aef6237de973774": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3790,56 +3473,7 @@ "width": null } }, - "37e7fc65d04d40c6af6a1ae75c0546ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21dffe123dda45ca921adea1ee821ed2", - "placeholder": "​", - "style": "IPY_MODEL_90378f2557ad48428999c94049d0f188", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3841ab79c51346799f39d11f1342e840": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88c371ef2071478ea464b014ef44388b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eb2ac9db956a43c695844d19480874ce", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3af5790668ef4fd8926ccbfef46e8b36": { + "281cb8c9ae6b4c68a5d6d8df2286a56c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3892,53 +3526,7 @@ "width": null } }, - "3b2afe08176b4aabb69056cefaacb5cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2607500fa00c409ca1c6a4d2a5b954ec", - "placeholder": "​", - "style": "IPY_MODEL_61aa613e156c437d9f9fc30e135cd74d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3d99c44fdd794cda8666e6a73ca9c36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be1cbcf9b7b4432eb3fb1ff24bb8ad77", - "placeholder": "​", - "style": "IPY_MODEL_e50e3c1c825f4781a2ddf6979af74bcf", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 243618.35 examples/s]" - } - }, - "416cf1f58de24f37ba6c0b9bd9bdc5d6": { + "292a189eb66e4301bfc896b4f8dc100b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3991,7 +3579,7 @@ "width": null } }, - "41f6476f5f3049ca937e85253a058768": { + "2a50581896484c0b976aedade7f12cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4044,113 +3632,51 @@ "width": null } }, - "4b2880e86cc84b4bb20092e88ae37e13": { - "model_module": "@jupyter-widgets/base", + "3070a952e2ca45bdb899c4d4198a9fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_292a189eb66e4301bfc896b4f8dc100b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b0bc94aa2b643519d5909658b963a45", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "4c2a376b53e04076b5ec3b93703c7bcf": { - "model_module": "@jupyter-widgets/base", + "34619bf82add4c5b9cec777474318ba8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d0a92c29e944931b6a22814c9d20524": { + "3778d1f5c0104c7cb2d7bcce800be452": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4203,48 +3729,23 @@ "width": null } }, - "522cf8445e0042feaa3d882bb0c3dfca": { + "3b0bc94aa2b643519d5909658b963a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5372f1d6c299485e8680e9d5eace8471": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb87b58f2ac54a589cbef4e34fafee8d", - "placeholder": "​", - "style": "IPY_MODEL_dca2d257b6ad44eabe656a8f5f3bc7e6", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "bar_color": null, + "description_width": "" } }, - "54841d1608114ce69f63a7780325533d": { + "3b55e363cfde4908ad226f56c13f1d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4297,7 +3798,7 @@ "width": null } }, - "5492f35efd7742c48dd625ba8592112f": { + "3bde4480ffa94ce4a2f7159486381564": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4312,18 +3813,118 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f330741bd3a495e945aad4a4ce4d358", + "layout": "IPY_MODEL_0b9d536d30c348e1b0ee4b0e6fd7f865", "placeholder": "​", - "style": "IPY_MODEL_c28945c3acdc445ba0cd672a325d45ce", + "style": "IPY_MODEL_51493ffa05404893af4a5dab6f77dbca", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.88it/s]" + "value": "Generating train split: 100%" } }, - "54947a11404642838dd6ac6508a28be5": { + "3c3e29691e4f4ad6840284ca3b17cfd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3df19d52b5fc4a0386413fdd1a5664b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "430a9c6146344b98802597b77c3f3be9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44364892919440e29a4daa044be042e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ec68b1b3e0b4beba1dbb2306c65cb25", + "IPY_MODEL_9066808f620341428e1ffba3d084bca4", + "IPY_MODEL_a5d814399565484a909f082c8b7e872b" + ], + "layout": "IPY_MODEL_d8ae40c5da4b4b0089c20c890333293e", + "tabbable": null, + "tooltip": null + } + }, + "44d904ba3762435b8839df2e24700f3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778d1f5c0104c7cb2d7bcce800be452", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08efa39df96a4a8a920c810498a698dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "453ac5707a4d42ea81efc5e1565c4272": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4335,15 +3936,650 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e465c1cd187a40f08ae74891d98d2689", + "layout": "IPY_MODEL_8d46174213f04048904879468ae71cc2", "placeholder": "​", - "style": "IPY_MODEL_c2861ca15b3244f8be1b0c9cca4eb464", + "style": "IPY_MODEL_22a42e320abb49f8adc090a7ffb13967", "tabbable": null, "tooltip": null, "value": "100%" } }, - "553af763d43c4e7ab92d8c26794fc190": { + "4749b626cbe94fc48d4b03ff6b199529": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48dc2c5f935d4a06a9268360f445144f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ed7f54f7cb54b18a2f8364afef47f0d", + "IPY_MODEL_4ca2bb4902ef4978ae0992bba223f34f", + "IPY_MODEL_7bbd9038dc554aed81bdf10fee8af2e4" + ], + "layout": "IPY_MODEL_ef45c415b584442b90eddf019859b2fa", + "tabbable": null, + "tooltip": null + } + }, + "4a5b873579bc440fb5e928cbcd9e8234": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aa1a02c15664164a38a57b714c9f47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c346a8ee11d94046a99d5f57ca946487", + "placeholder": "​", + "style": "IPY_MODEL_09c9d6cec18948cb9ab2f8fca3850384", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 23.0MB/s]" + } + }, + "4ca2bb4902ef4978ae0992bba223f34f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15e69809c93145258a4330c0e888e019", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce1305427aef46539cd0b52d2a4d80c5", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4faac9084cd14f7d9ab6683cd9cd154b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4fdb056e1ace496abe457111412c9432": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51493ffa05404893af4a5dab6f77dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5183bf12f78c49ed8e0b391f732cea7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "548655fd1e9243dc9415665c2e9b5103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "577f31248c7e4e5395e3c6c065b26c4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cba06315d8e47efa34517225eba91f1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62d0e0c88f1a4c2abca87123937bd572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffa49044d9234ebd9ec0888b452e8736", + "IPY_MODEL_6b3ea55673a641d0b9359241bc72e1ad", + "IPY_MODEL_7e7b44e1efd24e0e9970f5bdd54948e8" + ], + "layout": "IPY_MODEL_9b94d4160a064040bec6b5cea5b17e13", + "tabbable": null, + "tooltip": null + } + }, + "66783477b102444cad83795901922fd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6796911564e248d6a2edc13c06584dd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67fa9a2630bb48a3b16c5e994c294ae6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b3ea55673a641d0b9359241bc72e1ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21273b24249c4cf494228a97e6e6323c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73fc8ea97ef84eef8297d0f573949655", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "6c4fcee6e76b44cf8f0a29ebaa311f66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71dbb609000745ee81c749a485c20ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4396,7 +4632,23 @@ "width": null } }, - "55e4a7231fac49038bc8cfa3f2024501": { + "73fc8ea97ef84eef8297d0f573949655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7508894f89054a63884f667b7402cd0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4449,7 +4701,7 @@ "width": null } }, - "5be663589e854e1ca2d5091a520b9adb": { + "767e0f06b3954e37b720f3c3db178341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4464,49 +4716,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09e50636d37d4ddc95009d6c95403302", + "layout": "IPY_MODEL_a4ad05f1a8d242eda71d46ff04931d4d", "placeholder": "​", - "style": "IPY_MODEL_d2fec809ded6478fa101f2ee9596becb", + "style": "IPY_MODEL_da7f1b082c844fcf930864e35764ee69", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.75it/s]" - } - }, - "5e0283188f004ba3a715af38795bbabc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ea2add80ce54083878a4116c9ef864c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 40/40 [00:00<00:00, 56.79it/s]" } }, - "5fa31c28566b44368ecfc567dacb405f": { + "776aa050d3de4b2da0c5382c76274a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4521,85 +4739,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_553af763d43c4e7ab92d8c26794fc190", + "layout": "IPY_MODEL_16090d1c79bc4d79944c3db2302e3ee4", "placeholder": "​", - "style": "IPY_MODEL_5e0283188f004ba3a715af38795bbabc", + "style": "IPY_MODEL_80bb02045bc3428cacc4a8bcfc972f07", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1166.47it/s]" - } - }, - "61aa613e156c437d9f9fc30e135cd74d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61cb09df6d6b46d6b0e7e6fe2dba2b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64f9c4a5caac4ed4a19638a0b0e449ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "67f4dfd67393497c82cdaf0ab4a36a35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "68bc22f66089416691ac84bc6e9e2f68": { + "78e7fdc2f6ad4c19826157e8a3133740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4614,31 +4762,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f55df51f0c402d9c5708341635fe40", + "layout": "IPY_MODEL_ff829270eb2a450eb4bc4925b67b9353", "placeholder": "​", - "style": "IPY_MODEL_84f1dad5ee8b48ebb18278f22a5f4af8", + "style": "IPY_MODEL_a841775f0ace49feb3f9b7bbc04db697", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 253081.92 examples/s]" + "value": " 60000/60000 [00:00<00:00, 274804.21 examples/s]" } }, - "6c1a3ba97be74a5497c8c8323f7d9e25": { + "79712b33a5e94203b162a657bcb12a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67fa9a2630bb48a3b16c5e994c294ae6", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f02980876a54dbb8324c1fb8a142491", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d26f9d99de84cd8ae50d08e423a9a63": { + "7ab9a46c76fe4397b418d39e88da20c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4656,7 +4814,7 @@ "text_color": null } }, - "6f0f807797024621adc6abb7e0c9eaa2": { + "7bbd9038dc554aed81bdf10fee8af2e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4671,15 +4829,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_416cf1f58de24f37ba6c0b9bd9bdc5d6", + "layout": "IPY_MODEL_f5c1c2b5231846bc965b4a84d97c4978", "placeholder": "​", - "style": "IPY_MODEL_1cecba2ddba24988b0c32a3d2ee48be6", + "style": "IPY_MODEL_f351d976879e4e049d1f0ab7a19a6e3f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.56it/s]" + "value": " 40/40 [00:00<00:00, 60.58it/s]" } }, - "7038f74f23cb484984b1f5b1a8467611": { + "7bd4513692a04dcdb49f383da06e9355": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4732,7 +4890,7 @@ "width": null } }, - "7250fcd5c60e4b2e913bf33bc3e948ec": { + "7cc4d425c4ba401c934dfbc8568af440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4785,31 +4943,7 @@ "width": null } }, - "731f00f919044a8a88cc076b579e46dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3267636d8cfe4aefb95062323b8beed3", - "IPY_MODEL_7e380dbf96504aa19f37a01d07f25c8d", - "IPY_MODEL_d7fd58aec3be4461b5345173cf2a723e" - ], - "layout": "IPY_MODEL_24fe7aabcef64c109f622061e0158fe0", - "tabbable": null, - "tooltip": null - } - }, - "744cacf45c594f1688ae383d7a5c2fec": { + "7d37a14566bc46748576dd5718acf67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4862,7 +4996,7 @@ "width": null } }, - "7647881f3689427e8af3b75d42cf0955": { + "7e7b44e1efd24e0e9970f5bdd54948e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4877,15 +5011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc6e5172aa4d481b866ee9019152d9a8", + "layout": "IPY_MODEL_e1c866811f2c45698441743106275cc8", "placeholder": "​", - "style": "IPY_MODEL_3580f919b155455397a655ec3658894f", + "style": "IPY_MODEL_4faac9084cd14f7d9ab6683cd9cd154b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 36.5MB/s]" } }, - "77f21503eda044e1927d7ecee477a275": { + "7f02980876a54dbb8324c1fb8a142491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4901,76 +5035,85 @@ "description_width": "" } }, - "78a107afdf9d4ea49f9a9125e4c4348e": { - "model_module": "@jupyter-widgets/base", + "7f448eb8f9734416890102ab074a5c56": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a049ad814974333972be807cc0a70ac": { + "7f474e068b7447a4a707fae39fc4779a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80bb02045bc3428cacc4a8bcfc972f07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8587b883949a4e399dabc4f91c49eb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932527b3058d413a8641e6ad04c14915", + "IPY_MODEL_d171ea950ab94c3fbaccb8d2373a6da6", + "IPY_MODEL_767e0f06b3954e37b720f3c3db178341" + ], + "layout": "IPY_MODEL_12da9f31adcb4e82baab27c1b7261fe7", + "tabbable": null, + "tooltip": null } }, - "7a334bd3b18749a694dbba7cc4ccfd20": { + "8687d2dd5a4b42bcbeb9c9ab9dcf7954": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +5166,30 @@ "width": null } }, - "7c73c164138a422c88af31b40796165c": { + "8a51589c96d04591a2667d780bf7ad33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_577f31248c7e4e5395e3c6c065b26c4a", + "placeholder": "​", + "style": "IPY_MODEL_6796911564e248d6a2edc13c06584dd7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6898.07 examples/s]" + } + }, + "8d46174213f04048904879468ae71cc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,23 +5242,7 @@ "width": null } }, - "7e35d053e8e846a2b5a5c3c7590496ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e380dbf96504aa19f37a01d07f25c8d": { + "9066808f620341428e1ffba3d084bca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5108,17 +5258,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b2880e86cc84b4bb20092e88ae37e13", + "layout": "IPY_MODEL_7cc4d425c4ba401c934dfbc8568af440", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_aba08fb2e9e8429791ee936b70d37d77", + "style": "IPY_MODEL_bd7992dfee39487da2fdad5caff6a94f", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7eca5077ed044501ad01b2a33813c5c0": { + "907485478951427389e624de9ba0865d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff792f1c1a83439ab079e6e7c4cf646a", + "IPY_MODEL_79712b33a5e94203b162a657bcb12a35", + "IPY_MODEL_a6ec3c12e3ed442b863c224cbc4006ec" + ], + "layout": "IPY_MODEL_025f175b1bc3460aa89f24cec6604d04", + "tabbable": null, + "tooltip": null + } + }, + "91c443f7ff764f1dba681c3c09a14ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5345,7 @@ "width": null } }, - "8263a572de4e4c51a641723f1be42eb8": { + "922fec678412462e833e856911d44510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5189,7 +5363,30 @@ "text_color": null } }, - "84f1dad5ee8b48ebb18278f22a5f4af8": { + "932527b3058d413a8641e6ad04c14915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7508894f89054a63884f667b7402cd0b", + "placeholder": "​", + "style": "IPY_MODEL_7f474e068b7447a4a707fae39fc4779a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "966bf58e5bd14b8aa8e5fb75608923bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5207,7 +5404,7 @@ "text_color": null } }, - "88c371ef2071478ea464b014ef44388b": { + "97e27482e67741c58d5adb5df19c4e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5260,103 +5457,31 @@ "width": null } }, - "89795a6284bd43cc835148fe363e72a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c2a376b53e04076b5ec3b93703c7bcf", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a478aae5cc6447a3967de33488043afa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "89c909015de74accbfb91189d3a0649c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d4d84dc95d4fb280f602be22e0c3cc", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a049ad814974333972be807cc0a70ac", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "8b19e50194a7452a8003471537d3763f": { + "9b584fe98d9c4efaa2b4e34b431444f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_744cacf45c594f1688ae383d7a5c2fec", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e35d053e8e846a2b5a5c3c7590496ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f328d6279d4641508fd95fa254664013", + "IPY_MODEL_002c47d512744c3fb829f25bccd29856", + "IPY_MODEL_1e2228f9753b442bb900eae6d16b0696" + ], + "layout": "IPY_MODEL_6c4fcee6e76b44cf8f0a29ebaa311f66", "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "8cbbe4a65db040a5a3cd69e593a07e1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "8cd770306d9140b38f9f6769c71463c6": { + "9b94d4160a064040bec6b5cea5b17e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,7 +5534,7 @@ "width": null } }, - "8dd8bbfcf5eb4f7791da688e32498197": { + "a1df0d01bf0e4cc6ac9bea2b331ada11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5425,7 +5550,7 @@ "description_width": "" } }, - "8e5afc6c10514e5f82023b27683a226e": { + "a4ad05f1a8d242eda71d46ff04931d4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5478,7 +5603,30 @@ "width": null } }, - "8ec2b90bf10c433a8459e57d425c8760": { + "a5d814399565484a909f082c8b7e872b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debfb1185b13494a9970d6a72d784b60", + "placeholder": "​", + "style": "IPY_MODEL_0a7525dabaae4dca8e04969f7126849d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.87it/s]" + } + }, + "a6ec3c12e3ed442b863c224cbc4006ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5493,15 +5641,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7eca5077ed044501ad01b2a33813c5c0", + "layout": "IPY_MODEL_c55069dce44f4f9a96ca7801f9823170", "placeholder": "​", - "style": "IPY_MODEL_522cf8445e0042feaa3d882bb0c3dfca", + "style": "IPY_MODEL_66783477b102444cad83795901922fd6", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 67.6MB/s]" + "value": " 10000/10000 [00:00<00:00, 252363.34 examples/s]" } }, - "8ee4e9762e70467191acd8fe944bb30c": { + "a797bb167a3a464eab4111ffcbbaacb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5554,7 +5702,90 @@ "width": null } }, - "8f330741bd3a495e945aad4a4ce4d358": { + "a841775f0ace49feb3f9b7bbc04db697": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa0eb853a308442c86674889c9306833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aea869f9cc8d44cf80997dc63f1b0a73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bde4480ffa94ce4a2f7159486381564", + "IPY_MODEL_44d904ba3762435b8839df2e24700f3c", + "IPY_MODEL_78e7fdc2f6ad4c19826157e8a3133740" + ], + "layout": "IPY_MODEL_97e27482e67741c58d5adb5df19c4e16", + "tabbable": null, + "tooltip": null + } + }, + "af4e03b9990a4c36a589dde3f0ab1f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0d9a87e19e84400b026e8429c228a51", + "placeholder": "​", + "style": "IPY_MODEL_2506ec2e415149d0821f3541b2eaaf74", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.42it/s]" + } + }, + "b0d9a87e19e84400b026e8429c228a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5607,60 +5838,103 @@ "width": null } }, - "9002357990284f828a897347131f356e": { - "model_module": "@jupyter-widgets/base", + "b36513bdac0f46ceb83785d8a9bde09e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d37a14566bc46748576dd5718acf67c", + "placeholder": "​", + "style": "IPY_MODEL_f849bc18dadf47e89463232339c585a5", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "b896146cc7f64fd186cf2ed0dbf51c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5183bf12f78c49ed8e0b391f732cea7e", + "placeholder": "​", + "style": "IPY_MODEL_7ab9a46c76fe4397b418d39e88da20c3", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 579.16it/s]" + } + }, + "b9cec9f2501a478298bdf046984e17af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc5f5ae55db2472581e2857a66600c42", + "IPY_MODEL_273f714dbdd749fda418a3dbcdcdb56d", + "IPY_MODEL_8a51589c96d04591a2667d780bf7ad33" + ], + "layout": "IPY_MODEL_7bd4513692a04dcdb49f383da06e9355", + "tabbable": null, + "tooltip": null + } + }, + "bb4c35815c7449a8aed853a01aa86fa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc87aab28a8c4d119db816e03e6122d3", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b0dee58b4e24391ae1c6c3aba2e0615", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "90378f2557ad48428999c94049d0f188": { + "bbbc5680d7f54c4ba83de0786a5d362d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5678,30 +5952,25 @@ "text_color": null } }, - "903b0619b70a440ca79228d1c65fc405": { + "bc749c7612fa4072b6e6984641f56a13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54841d1608114ce69f63a7780325533d", - "placeholder": "​", - "style": "IPY_MODEL_67f4dfd67393497c82cdaf0ab4a36a35", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91feb6a6496446f48de62109e80a5436": { + "bc87aab28a8c4d119db816e03e6122d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5754,7 +6023,23 @@ "width": null } }, - "9627b06404dc417283abd3bbd64bcd8f": { + "bd7992dfee39487da2fdad5caff6a94f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c02b0661ef614d25a8b00a2146ff5ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5807,7 +6092,31 @@ "width": null } }, - "98625178d3c94ba6aa8694f50e9cdea9": { + "c217771fa5814aabb7107510b1d6e6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_453ac5707a4d42ea81efc5e1565c4272", + "IPY_MODEL_d7550fd273714d05a635895342a929bb", + "IPY_MODEL_220c8d108a9f4d709a8fe4f12c10acd2" + ], + "layout": "IPY_MODEL_1e56f8f70dda4ab08089dd57df8705ff", + "tabbable": null, + "tooltip": null + } + }, + "c346a8ee11d94046a99d5f57ca946487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5860,7 +6169,7 @@ "width": null } }, - "9b592443fd5c4a3fad02fe6396ff2168": { + "c55069dce44f4f9a96ca7801f9823170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,7 +6222,7 @@ "width": null } }, - "9d92644c603c4714a4323cbd5c7def02": { + "c771392a402e4f02a8adc98797fbbcf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,108 +6260,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ecf5c7750b847d4bf2c0d59f10434a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da49b42ce92046c998e9eb384ee0c39e", - "placeholder": "​", - "style": "IPY_MODEL_f1becfe00eb44b9bb936e4528ea9e942", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.14it/s]" - } - }, - "9f651479fb634fe188bcbb02162bfd50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9875d5f680740d58b957c92f84083c3", - "IPY_MODEL_aa9a51c33c8f4854aa529f9859b40b9f", - "IPY_MODEL_9ecf5c7750b847d4bf2c0d59f10434a2" - ], - "layout": "IPY_MODEL_8e5afc6c10514e5f82023b27683a226e", - "tabbable": null, - "tooltip": null - } - }, - "a478aae5cc6447a3967de33488043afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a5f665c94e1e4e7cb9bda8382e1e00cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d0a92c29e944931b6a22814c9d20524", - "placeholder": "​", - "style": "IPY_MODEL_b5a1be7d14b44a2b90d6c5e8c0ecbe95", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 620.23it/s]" + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8c9eaa0ec7a40f5b91b6c381bf54765": { + "c879a51624034291b6cdf7b3b37731ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6105,7 +6328,7 @@ "width": null } }, - "aa4f2e95243f4fa7a40ad4fcfe57c6c0": { + "c88a0a54a7d8495c90e0ceefd16c73ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6120,42 +6343,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_130a697771f84e80b9ea4c02d03ff62a", - "IPY_MODEL_3841ab79c51346799f39d11f1342e840", - "IPY_MODEL_5be663589e854e1ca2d5091a520b9adb" + "IPY_MODEL_02853640143d49f7b2b53d5367f5366c", + "IPY_MODEL_e16b0d4eaf784c8c99039a50e0c30aba", + "IPY_MODEL_af4e03b9990a4c36a589dde3f0ab1f57" ], - "layout": "IPY_MODEL_03c5fbd3c4ce4ea3984de19281b147af", + "layout": "IPY_MODEL_e3c308c6e2834aca9d4c0ee48a779a51", "tabbable": null, "tooltip": null } }, - "aa9a51c33c8f4854aa529f9859b40b9f": { + "c88f01ca4b5546fc8a07b2d1c845732e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9feed1c5a194d669dfaa347748b2250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_035f34e6a54c4b3f92421455a5670762", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_77f21503eda044e1927d7ecee477a275", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_184f9afe203d4b1da69ecfc142c87d3a", + "IPY_MODEL_f9ecde13ff2f4aa6b46a617709da636b", + "IPY_MODEL_e9de42840a6f4ef5ad2bd529eebdb5af" + ], + "layout": "IPY_MODEL_0f922409e00c49d9a9eeec3cde61b32b", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "aba08fb2e9e8429791ee936b70d37d77": { + "ca07382e91084da7af02c7ff7e300311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6171,60 +6410,23 @@ "description_width": "" } }, - "ad687e0e218b466f8fa90ea5d77f2d8c": { - "model_module": "@jupyter-widgets/base", + "ce1305427aef46539cd0b52d2a4d80c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b5a1be7d14b44a2b90d6c5e8c0ecbe95": { + "cfed0889f9f74e5797b43674331d24cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6242,60 +6444,33 @@ "text_color": null } }, - "b9cee27e7db1451a9caff091181782e1": { - "model_module": "@jupyter-widgets/base", + "d171ea950ab94c3fbaccb8d2373a6da6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14216ca27f61486ba99444444f1a70dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1df0d01bf0e4cc6ac9bea2b331ada11", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ba1f4e88e2294c9a9ae17a70f35db16e": { + "d2308e6aa2c346db8e5f494a09a900df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6313,7 +6488,7 @@ "text_color": null } }, - "be1cbcf9b7b4432eb3fb1ff24bb8ad77": { + "d3d80ec4b9644c34aa7dec8beecea5f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6366,23 +6541,57 @@ "width": null } }, - "c087d94edd244d06bc339ae3eae373b3": { + "d601f361fa2b4a219d2e10c6491a7d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1943f172c86b499fa74d2c6a950c476a", + "IPY_MODEL_3070a952e2ca45bdb899c4d4198a9fff", + "IPY_MODEL_b896146cc7f64fd186cf2ed0dbf51c0c" + ], + "layout": "IPY_MODEL_1333c86767824ba2bfdc4b6770dbafa9", + "tabbable": null, + "tooltip": null + } + }, + "d7550fd273714d05a635895342a929bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93c51ff0a3040cab6611c1a43b2e805", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca07382e91084da7af02c7ff7e300311", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "c11ba1f9642647e6b19c9534b3391681": { + "d8ae40c5da4b4b0089c20c890333293e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6435,25 +6644,23 @@ "width": null } }, - "c2861ca15b3244f8be1b0c9cca4eb464": { + "d9a6b702bb5e4e309f95c88d6c690b39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c28945c3acdc445ba0cd672a325d45ce": { + "da7f1b082c844fcf930864e35764ee69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6471,7 +6678,30 @@ "text_color": null } }, - "c2946c68ee174245bcdd55745289e1b7": { + "dc5f5ae55db2472581e2857a66600c42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279461e9a239483d82ba4799fdf324d6", + "placeholder": "​", + "style": "IPY_MODEL_ec3747524c714804b0de0a16bfad570c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "debfb1185b13494a9970d6a72d784b60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6524,7 +6754,59 @@ "width": null } }, - "c8e7c01446584517b3c53cd3261e5d45": { + "e03fa8b0f49f49f1baa465b1ca0883d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4749b626cbe94fc48d4b03ff6b199529", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9a6b702bb5e4e309f95c88d6c690b39", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "e16b0d4eaf784c8c99039a50e0c30aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cba06315d8e47efa34517225eba91f1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f05df81817754b7b87f99efbdce1f223", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e1c866811f2c45698441743106275cc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6577,7 +6859,7 @@ "width": null } }, - "ca12b0b5aa404384aed47c6ee217cbac": { + "e3c308c6e2834aca9d4c0ee48a779a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6630,116 +6912,7 @@ "width": null } }, - "ce2bdbdf7ffa4ed793d5d360fa121258": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0536047d0804b29a6ffc9d1743720b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0cd44c2bac844dd9f2edbdea4c9aa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3d8772d91d74a74bbfc3c241eb0ce09", - "placeholder": "​", - "style": "IPY_MODEL_8cbbe4a65db040a5a3cd69e593a07e1a", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.17MB/s]" - } - }, - "d2592a858d1d4bc3a7166e7814eb9d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d2fec809ded6478fa101f2ee9596becb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d398fec274b44e2b907f4c5cae300b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6b7b4edf0b54766bb2595264c412440": { + "e93c51ff0a3040cab6611c1a43b2e805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6792,152 +6965,7 @@ "width": null } }, - "d7fd58aec3be4461b5345173cf2a723e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9002357990284f828a897347131f356e", - "placeholder": "​", - "style": "IPY_MODEL_1a786c5ee7b14db9a60268ce2d3b9d35", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.17it/s]" - } - }, - "d87537574d1b46388a5f4de507d1aedd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0770995c96e7450eb9dd81b263cd14e1", - "IPY_MODEL_89c909015de74accbfb91189d3a0649c", - "IPY_MODEL_28dda56b04364578939536044765661e" - ], - "layout": "IPY_MODEL_b9cee27e7db1451a9caff091181782e1", - "tabbable": null, - "tooltip": null - } - }, - "d8c0fe97e2c044588249051a7efa85af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91feb6a6496446f48de62109e80a5436", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64f9c4a5caac4ed4a19638a0b0e449ae", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "d9875d5f680740d58b957c92f84083c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c73c164138a422c88af31b40796165c", - "placeholder": "​", - "style": "IPY_MODEL_0650dd8061c74475b7cdbeae70782dba", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d992a44e172d47668b49fe9830d4ea41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a107afdf9d4ea49f9a9125e4c4348e", - "placeholder": "​", - "style": "IPY_MODEL_ebd09a0dfc4e41d8b37610226c9e7be8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "da461b681769492d812461f46d6775ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8c9eaa0ec7a40f5b91b6c381bf54765", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8dd8bbfcf5eb4f7791da688e32498197", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "da49b42ce92046c998e9eb384ee0c39e": { + "e9980f6d6bf842ce92b80dcf43f39e4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,25 +7018,30 @@ "width": null } }, - "dca2d257b6ad44eabe656a8f5f3bc7e6": { + "e9de42840a6f4ef5ad2bd529eebdb5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9837661e474434ba02cde38ddef5148", + "placeholder": "​", + "style": "IPY_MODEL_430a9c6146344b98802597b77c3f3be9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.40it/s]" } }, - "de925572cfb54cafa807449424d39b7e": { + "e9fb2e15855a495eb8393c8b1c470abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7023,42 +7056,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903b0619b70a440ca79228d1c65fc405", - "IPY_MODEL_332e863acfa84fbfa8f23f214c0afded", - "IPY_MODEL_6f0f807797024621adc6abb7e0c9eaa2" + "IPY_MODEL_ed5aaff857784513a498c55586a92986", + "IPY_MODEL_bb4c35815c7449a8aed853a01aa86fa4", + "IPY_MODEL_b36513bdac0f46ceb83785d8a9bde09e" ], - "layout": "IPY_MODEL_3af5790668ef4fd8926ccbfef46e8b36", + "layout": "IPY_MODEL_91c443f7ff764f1dba681c3c09a14ff1", "tabbable": null, "tooltip": null } }, - "e027fdb1fd7e4cb8ad7d32a540884a3f": { + "ec3747524c714804b0de0a16bfad570c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed5aaff857784513a498c55586a92986": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_efaaf8ce120240269b0246dccf24c672", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d398fec274b44e2b907f4c5cae300b81", + "layout": "IPY_MODEL_3b55e363cfde4908ad226f56c13f1d9e", + "placeholder": "​", + "style": "IPY_MODEL_966bf58e5bd14b8aa8e5fb75608923bb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading readme: 100%" } }, - "e2c0b351610b424a8cb54f4c25c0257e": { + "ef45c415b584442b90eddf019859b2fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,60 +7159,23 @@ "width": null } }, - "e3d8772d91d74a74bbfc3c241eb0ce09": { - "model_module": "@jupyter-widgets/base", + "f05df81817754b7b87f99efbdce1f223": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e465c1cd187a40f08ae74891d98d2689": { + "f2e4496d9bd04825889b9c186e65f9b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,41 +7228,30 @@ "width": null } }, - "e50e3c1c825f4781a2ddf6979af74bcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2ac9db956a43c695844d19480874ce": { + "f328d6279d4641508fd95fa254664013": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fdb056e1ace496abe457111412c9432", + "placeholder": "​", + "style": "IPY_MODEL_aa0eb853a308442c86674889c9306833", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ebd09a0dfc4e41d8b37610226c9e7be8": { + "f351d976879e4e049d1f0ab7a19a6e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7269,55 +7269,7 @@ "text_color": null } }, - "ed3dd5752c5341fca2216803c8c4b46d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d992a44e172d47668b49fe9830d4ea41", - "IPY_MODEL_8b19e50194a7452a8003471537d3763f", - "IPY_MODEL_a5f665c94e1e4e7cb9bda8382e1e00cc" - ], - "layout": "IPY_MODEL_7038f74f23cb484984b1f5b1a8467611", - "tabbable": null, - "tooltip": null - } - }, - "ed3e7469df2c4560897c195c6e1c0003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02526371af764684aad4897d7046a365", - "IPY_MODEL_369a2a2d596c42679bd5d6150343580a", - "IPY_MODEL_d0cd44c2bac844dd9f2edbdea4c9aa01" - ], - "layout": "IPY_MODEL_c8e7c01446584517b3c53cd3261e5d45", - "tabbable": null, - "tooltip": null - } - }, - "efaaf8ce120240269b0246dccf24c672": { + "f5c1c2b5231846bc965b4a84d97c4978": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,7 +7322,7 @@ "width": null } }, - "f1becfe00eb44b9bb936e4528ea9e942": { + "f849bc18dadf47e89463232339c585a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7388,31 +7340,7 @@ "text_color": null } }, - "f2c29b6ce7974f23abf1753e738849b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b2afe08176b4aabb69056cefaacb5cd", - "IPY_MODEL_210e5f58051a429ba35833408833e675", - "IPY_MODEL_8ec2b90bf10c433a8459e57d425c8760" - ], - "layout": "IPY_MODEL_c11ba1f9642647e6b19c9534b3391681", - "tabbable": null, - "tooltip": null - } - }, - "fb652988afd24cf39d30d03f9b269bcc": { + "f8c948dfdc854e989e91dc328f4b69c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7465,7 +7393,7 @@ "width": null } }, - "fb87b58f2ac54a589cbef4e34fafee8d": { + "f9837661e474434ba02cde38ddef5148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7518,7 +7446,80 @@ "width": null } }, - "fc6e5172aa4d481b866ee9019152d9a8": { + "f9ecde13ff2f4aa6b46a617709da636b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a50581896484c0b976aedade7f12cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3e29691e4f4ad6840284ca3b17cfd9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fca7e86a7eb34f15a6e35dfad2b37d04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_776aa050d3de4b2da0c5382c76274a23", + "IPY_MODEL_e03fa8b0f49f49f1baa465b1ca0883d5", + "IPY_MODEL_4aa1a02c15664164a38a57b714c9f47c" + ], + "layout": "IPY_MODEL_c02b0661ef614d25a8b00a2146ff5ca5", + "tabbable": null, + "tooltip": null + } + }, + "ff792f1c1a83439ab079e6e7c4cf646a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e9980f6d6bf842ce92b80dcf43f39e4d", + "placeholder": "​", + "style": "IPY_MODEL_c88f01ca4b5546fc8a07b2d1c845732e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff829270eb2a450eb4bc4925b67b9353": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,28 +7572,27 @@ "width": null } }, - "fe416b8103714c939d38072d169f1695": { + "ffa49044d9234ebd9ec0888b452e8736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2895596c7bce4e01bf33024c61fa1430", - "IPY_MODEL_da461b681769492d812461f46d6775ee", - "IPY_MODEL_341ba052899a46a39f6a75bbeff09cc3" - ], - "layout": "IPY_MODEL_7250fcd5c60e4b2e913bf33bc3e948ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8c948dfdc854e989e91dc328f4b69c7", + "placeholder": "​", + "style": "IPY_MODEL_7f448eb8f9734416890102ab074a5c56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 169e30683..61c139cf0 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:01.656948Z", - "iopub.status.busy": "2024-09-26T17:02:01.656539Z", - "iopub.status.idle": "2024-09-26T17:02:02.850939Z", - "shell.execute_reply": "2024-09-26T17:02:02.850256Z" + "iopub.execute_input": "2024-09-27T13:48:28.690694Z", + "iopub.status.busy": "2024-09-27T13:48:28.690508Z", + "iopub.status.idle": "2024-09-27T13:48:29.909631Z", + "shell.execute_reply": "2024-09-27T13:48:29.909082Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.853271Z", - "iopub.status.busy": "2024-09-26T17:02:02.852947Z", - "iopub.status.idle": "2024-09-26T17:02:02.875172Z", - "shell.execute_reply": "2024-09-26T17:02:02.874705Z" + "iopub.execute_input": "2024-09-27T13:48:29.911776Z", + "iopub.status.busy": "2024-09-27T13:48:29.911485Z", + "iopub.status.idle": "2024-09-27T13:48:29.929829Z", + "shell.execute_reply": "2024-09-27T13:48:29.929260Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.877142Z", - "iopub.status.busy": "2024-09-26T17:02:02.876721Z", - "iopub.status.idle": "2024-09-26T17:02:02.901260Z", - "shell.execute_reply": "2024-09-26T17:02:02.900803Z" + "iopub.execute_input": "2024-09-27T13:48:29.931726Z", + "iopub.status.busy": "2024-09-27T13:48:29.931354Z", + "iopub.status.idle": "2024-09-27T13:48:29.955883Z", + "shell.execute_reply": "2024-09-27T13:48:29.955429Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.903032Z", - "iopub.status.busy": "2024-09-26T17:02:02.902670Z", - "iopub.status.idle": "2024-09-26T17:02:02.906081Z", - "shell.execute_reply": "2024-09-26T17:02:02.905633Z" + "iopub.execute_input": "2024-09-27T13:48:29.957546Z", + "iopub.status.busy": "2024-09-27T13:48:29.957198Z", + "iopub.status.idle": "2024-09-27T13:48:29.960644Z", + "shell.execute_reply": "2024-09-27T13:48:29.960187Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.907891Z", - "iopub.status.busy": "2024-09-26T17:02:02.907547Z", - "iopub.status.idle": "2024-09-26T17:02:02.915059Z", - "shell.execute_reply": "2024-09-26T17:02:02.914598Z" + "iopub.execute_input": "2024-09-27T13:48:29.962526Z", + "iopub.status.busy": "2024-09-27T13:48:29.962099Z", + "iopub.status.idle": "2024-09-27T13:48:29.970289Z", + "shell.execute_reply": "2024-09-27T13:48:29.969831Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.916797Z", - "iopub.status.busy": "2024-09-26T17:02:02.916457Z", - "iopub.status.idle": "2024-09-26T17:02:02.918910Z", - "shell.execute_reply": "2024-09-26T17:02:02.918455Z" + "iopub.execute_input": "2024-09-27T13:48:29.972004Z", + "iopub.status.busy": "2024-09-27T13:48:29.971668Z", + "iopub.status.idle": "2024-09-27T13:48:29.974120Z", + "shell.execute_reply": "2024-09-27T13:48:29.973664Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:02.920658Z", - "iopub.status.busy": "2024-09-26T17:02:02.920329Z", - "iopub.status.idle": "2024-09-26T17:02:05.951867Z", - "shell.execute_reply": "2024-09-26T17:02:05.951334Z" + "iopub.execute_input": "2024-09-27T13:48:29.975796Z", + "iopub.status.busy": "2024-09-27T13:48:29.975523Z", + "iopub.status.idle": "2024-09-27T13:48:33.022239Z", + "shell.execute_reply": "2024-09-27T13:48:33.021576Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.953863Z", - "iopub.status.busy": "2024-09-26T17:02:05.953664Z", - "iopub.status.idle": "2024-09-26T17:02:05.962841Z", - "shell.execute_reply": "2024-09-26T17:02:05.962408Z" + "iopub.execute_input": "2024-09-27T13:48:33.024546Z", + "iopub.status.busy": "2024-09-27T13:48:33.024174Z", + "iopub.status.idle": "2024-09-27T13:48:33.033530Z", + "shell.execute_reply": "2024-09-27T13:48:33.033087Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:05.964552Z", - "iopub.status.busy": "2024-09-26T17:02:05.964224Z", - "iopub.status.idle": "2024-09-26T17:02:07.908703Z", - "shell.execute_reply": "2024-09-26T17:02:07.908090Z" + "iopub.execute_input": "2024-09-27T13:48:33.035207Z", + "iopub.status.busy": "2024-09-27T13:48:33.035031Z", + "iopub.status.idle": "2024-09-27T13:48:35.057425Z", + "shell.execute_reply": "2024-09-27T13:48:35.056829Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.910953Z", - "iopub.status.busy": "2024-09-26T17:02:07.910373Z", - "iopub.status.idle": "2024-09-26T17:02:07.928712Z", - "shell.execute_reply": "2024-09-26T17:02:07.928235Z" + "iopub.execute_input": "2024-09-27T13:48:35.059795Z", + "iopub.status.busy": "2024-09-27T13:48:35.059229Z", + "iopub.status.idle": "2024-09-27T13:48:35.078592Z", + "shell.execute_reply": "2024-09-27T13:48:35.078085Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.930415Z", - "iopub.status.busy": "2024-09-26T17:02:07.930091Z", - "iopub.status.idle": "2024-09-26T17:02:07.937827Z", - "shell.execute_reply": "2024-09-26T17:02:07.937268Z" + "iopub.execute_input": "2024-09-27T13:48:35.080517Z", + "iopub.status.busy": "2024-09-27T13:48:35.080147Z", + "iopub.status.idle": "2024-09-27T13:48:35.088054Z", + "shell.execute_reply": "2024-09-27T13:48:35.087581Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.939627Z", - "iopub.status.busy": "2024-09-26T17:02:07.939288Z", - "iopub.status.idle": "2024-09-26T17:02:07.948313Z", - "shell.execute_reply": "2024-09-26T17:02:07.947729Z" + "iopub.execute_input": "2024-09-27T13:48:35.089935Z", + "iopub.status.busy": "2024-09-27T13:48:35.089521Z", + "iopub.status.idle": "2024-09-27T13:48:35.098940Z", + "shell.execute_reply": "2024-09-27T13:48:35.098374Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.950161Z", - "iopub.status.busy": "2024-09-26T17:02:07.949841Z", - "iopub.status.idle": "2024-09-26T17:02:07.957648Z", - "shell.execute_reply": "2024-09-26T17:02:07.957041Z" + "iopub.execute_input": "2024-09-27T13:48:35.100861Z", + "iopub.status.busy": "2024-09-27T13:48:35.100449Z", + "iopub.status.idle": "2024-09-27T13:48:35.108869Z", + "shell.execute_reply": "2024-09-27T13:48:35.108267Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.959493Z", - "iopub.status.busy": "2024-09-26T17:02:07.959139Z", - "iopub.status.idle": "2024-09-26T17:02:07.969567Z", - "shell.execute_reply": "2024-09-26T17:02:07.968948Z" + "iopub.execute_input": "2024-09-27T13:48:35.110735Z", + "iopub.status.busy": "2024-09-27T13:48:35.110393Z", + "iopub.status.idle": "2024-09-27T13:48:35.119177Z", + "shell.execute_reply": "2024-09-27T13:48:35.118615Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.971246Z", - "iopub.status.busy": "2024-09-26T17:02:07.971075Z", - "iopub.status.idle": "2024-09-26T17:02:07.978570Z", - "shell.execute_reply": "2024-09-26T17:02:07.978076Z" + "iopub.execute_input": "2024-09-27T13:48:35.120900Z", + "iopub.status.busy": "2024-09-27T13:48:35.120578Z", + "iopub.status.idle": "2024-09-27T13:48:35.128239Z", + "shell.execute_reply": "2024-09-27T13:48:35.127660Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.980461Z", - "iopub.status.busy": "2024-09-26T17:02:07.980085Z", - "iopub.status.idle": "2024-09-26T17:02:07.988648Z", - "shell.execute_reply": "2024-09-26T17:02:07.988195Z" + "iopub.execute_input": "2024-09-27T13:48:35.130045Z", + "iopub.status.busy": "2024-09-27T13:48:35.129690Z", + "iopub.status.idle": "2024-09-27T13:48:35.137653Z", + "shell.execute_reply": "2024-09-27T13:48:35.137215Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:07.990420Z", - "iopub.status.busy": "2024-09-26T17:02:07.990085Z", - "iopub.status.idle": "2024-09-26T17:02:07.998038Z", - "shell.execute_reply": "2024-09-26T17:02:07.997573Z" + "iopub.execute_input": "2024-09-27T13:48:35.139474Z", + "iopub.status.busy": "2024-09-27T13:48:35.139126Z", + "iopub.status.idle": "2024-09-27T13:48:35.147699Z", + "shell.execute_reply": "2024-09-27T13:48:35.147238Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index c12116815..ab858b9be 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -804,7 +804,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}
+Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 343f76c9a..b10d7534a 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:10.815001Z", - "iopub.status.busy": "2024-09-26T17:02:10.814842Z", - "iopub.status.idle": "2024-09-26T17:02:13.720806Z", - "shell.execute_reply": "2024-09-26T17:02:13.720189Z" + "iopub.execute_input": "2024-09-27T13:48:38.123019Z", + "iopub.status.busy": "2024-09-27T13:48:38.122617Z", + "iopub.status.idle": "2024-09-27T13:48:41.156902Z", + "shell.execute_reply": "2024-09-27T13:48:41.156293Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.723175Z", - "iopub.status.busy": "2024-09-26T17:02:13.722674Z", - "iopub.status.idle": "2024-09-26T17:02:13.725899Z", - "shell.execute_reply": "2024-09-26T17:02:13.725444Z" + "iopub.execute_input": "2024-09-27T13:48:41.159363Z", + "iopub.status.busy": "2024-09-27T13:48:41.158760Z", + "iopub.status.idle": "2024-09-27T13:48:41.162218Z", + "shell.execute_reply": "2024-09-27T13:48:41.161666Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.727650Z", - "iopub.status.busy": "2024-09-26T17:02:13.727301Z", - "iopub.status.idle": "2024-09-26T17:02:13.730292Z", - "shell.execute_reply": "2024-09-26T17:02:13.729849Z" + "iopub.execute_input": "2024-09-27T13:48:41.164034Z", + "iopub.status.busy": "2024-09-27T13:48:41.163676Z", + "iopub.status.idle": "2024-09-27T13:48:41.166941Z", + "shell.execute_reply": "2024-09-27T13:48:41.166439Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.731901Z", - "iopub.status.busy": "2024-09-26T17:02:13.731621Z", - "iopub.status.idle": "2024-09-26T17:02:13.756874Z", - "shell.execute_reply": "2024-09-26T17:02:13.756312Z" + "iopub.execute_input": "2024-09-27T13:48:41.168602Z", + "iopub.status.busy": "2024-09-27T13:48:41.168322Z", + "iopub.status.idle": "2024-09-27T13:48:41.194210Z", + "shell.execute_reply": "2024-09-27T13:48:41.193635Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.758691Z", - "iopub.status.busy": "2024-09-26T17:02:13.758260Z", - "iopub.status.idle": "2024-09-26T17:02:13.761816Z", - "shell.execute_reply": "2024-09-26T17:02:13.761257Z" + "iopub.execute_input": "2024-09-27T13:48:41.196238Z", + "iopub.status.busy": "2024-09-27T13:48:41.195805Z", + "iopub.status.idle": "2024-09-27T13:48:41.199937Z", + "shell.execute_reply": "2024-09-27T13:48:41.199359Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'supported_cards_and_currencies', 'cancel_transfer', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.763566Z", - "iopub.status.busy": "2024-09-26T17:02:13.763110Z", - "iopub.status.idle": "2024-09-26T17:02:13.766236Z", - "shell.execute_reply": "2024-09-26T17:02:13.765787Z" + "iopub.execute_input": "2024-09-27T13:48:41.201902Z", + "iopub.status.busy": "2024-09-27T13:48:41.201575Z", + "iopub.status.idle": "2024-09-27T13:48:41.204610Z", + "shell.execute_reply": "2024-09-27T13:48:41.204162Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:13.767931Z", - "iopub.status.busy": "2024-09-26T17:02:13.767610Z", - "iopub.status.idle": "2024-09-26T17:02:17.637562Z", - "shell.execute_reply": "2024-09-26T17:02:17.636903Z" + "iopub.execute_input": "2024-09-27T13:48:41.206413Z", + "iopub.status.busy": "2024-09-27T13:48:41.206079Z", + "iopub.status.idle": "2024-09-27T13:48:45.163696Z", + "shell.execute_reply": "2024-09-27T13:48:45.163141Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:17.639989Z", - "iopub.status.busy": "2024-09-26T17:02:17.639568Z", - "iopub.status.idle": "2024-09-26T17:02:18.534074Z", - "shell.execute_reply": "2024-09-26T17:02:18.533483Z" + "iopub.execute_input": "2024-09-27T13:48:45.165987Z", + "iopub.status.busy": "2024-09-27T13:48:45.165561Z", + "iopub.status.idle": "2024-09-27T13:48:46.068707Z", + "shell.execute_reply": "2024-09-27T13:48:46.068104Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.536535Z", - "iopub.status.busy": "2024-09-26T17:02:18.536141Z", - "iopub.status.idle": "2024-09-26T17:02:18.539097Z", - "shell.execute_reply": "2024-09-26T17:02:18.538594Z" + "iopub.execute_input": "2024-09-27T13:48:46.071667Z", + "iopub.status.busy": "2024-09-27T13:48:46.070894Z", + "iopub.status.idle": "2024-09-27T13:48:46.074612Z", + "shell.execute_reply": "2024-09-27T13:48:46.074101Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:18.541035Z", - "iopub.status.busy": "2024-09-26T17:02:18.540659Z", - "iopub.status.idle": "2024-09-26T17:02:20.483284Z", - "shell.execute_reply": "2024-09-26T17:02:20.482560Z" + "iopub.execute_input": "2024-09-27T13:48:46.077488Z", + "iopub.status.busy": "2024-09-27T13:48:46.076743Z", + "iopub.status.idle": "2024-09-27T13:48:48.102638Z", + "shell.execute_reply": "2024-09-27T13:48:48.101922Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.486447Z", - "iopub.status.busy": "2024-09-26T17:02:20.486003Z", - "iopub.status.idle": "2024-09-26T17:02:20.511442Z", - "shell.execute_reply": "2024-09-26T17:02:20.510928Z" + "iopub.execute_input": "2024-09-27T13:48:48.106046Z", + "iopub.status.busy": "2024-09-27T13:48:48.104814Z", + "iopub.status.idle": "2024-09-27T13:48:48.130901Z", + "shell.execute_reply": "2024-09-27T13:48:48.130366Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.514446Z", - "iopub.status.busy": "2024-09-26T17:02:20.513683Z", - "iopub.status.idle": "2024-09-26T17:02:20.524155Z", - "shell.execute_reply": "2024-09-26T17:02:20.523745Z" + "iopub.execute_input": "2024-09-27T13:48:48.133937Z", + "iopub.status.busy": "2024-09-27T13:48:48.133159Z", + "iopub.status.idle": "2024-09-27T13:48:48.143530Z", + "shell.execute_reply": "2024-09-27T13:48:48.143089Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.525970Z", - "iopub.status.busy": "2024-09-26T17:02:20.525788Z", - "iopub.status.idle": "2024-09-26T17:02:20.530473Z", - "shell.execute_reply": "2024-09-26T17:02:20.529997Z" + "iopub.execute_input": "2024-09-27T13:48:48.145142Z", + "iopub.status.busy": "2024-09-27T13:48:48.144964Z", + "iopub.status.idle": "2024-09-27T13:48:48.149332Z", + "shell.execute_reply": "2024-09-27T13:48:48.148851Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.532181Z", - "iopub.status.busy": "2024-09-26T17:02:20.531868Z", - "iopub.status.idle": "2024-09-26T17:02:20.538319Z", - "shell.execute_reply": "2024-09-26T17:02:20.537858Z" + "iopub.execute_input": "2024-09-27T13:48:48.151063Z", + "iopub.status.busy": "2024-09-27T13:48:48.150710Z", + "iopub.status.idle": "2024-09-27T13:48:48.156987Z", + "shell.execute_reply": "2024-09-27T13:48:48.156523Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.539829Z", - "iopub.status.busy": "2024-09-26T17:02:20.539657Z", - "iopub.status.idle": "2024-09-26T17:02:20.546053Z", - "shell.execute_reply": "2024-09-26T17:02:20.545618Z" + "iopub.execute_input": "2024-09-27T13:48:48.158687Z", + "iopub.status.busy": "2024-09-27T13:48:48.158353Z", + "iopub.status.idle": "2024-09-27T13:48:48.164503Z", + "shell.execute_reply": "2024-09-27T13:48:48.164070Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.547624Z", - "iopub.status.busy": "2024-09-26T17:02:20.547452Z", - "iopub.status.idle": "2024-09-26T17:02:20.553718Z", - "shell.execute_reply": "2024-09-26T17:02:20.553293Z" + "iopub.execute_input": "2024-09-27T13:48:48.166263Z", + "iopub.status.busy": "2024-09-27T13:48:48.165891Z", + "iopub.status.idle": "2024-09-27T13:48:48.171483Z", + "shell.execute_reply": "2024-09-27T13:48:48.171050Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.555248Z", - "iopub.status.busy": "2024-09-26T17:02:20.555076Z", - "iopub.status.idle": "2024-09-26T17:02:20.563590Z", - "shell.execute_reply": "2024-09-26T17:02:20.563144Z" + "iopub.execute_input": "2024-09-27T13:48:48.173156Z", + "iopub.status.busy": "2024-09-27T13:48:48.172819Z", + "iopub.status.idle": "2024-09-27T13:48:48.180987Z", + "shell.execute_reply": "2024-09-27T13:48:48.180558Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.565315Z", - "iopub.status.busy": "2024-09-26T17:02:20.564973Z", - "iopub.status.idle": "2024-09-26T17:02:20.570343Z", - "shell.execute_reply": "2024-09-26T17:02:20.569902Z" + "iopub.execute_input": "2024-09-27T13:48:48.182819Z", + "iopub.status.busy": "2024-09-27T13:48:48.182411Z", + "iopub.status.idle": "2024-09-27T13:48:48.187916Z", + "shell.execute_reply": "2024-09-27T13:48:48.187364Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.571994Z", - "iopub.status.busy": "2024-09-26T17:02:20.571657Z", - "iopub.status.idle": "2024-09-26T17:02:20.576878Z", - "shell.execute_reply": "2024-09-26T17:02:20.576423Z" + "iopub.execute_input": "2024-09-27T13:48:48.189674Z", + "iopub.status.busy": "2024-09-27T13:48:48.189285Z", + "iopub.status.idle": "2024-09-27T13:48:48.194675Z", + "shell.execute_reply": "2024-09-27T13:48:48.194131Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.578582Z", - "iopub.status.busy": "2024-09-26T17:02:20.578244Z", - "iopub.status.idle": "2024-09-26T17:02:20.581841Z", - "shell.execute_reply": "2024-09-26T17:02:20.581279Z" + "iopub.execute_input": "2024-09-27T13:48:48.196499Z", + "iopub.status.busy": "2024-09-27T13:48:48.196169Z", + "iopub.status.idle": "2024-09-27T13:48:48.199803Z", + "shell.execute_reply": "2024-09-27T13:48:48.199234Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:20.583557Z", - "iopub.status.busy": "2024-09-26T17:02:20.583273Z", - "iopub.status.idle": "2024-09-26T17:02:20.588436Z", - "shell.execute_reply": "2024-09-26T17:02:20.587875Z" + "iopub.execute_input": "2024-09-27T13:48:48.201595Z", + "iopub.status.busy": "2024-09-27T13:48:48.201275Z", + "iopub.status.idle": "2024-09-27T13:48:48.206336Z", + "shell.execute_reply": "2024-09-27T13:48:48.205863Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 54354e6e0..b815f4c46 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3153,224 +3153,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3516,16 +3516,16 @@

1. Load the Dataset
---2024-09-26 17:02:40--  https://s.cleanlab.ai/CIFAR-10-subset.zip
-Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...
-Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
+--2024-09-27 13:49:07--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...
+Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
 CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.009s
 
-2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3595,7 +3595,7 @@

2. Run Datalab Analysis
-
+
@@ -3818,35 +3818,35 @@

3. Interpret the Results - dark_score is_dark_issue + dark_score 0 - 0.237196 True + 0.237196 1 - 0.197229 True + 0.197229 2 - 0.254188 True + 0.254188 3 - 0.229170 True + 0.229170 4 - 0.208907 True + 0.208907 ... @@ -3855,28 +3855,28 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0841a1abf..a1e0d1e42 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:24.778635Z", - "iopub.status.busy": "2024-09-26T17:02:24.778451Z", - "iopub.status.idle": "2024-09-26T17:02:25.474946Z", - "shell.execute_reply": "2024-09-26T17:02:25.474332Z" + "iopub.execute_input": "2024-09-27T13:48:51.496056Z", + "iopub.status.busy": "2024-09-27T13:48:51.495876Z", + "iopub.status.idle": "2024-09-27T13:48:52.184420Z", + "shell.execute_reply": "2024-09-27T13:48:52.183872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.477084Z", - "iopub.status.busy": "2024-09-26T17:02:25.476819Z", - "iopub.status.idle": "2024-09-26T17:02:25.608315Z", - "shell.execute_reply": "2024-09-26T17:02:25.607729Z" + "iopub.execute_input": "2024-09-27T13:48:52.186744Z", + "iopub.status.busy": "2024-09-27T13:48:52.186314Z", + "iopub.status.idle": "2024-09-27T13:48:52.317662Z", + "shell.execute_reply": "2024-09-27T13:48:52.317086Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.610318Z", - "iopub.status.busy": "2024-09-26T17:02:25.609878Z", - "iopub.status.idle": "2024-09-26T17:02:25.633373Z", - "shell.execute_reply": "2024-09-26T17:02:25.632806Z" + "iopub.execute_input": "2024-09-27T13:48:52.319925Z", + "iopub.status.busy": "2024-09-27T13:48:52.319422Z", + "iopub.status.idle": "2024-09-27T13:48:52.343036Z", + "shell.execute_reply": "2024-09-27T13:48:52.342381Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:25.635543Z", - "iopub.status.busy": "2024-09-26T17:02:25.635055Z", - "iopub.status.idle": "2024-09-26T17:02:28.161306Z", - "shell.execute_reply": "2024-09-26T17:02:28.160724Z" + "iopub.execute_input": "2024-09-27T13:48:52.345328Z", + "iopub.status.busy": "2024-09-27T13:48:52.344798Z", + "iopub.status.idle": "2024-09-27T13:48:54.885695Z", + "shell.execute_reply": "2024-09-27T13:48:54.885077Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:28.163661Z", - "iopub.status.busy": "2024-09-26T17:02:28.163055Z", - "iopub.status.idle": "2024-09-26T17:02:36.892887Z", - "shell.execute_reply": "2024-09-26T17:02:36.892386Z" + "iopub.execute_input": "2024-09-27T13:48:54.888111Z", + "iopub.status.busy": "2024-09-27T13:48:54.887560Z", + "iopub.status.idle": "2024-09-27T13:49:03.631088Z", + "shell.execute_reply": "2024-09-27T13:49:03.630566Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:36.894869Z", - "iopub.status.busy": "2024-09-26T17:02:36.894502Z", - "iopub.status.idle": "2024-09-26T17:02:37.053891Z", - "shell.execute_reply": "2024-09-26T17:02:37.053318Z" + "iopub.execute_input": "2024-09-27T13:49:03.633038Z", + "iopub.status.busy": "2024-09-27T13:49:03.632663Z", + "iopub.status.idle": "2024-09-27T13:49:03.795547Z", + "shell.execute_reply": "2024-09-27T13:49:03.794905Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:37.055816Z", - "iopub.status.busy": "2024-09-26T17:02:37.055631Z", - "iopub.status.idle": "2024-09-26T17:02:38.527977Z", - "shell.execute_reply": "2024-09-26T17:02:38.527389Z" + "iopub.execute_input": "2024-09-27T13:49:03.797652Z", + "iopub.status.busy": "2024-09-27T13:49:03.797275Z", + "iopub.status.idle": "2024-09-27T13:49:05.326251Z", + "shell.execute_reply": "2024-09-27T13:49:05.325634Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:38.529829Z", - "iopub.status.busy": "2024-09-26T17:02:38.529535Z", - "iopub.status.idle": "2024-09-26T17:02:39.100506Z", - "shell.execute_reply": "2024-09-26T17:02:39.099974Z" + "iopub.execute_input": "2024-09-27T13:49:05.328218Z", + "iopub.status.busy": "2024-09-27T13:49:05.327762Z", + "iopub.status.idle": "2024-09-27T13:49:05.849926Z", + "shell.execute_reply": "2024-09-27T13:49:05.849331Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.102597Z", - "iopub.status.busy": "2024-09-26T17:02:39.102150Z", - "iopub.status.idle": "2024-09-26T17:02:39.116273Z", - "shell.execute_reply": "2024-09-26T17:02:39.115754Z" + "iopub.execute_input": "2024-09-27T13:49:05.852040Z", + "iopub.status.busy": "2024-09-27T13:49:05.851525Z", + "iopub.status.idle": "2024-09-27T13:49:05.866255Z", + "shell.execute_reply": "2024-09-27T13:49:05.865737Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.118338Z", - "iopub.status.busy": "2024-09-26T17:02:39.117938Z", - "iopub.status.idle": "2024-09-26T17:02:39.136893Z", - "shell.execute_reply": "2024-09-26T17:02:39.136335Z" + "iopub.execute_input": "2024-09-27T13:49:05.868138Z", + "iopub.status.busy": "2024-09-27T13:49:05.867678Z", + "iopub.status.idle": "2024-09-27T13:49:05.886264Z", + "shell.execute_reply": "2024-09-27T13:49:05.885683Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.138729Z", - "iopub.status.busy": "2024-09-26T17:02:39.138427Z", - "iopub.status.idle": "2024-09-26T17:02:39.386313Z", - "shell.execute_reply": "2024-09-26T17:02:39.385663Z" + "iopub.execute_input": "2024-09-27T13:49:05.888344Z", + "iopub.status.busy": "2024-09-27T13:49:05.887777Z", + "iopub.status.idle": "2024-09-27T13:49:06.118006Z", + "shell.execute_reply": "2024-09-27T13:49:06.117350Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.388687Z", - "iopub.status.busy": "2024-09-26T17:02:39.388276Z", - "iopub.status.idle": "2024-09-26T17:02:39.407274Z", - "shell.execute_reply": "2024-09-26T17:02:39.406806Z" + "iopub.execute_input": "2024-09-27T13:49:06.120304Z", + "iopub.status.busy": "2024-09-27T13:49:06.119967Z", + "iopub.status.idle": "2024-09-27T13:49:06.139235Z", + "shell.execute_reply": "2024-09-27T13:49:06.138785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.409088Z", - "iopub.status.busy": "2024-09-26T17:02:39.408745Z", - "iopub.status.idle": "2024-09-26T17:02:39.577750Z", - "shell.execute_reply": "2024-09-26T17:02:39.577160Z" + "iopub.execute_input": "2024-09-27T13:49:06.140987Z", + "iopub.status.busy": "2024-09-27T13:49:06.140668Z", + "iopub.status.idle": "2024-09-27T13:49:06.310511Z", + "shell.execute_reply": "2024-09-27T13:49:06.309966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.579768Z", - "iopub.status.busy": "2024-09-26T17:02:39.579483Z", - "iopub.status.idle": "2024-09-26T17:02:39.589520Z", - "shell.execute_reply": "2024-09-26T17:02:39.589043Z" + "iopub.execute_input": "2024-09-27T13:49:06.312450Z", + "iopub.status.busy": "2024-09-27T13:49:06.312126Z", + "iopub.status.idle": "2024-09-27T13:49:06.322584Z", + "shell.execute_reply": "2024-09-27T13:49:06.322028Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.591438Z", - "iopub.status.busy": "2024-09-26T17:02:39.590922Z", - "iopub.status.idle": "2024-09-26T17:02:39.600829Z", - "shell.execute_reply": "2024-09-26T17:02:39.600331Z" + "iopub.execute_input": "2024-09-27T13:49:06.324337Z", + "iopub.status.busy": "2024-09-27T13:49:06.324008Z", + "iopub.status.idle": "2024-09-27T13:49:06.333763Z", + "shell.execute_reply": "2024-09-27T13:49:06.333320Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.602860Z", - "iopub.status.busy": "2024-09-26T17:02:39.602471Z", - "iopub.status.idle": "2024-09-26T17:02:39.629873Z", - "shell.execute_reply": "2024-09-26T17:02:39.629375Z" + "iopub.execute_input": "2024-09-27T13:49:06.335525Z", + "iopub.status.busy": "2024-09-27T13:49:06.335189Z", + "iopub.status.idle": "2024-09-27T13:49:06.362958Z", + "shell.execute_reply": "2024-09-27T13:49:06.362463Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.631810Z", - "iopub.status.busy": "2024-09-26T17:02:39.631461Z", - "iopub.status.idle": "2024-09-26T17:02:39.634313Z", - "shell.execute_reply": "2024-09-26T17:02:39.633858Z" + "iopub.execute_input": "2024-09-27T13:49:06.364868Z", + "iopub.status.busy": "2024-09-27T13:49:06.364520Z", + "iopub.status.idle": "2024-09-27T13:49:06.367266Z", + "shell.execute_reply": "2024-09-27T13:49:06.366815Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.635838Z", - "iopub.status.busy": "2024-09-26T17:02:39.635659Z", - "iopub.status.idle": "2024-09-26T17:02:39.655327Z", - "shell.execute_reply": "2024-09-26T17:02:39.654863Z" + "iopub.execute_input": "2024-09-27T13:49:06.369082Z", + "iopub.status.busy": "2024-09-27T13:49:06.368636Z", + "iopub.status.idle": "2024-09-27T13:49:06.388912Z", + "shell.execute_reply": "2024-09-27T13:49:06.388311Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.657166Z", - "iopub.status.busy": "2024-09-26T17:02:39.656832Z", - "iopub.status.idle": "2024-09-26T17:02:39.661109Z", - "shell.execute_reply": "2024-09-26T17:02:39.660645Z" + "iopub.execute_input": "2024-09-27T13:49:06.390933Z", + "iopub.status.busy": "2024-09-27T13:49:06.390590Z", + "iopub.status.idle": "2024-09-27T13:49:06.395045Z", + "shell.execute_reply": "2024-09-27T13:49:06.394578Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.662859Z", - "iopub.status.busy": "2024-09-26T17:02:39.662510Z", - "iopub.status.idle": "2024-09-26T17:02:39.689643Z", - "shell.execute_reply": "2024-09-26T17:02:39.689166Z" + "iopub.execute_input": "2024-09-27T13:49:06.396786Z", + "iopub.status.busy": "2024-09-27T13:49:06.396435Z", + "iopub.status.idle": "2024-09-27T13:49:06.424718Z", + "shell.execute_reply": "2024-09-27T13:49:06.424137Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:39.691433Z", - "iopub.status.busy": "2024-09-26T17:02:39.691099Z", - "iopub.status.idle": "2024-09-26T17:02:40.010447Z", - "shell.execute_reply": "2024-09-26T17:02:40.009941Z" + "iopub.execute_input": "2024-09-27T13:49:06.426619Z", + "iopub.status.busy": "2024-09-27T13:49:06.426287Z", + "iopub.status.idle": "2024-09-27T13:49:06.743211Z", + "shell.execute_reply": "2024-09-27T13:49:06.742598Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.012296Z", - "iopub.status.busy": "2024-09-26T17:02:40.011936Z", - "iopub.status.idle": "2024-09-26T17:02:40.015264Z", - "shell.execute_reply": "2024-09-26T17:02:40.014692Z" + "iopub.execute_input": "2024-09-27T13:49:06.745276Z", + "iopub.status.busy": "2024-09-27T13:49:06.744881Z", + "iopub.status.idle": "2024-09-27T13:49:06.748268Z", + "shell.execute_reply": "2024-09-27T13:49:06.747713Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.016986Z", - "iopub.status.busy": "2024-09-26T17:02:40.016665Z", - "iopub.status.idle": "2024-09-26T17:02:40.029777Z", - "shell.execute_reply": "2024-09-26T17:02:40.029286Z" + "iopub.execute_input": "2024-09-27T13:49:06.750100Z", + "iopub.status.busy": "2024-09-27T13:49:06.749661Z", + "iopub.status.idle": "2024-09-27T13:49:06.762637Z", + "shell.execute_reply": "2024-09-27T13:49:06.762172Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.031319Z", - "iopub.status.busy": "2024-09-26T17:02:40.031147Z", - "iopub.status.idle": "2024-09-26T17:02:40.044461Z", - "shell.execute_reply": "2024-09-26T17:02:40.044001Z" + "iopub.execute_input": "2024-09-27T13:49:06.764357Z", + "iopub.status.busy": "2024-09-27T13:49:06.764029Z", + "iopub.status.idle": "2024-09-27T13:49:06.777313Z", + "shell.execute_reply": "2024-09-27T13:49:06.776869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.045959Z", - "iopub.status.busy": "2024-09-26T17:02:40.045789Z", - "iopub.status.idle": "2024-09-26T17:02:40.055654Z", - "shell.execute_reply": "2024-09-26T17:02:40.055208Z" + "iopub.execute_input": "2024-09-27T13:49:06.779116Z", + "iopub.status.busy": "2024-09-27T13:49:06.778790Z", + "iopub.status.idle": "2024-09-27T13:49:06.788739Z", + "shell.execute_reply": "2024-09-27T13:49:06.788301Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.057463Z", - "iopub.status.busy": "2024-09-26T17:02:40.057040Z", - "iopub.status.idle": "2024-09-26T17:02:40.066461Z", - "shell.execute_reply": "2024-09-26T17:02:40.066024Z" + "iopub.execute_input": "2024-09-27T13:49:06.790547Z", + "iopub.status.busy": "2024-09-27T13:49:06.790222Z", + "iopub.status.idle": "2024-09-27T13:49:06.799443Z", + "shell.execute_reply": "2024-09-27T13:49:06.798885Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.068180Z", - "iopub.status.busy": "2024-09-26T17:02:40.067865Z", - "iopub.status.idle": "2024-09-26T17:02:40.071589Z", - "shell.execute_reply": "2024-09-26T17:02:40.071132Z" + "iopub.execute_input": "2024-09-27T13:49:06.801301Z", + "iopub.status.busy": "2024-09-27T13:49:06.800918Z", + "iopub.status.idle": "2024-09-27T13:49:06.804814Z", + "shell.execute_reply": "2024-09-27T13:49:06.804343Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.073193Z", - "iopub.status.busy": "2024-09-26T17:02:40.073018Z", - "iopub.status.idle": "2024-09-26T17:02:40.124206Z", - "shell.execute_reply": "2024-09-26T17:02:40.123615Z" + "iopub.execute_input": "2024-09-27T13:49:06.806422Z", + "iopub.status.busy": "2024-09-27T13:49:06.806251Z", + "iopub.status.idle": "2024-09-27T13:49:06.857449Z", + "shell.execute_reply": "2024-09-27T13:49:06.856916Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.126151Z", - "iopub.status.busy": "2024-09-26T17:02:40.125730Z", - "iopub.status.idle": "2024-09-26T17:02:40.131441Z", - "shell.execute_reply": "2024-09-26T17:02:40.130972Z" + "iopub.execute_input": "2024-09-27T13:49:06.859420Z", + "iopub.status.busy": "2024-09-27T13:49:06.859015Z", + "iopub.status.idle": "2024-09-27T13:49:06.864670Z", + "shell.execute_reply": "2024-09-27T13:49:06.864242Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.133105Z", - "iopub.status.busy": "2024-09-26T17:02:40.132773Z", - "iopub.status.idle": "2024-09-26T17:02:40.143871Z", - "shell.execute_reply": "2024-09-26T17:02:40.143281Z" + "iopub.execute_input": "2024-09-27T13:49:06.866287Z", + "iopub.status.busy": "2024-09-27T13:49:06.866115Z", + "iopub.status.idle": "2024-09-27T13:49:06.876920Z", + "shell.execute_reply": "2024-09-27T13:49:06.876434Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.145630Z", - "iopub.status.busy": "2024-09-26T17:02:40.145214Z", - "iopub.status.idle": "2024-09-26T17:02:40.325382Z", - "shell.execute_reply": "2024-09-26T17:02:40.324770Z" + "iopub.execute_input": "2024-09-27T13:49:06.878558Z", + "iopub.status.busy": "2024-09-27T13:49:06.878380Z", + "iopub.status.idle": "2024-09-27T13:49:07.060650Z", + "shell.execute_reply": "2024-09-27T13:49:07.060030Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.327253Z", - "iopub.status.busy": "2024-09-26T17:02:40.327068Z", - "iopub.status.idle": "2024-09-26T17:02:40.334965Z", - "shell.execute_reply": "2024-09-26T17:02:40.334498Z" + "iopub.execute_input": "2024-09-27T13:49:07.062718Z", + "iopub.status.busy": "2024-09-27T13:49:07.062539Z", + "iopub.status.idle": "2024-09-27T13:49:07.070338Z", + "shell.execute_reply": "2024-09-27T13:49:07.069829Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.336727Z", - "iopub.status.busy": "2024-09-26T17:02:40.336548Z", - "iopub.status.idle": "2024-09-26T17:02:40.688647Z", - "shell.execute_reply": "2024-09-26T17:02:40.687981Z" + "iopub.execute_input": "2024-09-27T13:49:07.072127Z", + "iopub.status.busy": "2024-09-27T13:49:07.071792Z", + "iopub.status.idle": "2024-09-27T13:49:07.476374Z", + "shell.execute_reply": "2024-09-27T13:49:07.475651Z" } }, "outputs": [ @@ -3767,10 +3767,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:02:40-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-27 13:49:07-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.111.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", @@ -3785,7 +3792,7 @@ "\r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-26 17:02:40 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-27 13:49:07 (99.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3808,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:40.690797Z", - "iopub.status.busy": "2024-09-26T17:02:40.690582Z", - "iopub.status.idle": "2024-09-26T17:02:42.601575Z", - "shell.execute_reply": "2024-09-26T17:02:42.601019Z" + "iopub.execute_input": "2024-09-27T13:49:07.478778Z", + "iopub.status.busy": "2024-09-27T13:49:07.478350Z", + "iopub.status.idle": "2024-09-27T13:49:09.398148Z", + "shell.execute_reply": "2024-09-27T13:49:09.397605Z" } }, "outputs": [], @@ -3850,10 +3857,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:42.603741Z", - "iopub.status.busy": "2024-09-26T17:02:42.603283Z", - "iopub.status.idle": "2024-09-26T17:02:43.250432Z", - "shell.execute_reply": "2024-09-26T17:02:43.249848Z" + "iopub.execute_input": "2024-09-27T13:49:09.400590Z", + "iopub.status.busy": "2024-09-27T13:49:09.400073Z", + "iopub.status.idle": "2024-09-27T13:49:10.030817Z", + "shell.execute_reply": "2024-09-27T13:49:10.030212Z" } }, "outputs": [ @@ -3868,7 +3875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b9834476d6492a83139db43a944e0e", + "model_id": "8e1f9b96233947f6b3a427e71e7dfaeb", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4015,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.252987Z", - "iopub.status.busy": "2024-09-26T17:02:43.252430Z", - "iopub.status.idle": "2024-09-26T17:02:43.265787Z", - "shell.execute_reply": "2024-09-26T17:02:43.265283Z" + "iopub.execute_input": "2024-09-27T13:49:10.033073Z", + "iopub.status.busy": "2024-09-27T13:49:10.032625Z", + "iopub.status.idle": "2024-09-27T13:49:10.046468Z", + "shell.execute_reply": "2024-09-27T13:49:10.045870Z" } }, "outputs": [ @@ -4130,35 +4137,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4167,28 +4174,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4196,18 +4203,18 @@ "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4257,10 +4264,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.267822Z", - "iopub.status.busy": "2024-09-26T17:02:43.267336Z", - "iopub.status.idle": "2024-09-26T17:02:43.416210Z", - "shell.execute_reply": "2024-09-26T17:02:43.415723Z" + "iopub.execute_input": "2024-09-27T13:49:10.049069Z", + "iopub.status.busy": "2024-09-27T13:49:10.048871Z", + "iopub.status.idle": "2024-09-27T13:49:10.200506Z", + "shell.execute_reply": "2024-09-27T13:49:10.199945Z" } }, "outputs": [ @@ -4325,10 +4332,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.417926Z", - "iopub.status.busy": "2024-09-26T17:02:43.417762Z", - "iopub.status.idle": "2024-09-26T17:02:43.921803Z", - "shell.execute_reply": "2024-09-26T17:02:43.921142Z" + "iopub.execute_input": "2024-09-27T13:49:10.202250Z", + "iopub.status.busy": "2024-09-27T13:49:10.202069Z", + "iopub.status.idle": "2024-09-27T13:49:10.721292Z", + "shell.execute_reply": "2024-09-27T13:49:10.720636Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3c15ea55fcb40aabc8074ab6ffea568", + "model_id": "26b36add52da4112a035f44e319d71b1", "version_major": 2, "version_minor": 0 }, @@ -4473,35 +4480,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4510,28 +4517,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4539,18 +4546,18 @@ "
" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4598,10 +4605,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:43.923933Z", - "iopub.status.busy": "2024-09-26T17:02:43.923568Z", - "iopub.status.idle": "2024-09-26T17:02:44.073210Z", - "shell.execute_reply": "2024-09-26T17:02:44.072669Z" + "iopub.execute_input": "2024-09-27T13:49:10.723313Z", + "iopub.status.busy": "2024-09-27T13:49:10.723116Z", + "iopub.status.idle": "2024-09-27T13:49:10.876739Z", + "shell.execute_reply": "2024-09-27T13:49:10.876250Z" }, "nbsphinx": "hidden" }, @@ -4653,49 +4660,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e740c2d1ad4ce5a790babbad1a7a44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d45b3340a2f45e894572fdb7227cad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b82154b9b89449ccb7991242504f019f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e740c2d1ad4ce5a790babbad1a7a44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "17637fd97d794f1484b8d827f4b7071d": { + "00f543c6d4fe4b9c87127e99d81bcb56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4713,7 +4678,7 @@ "text_color": null } }, - "3ad50386530f49c8a766d426ae0cff17": { + "15322e1f9fc841ec94366898b88e7974": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,48 +4731,31 @@ "width": null } }, - "4087b33fc2d24559b56ed69ce9b4cfcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "478f35d4014e419785fc626f1903c45b": { + "26b36add52da4112a035f44e319d71b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffb786b50a824c8d894769a9444ff34f", - "placeholder": "​", - "style": "IPY_MODEL_b2d9cc6ea5c04ef09b2141a3e151c3ad", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91c583132bd64a11ad21964364c042e5", + "IPY_MODEL_93b05aaa0ef5484fb99187905101ecf7", + "IPY_MODEL_92cb9c1d41d14d5f8a158ce007f825e3" + ], + "layout": "IPY_MODEL_afa25d583ad94d24825c08705279088b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "585be98b5f9a4ab7aa67a879906fa19a": { + "2bd019eae91047bab06ebcae4fdcc656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4825,7 +4773,7 @@ "text_color": null } }, - "625a7d4fc79f41f2a0247635be08467c": { + "2fdd00670d4b4d7f8a4fb924330db3f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4878,30 +4826,23 @@ "width": null } }, - "7c043d610e054733bf00e10d52a14072": { + "30848fed2eae4492a503a37c674a72d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1539ff4c8ef473783f55dba9ebdd6be", - "placeholder": "​", - "style": "IPY_MODEL_585be98b5f9a4ab7aa67a879906fa19a", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 707.69it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a65f2f21a79245a7b40c9fd256031840": { + "586568b828a144edbc73b4c68db32154": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,31 +4895,30 @@ "width": null } }, - "b2b9834476d6492a83139db43a944e0e": { + "5ebba9b71afa4a7fa599d36b29f98e58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d981f6091a084df4b39cd8fc9990f867", - "IPY_MODEL_0d45b3340a2f45e894572fdb7227cad6", - "IPY_MODEL_fb31467058e741cb9eae03eb807fb42c" - ], - "layout": "IPY_MODEL_b6cad30966d74ceda8da8dad5c36175a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fdd00670d4b4d7f8a4fb924330db3f3", + "placeholder": "​", + "style": "IPY_MODEL_f1f181a3a0a14127bb356925adebd4da", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 798.61it/s]" } }, - "b2d9cc6ea5c04ef09b2141a3e151c3ad": { + "87522669ac8140519e1c560f30fd9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4996,7 +4936,54 @@ "text_color": null } }, - "b6cad30966d74ceda8da8dad5c36175a": { + "8e1f9b96233947f6b3a427e71e7dfaeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eca917ff8b294f91b70d3a766dce356b", + "IPY_MODEL_e72487e7516a4e3cb1d6ae5235dd6b91", + "IPY_MODEL_5ebba9b71afa4a7fa599d36b29f98e58" + ], + "layout": "IPY_MODEL_925ca2cf3c4b4f299c37d44bb4ee4fa9", + "tabbable": null, + "tooltip": null + } + }, + "91c583132bd64a11ad21964364c042e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8bcd20c9e8d4e298260f7cedb8c6862", + "placeholder": "​", + "style": "IPY_MODEL_2bd019eae91047bab06ebcae4fdcc656", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "925ca2cf3c4b4f299c37d44bb4ee4fa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,7 +5036,7 @@ "width": null } }, - "b82154b9b89449ccb7991242504f019f": { + "9261380574e74d7b930f02999b245f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5102,54 +5089,72 @@ "width": null } }, - "d3c15ea55fcb40aabc8074ab6ffea568": { + "92cb9c1d41d14d5f8a158ce007f825e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_478f35d4014e419785fc626f1903c45b", - "IPY_MODEL_f8bcd49b06674d8295365b9e5701de5e", - "IPY_MODEL_7c043d610e054733bf00e10d52a14072" - ], - "layout": "IPY_MODEL_3ad50386530f49c8a766d426ae0cff17", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9261380574e74d7b930f02999b245f81", + "placeholder": "​", + "style": "IPY_MODEL_00f543c6d4fe4b9c87127e99d81bcb56", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 693.55it/s]" } }, - "d981f6091a084df4b39cd8fc9990f867": { + "93b05aaa0ef5484fb99187905101ecf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_625a7d4fc79f41f2a0247635be08467c", - "placeholder": "​", - "style": "IPY_MODEL_4087b33fc2d24559b56ed69ce9b4cfcf", + "layout": "IPY_MODEL_b9ddd6efa82d4d39bae57e7099340a78", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aebc4648fbf64400a539523e1dc4ce7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "ddb2a771afd34214b4936ae6ca4b8d91": { + "aebc4648fbf64400a539523e1dc4ce7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "afa25d583ad94d24825c08705279088b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5202,23 +5207,7 @@ "width": null } }, - "e6b72ea07d9a475f8269916a0267f20e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f1539ff4c8ef473783f55dba9ebdd6be": { + "b9ddd6efa82d4d39bae57e7099340a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5271,7 +5260,7 @@ "width": null } }, - "f8bcd49b06674d8295365b9e5701de5e": { + "e72487e7516a4e3cb1d6ae5235dd6b91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5287,40 +5276,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddb2a771afd34214b4936ae6ca4b8d91", + "layout": "IPY_MODEL_586568b828a144edbc73b4c68db32154", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e6b72ea07d9a475f8269916a0267f20e", + "style": "IPY_MODEL_30848fed2eae4492a503a37c674a72d6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "fb31467058e741cb9eae03eb807fb42c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a65f2f21a79245a7b40c9fd256031840", - "placeholder": "​", - "style": "IPY_MODEL_17637fd97d794f1484b8d827f4b7071d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 718.33it/s]" - } - }, - "ffb786b50a824c8d894769a9444ff34f": { + "e8bcd20c9e8d4e298260f7cedb8c6862": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5372,6 +5338,47 @@ "visibility": null, "width": null } + }, + "eca917ff8b294f91b70d3a766dce356b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15322e1f9fc841ec94366898b88e7974", + "placeholder": "​", + "style": "IPY_MODEL_87522669ac8140519e1c560f30fd9dca", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f1f181a3a0a14127bb356925adebd4da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 0f1a9673c..7a4a275e8 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:48.026780Z", - "iopub.status.busy": "2024-09-26T17:02:48.026603Z", - "iopub.status.idle": "2024-09-26T17:02:49.199322Z", - "shell.execute_reply": "2024-09-26T17:02:49.198698Z" + "iopub.execute_input": "2024-09-27T13:49:14.981020Z", + "iopub.status.busy": "2024-09-27T13:49:14.980618Z", + "iopub.status.idle": "2024-09-27T13:49:16.174240Z", + "shell.execute_reply": "2024-09-27T13:49:16.173656Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.201404Z", - "iopub.status.busy": "2024-09-26T17:02:49.201072Z", - "iopub.status.idle": "2024-09-26T17:02:49.204495Z", - "shell.execute_reply": "2024-09-26T17:02:49.203935Z" + "iopub.execute_input": "2024-09-27T13:49:16.176497Z", + "iopub.status.busy": "2024-09-27T13:49:16.176040Z", + "iopub.status.idle": "2024-09-27T13:49:16.178778Z", + "shell.execute_reply": "2024-09-27T13:49:16.178331Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.206494Z", - "iopub.status.busy": "2024-09-26T17:02:49.206146Z", - "iopub.status.idle": "2024-09-26T17:02:49.218110Z", - "shell.execute_reply": "2024-09-26T17:02:49.217517Z" + "iopub.execute_input": "2024-09-27T13:49:16.180625Z", + "iopub.status.busy": "2024-09-27T13:49:16.180310Z", + "iopub.status.idle": "2024-09-27T13:49:16.192112Z", + "shell.execute_reply": "2024-09-27T13:49:16.191578Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:49.219988Z", - "iopub.status.busy": "2024-09-26T17:02:49.219651Z", - "iopub.status.idle": "2024-09-26T17:02:54.126698Z", - "shell.execute_reply": "2024-09-26T17:02:54.126225Z" + "iopub.execute_input": "2024-09-27T13:49:16.193883Z", + "iopub.status.busy": "2024-09-27T13:49:16.193570Z", + "iopub.status.idle": "2024-09-27T13:49:21.858596Z", + "shell.execute_reply": "2024-09-27T13:49:21.858120Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 39947d50a..31f0d52c8 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -844,13 +844,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1715,7 +1715,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index edab415e1..5566fbc6f 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:56.360615Z", - "iopub.status.busy": "2024-09-26T17:02:56.360206Z", - "iopub.status.idle": "2024-09-26T17:02:57.593148Z", - "shell.execute_reply": "2024-09-26T17:02:57.592592Z" + "iopub.execute_input": "2024-09-27T13:49:24.275648Z", + "iopub.status.busy": "2024-09-27T13:49:24.275473Z", + "iopub.status.idle": "2024-09-27T13:49:25.502999Z", + "shell.execute_reply": "2024-09-27T13:49:25.502358Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.595634Z", - "iopub.status.busy": "2024-09-26T17:02:57.595168Z", - "iopub.status.idle": "2024-09-26T17:02:57.598583Z", - "shell.execute_reply": "2024-09-26T17:02:57.598123Z" + "iopub.execute_input": "2024-09-27T13:49:25.505303Z", + "iopub.status.busy": "2024-09-27T13:49:25.505015Z", + "iopub.status.idle": "2024-09-27T13:49:25.508248Z", + "shell.execute_reply": "2024-09-27T13:49:25.507786Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:02:57.600444Z", - "iopub.status.busy": "2024-09-26T17:02:57.600102Z", - "iopub.status.idle": "2024-09-26T17:03:00.936555Z", - "shell.execute_reply": "2024-09-26T17:03:00.935769Z" + "iopub.execute_input": "2024-09-27T13:49:25.509903Z", + "iopub.status.busy": "2024-09-27T13:49:25.509725Z", + "iopub.status.idle": "2024-09-27T13:49:28.910277Z", + "shell.execute_reply": "2024-09-27T13:49:28.909577Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.939323Z", - "iopub.status.busy": "2024-09-26T17:03:00.938653Z", - "iopub.status.idle": "2024-09-26T17:03:00.983835Z", - "shell.execute_reply": "2024-09-26T17:03:00.983085Z" + "iopub.execute_input": "2024-09-27T13:49:28.913026Z", + "iopub.status.busy": "2024-09-27T13:49:28.912182Z", + "iopub.status.idle": "2024-09-27T13:49:28.961330Z", + "shell.execute_reply": "2024-09-27T13:49:28.960694Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:00.985981Z", - "iopub.status.busy": "2024-09-26T17:03:00.985722Z", - "iopub.status.idle": "2024-09-26T17:03:01.026561Z", - "shell.execute_reply": "2024-09-26T17:03:01.025789Z" + "iopub.execute_input": "2024-09-27T13:49:28.963581Z", + "iopub.status.busy": "2024-09-27T13:49:28.963253Z", + "iopub.status.idle": "2024-09-27T13:49:29.011303Z", + "shell.execute_reply": "2024-09-27T13:49:29.010628Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.028998Z", - "iopub.status.busy": "2024-09-26T17:03:01.028581Z", - "iopub.status.idle": "2024-09-26T17:03:01.031727Z", - "shell.execute_reply": "2024-09-26T17:03:01.031258Z" + "iopub.execute_input": "2024-09-27T13:49:29.013523Z", + "iopub.status.busy": "2024-09-27T13:49:29.013179Z", + "iopub.status.idle": "2024-09-27T13:49:29.016591Z", + "shell.execute_reply": "2024-09-27T13:49:29.016042Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.033482Z", - "iopub.status.busy": "2024-09-26T17:03:01.033113Z", - "iopub.status.idle": "2024-09-26T17:03:01.035872Z", - "shell.execute_reply": "2024-09-26T17:03:01.035414Z" + "iopub.execute_input": "2024-09-27T13:49:29.018358Z", + "iopub.status.busy": "2024-09-27T13:49:29.018018Z", + "iopub.status.idle": "2024-09-27T13:49:29.020804Z", + "shell.execute_reply": "2024-09-27T13:49:29.020221Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.037562Z", - "iopub.status.busy": "2024-09-26T17:03:01.037369Z", - "iopub.status.idle": "2024-09-26T17:03:01.061451Z", - "shell.execute_reply": "2024-09-26T17:03:01.060849Z" + "iopub.execute_input": "2024-09-27T13:49:29.022876Z", + "iopub.status.busy": "2024-09-27T13:49:29.022566Z", + "iopub.status.idle": "2024-09-27T13:49:29.047765Z", + "shell.execute_reply": "2024-09-27T13:49:29.047140Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7633e799bda141e28661514bf3a1704c", + "model_id": "8da4bd0f9f64487483493ffdb6f429e8", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d55f75476cc642e590dfea2b8badf09b", + "model_id": "4fc6a038626e4490a9d76f3f9359ae82", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.063656Z", - "iopub.status.busy": "2024-09-26T17:03:01.063472Z", - "iopub.status.idle": "2024-09-26T17:03:01.070092Z", - "shell.execute_reply": "2024-09-26T17:03:01.069533Z" + "iopub.execute_input": "2024-09-27T13:49:29.050320Z", + "iopub.status.busy": "2024-09-27T13:49:29.050093Z", + "iopub.status.idle": "2024-09-27T13:49:29.057387Z", + "shell.execute_reply": "2024-09-27T13:49:29.056903Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.071690Z", - "iopub.status.busy": "2024-09-26T17:03:01.071525Z", - "iopub.status.idle": "2024-09-26T17:03:01.074898Z", - "shell.execute_reply": "2024-09-26T17:03:01.074458Z" + "iopub.execute_input": "2024-09-27T13:49:29.059162Z", + "iopub.status.busy": "2024-09-27T13:49:29.058979Z", + "iopub.status.idle": "2024-09-27T13:49:29.062842Z", + "shell.execute_reply": "2024-09-27T13:49:29.062400Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.076464Z", - "iopub.status.busy": "2024-09-26T17:03:01.076289Z", - "iopub.status.idle": "2024-09-26T17:03:01.082573Z", - "shell.execute_reply": "2024-09-26T17:03:01.082136Z" + "iopub.execute_input": "2024-09-27T13:49:29.064535Z", + "iopub.status.busy": "2024-09-27T13:49:29.064203Z", + "iopub.status.idle": "2024-09-27T13:49:29.070891Z", + "shell.execute_reply": "2024-09-27T13:49:29.070295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.084058Z", - "iopub.status.busy": "2024-09-26T17:03:01.083885Z", - "iopub.status.idle": "2024-09-26T17:03:01.129493Z", - "shell.execute_reply": "2024-09-26T17:03:01.128813Z" + "iopub.execute_input": "2024-09-27T13:49:29.072733Z", + "iopub.status.busy": "2024-09-27T13:49:29.072387Z", + "iopub.status.idle": "2024-09-27T13:49:29.118212Z", + "shell.execute_reply": "2024-09-27T13:49:29.117539Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.131673Z", - "iopub.status.busy": "2024-09-26T17:03:01.131282Z", - "iopub.status.idle": "2024-09-26T17:03:01.174982Z", - "shell.execute_reply": "2024-09-26T17:03:01.174379Z" + "iopub.execute_input": "2024-09-27T13:49:29.120347Z", + "iopub.status.busy": "2024-09-27T13:49:29.119989Z", + "iopub.status.idle": "2024-09-27T13:49:29.166190Z", + "shell.execute_reply": "2024-09-27T13:49:29.165389Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.177397Z", - "iopub.status.busy": "2024-09-26T17:03:01.176899Z", - "iopub.status.idle": "2024-09-26T17:03:01.309798Z", - "shell.execute_reply": "2024-09-26T17:03:01.309219Z" + "iopub.execute_input": "2024-09-27T13:49:29.168576Z", + "iopub.status.busy": "2024-09-27T13:49:29.168187Z", + "iopub.status.idle": "2024-09-27T13:49:29.304197Z", + "shell.execute_reply": "2024-09-27T13:49:29.303502Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:01.312323Z", - "iopub.status.busy": "2024-09-26T17:03:01.311542Z", - "iopub.status.idle": "2024-09-26T17:03:04.449275Z", - "shell.execute_reply": "2024-09-26T17:03:04.448739Z" + "iopub.execute_input": "2024-09-27T13:49:29.306632Z", + "iopub.status.busy": "2024-09-27T13:49:29.305854Z", + "iopub.status.idle": "2024-09-27T13:49:32.396057Z", + "shell.execute_reply": "2024-09-27T13:49:32.395396Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.451450Z", - "iopub.status.busy": "2024-09-26T17:03:04.451054Z", - "iopub.status.idle": "2024-09-26T17:03:04.509327Z", - "shell.execute_reply": "2024-09-26T17:03:04.508783Z" + "iopub.execute_input": "2024-09-27T13:49:32.398059Z", + "iopub.status.busy": "2024-09-27T13:49:32.397754Z", + "iopub.status.idle": "2024-09-27T13:49:32.455992Z", + "shell.execute_reply": "2024-09-27T13:49:32.455418Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.511187Z", - "iopub.status.busy": "2024-09-26T17:03:04.510686Z", - "iopub.status.idle": "2024-09-26T17:03:04.551738Z", - "shell.execute_reply": "2024-09-26T17:03:04.551149Z" + "iopub.execute_input": "2024-09-27T13:49:32.457640Z", + "iopub.status.busy": "2024-09-27T13:49:32.457454Z", + "iopub.status.idle": "2024-09-27T13:49:32.498172Z", + "shell.execute_reply": "2024-09-27T13:49:32.497565Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "185ea250", + "id": "110863a4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "c50f3d96", + "id": "65add30a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "84fafb96", + "id": "bf7fb938", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "eed28ebf", + "id": "14dba376", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.553540Z", - "iopub.status.busy": "2024-09-26T17:03:04.553194Z", - "iopub.status.idle": "2024-09-26T17:03:04.560950Z", - "shell.execute_reply": "2024-09-26T17:03:04.560391Z" + "iopub.execute_input": "2024-09-27T13:49:32.500172Z", + "iopub.status.busy": "2024-09-27T13:49:32.499847Z", + "iopub.status.idle": "2024-09-27T13:49:32.507587Z", + "shell.execute_reply": "2024-09-27T13:49:32.507101Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "b5e76c72", + "id": "a88e3681", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "187a70e9", + "id": "044361a4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.562840Z", - "iopub.status.busy": "2024-09-26T17:03:04.562495Z", - "iopub.status.idle": "2024-09-26T17:03:04.581313Z", - "shell.execute_reply": "2024-09-26T17:03:04.580823Z" + "iopub.execute_input": "2024-09-27T13:49:32.509236Z", + "iopub.status.busy": "2024-09-27T13:49:32.509060Z", + "iopub.status.idle": "2024-09-27T13:49:32.529248Z", + "shell.execute_reply": "2024-09-27T13:49:32.528751Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4f59575", + "id": "c93a5fc5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:04.582943Z", - "iopub.status.busy": "2024-09-26T17:03:04.582603Z", - "iopub.status.idle": "2024-09-26T17:03:04.585954Z", - "shell.execute_reply": "2024-09-26T17:03:04.585510Z" + "iopub.execute_input": "2024-09-27T13:49:32.531186Z", + "iopub.status.busy": "2024-09-27T13:49:32.530847Z", + "iopub.status.idle": "2024-09-27T13:49:32.533889Z", + "shell.execute_reply": "2024-09-27T13:49:32.533450Z" } }, "outputs": [ @@ -1622,33 +1622,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027b49213cf14d6f9cae1c522d69a94d": { + "1c1f69ce05ca41e2ab42ccc79d49b185": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c77305186841c8990219341fe2c985", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1f946f65a3064858bdc4d0b84b3e37fe", + "layout": "IPY_MODEL_89502115592c4197b735017806292967", + "placeholder": "​", + "style": "IPY_MODEL_67e9d04cd96c445c8005acfc36ae7e29", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "16c77305186841c8990219341fe2c985": { + "1e9e281acb8f4c05a040cc2f0d19a987": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,23 +1698,25 @@ "width": null } }, - "1f946f65a3064858bdc4d0b84b3e37fe": { + "32cebcf584a04d9794e7cd675f1cf965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fbb7a81a12049598efe0429bad742f5": { + "363e09fca0754055b1fb0a23c154fbad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,43 +1769,70 @@ "width": null } }, - "20a93723642e4c60a25be8cddfa5f862": { + "4fc6a038626e4490a9d76f3f9359ae82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fcba4714fba74b85af11a93938110f06", + "IPY_MODEL_7b414d5e5d744644b8330103365ce506", + "IPY_MODEL_519bf913af144fcea3d83180f3ae1150" + ], + "layout": "IPY_MODEL_6ab1ba108939480bbd60600a002b25cb", + "tabbable": null, + "tooltip": null } }, - "249e12cb3e404e84b62ee17c2a8ee91c": { + "519bf913af144fcea3d83180f3ae1150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3acab4d72dd4ada9a7b5d09d252f1e6", + "placeholder": "​", + "style": "IPY_MODEL_32cebcf584a04d9794e7cd675f1cf965", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1569019.90it/s]" + } + }, + "537971263b13437cbc2e8d270657a96f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "26fc21435c414965bb4fad79b3f9d46a": { + "5b46bacaa39b448a83cdc1b8b3090aa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1859,30 +1885,7 @@ "width": null } }, - "297ab574c00643e48ce44ee6cc78961f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecfe75f6dedb497a8ae75da5827d89f9", - "placeholder": "​", - "style": "IPY_MODEL_20a93723642e4c60a25be8cddfa5f862", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "35b7e773a8644fc9bbe62ca8dc8f77c8": { + "67e9d04cd96c445c8005acfc36ae7e29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1900,7 +1903,7 @@ "text_color": null } }, - "5e634c9387184fc2987a0af6f800548a": { + "6ab1ba108939480bbd60600a002b25cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,103 +1956,92 @@ "width": null } }, - "6cc76bea445c41c493f3b2acd04406b4": { + "6bdc1c15df354d60806f9f8b743a5127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26fc21435c414965bb4fad79b3f9d46a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a8633f13ed4ba4a549b9eb5d299249", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7633e799bda141e28661514bf3a1704c": { + "74618b1ea3a14f318fd439352bd763f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_297ab574c00643e48ce44ee6cc78961f", - "IPY_MODEL_027b49213cf14d6f9cae1c522d69a94d", - "IPY_MODEL_932461911f37410c90d83477c498bda7" - ], - "layout": "IPY_MODEL_bd01f47230b04888942468812505fd19", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e9e281acb8f4c05a040cc2f0d19a987", + "placeholder": "​", + "style": "IPY_MODEL_88c6b62022f342478878c9f95dc5d0ac", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 995184.36it/s]" } }, - "932461911f37410c90d83477c498bda7": { + "7b414d5e5d744644b8330103365ce506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b595c73dc553457cbb4ce82e7819ebb5", - "placeholder": "​", - "style": "IPY_MODEL_35b7e773a8644fc9bbe62ca8dc8f77c8", + "layout": "IPY_MODEL_8f5c14af127b4dfa80a803f558c65990", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_537971263b13437cbc2e8d270657a96f", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1033563.49it/s]" + "value": 50.0 } }, - "a6f5f93e1e074668b651f896ea64b8cf": { + "88c6b62022f342478878c9f95dc5d0ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e634c9387184fc2987a0af6f800548a", - "placeholder": "​", - "style": "IPY_MODEL_f4d800ccc5cd4a60b3671bb890b23752", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539081.17it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b595c73dc553457cbb4ce82e7819ebb5": { + "89502115592c4197b735017806292967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2102,7 +2094,7 @@ "width": null } }, - "b9a8633f13ed4ba4a549b9eb5d299249": { + "8c4164034e9c40f29c2793fa40f5b09a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2118,7 +2110,31 @@ "description_width": "" } }, - "baffbefc025a453aa10961ae95b22fdb": { + "8da4bd0f9f64487483493ffdb6f429e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c1f69ce05ca41e2ab42ccc79d49b185", + "IPY_MODEL_f17397c213f443d9bd7fe0a113c23c83", + "IPY_MODEL_74618b1ea3a14f318fd439352bd763f8" + ], + "layout": "IPY_MODEL_e395efb2609a4c51ad8b5843bef284fd", + "tabbable": null, + "tooltip": null + } + }, + "8f5c14af127b4dfa80a803f558c65990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2171,7 +2187,7 @@ "width": null } }, - "bd01f47230b04888942468812505fd19": { + "c3acab4d72dd4ada9a7b5d09d252f1e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,54 +2240,7 @@ "width": null } }, - "d55f75476cc642e590dfea2b8badf09b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6bdfa8ac0f24d1e92a159e2eae5f82e", - "IPY_MODEL_6cc76bea445c41c493f3b2acd04406b4", - "IPY_MODEL_a6f5f93e1e074668b651f896ea64b8cf" - ], - "layout": "IPY_MODEL_1fbb7a81a12049598efe0429bad742f5", - "tabbable": null, - "tooltip": null - } - }, - "e6bdfa8ac0f24d1e92a159e2eae5f82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baffbefc025a453aa10961ae95b22fdb", - "placeholder": "​", - "style": "IPY_MODEL_249e12cb3e404e84b62ee17c2a8ee91c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ecfe75f6dedb497a8ae75da5827d89f9": { + "e395efb2609a4c51ad8b5843bef284fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2293,53 @@ "width": null } }, - "f4d800ccc5cd4a60b3671bb890b23752": { + "f17397c213f443d9bd7fe0a113c23c83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5b46bacaa39b448a83cdc1b8b3090aa0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c4164034e9c40f29c2793fa40f5b09a", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "fcba4714fba74b85af11a93938110f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_363e09fca0754055b1fb0a23c154fbad", + "placeholder": "​", + "style": "IPY_MODEL_6bdc1c15df354d60806f9f8b743a5127", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index ade9796c5..cc4cd8fd6 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:07.887828Z", - "iopub.status.busy": "2024-09-26T17:03:07.887658Z", - "iopub.status.idle": "2024-09-26T17:03:09.081593Z", - "shell.execute_reply": "2024-09-26T17:03:09.080934Z" + "iopub.execute_input": "2024-09-27T13:49:36.063407Z", + "iopub.status.busy": "2024-09-27T13:49:36.062942Z", + "iopub.status.idle": "2024-09-27T13:49:37.284451Z", + "shell.execute_reply": "2024-09-27T13:49:37.283796Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.083776Z", - "iopub.status.busy": "2024-09-26T17:03:09.083483Z", - "iopub.status.idle": "2024-09-26T17:03:09.087386Z", - "shell.execute_reply": "2024-09-26T17:03:09.086916Z" + "iopub.execute_input": "2024-09-27T13:49:37.286562Z", + "iopub.status.busy": "2024-09-27T13:49:37.286237Z", + "iopub.status.idle": "2024-09-27T13:49:37.290149Z", + "shell.execute_reply": "2024-09-27T13:49:37.289659Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.089162Z", - "iopub.status.busy": "2024-09-26T17:03:09.088717Z", - "iopub.status.idle": "2024-09-26T17:03:09.465002Z", - "shell.execute_reply": "2024-09-26T17:03:09.464428Z" + "iopub.execute_input": "2024-09-27T13:49:37.291825Z", + "iopub.status.busy": "2024-09-27T13:49:37.291654Z", + "iopub.status.idle": "2024-09-27T13:49:37.556624Z", + "shell.execute_reply": "2024-09-27T13:49:37.555994Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.466895Z", - "iopub.status.busy": "2024-09-26T17:03:09.466533Z", - "iopub.status.idle": "2024-09-26T17:03:09.473520Z", - "shell.execute_reply": "2024-09-26T17:03:09.473021Z" + "iopub.execute_input": "2024-09-27T13:49:37.558867Z", + "iopub.status.busy": "2024-09-27T13:49:37.558381Z", + "iopub.status.idle": "2024-09-27T13:49:37.565980Z", + "shell.execute_reply": "2024-09-27T13:49:37.565444Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.475071Z", - "iopub.status.busy": "2024-09-26T17:03:09.474893Z", - "iopub.status.idle": "2024-09-26T17:03:09.482105Z", - "shell.execute_reply": "2024-09-26T17:03:09.481672Z" + "iopub.execute_input": "2024-09-27T13:49:37.567912Z", + "iopub.status.busy": "2024-09-27T13:49:37.567548Z", + "iopub.status.idle": "2024-09-27T13:49:37.574676Z", + "shell.execute_reply": "2024-09-27T13:49:37.574217Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.483732Z", - "iopub.status.busy": "2024-09-26T17:03:09.483451Z", - "iopub.status.idle": "2024-09-26T17:03:09.488341Z", - "shell.execute_reply": "2024-09-26T17:03:09.487750Z" + "iopub.execute_input": "2024-09-27T13:49:37.576306Z", + "iopub.status.busy": "2024-09-27T13:49:37.576128Z", + "iopub.status.idle": "2024-09-27T13:49:37.580836Z", + "shell.execute_reply": "2024-09-27T13:49:37.580383Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.490181Z", - "iopub.status.busy": "2024-09-26T17:03:09.489852Z", - "iopub.status.idle": "2024-09-26T17:03:09.495449Z", - "shell.execute_reply": "2024-09-26T17:03:09.494981Z" + "iopub.execute_input": "2024-09-27T13:49:37.582420Z", + "iopub.status.busy": "2024-09-27T13:49:37.582243Z", + "iopub.status.idle": "2024-09-27T13:49:37.589097Z", + "shell.execute_reply": "2024-09-27T13:49:37.588424Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.497149Z", - "iopub.status.busy": "2024-09-26T17:03:09.496808Z", - "iopub.status.idle": "2024-09-26T17:03:09.500629Z", - "shell.execute_reply": "2024-09-26T17:03:09.500187Z" + "iopub.execute_input": "2024-09-27T13:49:37.591160Z", + "iopub.status.busy": "2024-09-27T13:49:37.590660Z", + "iopub.status.idle": "2024-09-27T13:49:37.594897Z", + "shell.execute_reply": "2024-09-27T13:49:37.594465Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.502161Z", - "iopub.status.busy": "2024-09-26T17:03:09.501984Z", - "iopub.status.idle": "2024-09-26T17:03:09.567841Z", - "shell.execute_reply": "2024-09-26T17:03:09.567143Z" + "iopub.execute_input": "2024-09-27T13:49:37.596387Z", + "iopub.status.busy": "2024-09-27T13:49:37.596214Z", + "iopub.status.idle": "2024-09-27T13:49:37.663767Z", + "shell.execute_reply": "2024-09-27T13:49:37.663142Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.570224Z", - "iopub.status.busy": "2024-09-26T17:03:09.569621Z", - "iopub.status.idle": "2024-09-26T17:03:09.580875Z", - "shell.execute_reply": "2024-09-26T17:03:09.580332Z" + "iopub.execute_input": "2024-09-27T13:49:37.665990Z", + "iopub.status.busy": "2024-09-27T13:49:37.665506Z", + "iopub.status.idle": "2024-09-27T13:49:37.676792Z", + "shell.execute_reply": "2024-09-27T13:49:37.676215Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.582934Z", - "iopub.status.busy": "2024-09-26T17:03:09.582524Z", - "iopub.status.idle": "2024-09-26T17:03:09.602617Z", - "shell.execute_reply": "2024-09-26T17:03:09.602091Z" + "iopub.execute_input": "2024-09-27T13:49:37.679527Z", + "iopub.status.busy": "2024-09-27T13:49:37.678642Z", + "iopub.status.idle": "2024-09-27T13:49:37.700788Z", + "shell.execute_reply": "2024-09-27T13:49:37.700250Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.604629Z", - "iopub.status.busy": "2024-09-26T17:03:09.604227Z", - "iopub.status.idle": "2024-09-26T17:03:09.608565Z", - "shell.execute_reply": "2024-09-26T17:03:09.608048Z" + "iopub.execute_input": "2024-09-27T13:49:37.703850Z", + "iopub.status.busy": "2024-09-27T13:49:37.703099Z", + "iopub.status.idle": "2024-09-27T13:49:37.708579Z", + "shell.execute_reply": "2024-09-27T13:49:37.708087Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.611201Z", - "iopub.status.busy": "2024-09-26T17:03:09.610448Z", - "iopub.status.idle": "2024-09-26T17:03:09.616047Z", - "shell.execute_reply": "2024-09-26T17:03:09.615544Z" + "iopub.execute_input": "2024-09-27T13:49:37.711439Z", + "iopub.status.busy": "2024-09-27T13:49:37.710701Z", + "iopub.status.idle": "2024-09-27T13:49:37.716299Z", + "shell.execute_reply": "2024-09-27T13:49:37.715801Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.618936Z", - "iopub.status.busy": "2024-09-26T17:03:09.618195Z", - "iopub.status.idle": "2024-09-26T17:03:09.629920Z", - "shell.execute_reply": "2024-09-26T17:03:09.629486Z" + "iopub.execute_input": "2024-09-27T13:49:37.719140Z", + "iopub.status.busy": "2024-09-27T13:49:37.718400Z", + "iopub.status.idle": "2024-09-27T13:49:37.728871Z", + "shell.execute_reply": "2024-09-27T13:49:37.728441Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.631452Z", - "iopub.status.busy": "2024-09-26T17:03:09.631282Z", - "iopub.status.idle": "2024-09-26T17:03:09.635503Z", - "shell.execute_reply": "2024-09-26T17:03:09.635082Z" + "iopub.execute_input": "2024-09-27T13:49:37.730868Z", + "iopub.status.busy": "2024-09-27T13:49:37.730485Z", + "iopub.status.idle": "2024-09-27T13:49:37.735531Z", + "shell.execute_reply": "2024-09-27T13:49:37.734968Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.637074Z", - "iopub.status.busy": "2024-09-26T17:03:09.636920Z", - "iopub.status.idle": "2024-09-26T17:03:09.751705Z", - "shell.execute_reply": "2024-09-26T17:03:09.751197Z" + "iopub.execute_input": "2024-09-27T13:49:37.737395Z", + "iopub.status.busy": "2024-09-27T13:49:37.737079Z", + "iopub.status.idle": "2024-09-27T13:49:37.860657Z", + "shell.execute_reply": "2024-09-27T13:49:37.860138Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.753780Z", - "iopub.status.busy": "2024-09-26T17:03:09.753473Z", - "iopub.status.idle": "2024-09-26T17:03:09.763869Z", - "shell.execute_reply": "2024-09-26T17:03:09.763379Z" + "iopub.execute_input": "2024-09-27T13:49:37.862530Z", + "iopub.status.busy": "2024-09-27T13:49:37.862209Z", + "iopub.status.idle": "2024-09-27T13:49:37.868653Z", + "shell.execute_reply": "2024-09-27T13:49:37.868170Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:09.765757Z", - "iopub.status.busy": "2024-09-26T17:03:09.765399Z", - "iopub.status.idle": "2024-09-26T17:03:11.745053Z", - "shell.execute_reply": "2024-09-26T17:03:11.744416Z" + "iopub.execute_input": "2024-09-27T13:49:37.871135Z", + "iopub.status.busy": "2024-09-27T13:49:37.870425Z", + "iopub.status.idle": "2024-09-27T13:49:39.894594Z", + "shell.execute_reply": "2024-09-27T13:49:39.893912Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.747529Z", - "iopub.status.busy": "2024-09-26T17:03:11.746976Z", - "iopub.status.idle": "2024-09-26T17:03:11.760015Z", - "shell.execute_reply": "2024-09-26T17:03:11.759505Z" + "iopub.execute_input": "2024-09-27T13:49:39.898305Z", + "iopub.status.busy": "2024-09-27T13:49:39.897216Z", + "iopub.status.idle": "2024-09-27T13:49:39.912953Z", + "shell.execute_reply": "2024-09-27T13:49:39.912405Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.762003Z", - "iopub.status.busy": "2024-09-26T17:03:11.761617Z", - "iopub.status.idle": "2024-09-26T17:03:11.764511Z", - "shell.execute_reply": "2024-09-26T17:03:11.764016Z" + "iopub.execute_input": "2024-09-27T13:49:39.916108Z", + "iopub.status.busy": "2024-09-27T13:49:39.915341Z", + "iopub.status.idle": "2024-09-27T13:49:39.919141Z", + "shell.execute_reply": "2024-09-27T13:49:39.918633Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.766401Z", - "iopub.status.busy": "2024-09-26T17:03:11.766021Z", - "iopub.status.idle": "2024-09-26T17:03:11.770493Z", - "shell.execute_reply": "2024-09-26T17:03:11.769981Z" + "iopub.execute_input": "2024-09-27T13:49:39.922032Z", + "iopub.status.busy": "2024-09-27T13:49:39.921249Z", + "iopub.status.idle": "2024-09-27T13:49:39.926585Z", + "shell.execute_reply": "2024-09-27T13:49:39.926073Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.772408Z", - "iopub.status.busy": "2024-09-26T17:03:11.772028Z", - "iopub.status.idle": "2024-09-26T17:03:11.807613Z", - "shell.execute_reply": "2024-09-26T17:03:11.807086Z" + "iopub.execute_input": "2024-09-27T13:49:39.929683Z", + "iopub.status.busy": "2024-09-27T13:49:39.928826Z", + "iopub.status.idle": "2024-09-27T13:49:39.959231Z", + "shell.execute_reply": "2024-09-27T13:49:39.958525Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:11.809511Z", - "iopub.status.busy": "2024-09-26T17:03:11.809134Z", - "iopub.status.idle": "2024-09-26T17:03:12.338745Z", - "shell.execute_reply": "2024-09-26T17:03:12.338192Z" + "iopub.execute_input": "2024-09-27T13:49:39.961458Z", + "iopub.status.busy": "2024-09-27T13:49:39.961156Z", + "iopub.status.idle": "2024-09-27T13:49:40.480334Z", + "shell.execute_reply": "2024-09-27T13:49:40.479746Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.341049Z", - "iopub.status.busy": "2024-09-26T17:03:12.340668Z", - "iopub.status.idle": "2024-09-26T17:03:12.477140Z", - "shell.execute_reply": "2024-09-26T17:03:12.476474Z" + "iopub.execute_input": "2024-09-27T13:49:40.483535Z", + "iopub.status.busy": "2024-09-27T13:49:40.482730Z", + "iopub.status.idle": "2024-09-27T13:49:40.622832Z", + "shell.execute_reply": "2024-09-27T13:49:40.622203Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.480251Z", - "iopub.status.busy": "2024-09-26T17:03:12.479457Z", - "iopub.status.idle": "2024-09-26T17:03:12.487761Z", - "shell.execute_reply": "2024-09-26T17:03:12.487250Z" + "iopub.execute_input": "2024-09-27T13:49:40.625866Z", + "iopub.status.busy": "2024-09-27T13:49:40.625069Z", + "iopub.status.idle": "2024-09-27T13:49:40.633744Z", + "shell.execute_reply": "2024-09-27T13:49:40.633225Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.490696Z", - "iopub.status.busy": "2024-09-26T17:03:12.489940Z", - "iopub.status.idle": "2024-09-26T17:03:12.497460Z", - "shell.execute_reply": "2024-09-26T17:03:12.496930Z" + "iopub.execute_input": "2024-09-27T13:49:40.636749Z", + "iopub.status.busy": "2024-09-27T13:49:40.635964Z", + "iopub.status.idle": "2024-09-27T13:49:40.644199Z", + "shell.execute_reply": "2024-09-27T13:49:40.643667Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.500342Z", - "iopub.status.busy": "2024-09-26T17:03:12.499582Z", - "iopub.status.idle": "2024-09-26T17:03:12.506416Z", - "shell.execute_reply": "2024-09-26T17:03:12.505903Z" + "iopub.execute_input": "2024-09-27T13:49:40.647316Z", + "iopub.status.busy": "2024-09-27T13:49:40.646527Z", + "iopub.status.idle": "2024-09-27T13:49:40.653984Z", + "shell.execute_reply": "2024-09-27T13:49:40.653441Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.509304Z", - "iopub.status.busy": "2024-09-26T17:03:12.508532Z", - "iopub.status.idle": "2024-09-26T17:03:12.514132Z", - "shell.execute_reply": "2024-09-26T17:03:12.513613Z" + "iopub.execute_input": "2024-09-27T13:49:40.656969Z", + "iopub.status.busy": "2024-09-27T13:49:40.656207Z", + "iopub.status.idle": "2024-09-27T13:49:40.662089Z", + "shell.execute_reply": "2024-09-27T13:49:40.661547Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.516950Z", - "iopub.status.busy": "2024-09-26T17:03:12.516208Z", - "iopub.status.idle": "2024-09-26T17:03:12.521433Z", - "shell.execute_reply": "2024-09-26T17:03:12.520973Z" + "iopub.execute_input": "2024-09-27T13:49:40.664042Z", + "iopub.status.busy": "2024-09-27T13:49:40.663625Z", + "iopub.status.idle": "2024-09-27T13:49:40.668487Z", + "shell.execute_reply": "2024-09-27T13:49:40.668031Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.523760Z", - "iopub.status.busy": "2024-09-26T17:03:12.523152Z", - "iopub.status.idle": "2024-09-26T17:03:12.600802Z", - "shell.execute_reply": "2024-09-26T17:03:12.600279Z" + "iopub.execute_input": "2024-09-27T13:49:40.670335Z", + "iopub.status.busy": "2024-09-27T13:49:40.670148Z", + "iopub.status.idle": "2024-09-27T13:49:40.750849Z", + "shell.execute_reply": "2024-09-27T13:49:40.750346Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.602889Z", - "iopub.status.busy": "2024-09-26T17:03:12.602578Z", - "iopub.status.idle": "2024-09-26T17:03:12.611123Z", - "shell.execute_reply": "2024-09-26T17:03:12.610650Z" + "iopub.execute_input": "2024-09-27T13:49:40.752897Z", + "iopub.status.busy": "2024-09-27T13:49:40.752625Z", + "iopub.status.idle": "2024-09-27T13:49:40.761488Z", + "shell.execute_reply": "2024-09-27T13:49:40.761000Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.613116Z", - "iopub.status.busy": "2024-09-26T17:03:12.612781Z", - "iopub.status.idle": "2024-09-26T17:03:12.616227Z", - "shell.execute_reply": "2024-09-26T17:03:12.615762Z" + "iopub.execute_input": "2024-09-27T13:49:40.763717Z", + "iopub.status.busy": "2024-09-27T13:49:40.763403Z", + "iopub.status.idle": "2024-09-27T13:49:40.766376Z", + "shell.execute_reply": "2024-09-27T13:49:40.765784Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.617893Z", - "iopub.status.busy": "2024-09-26T17:03:12.617563Z", - "iopub.status.idle": "2024-09-26T17:03:12.626852Z", - "shell.execute_reply": "2024-09-26T17:03:12.626412Z" + "iopub.execute_input": "2024-09-27T13:49:40.768367Z", + "iopub.status.busy": "2024-09-27T13:49:40.767967Z", + "iopub.status.idle": "2024-09-27T13:49:40.778395Z", + "shell.execute_reply": "2024-09-27T13:49:40.777797Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.628682Z", - "iopub.status.busy": "2024-09-26T17:03:12.628351Z", - "iopub.status.idle": "2024-09-26T17:03:12.634666Z", - "shell.execute_reply": "2024-09-26T17:03:12.634214Z" + "iopub.execute_input": "2024-09-27T13:49:40.780256Z", + "iopub.status.busy": "2024-09-27T13:49:40.779904Z", + "iopub.status.idle": "2024-09-27T13:49:40.786750Z", + "shell.execute_reply": "2024-09-27T13:49:40.786242Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.636358Z", - "iopub.status.busy": "2024-09-26T17:03:12.636021Z", - "iopub.status.idle": "2024-09-26T17:03:12.639149Z", - "shell.execute_reply": "2024-09-26T17:03:12.638707Z" + "iopub.execute_input": "2024-09-27T13:49:40.788328Z", + "iopub.status.busy": "2024-09-27T13:49:40.788149Z", + "iopub.status.idle": "2024-09-27T13:49:40.791623Z", + "shell.execute_reply": "2024-09-27T13:49:40.791149Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:12.640826Z", - "iopub.status.busy": "2024-09-26T17:03:12.640500Z", - "iopub.status.idle": "2024-09-26T17:03:16.698340Z", - "shell.execute_reply": "2024-09-26T17:03:16.697800Z" + "iopub.execute_input": "2024-09-27T13:49:40.793340Z", + "iopub.status.busy": "2024-09-27T13:49:40.792984Z", + "iopub.status.idle": "2024-09-27T13:49:44.842085Z", + "shell.execute_reply": "2024-09-27T13:49:44.841530Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.700392Z", - "iopub.status.busy": "2024-09-26T17:03:16.700018Z", - "iopub.status.idle": "2024-09-26T17:03:16.703134Z", - "shell.execute_reply": "2024-09-26T17:03:16.702726Z" + "iopub.execute_input": "2024-09-27T13:49:44.844374Z", + "iopub.status.busy": "2024-09-27T13:49:44.843980Z", + "iopub.status.idle": "2024-09-27T13:49:44.847177Z", + "shell.execute_reply": "2024-09-27T13:49:44.846779Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:16.704961Z", - "iopub.status.busy": "2024-09-26T17:03:16.704501Z", - "iopub.status.idle": "2024-09-26T17:03:16.707303Z", - "shell.execute_reply": "2024-09-26T17:03:16.706855Z" + "iopub.execute_input": "2024-09-27T13:49:44.848611Z", + "iopub.status.busy": "2024-09-27T13:49:44.848437Z", + "iopub.status.idle": "2024-09-27T13:49:44.851280Z", + "shell.execute_reply": "2024-09-27T13:49:44.850836Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 79a94be48..3db453a12 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:19.757523Z", - "iopub.status.busy": "2024-09-26T17:03:19.757004Z", - "iopub.status.idle": "2024-09-26T17:03:20.993835Z", - "shell.execute_reply": "2024-09-26T17:03:20.993263Z" + "iopub.execute_input": "2024-09-27T13:49:47.955203Z", + "iopub.status.busy": "2024-09-27T13:49:47.954713Z", + "iopub.status.idle": "2024-09-27T13:49:49.202564Z", + "shell.execute_reply": "2024-09-27T13:49:49.201984Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:20.995910Z", - "iopub.status.busy": "2024-09-26T17:03:20.995628Z", - "iopub.status.idle": "2024-09-26T17:03:21.177031Z", - "shell.execute_reply": "2024-09-26T17:03:21.176503Z" + "iopub.execute_input": "2024-09-27T13:49:49.204710Z", + "iopub.status.busy": "2024-09-27T13:49:49.204267Z", + "iopub.status.idle": "2024-09-27T13:49:49.385602Z", + "shell.execute_reply": "2024-09-27T13:49:49.385040Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.179276Z", - "iopub.status.busy": "2024-09-26T17:03:21.178912Z", - "iopub.status.idle": "2024-09-26T17:03:21.190441Z", - "shell.execute_reply": "2024-09-26T17:03:21.189979Z" + "iopub.execute_input": "2024-09-27T13:49:49.387603Z", + "iopub.status.busy": "2024-09-27T13:49:49.387414Z", + "iopub.status.idle": "2024-09-27T13:49:49.399128Z", + "shell.execute_reply": "2024-09-27T13:49:49.398649Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.192354Z", - "iopub.status.busy": "2024-09-26T17:03:21.191924Z", - "iopub.status.idle": "2024-09-26T17:03:21.428342Z", - "shell.execute_reply": "2024-09-26T17:03:21.427841Z" + "iopub.execute_input": "2024-09-27T13:49:49.401113Z", + "iopub.status.busy": "2024-09-27T13:49:49.400681Z", + "iopub.status.idle": "2024-09-27T13:49:49.640205Z", + "shell.execute_reply": "2024-09-27T13:49:49.639632Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.430456Z", - "iopub.status.busy": "2024-09-26T17:03:21.430000Z", - "iopub.status.idle": "2024-09-26T17:03:21.460872Z", - "shell.execute_reply": "2024-09-26T17:03:21.460382Z" + "iopub.execute_input": "2024-09-27T13:49:49.642136Z", + "iopub.status.busy": "2024-09-27T13:49:49.641924Z", + "iopub.status.idle": "2024-09-27T13:49:49.668753Z", + "shell.execute_reply": "2024-09-27T13:49:49.668289Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:21.462907Z", - "iopub.status.busy": "2024-09-26T17:03:21.462542Z", - "iopub.status.idle": "2024-09-26T17:03:23.537686Z", - "shell.execute_reply": "2024-09-26T17:03:23.536960Z" + "iopub.execute_input": "2024-09-27T13:49:49.670405Z", + "iopub.status.busy": "2024-09-27T13:49:49.670225Z", + "iopub.status.idle": "2024-09-27T13:49:51.756166Z", + "shell.execute_reply": "2024-09-27T13:49:51.755567Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.540024Z", - "iopub.status.busy": "2024-09-26T17:03:23.539501Z", - "iopub.status.idle": "2024-09-26T17:03:23.557520Z", - "shell.execute_reply": "2024-09-26T17:03:23.557017Z" + "iopub.execute_input": "2024-09-27T13:49:51.758458Z", + "iopub.status.busy": "2024-09-27T13:49:51.757901Z", + "iopub.status.idle": "2024-09-27T13:49:51.776156Z", + "shell.execute_reply": "2024-09-27T13:49:51.775703Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:23.559289Z", - "iopub.status.busy": "2024-09-26T17:03:23.558937Z", - "iopub.status.idle": "2024-09-26T17:03:25.143810Z", - "shell.execute_reply": "2024-09-26T17:03:25.143145Z" + "iopub.execute_input": "2024-09-27T13:49:51.777989Z", + "iopub.status.busy": "2024-09-27T13:49:51.777684Z", + "iopub.status.idle": "2024-09-27T13:49:53.370088Z", + "shell.execute_reply": "2024-09-27T13:49:53.369508Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.146384Z", - "iopub.status.busy": "2024-09-26T17:03:25.145553Z", - "iopub.status.idle": "2024-09-26T17:03:25.159570Z", - "shell.execute_reply": "2024-09-26T17:03:25.159091Z" + "iopub.execute_input": "2024-09-27T13:49:53.372684Z", + "iopub.status.busy": "2024-09-27T13:49:53.371801Z", + "iopub.status.idle": "2024-09-27T13:49:53.386003Z", + "shell.execute_reply": "2024-09-27T13:49:53.385496Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.161037Z", - "iopub.status.busy": "2024-09-26T17:03:25.160870Z", - "iopub.status.idle": "2024-09-26T17:03:25.243567Z", - "shell.execute_reply": "2024-09-26T17:03:25.242905Z" + "iopub.execute_input": "2024-09-27T13:49:53.387980Z", + "iopub.status.busy": "2024-09-27T13:49:53.387516Z", + "iopub.status.idle": "2024-09-27T13:49:53.473842Z", + "shell.execute_reply": "2024-09-27T13:49:53.473196Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.245411Z", - "iopub.status.busy": "2024-09-26T17:03:25.245158Z", - "iopub.status.idle": "2024-09-26T17:03:25.460426Z", - "shell.execute_reply": "2024-09-26T17:03:25.459911Z" + "iopub.execute_input": "2024-09-27T13:49:53.475651Z", + "iopub.status.busy": "2024-09-27T13:49:53.475421Z", + "iopub.status.idle": "2024-09-27T13:49:53.690965Z", + "shell.execute_reply": "2024-09-27T13:49:53.690348Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.462274Z", - "iopub.status.busy": "2024-09-26T17:03:25.461916Z", - "iopub.status.idle": "2024-09-26T17:03:25.479129Z", - "shell.execute_reply": "2024-09-26T17:03:25.478671Z" + "iopub.execute_input": "2024-09-27T13:49:53.692793Z", + "iopub.status.busy": "2024-09-27T13:49:53.692463Z", + "iopub.status.idle": "2024-09-27T13:49:53.710417Z", + "shell.execute_reply": "2024-09-27T13:49:53.709980Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.480874Z", - "iopub.status.busy": "2024-09-26T17:03:25.480537Z", - "iopub.status.idle": "2024-09-26T17:03:25.490089Z", - "shell.execute_reply": "2024-09-26T17:03:25.489515Z" + "iopub.execute_input": "2024-09-27T13:49:53.712127Z", + "iopub.status.busy": "2024-09-27T13:49:53.711811Z", + "iopub.status.idle": "2024-09-27T13:49:53.721449Z", + "shell.execute_reply": "2024-09-27T13:49:53.720996Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.491899Z", - "iopub.status.busy": "2024-09-26T17:03:25.491571Z", - "iopub.status.idle": "2024-09-26T17:03:25.588418Z", - "shell.execute_reply": "2024-09-26T17:03:25.587869Z" + "iopub.execute_input": "2024-09-27T13:49:53.723130Z", + "iopub.status.busy": "2024-09-27T13:49:53.722857Z", + "iopub.status.idle": "2024-09-27T13:49:53.817375Z", + "shell.execute_reply": "2024-09-27T13:49:53.816703Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.590607Z", - "iopub.status.busy": "2024-09-26T17:03:25.590219Z", - "iopub.status.idle": "2024-09-26T17:03:25.732483Z", - "shell.execute_reply": "2024-09-26T17:03:25.731847Z" + "iopub.execute_input": "2024-09-27T13:49:53.819544Z", + "iopub.status.busy": "2024-09-27T13:49:53.819159Z", + "iopub.status.idle": "2024-09-27T13:49:53.965240Z", + "shell.execute_reply": "2024-09-27T13:49:53.964595Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.734544Z", - "iopub.status.busy": "2024-09-26T17:03:25.734306Z", - "iopub.status.idle": "2024-09-26T17:03:25.738188Z", - "shell.execute_reply": "2024-09-26T17:03:25.737635Z" + "iopub.execute_input": "2024-09-27T13:49:53.967132Z", + "iopub.status.busy": "2024-09-27T13:49:53.966887Z", + "iopub.status.idle": "2024-09-27T13:49:53.970653Z", + "shell.execute_reply": "2024-09-27T13:49:53.970184Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.739991Z", - "iopub.status.busy": "2024-09-26T17:03:25.739693Z", - "iopub.status.idle": "2024-09-26T17:03:25.743518Z", - "shell.execute_reply": "2024-09-26T17:03:25.742969Z" + "iopub.execute_input": "2024-09-27T13:49:53.972544Z", + "iopub.status.busy": "2024-09-27T13:49:53.972211Z", + "iopub.status.idle": "2024-09-27T13:49:53.975811Z", + "shell.execute_reply": "2024-09-27T13:49:53.975375Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.745282Z", - "iopub.status.busy": "2024-09-26T17:03:25.744869Z", - "iopub.status.idle": "2024-09-26T17:03:25.782713Z", - "shell.execute_reply": "2024-09-26T17:03:25.782255Z" + "iopub.execute_input": "2024-09-27T13:49:53.977483Z", + "iopub.status.busy": "2024-09-27T13:49:53.977162Z", + "iopub.status.idle": "2024-09-27T13:49:54.014798Z", + "shell.execute_reply": "2024-09-27T13:49:54.014320Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.784359Z", - "iopub.status.busy": "2024-09-26T17:03:25.784047Z", - "iopub.status.idle": "2024-09-26T17:03:25.825993Z", - "shell.execute_reply": "2024-09-26T17:03:25.825399Z" + "iopub.execute_input": "2024-09-27T13:49:54.016309Z", + "iopub.status.busy": "2024-09-27T13:49:54.016153Z", + "iopub.status.idle": "2024-09-27T13:49:54.058592Z", + "shell.execute_reply": "2024-09-27T13:49:54.058128Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.827788Z", - "iopub.status.busy": "2024-09-26T17:03:25.827395Z", - "iopub.status.idle": "2024-09-26T17:03:25.929754Z", - "shell.execute_reply": "2024-09-26T17:03:25.929087Z" + "iopub.execute_input": "2024-09-27T13:49:54.060328Z", + "iopub.status.busy": "2024-09-27T13:49:54.059989Z", + "iopub.status.idle": "2024-09-27T13:49:54.162310Z", + "shell.execute_reply": "2024-09-27T13:49:54.161576Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:25.931922Z", - "iopub.status.busy": "2024-09-26T17:03:25.931548Z", - "iopub.status.idle": "2024-09-26T17:03:26.038825Z", - "shell.execute_reply": "2024-09-26T17:03:26.038172Z" + "iopub.execute_input": "2024-09-27T13:49:54.164584Z", + "iopub.status.busy": "2024-09-27T13:49:54.164238Z", + "iopub.status.idle": "2024-09-27T13:49:54.272152Z", + "shell.execute_reply": "2024-09-27T13:49:54.271584Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.040684Z", - "iopub.status.busy": "2024-09-26T17:03:26.040446Z", - "iopub.status.idle": "2024-09-26T17:03:26.253554Z", - "shell.execute_reply": "2024-09-26T17:03:26.252936Z" + "iopub.execute_input": "2024-09-27T13:49:54.274181Z", + "iopub.status.busy": "2024-09-27T13:49:54.273772Z", + "iopub.status.idle": "2024-09-27T13:49:54.485007Z", + "shell.execute_reply": "2024-09-27T13:49:54.484491Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.255496Z", - "iopub.status.busy": "2024-09-26T17:03:26.255135Z", - "iopub.status.idle": "2024-09-26T17:03:26.476149Z", - "shell.execute_reply": "2024-09-26T17:03:26.475467Z" + "iopub.execute_input": "2024-09-27T13:49:54.486961Z", + "iopub.status.busy": "2024-09-27T13:49:54.486600Z", + "iopub.status.idle": "2024-09-27T13:49:54.707860Z", + "shell.execute_reply": "2024-09-27T13:49:54.707182Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.478208Z", - "iopub.status.busy": "2024-09-26T17:03:26.477882Z", - "iopub.status.idle": "2024-09-26T17:03:26.484331Z", - "shell.execute_reply": "2024-09-26T17:03:26.483897Z" + "iopub.execute_input": "2024-09-27T13:49:54.709923Z", + "iopub.status.busy": "2024-09-27T13:49:54.709461Z", + "iopub.status.idle": "2024-09-27T13:49:54.716021Z", + "shell.execute_reply": "2024-09-27T13:49:54.715572Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.485988Z", - "iopub.status.busy": "2024-09-26T17:03:26.485677Z", - "iopub.status.idle": "2024-09-26T17:03:26.705415Z", - "shell.execute_reply": "2024-09-26T17:03:26.704879Z" + "iopub.execute_input": "2024-09-27T13:49:54.717563Z", + "iopub.status.busy": "2024-09-27T13:49:54.717397Z", + "iopub.status.idle": "2024-09-27T13:49:54.936984Z", + "shell.execute_reply": "2024-09-27T13:49:54.936390Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:26.707343Z", - "iopub.status.busy": "2024-09-26T17:03:26.706986Z", - "iopub.status.idle": "2024-09-26T17:03:27.770864Z", - "shell.execute_reply": "2024-09-26T17:03:27.770364Z" + "iopub.execute_input": "2024-09-27T13:49:54.938887Z", + "iopub.status.busy": "2024-09-27T13:49:54.938530Z", + "iopub.status.idle": "2024-09-27T13:49:56.008191Z", + "shell.execute_reply": "2024-09-27T13:49:56.007633Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 0a628ca80..066a3be3f 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:32.155568Z", - "iopub.status.busy": "2024-09-26T17:03:32.155382Z", - "iopub.status.idle": "2024-09-26T17:03:33.322663Z", - "shell.execute_reply": "2024-09-26T17:03:33.322106Z" + "iopub.execute_input": "2024-09-27T13:50:00.283031Z", + "iopub.status.busy": "2024-09-27T13:50:00.282850Z", + "iopub.status.idle": "2024-09-27T13:50:01.529982Z", + "shell.execute_reply": "2024-09-27T13:50:01.529363Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.325051Z", - "iopub.status.busy": "2024-09-26T17:03:33.324543Z", - "iopub.status.idle": "2024-09-26T17:03:33.327571Z", - "shell.execute_reply": "2024-09-26T17:03:33.327125Z" + "iopub.execute_input": "2024-09-27T13:50:01.532249Z", + "iopub.status.busy": "2024-09-27T13:50:01.531766Z", + "iopub.status.idle": "2024-09-27T13:50:01.535029Z", + "shell.execute_reply": "2024-09-27T13:50:01.534558Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.329481Z", - "iopub.status.busy": "2024-09-26T17:03:33.329106Z", - "iopub.status.idle": "2024-09-26T17:03:33.337328Z", - "shell.execute_reply": "2024-09-26T17:03:33.336753Z" + "iopub.execute_input": "2024-09-27T13:50:01.537031Z", + "iopub.status.busy": "2024-09-27T13:50:01.536667Z", + "iopub.status.idle": "2024-09-27T13:50:01.544914Z", + "shell.execute_reply": "2024-09-27T13:50:01.544396Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.338976Z", - "iopub.status.busy": "2024-09-26T17:03:33.338803Z", - "iopub.status.idle": "2024-09-26T17:03:33.384904Z", - "shell.execute_reply": "2024-09-26T17:03:33.384320Z" + "iopub.execute_input": "2024-09-27T13:50:01.546711Z", + "iopub.status.busy": "2024-09-27T13:50:01.546356Z", + "iopub.status.idle": "2024-09-27T13:50:01.593910Z", + "shell.execute_reply": "2024-09-27T13:50:01.593338Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.386626Z", - "iopub.status.busy": "2024-09-26T17:03:33.386442Z", - "iopub.status.idle": "2024-09-26T17:03:33.403626Z", - "shell.execute_reply": "2024-09-26T17:03:33.403085Z" + "iopub.execute_input": "2024-09-27T13:50:01.595899Z", + "iopub.status.busy": "2024-09-27T13:50:01.595701Z", + "iopub.status.idle": "2024-09-27T13:50:01.614081Z", + "shell.execute_reply": "2024-09-27T13:50:01.613547Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.405451Z", - "iopub.status.busy": "2024-09-26T17:03:33.405118Z", - "iopub.status.idle": "2024-09-26T17:03:33.409011Z", - "shell.execute_reply": "2024-09-26T17:03:33.408476Z" + "iopub.execute_input": "2024-09-27T13:50:01.615863Z", + "iopub.status.busy": "2024-09-27T13:50:01.615656Z", + "iopub.status.idle": "2024-09-27T13:50:01.619883Z", + "shell.execute_reply": "2024-09-27T13:50:01.619423Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.410796Z", - "iopub.status.busy": "2024-09-26T17:03:33.410382Z", - "iopub.status.idle": "2024-09-26T17:03:33.427653Z", - "shell.execute_reply": "2024-09-26T17:03:33.427072Z" + "iopub.execute_input": "2024-09-27T13:50:01.621805Z", + "iopub.status.busy": "2024-09-27T13:50:01.621459Z", + "iopub.status.idle": "2024-09-27T13:50:01.636304Z", + "shell.execute_reply": "2024-09-27T13:50:01.635842Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.429482Z", - "iopub.status.busy": "2024-09-26T17:03:33.429162Z", - "iopub.status.idle": "2024-09-26T17:03:33.455291Z", - "shell.execute_reply": "2024-09-26T17:03:33.454811Z" + "iopub.execute_input": "2024-09-27T13:50:01.638170Z", + "iopub.status.busy": "2024-09-27T13:50:01.637803Z", + "iopub.status.idle": "2024-09-27T13:50:01.664411Z", + "shell.execute_reply": "2024-09-27T13:50:01.663771Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:33.456954Z", - "iopub.status.busy": "2024-09-26T17:03:33.456624Z", - "iopub.status.idle": "2024-09-26T17:03:35.369827Z", - "shell.execute_reply": "2024-09-26T17:03:35.369227Z" + "iopub.execute_input": "2024-09-27T13:50:01.666543Z", + "iopub.status.busy": "2024-09-27T13:50:01.666195Z", + "iopub.status.idle": "2024-09-27T13:50:03.656395Z", + "shell.execute_reply": "2024-09-27T13:50:03.655827Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.372127Z", - "iopub.status.busy": "2024-09-26T17:03:35.371668Z", - "iopub.status.idle": "2024-09-26T17:03:35.378386Z", - "shell.execute_reply": "2024-09-26T17:03:35.377922Z" + "iopub.execute_input": "2024-09-27T13:50:03.658501Z", + "iopub.status.busy": "2024-09-27T13:50:03.658175Z", + "iopub.status.idle": "2024-09-27T13:50:03.665262Z", + "shell.execute_reply": "2024-09-27T13:50:03.664800Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.380068Z", - "iopub.status.busy": "2024-09-26T17:03:35.379731Z", - "iopub.status.idle": "2024-09-26T17:03:35.392208Z", - "shell.execute_reply": "2024-09-26T17:03:35.391671Z" + "iopub.execute_input": "2024-09-27T13:50:03.666987Z", + "iopub.status.busy": "2024-09-27T13:50:03.666805Z", + "iopub.status.idle": "2024-09-27T13:50:03.679807Z", + "shell.execute_reply": "2024-09-27T13:50:03.679246Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.393975Z", - "iopub.status.busy": "2024-09-26T17:03:35.393668Z", - "iopub.status.idle": "2024-09-26T17:03:35.399995Z", - "shell.execute_reply": "2024-09-26T17:03:35.399449Z" + "iopub.execute_input": "2024-09-27T13:50:03.681542Z", + "iopub.status.busy": "2024-09-27T13:50:03.681289Z", + "iopub.status.idle": "2024-09-27T13:50:03.687949Z", + "shell.execute_reply": "2024-09-27T13:50:03.687503Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.401696Z", - "iopub.status.busy": "2024-09-26T17:03:35.401521Z", - "iopub.status.idle": "2024-09-26T17:03:35.404204Z", - "shell.execute_reply": "2024-09-26T17:03:35.403751Z" + "iopub.execute_input": "2024-09-27T13:50:03.689686Z", + "iopub.status.busy": "2024-09-27T13:50:03.689509Z", + "iopub.status.idle": "2024-09-27T13:50:03.692058Z", + "shell.execute_reply": "2024-09-27T13:50:03.691626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.405738Z", - "iopub.status.busy": "2024-09-26T17:03:35.405571Z", - "iopub.status.idle": "2024-09-26T17:03:35.409161Z", - "shell.execute_reply": "2024-09-26T17:03:35.408696Z" + "iopub.execute_input": "2024-09-27T13:50:03.693849Z", + "iopub.status.busy": "2024-09-27T13:50:03.693409Z", + "iopub.status.idle": "2024-09-27T13:50:03.697114Z", + "shell.execute_reply": "2024-09-27T13:50:03.696549Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.410672Z", - "iopub.status.busy": "2024-09-26T17:03:35.410505Z", - "iopub.status.idle": "2024-09-26T17:03:35.413101Z", - "shell.execute_reply": "2024-09-26T17:03:35.412663Z" + "iopub.execute_input": "2024-09-27T13:50:03.698776Z", + "iopub.status.busy": "2024-09-27T13:50:03.698468Z", + "iopub.status.idle": "2024-09-27T13:50:03.701226Z", + "shell.execute_reply": "2024-09-27T13:50:03.700662Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.414705Z", - "iopub.status.busy": "2024-09-26T17:03:35.414538Z", - "iopub.status.idle": "2024-09-26T17:03:35.418607Z", - "shell.execute_reply": "2024-09-26T17:03:35.418062Z" + "iopub.execute_input": "2024-09-27T13:50:03.703170Z", + "iopub.status.busy": "2024-09-27T13:50:03.702730Z", + "iopub.status.idle": "2024-09-27T13:50:03.706827Z", + "shell.execute_reply": "2024-09-27T13:50:03.706370Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.420421Z", - "iopub.status.busy": "2024-09-26T17:03:35.420103Z", - "iopub.status.idle": "2024-09-26T17:03:35.449647Z", - "shell.execute_reply": "2024-09-26T17:03:35.449056Z" + "iopub.execute_input": "2024-09-27T13:50:03.708679Z", + "iopub.status.busy": "2024-09-27T13:50:03.708375Z", + "iopub.status.idle": "2024-09-27T13:50:03.737494Z", + "shell.execute_reply": "2024-09-27T13:50:03.736888Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:35.451503Z", - "iopub.status.busy": "2024-09-26T17:03:35.451157Z", - "iopub.status.idle": "2024-09-26T17:03:35.455545Z", - "shell.execute_reply": "2024-09-26T17:03:35.455091Z" + "iopub.execute_input": "2024-09-27T13:50:03.739537Z", + "iopub.status.busy": "2024-09-27T13:50:03.739354Z", + "iopub.status.idle": "2024-09-27T13:50:03.743924Z", + "shell.execute_reply": "2024-09-27T13:50:03.743478Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9ceb5596d..15ae19f22 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:38.235356Z", - "iopub.status.busy": "2024-09-26T17:03:38.235187Z", - "iopub.status.idle": "2024-09-26T17:03:39.464936Z", - "shell.execute_reply": "2024-09-26T17:03:39.464384Z" + "iopub.execute_input": "2024-09-27T13:50:06.725990Z", + "iopub.status.busy": "2024-09-27T13:50:06.725779Z", + "iopub.status.idle": "2024-09-27T13:50:07.973724Z", + "shell.execute_reply": "2024-09-27T13:50:07.973155Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.467094Z", - "iopub.status.busy": "2024-09-26T17:03:39.466633Z", - "iopub.status.idle": "2024-09-26T17:03:39.661808Z", - "shell.execute_reply": "2024-09-26T17:03:39.661225Z" + "iopub.execute_input": "2024-09-27T13:50:07.975731Z", + "iopub.status.busy": "2024-09-27T13:50:07.975460Z", + "iopub.status.idle": "2024-09-27T13:50:08.171427Z", + "shell.execute_reply": "2024-09-27T13:50:08.170874Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.663940Z", - "iopub.status.busy": "2024-09-26T17:03:39.663552Z", - "iopub.status.idle": "2024-09-26T17:03:39.676592Z", - "shell.execute_reply": "2024-09-26T17:03:39.676141Z" + "iopub.execute_input": "2024-09-27T13:50:08.173720Z", + "iopub.status.busy": "2024-09-27T13:50:08.173246Z", + "iopub.status.idle": "2024-09-27T13:50:08.186415Z", + "shell.execute_reply": "2024-09-27T13:50:08.185928Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:39.678430Z", - "iopub.status.busy": "2024-09-26T17:03:39.678069Z", - "iopub.status.idle": "2024-09-26T17:03:42.338055Z", - "shell.execute_reply": "2024-09-26T17:03:42.337536Z" + "iopub.execute_input": "2024-09-27T13:50:08.188193Z", + "iopub.status.busy": "2024-09-27T13:50:08.187863Z", + "iopub.status.idle": "2024-09-27T13:50:10.832960Z", + "shell.execute_reply": "2024-09-27T13:50:10.832424Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:42.339955Z", - "iopub.status.busy": "2024-09-26T17:03:42.339587Z", - "iopub.status.idle": "2024-09-26T17:03:43.681959Z", - "shell.execute_reply": "2024-09-26T17:03:43.681410Z" + "iopub.execute_input": "2024-09-27T13:50:10.834988Z", + "iopub.status.busy": "2024-09-27T13:50:10.834545Z", + "iopub.status.idle": "2024-09-27T13:50:12.182428Z", + "shell.execute_reply": "2024-09-27T13:50:12.181868Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.683980Z", - "iopub.status.busy": "2024-09-26T17:03:43.683614Z", - "iopub.status.idle": "2024-09-26T17:03:43.687775Z", - "shell.execute_reply": "2024-09-26T17:03:43.687305Z" + "iopub.execute_input": "2024-09-27T13:50:12.184478Z", + "iopub.status.busy": "2024-09-27T13:50:12.184103Z", + "iopub.status.idle": "2024-09-27T13:50:12.187833Z", + "shell.execute_reply": "2024-09-27T13:50:12.187391Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:43.689610Z", - "iopub.status.busy": "2024-09-26T17:03:43.689277Z", - "iopub.status.idle": "2024-09-26T17:03:45.722043Z", - "shell.execute_reply": "2024-09-26T17:03:45.721346Z" + "iopub.execute_input": "2024-09-27T13:50:12.189617Z", + "iopub.status.busy": "2024-09-27T13:50:12.189276Z", + "iopub.status.idle": "2024-09-27T13:50:14.250365Z", + "shell.execute_reply": "2024-09-27T13:50:14.249644Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.724606Z", - "iopub.status.busy": "2024-09-26T17:03:45.723934Z", - "iopub.status.idle": "2024-09-26T17:03:45.733795Z", - "shell.execute_reply": "2024-09-26T17:03:45.733323Z" + "iopub.execute_input": "2024-09-27T13:50:14.253014Z", + "iopub.status.busy": "2024-09-27T13:50:14.252227Z", + "iopub.status.idle": "2024-09-27T13:50:14.261829Z", + "shell.execute_reply": "2024-09-27T13:50:14.261366Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:45.735506Z", - "iopub.status.busy": "2024-09-26T17:03:45.735322Z", - "iopub.status.idle": "2024-09-26T17:03:48.302047Z", - "shell.execute_reply": "2024-09-26T17:03:48.301457Z" + "iopub.execute_input": "2024-09-27T13:50:14.263623Z", + "iopub.status.busy": "2024-09-27T13:50:14.263292Z", + "iopub.status.idle": "2024-09-27T13:50:16.825728Z", + "shell.execute_reply": "2024-09-27T13:50:16.825201Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.303862Z", - "iopub.status.busy": "2024-09-26T17:03:48.303674Z", - "iopub.status.idle": "2024-09-26T17:03:48.306897Z", - "shell.execute_reply": "2024-09-26T17:03:48.306449Z" + "iopub.execute_input": "2024-09-27T13:50:16.827773Z", + "iopub.status.busy": "2024-09-27T13:50:16.827410Z", + "iopub.status.idle": "2024-09-27T13:50:16.830659Z", + "shell.execute_reply": "2024-09-27T13:50:16.830226Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.308470Z", - "iopub.status.busy": "2024-09-26T17:03:48.308294Z", - "iopub.status.idle": "2024-09-26T17:03:48.311851Z", - "shell.execute_reply": "2024-09-26T17:03:48.311399Z" + "iopub.execute_input": "2024-09-27T13:50:16.832389Z", + "iopub.status.busy": "2024-09-27T13:50:16.832049Z", + "iopub.status.idle": "2024-09-27T13:50:16.835392Z", + "shell.execute_reply": "2024-09-27T13:50:16.834951Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:48.313429Z", - "iopub.status.busy": "2024-09-26T17:03:48.313238Z", - "iopub.status.idle": "2024-09-26T17:03:48.316359Z", - "shell.execute_reply": "2024-09-26T17:03:48.315904Z" + "iopub.execute_input": "2024-09-27T13:50:16.837072Z", + "iopub.status.busy": "2024-09-27T13:50:16.836730Z", + "iopub.status.idle": "2024-09-27T13:50:16.839731Z", + "shell.execute_reply": "2024-09-27T13:50:16.839294Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 4cf1baa9c..74581ae08 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:50.872695Z", - "iopub.status.busy": "2024-09-26T17:03:50.872527Z", - "iopub.status.idle": "2024-09-26T17:03:52.108435Z", - "shell.execute_reply": "2024-09-26T17:03:52.107922Z" + "iopub.execute_input": "2024-09-27T13:50:19.443579Z", + "iopub.status.busy": "2024-09-27T13:50:19.443403Z", + "iopub.status.idle": "2024-09-27T13:50:20.702879Z", + "shell.execute_reply": "2024-09-27T13:50:20.702310Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:52.110652Z", - "iopub.status.busy": "2024-09-26T17:03:52.110373Z", - "iopub.status.idle": "2024-09-26T17:03:53.718304Z", - "shell.execute_reply": "2024-09-26T17:03:53.717592Z" + "iopub.execute_input": "2024-09-27T13:50:20.705084Z", + "iopub.status.busy": "2024-09-27T13:50:20.704636Z", + "iopub.status.idle": "2024-09-27T13:50:22.822151Z", + "shell.execute_reply": "2024-09-27T13:50:22.821410Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.720333Z", - "iopub.status.busy": "2024-09-26T17:03:53.720131Z", - "iopub.status.idle": "2024-09-26T17:03:53.723716Z", - "shell.execute_reply": "2024-09-26T17:03:53.723249Z" + "iopub.execute_input": "2024-09-27T13:50:22.824450Z", + "iopub.status.busy": "2024-09-27T13:50:22.823982Z", + "iopub.status.idle": "2024-09-27T13:50:22.827315Z", + "shell.execute_reply": "2024-09-27T13:50:22.826864Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.725367Z", - "iopub.status.busy": "2024-09-26T17:03:53.725176Z", - "iopub.status.idle": "2024-09-26T17:03:53.731881Z", - "shell.execute_reply": "2024-09-26T17:03:53.731422Z" + "iopub.execute_input": "2024-09-27T13:50:22.829177Z", + "iopub.status.busy": "2024-09-27T13:50:22.828729Z", + "iopub.status.idle": "2024-09-27T13:50:22.835505Z", + "shell.execute_reply": "2024-09-27T13:50:22.835064Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:53.733470Z", - "iopub.status.busy": "2024-09-26T17:03:53.733289Z", - "iopub.status.idle": "2024-09-26T17:03:54.226908Z", - "shell.execute_reply": "2024-09-26T17:03:54.226298Z" + "iopub.execute_input": "2024-09-27T13:50:22.837239Z", + "iopub.status.busy": "2024-09-27T13:50:22.836893Z", + "iopub.status.idle": "2024-09-27T13:50:23.331183Z", + "shell.execute_reply": "2024-09-27T13:50:23.330607Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.228918Z", - "iopub.status.busy": "2024-09-26T17:03:54.228500Z", - "iopub.status.idle": "2024-09-26T17:03:54.233862Z", - "shell.execute_reply": "2024-09-26T17:03:54.233427Z" + "iopub.execute_input": "2024-09-27T13:50:23.333657Z", + "iopub.status.busy": "2024-09-27T13:50:23.333258Z", + "iopub.status.idle": "2024-09-27T13:50:23.338644Z", + "shell.execute_reply": "2024-09-27T13:50:23.338176Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.235629Z", - "iopub.status.busy": "2024-09-26T17:03:54.235308Z", - "iopub.status.idle": "2024-09-26T17:03:54.239163Z", - "shell.execute_reply": "2024-09-26T17:03:54.238723Z" + "iopub.execute_input": "2024-09-27T13:50:23.340282Z", + "iopub.status.busy": "2024-09-27T13:50:23.339946Z", + "iopub.status.idle": "2024-09-27T13:50:23.343951Z", + "shell.execute_reply": "2024-09-27T13:50:23.343382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:54.240884Z", - "iopub.status.busy": "2024-09-26T17:03:54.240539Z", - "iopub.status.idle": "2024-09-26T17:03:55.132461Z", - "shell.execute_reply": "2024-09-26T17:03:55.131884Z" + "iopub.execute_input": "2024-09-27T13:50:23.345634Z", + "iopub.status.busy": "2024-09-27T13:50:23.345444Z", + "iopub.status.idle": "2024-09-27T13:50:24.311351Z", + "shell.execute_reply": "2024-09-27T13:50:24.310678Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.134485Z", - "iopub.status.busy": "2024-09-26T17:03:55.134101Z", - "iopub.status.idle": "2024-09-26T17:03:55.344926Z", - "shell.execute_reply": "2024-09-26T17:03:55.344350Z" + "iopub.execute_input": "2024-09-27T13:50:24.313472Z", + "iopub.status.busy": "2024-09-27T13:50:24.313086Z", + "iopub.status.idle": "2024-09-27T13:50:24.522945Z", + "shell.execute_reply": "2024-09-27T13:50:24.522473Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.347039Z", - "iopub.status.busy": "2024-09-26T17:03:55.346617Z", - "iopub.status.idle": "2024-09-26T17:03:55.351223Z", - "shell.execute_reply": "2024-09-26T17:03:55.350673Z" + "iopub.execute_input": "2024-09-27T13:50:24.524988Z", + "iopub.status.busy": "2024-09-27T13:50:24.524624Z", + "iopub.status.idle": "2024-09-27T13:50:24.529040Z", + "shell.execute_reply": "2024-09-27T13:50:24.528463Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.353046Z", - "iopub.status.busy": "2024-09-26T17:03:55.352712Z", - "iopub.status.idle": "2024-09-26T17:03:55.808907Z", - "shell.execute_reply": "2024-09-26T17:03:55.808307Z" + "iopub.execute_input": "2024-09-27T13:50:24.530989Z", + "iopub.status.busy": "2024-09-27T13:50:24.530646Z", + "iopub.status.idle": "2024-09-27T13:50:24.991345Z", + "shell.execute_reply": "2024-09-27T13:50:24.990700Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:55.811591Z", - "iopub.status.busy": "2024-09-26T17:03:55.811241Z", - "iopub.status.idle": "2024-09-26T17:03:56.145507Z", - "shell.execute_reply": "2024-09-26T17:03:56.144909Z" + "iopub.execute_input": "2024-09-27T13:50:24.994317Z", + "iopub.status.busy": "2024-09-27T13:50:24.993692Z", + "iopub.status.idle": "2024-09-27T13:50:25.302482Z", + "shell.execute_reply": "2024-09-27T13:50:25.301826Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.147534Z", - "iopub.status.busy": "2024-09-26T17:03:56.147172Z", - "iopub.status.idle": "2024-09-26T17:03:56.522806Z", - "shell.execute_reply": "2024-09-26T17:03:56.522185Z" + "iopub.execute_input": "2024-09-27T13:50:25.304445Z", + "iopub.status.busy": "2024-09-27T13:50:25.304098Z", + "iopub.status.idle": "2024-09-27T13:50:25.672846Z", + "shell.execute_reply": "2024-09-27T13:50:25.672241Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.525094Z", - "iopub.status.busy": "2024-09-26T17:03:56.524803Z", - "iopub.status.idle": "2024-09-26T17:03:56.938146Z", - "shell.execute_reply": "2024-09-26T17:03:56.937571Z" + "iopub.execute_input": "2024-09-27T13:50:25.675532Z", + "iopub.status.busy": "2024-09-27T13:50:25.675160Z", + "iopub.status.idle": "2024-09-27T13:50:26.138514Z", + "shell.execute_reply": "2024-09-27T13:50:26.137926Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:56.942264Z", - "iopub.status.busy": "2024-09-26T17:03:56.941870Z", - "iopub.status.idle": "2024-09-26T17:03:57.370517Z", - "shell.execute_reply": "2024-09-26T17:03:57.369935Z" + "iopub.execute_input": "2024-09-27T13:50:26.142672Z", + "iopub.status.busy": "2024-09-27T13:50:26.142279Z", + "iopub.status.idle": "2024-09-27T13:50:26.594693Z", + "shell.execute_reply": "2024-09-27T13:50:26.594081Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.373172Z", - "iopub.status.busy": "2024-09-26T17:03:57.372782Z", - "iopub.status.idle": "2024-09-26T17:03:57.563441Z", - "shell.execute_reply": "2024-09-26T17:03:57.562843Z" + "iopub.execute_input": "2024-09-27T13:50:26.597306Z", + "iopub.status.busy": "2024-09-27T13:50:26.597107Z", + "iopub.status.idle": "2024-09-27T13:50:26.821495Z", + "shell.execute_reply": "2024-09-27T13:50:26.820944Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.565901Z", - "iopub.status.busy": "2024-09-26T17:03:57.565444Z", - "iopub.status.idle": "2024-09-26T17:03:57.769189Z", - "shell.execute_reply": "2024-09-26T17:03:57.768596Z" + "iopub.execute_input": "2024-09-27T13:50:26.823432Z", + "iopub.status.busy": "2024-09-27T13:50:26.823089Z", + "iopub.status.idle": "2024-09-27T13:50:27.023714Z", + "shell.execute_reply": "2024-09-27T13:50:27.023125Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.771705Z", - "iopub.status.busy": "2024-09-26T17:03:57.771376Z", - "iopub.status.idle": "2024-09-26T17:03:57.774381Z", - "shell.execute_reply": "2024-09-26T17:03:57.773929Z" + "iopub.execute_input": "2024-09-27T13:50:27.025739Z", + "iopub.status.busy": "2024-09-27T13:50:27.025301Z", + "iopub.status.idle": "2024-09-27T13:50:27.028302Z", + "shell.execute_reply": "2024-09-27T13:50:27.027862Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:57.775799Z", - "iopub.status.busy": "2024-09-26T17:03:57.775632Z", - "iopub.status.idle": "2024-09-26T17:03:58.717491Z", - "shell.execute_reply": "2024-09-26T17:03:58.716886Z" + "iopub.execute_input": "2024-09-27T13:50:27.030091Z", + "iopub.status.busy": "2024-09-27T13:50:27.029679Z", + "iopub.status.idle": "2024-09-27T13:50:28.012427Z", + "shell.execute_reply": "2024-09-27T13:50:28.011865Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.719646Z", - "iopub.status.busy": "2024-09-26T17:03:58.719200Z", - "iopub.status.idle": "2024-09-26T17:03:58.860617Z", - "shell.execute_reply": "2024-09-26T17:03:58.860127Z" + "iopub.execute_input": "2024-09-27T13:50:28.014834Z", + "iopub.status.busy": "2024-09-27T13:50:28.014455Z", + "iopub.status.idle": "2024-09-27T13:50:28.134002Z", + "shell.execute_reply": "2024-09-27T13:50:28.133439Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.862547Z", - "iopub.status.busy": "2024-09-26T17:03:58.862194Z", - "iopub.status.idle": "2024-09-26T17:03:58.994557Z", - "shell.execute_reply": "2024-09-26T17:03:58.994095Z" + "iopub.execute_input": "2024-09-27T13:50:28.136003Z", + "iopub.status.busy": "2024-09-27T13:50:28.135574Z", + "iopub.status.idle": "2024-09-27T13:50:28.317635Z", + "shell.execute_reply": "2024-09-27T13:50:28.317140Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:58.996401Z", - "iopub.status.busy": "2024-09-26T17:03:58.996000Z", - "iopub.status.idle": "2024-09-26T17:03:59.724120Z", - "shell.execute_reply": "2024-09-26T17:03:59.723503Z" + "iopub.execute_input": "2024-09-27T13:50:28.319646Z", + "iopub.status.busy": "2024-09-27T13:50:28.319301Z", + "iopub.status.idle": "2024-09-27T13:50:29.078487Z", + "shell.execute_reply": "2024-09-27T13:50:29.077858Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:03:59.725920Z", - "iopub.status.busy": "2024-09-26T17:03:59.725591Z", - "iopub.status.idle": "2024-09-26T17:03:59.729320Z", - "shell.execute_reply": "2024-09-26T17:03:59.728740Z" + "iopub.execute_input": "2024-09-27T13:50:29.080254Z", + "iopub.status.busy": "2024-09-27T13:50:29.080059Z", + "iopub.status.idle": "2024-09-27T13:50:29.083764Z", + "shell.execute_reply": "2024-09-27T13:50:29.083320Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 9a6a6b159..b51ab40eb 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -793,7 +793,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]
+100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]
 

-
+
@@ -1143,7 +1143,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 178f049b6..a22f47f5c 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:01.971300Z", - "iopub.status.busy": "2024-09-26T17:04:01.971121Z", - "iopub.status.idle": "2024-09-26T17:04:04.854776Z", - "shell.execute_reply": "2024-09-26T17:04:04.854218Z" + "iopub.execute_input": "2024-09-27T13:50:31.336559Z", + "iopub.status.busy": "2024-09-27T13:50:31.336374Z", + "iopub.status.idle": "2024-09-27T13:50:34.288125Z", + "shell.execute_reply": "2024-09-27T13:50:34.287547Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:04.856883Z", - "iopub.status.busy": "2024-09-26T17:04:04.856573Z", - "iopub.status.idle": "2024-09-26T17:04:05.177735Z", - "shell.execute_reply": "2024-09-26T17:04:05.177154Z" + "iopub.execute_input": "2024-09-27T13:50:34.290281Z", + "iopub.status.busy": "2024-09-27T13:50:34.289977Z", + "iopub.status.idle": "2024-09-27T13:50:34.624581Z", + "shell.execute_reply": "2024-09-27T13:50:34.624016Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.180049Z", - "iopub.status.busy": "2024-09-26T17:04:05.179567Z", - "iopub.status.idle": "2024-09-26T17:04:05.183627Z", - "shell.execute_reply": "2024-09-26T17:04:05.183194Z" + "iopub.execute_input": "2024-09-27T13:50:34.626906Z", + "iopub.status.busy": "2024-09-27T13:50:34.626293Z", + "iopub.status.idle": "2024-09-27T13:50:34.630537Z", + "shell.execute_reply": "2024-09-27T13:50:34.629977Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:05.185553Z", - "iopub.status.busy": "2024-09-26T17:04:05.185191Z", - "iopub.status.idle": "2024-09-26T17:04:09.811124Z", - "shell.execute_reply": "2024-09-26T17:04:09.810509Z" + "iopub.execute_input": "2024-09-27T13:50:34.632208Z", + "iopub.status.busy": "2024-09-27T13:50:34.631889Z", + "iopub.status.idle": "2024-09-27T13:50:40.167372Z", + "shell.execute_reply": "2024-09-27T13:50:40.166857Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 2064384/170498071 [00:00<00:08, 20630382.53it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17324553.72it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:03, 52270442.86it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:02, 56350581.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17498112/170498071 [00:00<00:02, 64734739.67it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:02, 58867112.24it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29163520/170498071 [00:00<00:01, 85142994.91it/s]" + " 14%|█▎ | 23298048/170498071 [00:00<00:02, 62722855.85it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40796160/170498071 [00:00<00:01, 96352842.59it/s]" + " 18%|█▊ | 29884416/170498071 [00:00<00:02, 63725820.45it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52461568/170498071 [00:00<00:01, 103238176.66it/s]" + " 21%|██▏ | 36569088/170498071 [00:00<00:02, 64687801.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64094208/170498071 [00:00<00:00, 107007260.86it/s]" + " 25%|██▌ | 43057152/170498071 [00:00<00:01, 64045274.16it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75857920/170498071 [00:00<00:00, 110372379.91it/s]" + " 29%|██▉ | 49479680/170498071 [00:00<00:01, 63636758.17it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87588864/170498071 [00:00<00:00, 112453756.10it/s]" + " 33%|███▎ | 55869440/170498071 [00:00<00:01, 63530849.98it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99287040/170498071 [00:01<00:00, 113788226.67it/s]" + " 37%|███▋ | 62324736/170498071 [00:01<00:01, 63773721.91it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 110952448/170498071 [00:01<00:00, 114500206.50it/s]" + " 40%|████ | 68714496/170498071 [00:01<00:01, 63611956.56it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122650624/170498071 [00:01<00:00, 115205361.57it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:01, 63340021.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134381568/170498071 [00:01<00:00, 115630678.67it/s]" + " 48%|████▊ | 81592320/170498071 [00:01<00:01, 63646571.47it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146079744/170498071 [00:01<00:00, 115905368.54it/s]" + " 52%|█████▏ | 88145920/170498071 [00:01<00:01, 64135061.04it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 157777920/170498071 [00:01<00:00, 116224092.07it/s]" + " 56%|█████▌ | 95059968/170498071 [00:01<00:01, 65506735.07it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 169443328/170498071 [00:01<00:00, 116343059.81it/s]" + " 60%|█████▉ | 101777408/170498071 [00:01<00:01, 65926861.28it/s]" ] }, { @@ -380,7 +380,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 105652681.68it/s]" + " 64%|██████▎ | 108593152/170498071 [00:01<00:00, 66500282.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115245056/170498071 [00:01<00:00, 66172108.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 66238030.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▌ | 128581632/170498071 [00:02<00:00, 66297330.54it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135430144/170498071 [00:02<00:00, 66911084.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142147584/170498071 [00:02<00:00, 66229052.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148930560/170498071 [00:02<00:00, 66687006.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155615232/170498071 [00:02<00:00, 65733593.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162201600/170498071 [00:02<00:00, 65517357.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168787968/170498071 [00:02<00:00, 64819767.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64167863.25it/s]" ] }, { @@ -498,10 +578,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.813180Z", - "iopub.status.busy": "2024-09-26T17:04:09.812843Z", - "iopub.status.idle": "2024-09-26T17:04:09.817679Z", - "shell.execute_reply": "2024-09-26T17:04:09.817089Z" + "iopub.execute_input": "2024-09-27T13:50:40.169405Z", + "iopub.status.busy": "2024-09-27T13:50:40.168936Z", + "iopub.status.idle": "2024-09-27T13:50:40.173943Z", + "shell.execute_reply": "2024-09-27T13:50:40.173496Z" }, "nbsphinx": "hidden" }, @@ -552,10 +632,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:09.819327Z", - "iopub.status.busy": "2024-09-26T17:04:09.819007Z", - "iopub.status.idle": "2024-09-26T17:04:10.358798Z", - "shell.execute_reply": "2024-09-26T17:04:10.358317Z" + "iopub.execute_input": "2024-09-27T13:50:40.175648Z", + "iopub.status.busy": "2024-09-27T13:50:40.175466Z", + "iopub.status.idle": "2024-09-27T13:50:40.714706Z", + "shell.execute_reply": "2024-09-27T13:50:40.714068Z" } }, "outputs": [ @@ -588,10 +668,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.360475Z", - "iopub.status.busy": "2024-09-26T17:04:10.360295Z", - "iopub.status.idle": "2024-09-26T17:04:10.842081Z", - "shell.execute_reply": "2024-09-26T17:04:10.841507Z" + "iopub.execute_input": "2024-09-27T13:50:40.716536Z", + "iopub.status.busy": "2024-09-27T13:50:40.716348Z", + "iopub.status.idle": "2024-09-27T13:50:41.219660Z", + "shell.execute_reply": "2024-09-27T13:50:41.219126Z" } }, "outputs": [ @@ -629,10 +709,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.843865Z", - "iopub.status.busy": "2024-09-26T17:04:10.843673Z", - "iopub.status.idle": "2024-09-26T17:04:10.847312Z", - "shell.execute_reply": "2024-09-26T17:04:10.846740Z" + "iopub.execute_input": "2024-09-27T13:50:41.221397Z", + "iopub.status.busy": "2024-09-27T13:50:41.221191Z", + "iopub.status.idle": "2024-09-27T13:50:41.225060Z", + "shell.execute_reply": "2024-09-27T13:50:41.224590Z" } }, "outputs": [], @@ -655,17 +735,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:10.849081Z", - "iopub.status.busy": "2024-09-26T17:04:10.848761Z", - "iopub.status.idle": "2024-09-26T17:04:23.742842Z", - "shell.execute_reply": "2024-09-26T17:04:23.742223Z" + "iopub.execute_input": "2024-09-27T13:50:41.226609Z", + "iopub.status.busy": "2024-09-27T13:50:41.226428Z", + "iopub.status.idle": "2024-09-27T13:50:53.794332Z", + "shell.execute_reply": "2024-09-27T13:50:53.793704Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "481cf30bee6943db835bc9693b38b7d0", + "model_id": "8e59a7f076e448cbb05804524a137e75", "version_major": 2, "version_minor": 0 }, @@ -724,10 +804,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:23.745010Z", - "iopub.status.busy": "2024-09-26T17:04:23.744585Z", - "iopub.status.idle": "2024-09-26T17:04:25.839364Z", - "shell.execute_reply": "2024-09-26T17:04:25.838719Z" + "iopub.execute_input": "2024-09-27T13:50:53.796281Z", + "iopub.status.busy": "2024-09-27T13:50:53.796075Z", + "iopub.status.idle": "2024-09-27T13:50:55.839092Z", + "shell.execute_reply": "2024-09-27T13:50:55.838479Z" } }, "outputs": [ @@ -771,10 +851,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:25.841749Z", - "iopub.status.busy": "2024-09-26T17:04:25.841296Z", - "iopub.status.idle": "2024-09-26T17:04:26.096812Z", - "shell.execute_reply": "2024-09-26T17:04:26.096240Z" + "iopub.execute_input": "2024-09-27T13:50:55.841077Z", + "iopub.status.busy": "2024-09-27T13:50:55.840883Z", + "iopub.status.idle": "2024-09-27T13:50:56.068164Z", + "shell.execute_reply": "2024-09-27T13:50:56.067368Z" } }, "outputs": [ @@ -810,10 +890,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.099329Z", - "iopub.status.busy": "2024-09-26T17:04:26.098877Z", - "iopub.status.idle": "2024-09-26T17:04:26.766406Z", - "shell.execute_reply": "2024-09-26T17:04:26.765862Z" + "iopub.execute_input": "2024-09-27T13:50:56.070248Z", + "iopub.status.busy": "2024-09-27T13:50:56.070059Z", + "iopub.status.idle": "2024-09-27T13:50:56.719579Z", + "shell.execute_reply": "2024-09-27T13:50:56.718990Z" } }, "outputs": [ @@ -863,10 +943,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:26.768620Z", - "iopub.status.busy": "2024-09-26T17:04:26.768224Z", - "iopub.status.idle": "2024-09-26T17:04:27.108073Z", - "shell.execute_reply": "2024-09-26T17:04:27.107473Z" + "iopub.execute_input": "2024-09-27T13:50:56.722081Z", + "iopub.status.busy": "2024-09-27T13:50:56.721673Z", + "iopub.status.idle": "2024-09-27T13:50:57.069923Z", + "shell.execute_reply": "2024-09-27T13:50:57.069392Z" } }, "outputs": [ @@ -914,10 +994,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.109834Z", - "iopub.status.busy": "2024-09-26T17:04:27.109650Z", - "iopub.status.idle": "2024-09-26T17:04:27.351524Z", - "shell.execute_reply": "2024-09-26T17:04:27.350876Z" + "iopub.execute_input": "2024-09-27T13:50:57.071861Z", + "iopub.status.busy": "2024-09-27T13:50:57.071481Z", + "iopub.status.idle": "2024-09-27T13:50:57.316398Z", + "shell.execute_reply": "2024-09-27T13:50:57.315816Z" } }, "outputs": [ @@ -973,10 +1053,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.354053Z", - "iopub.status.busy": "2024-09-26T17:04:27.353600Z", - "iopub.status.idle": "2024-09-26T17:04:27.447892Z", - "shell.execute_reply": "2024-09-26T17:04:27.447384Z" + "iopub.execute_input": "2024-09-27T13:50:57.318975Z", + "iopub.status.busy": "2024-09-27T13:50:57.318496Z", + "iopub.status.idle": "2024-09-27T13:50:57.417331Z", + "shell.execute_reply": "2024-09-27T13:50:57.416812Z" } }, "outputs": [], @@ -997,10 +1077,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:27.449743Z", - "iopub.status.busy": "2024-09-26T17:04:27.449562Z", - "iopub.status.idle": "2024-09-26T17:04:38.184870Z", - "shell.execute_reply": "2024-09-26T17:04:38.184254Z" + "iopub.execute_input": "2024-09-27T13:50:57.419373Z", + "iopub.status.busy": "2024-09-27T13:50:57.419019Z", + "iopub.status.idle": "2024-09-27T13:51:08.254190Z", + "shell.execute_reply": "2024-09-27T13:51:08.253562Z" } }, "outputs": [ @@ -1037,10 +1117,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:38.186868Z", - "iopub.status.busy": "2024-09-26T17:04:38.186659Z", - "iopub.status.idle": "2024-09-26T17:04:40.383970Z", - "shell.execute_reply": "2024-09-26T17:04:40.383460Z" + "iopub.execute_input": "2024-09-27T13:51:08.256355Z", + "iopub.status.busy": "2024-09-27T13:51:08.255957Z", + "iopub.status.idle": "2024-09-27T13:51:10.500115Z", + "shell.execute_reply": "2024-09-27T13:51:10.499556Z" } }, "outputs": [ @@ -1071,10 +1151,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.386614Z", - "iopub.status.busy": "2024-09-26T17:04:40.385949Z", - "iopub.status.idle": "2024-09-26T17:04:40.607538Z", - "shell.execute_reply": "2024-09-26T17:04:40.607022Z" + "iopub.execute_input": "2024-09-27T13:51:10.502313Z", + "iopub.status.busy": "2024-09-27T13:51:10.501787Z", + "iopub.status.idle": "2024-09-27T13:51:10.707690Z", + "shell.execute_reply": "2024-09-27T13:51:10.707063Z" } }, "outputs": [], @@ -1088,10 +1168,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.609616Z", - "iopub.status.busy": "2024-09-26T17:04:40.609228Z", - "iopub.status.idle": "2024-09-26T17:04:40.612336Z", - "shell.execute_reply": "2024-09-26T17:04:40.611909Z" + "iopub.execute_input": "2024-09-27T13:51:10.709735Z", + "iopub.status.busy": "2024-09-27T13:51:10.709439Z", + "iopub.status.idle": "2024-09-27T13:51:10.712726Z", + "shell.execute_reply": "2024-09-27T13:51:10.712173Z" } }, "outputs": [], @@ -1129,10 +1209,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:40.614035Z", - "iopub.status.busy": "2024-09-26T17:04:40.613703Z", - "iopub.status.idle": "2024-09-26T17:04:40.622171Z", - "shell.execute_reply": "2024-09-26T17:04:40.621706Z" + "iopub.execute_input": "2024-09-27T13:51:10.714435Z", + "iopub.status.busy": "2024-09-27T13:51:10.714266Z", + "iopub.status.idle": "2024-09-27T13:51:10.722614Z", + "shell.execute_reply": "2024-09-27T13:51:10.722178Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1257,56 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016906c40ec04434a96f0c6da6967bef": { + "1adbfa3fbfa54ba293de2b9b03f71b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb0db3b827c74f38b4b1991b101e964f", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7849ac70397848e496266851c5d956d1", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "28c0621e5d2b4951ab66ed9e5bc81fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5672ddb7d62c425e94757073a3500d04", + "placeholder": "​", + "style": "IPY_MODEL_bb17fd7956a84dbdb54505cd8cfb07c7", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "4d294500e0514c7e887575b26cc73e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,72 +1359,7 @@ "width": null } }, - "14c69cfacf3e48d2b95f46cd54e49c9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3972814dcab04892afc1ac1440552ac5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb5438c747049e5968c73417456b937", - "placeholder": "​", - "style": "IPY_MODEL_9362062e23974e61900f7a5522a0189b", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 129MB/s]" - } - }, - "481cf30bee6943db835bc9693b38b7d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_850360c1166847dfa53976aad59ff517", - "IPY_MODEL_8f07b9affc9c4c4a84fe88f43b488473", - "IPY_MODEL_3972814dcab04892afc1ac1440552ac5" - ], - "layout": "IPY_MODEL_adac6f450dbc46f989ade8c2425b2515", - "tabbable": null, - "tooltip": null - } - }, - "4bb5438c747049e5968c73417456b937": { + "5672ddb7d62c425e94757073a3500d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1348,90 +1412,65 @@ "width": null } }, - "6983437a251a418689409a3191804389": { + "5a69fbb1a7434f11b05d70b97ab05535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "850360c1166847dfa53976aad59ff517": { + "7849ac70397848e496266851c5d956d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_016906c40ec04434a96f0c6da6967bef", - "placeholder": "​", - "style": "IPY_MODEL_14c69cfacf3e48d2b95f46cd54e49c9b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f07b9affc9c4c4a84fe88f43b488473": { + "8e59a7f076e448cbb05804524a137e75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1c50b96b69e4282b9a88b0b784c08bf", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6983437a251a418689409a3191804389", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28c0621e5d2b4951ab66ed9e5bc81fc0", + "IPY_MODEL_1adbfa3fbfa54ba293de2b9b03f71b7b", + "IPY_MODEL_d63681a72bc34d61ad7e193ef1396969" + ], + "layout": "IPY_MODEL_4d294500e0514c7e887575b26cc73e59", "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "9362062e23974e61900f7a5522a0189b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "adac6f450dbc46f989ade8c2425b2515": { + "9de99fa1656b4220b4b86019adf6b18f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1523,48 @@ "width": null } }, - "b1c50b96b69e4282b9a88b0b784c08bf": { + "bb17fd7956a84dbdb54505cd8cfb07c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d63681a72bc34d61ad7e193ef1396969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9de99fa1656b4220b4b86019adf6b18f", + "placeholder": "​", + "style": "IPY_MODEL_5a69fbb1a7434f11b05d70b97ab05535", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "eb0db3b827c74f38b4b1991b101e964f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 4e0f503ec..a781c88d1 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:45.045613Z", - "iopub.status.busy": "2024-09-26T17:04:45.045449Z", - "iopub.status.idle": "2024-09-26T17:04:46.356026Z", - "shell.execute_reply": "2024-09-26T17:04:46.355424Z" + "iopub.execute_input": "2024-09-27T13:51:15.149161Z", + "iopub.status.busy": "2024-09-27T13:51:15.148999Z", + "iopub.status.idle": "2024-09-27T13:51:16.418985Z", + "shell.execute_reply": "2024-09-27T13:51:16.418425Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.358207Z", - "iopub.status.busy": "2024-09-26T17:04:46.357894Z", - "iopub.status.idle": "2024-09-26T17:04:46.377349Z", - "shell.execute_reply": "2024-09-26T17:04:46.376818Z" + "iopub.execute_input": "2024-09-27T13:51:16.420957Z", + "iopub.status.busy": "2024-09-27T13:51:16.420681Z", + "iopub.status.idle": "2024-09-27T13:51:16.439104Z", + "shell.execute_reply": "2024-09-27T13:51:16.438650Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.379468Z", - "iopub.status.busy": "2024-09-26T17:04:46.378978Z", - "iopub.status.idle": "2024-09-26T17:04:46.382061Z", - "shell.execute_reply": "2024-09-26T17:04:46.381595Z" + "iopub.execute_input": "2024-09-27T13:51:16.441018Z", + "iopub.status.busy": "2024-09-27T13:51:16.440605Z", + "iopub.status.idle": "2024-09-27T13:51:16.443577Z", + "shell.execute_reply": "2024-09-27T13:51:16.443113Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.383663Z", - "iopub.status.busy": "2024-09-26T17:04:46.383479Z", - "iopub.status.idle": "2024-09-26T17:04:46.481470Z", - "shell.execute_reply": "2024-09-26T17:04:46.480877Z" + "iopub.execute_input": "2024-09-27T13:51:16.445299Z", + "iopub.status.busy": "2024-09-27T13:51:16.444975Z", + "iopub.status.idle": "2024-09-27T13:51:16.552085Z", + "shell.execute_reply": "2024-09-27T13:51:16.551626Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.483670Z", - "iopub.status.busy": "2024-09-26T17:04:46.483192Z", - "iopub.status.idle": "2024-09-26T17:04:46.669376Z", - "shell.execute_reply": "2024-09-26T17:04:46.668677Z" + "iopub.execute_input": "2024-09-27T13:51:16.554009Z", + "iopub.status.busy": "2024-09-27T13:51:16.553632Z", + "iopub.status.idle": "2024-09-27T13:51:16.737330Z", + "shell.execute_reply": "2024-09-27T13:51:16.736689Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.671709Z", - "iopub.status.busy": "2024-09-26T17:04:46.671318Z", - "iopub.status.idle": "2024-09-26T17:04:46.889372Z", - "shell.execute_reply": "2024-09-26T17:04:46.888829Z" + "iopub.execute_input": "2024-09-27T13:51:16.739654Z", + "iopub.status.busy": "2024-09-27T13:51:16.739277Z", + "iopub.status.idle": "2024-09-27T13:51:16.985723Z", + "shell.execute_reply": "2024-09-27T13:51:16.985100Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.891445Z", - "iopub.status.busy": "2024-09-26T17:04:46.890916Z", - "iopub.status.idle": "2024-09-26T17:04:46.895690Z", - "shell.execute_reply": "2024-09-26T17:04:46.895219Z" + "iopub.execute_input": "2024-09-27T13:51:16.987526Z", + "iopub.status.busy": "2024-09-27T13:51:16.987225Z", + "iopub.status.idle": "2024-09-27T13:51:16.991621Z", + "shell.execute_reply": "2024-09-27T13:51:16.991153Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.897480Z", - "iopub.status.busy": "2024-09-26T17:04:46.897178Z", - "iopub.status.idle": "2024-09-26T17:04:46.903377Z", - "shell.execute_reply": "2024-09-26T17:04:46.902787Z" + "iopub.execute_input": "2024-09-27T13:51:16.993248Z", + "iopub.status.busy": "2024-09-27T13:51:16.992898Z", + "iopub.status.idle": "2024-09-27T13:51:16.998722Z", + "shell.execute_reply": "2024-09-27T13:51:16.998268Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.905000Z", - "iopub.status.busy": "2024-09-26T17:04:46.904823Z", - "iopub.status.idle": "2024-09-26T17:04:46.907722Z", - "shell.execute_reply": "2024-09-26T17:04:46.907293Z" + "iopub.execute_input": "2024-09-27T13:51:17.000381Z", + "iopub.status.busy": "2024-09-27T13:51:17.000114Z", + "iopub.status.idle": "2024-09-27T13:51:17.002650Z", + "shell.execute_reply": "2024-09-27T13:51:17.002204Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:46.909599Z", - "iopub.status.busy": "2024-09-26T17:04:46.909131Z", - "iopub.status.idle": "2024-09-26T17:04:55.883286Z", - "shell.execute_reply": "2024-09-26T17:04:55.882633Z" + "iopub.execute_input": "2024-09-27T13:51:17.004391Z", + "iopub.status.busy": "2024-09-27T13:51:17.003946Z", + "iopub.status.idle": "2024-09-27T13:51:26.067326Z", + "shell.execute_reply": "2024-09-27T13:51:26.066758Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.885851Z", - "iopub.status.busy": "2024-09-26T17:04:55.885210Z", - "iopub.status.idle": "2024-09-26T17:04:55.892917Z", - "shell.execute_reply": "2024-09-26T17:04:55.892454Z" + "iopub.execute_input": "2024-09-27T13:51:26.069894Z", + "iopub.status.busy": "2024-09-27T13:51:26.069345Z", + "iopub.status.idle": "2024-09-27T13:51:26.076338Z", + "shell.execute_reply": "2024-09-27T13:51:26.075881Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.894663Z", - "iopub.status.busy": "2024-09-26T17:04:55.894322Z", - "iopub.status.idle": "2024-09-26T17:04:55.897834Z", - "shell.execute_reply": "2024-09-26T17:04:55.897377Z" + "iopub.execute_input": "2024-09-27T13:51:26.078018Z", + "iopub.status.busy": "2024-09-27T13:51:26.077730Z", + "iopub.status.idle": "2024-09-27T13:51:26.081236Z", + "shell.execute_reply": "2024-09-27T13:51:26.080792Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.899532Z", - "iopub.status.busy": "2024-09-26T17:04:55.899211Z", - "iopub.status.idle": "2024-09-26T17:04:55.902535Z", - "shell.execute_reply": "2024-09-26T17:04:55.901994Z" + "iopub.execute_input": "2024-09-27T13:51:26.082932Z", + "iopub.status.busy": "2024-09-27T13:51:26.082598Z", + "iopub.status.idle": "2024-09-27T13:51:26.085987Z", + "shell.execute_reply": "2024-09-27T13:51:26.085516Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.904316Z", - "iopub.status.busy": "2024-09-26T17:04:55.903915Z", - "iopub.status.idle": "2024-09-26T17:04:55.906956Z", - "shell.execute_reply": "2024-09-26T17:04:55.906478Z" + "iopub.execute_input": "2024-09-27T13:51:26.087772Z", + "iopub.status.busy": "2024-09-27T13:51:26.087368Z", + "iopub.status.idle": "2024-09-27T13:51:26.090518Z", + "shell.execute_reply": "2024-09-27T13:51:26.090064Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.908409Z", - "iopub.status.busy": "2024-09-26T17:04:55.908236Z", - "iopub.status.idle": "2024-09-26T17:04:55.916410Z", - "shell.execute_reply": "2024-09-26T17:04:55.915860Z" + "iopub.execute_input": "2024-09-27T13:51:26.092191Z", + "iopub.status.busy": "2024-09-27T13:51:26.091860Z", + "iopub.status.idle": "2024-09-27T13:51:26.099609Z", + "shell.execute_reply": "2024-09-27T13:51:26.099158Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.918227Z", - "iopub.status.busy": "2024-09-26T17:04:55.917906Z", - "iopub.status.idle": "2024-09-26T17:04:55.920593Z", - "shell.execute_reply": "2024-09-26T17:04:55.920127Z" + "iopub.execute_input": "2024-09-27T13:51:26.101260Z", + "iopub.status.busy": "2024-09-27T13:51:26.100944Z", + "iopub.status.idle": "2024-09-27T13:51:26.103665Z", + "shell.execute_reply": "2024-09-27T13:51:26.103114Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:55.922554Z", - "iopub.status.busy": "2024-09-26T17:04:55.922044Z", - "iopub.status.idle": "2024-09-26T17:04:56.045940Z", - "shell.execute_reply": "2024-09-26T17:04:56.045422Z" + "iopub.execute_input": "2024-09-27T13:51:26.105327Z", + "iopub.status.busy": "2024-09-27T13:51:26.105016Z", + "iopub.status.idle": "2024-09-27T13:51:26.230588Z", + "shell.execute_reply": "2024-09-27T13:51:26.229994Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.047840Z", - "iopub.status.busy": "2024-09-26T17:04:56.047468Z", - "iopub.status.idle": "2024-09-26T17:04:56.167819Z", - "shell.execute_reply": "2024-09-26T17:04:56.167293Z" + "iopub.execute_input": "2024-09-27T13:51:26.232496Z", + "iopub.status.busy": "2024-09-27T13:51:26.232118Z", + "iopub.status.idle": "2024-09-27T13:51:26.342308Z", + "shell.execute_reply": "2024-09-27T13:51:26.341751Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.169945Z", - "iopub.status.busy": "2024-09-26T17:04:56.169503Z", - "iopub.status.idle": "2024-09-26T17:04:56.685934Z", - "shell.execute_reply": "2024-09-26T17:04:56.685296Z" + "iopub.execute_input": "2024-09-27T13:51:26.344213Z", + "iopub.status.busy": "2024-09-27T13:51:26.343885Z", + "iopub.status.idle": "2024-09-27T13:51:26.866342Z", + "shell.execute_reply": "2024-09-27T13:51:26.865682Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.688248Z", - "iopub.status.busy": "2024-09-26T17:04:56.687817Z", - "iopub.status.idle": "2024-09-26T17:04:56.783644Z", - "shell.execute_reply": "2024-09-26T17:04:56.783001Z" + "iopub.execute_input": "2024-09-27T13:51:26.868362Z", + "iopub.status.busy": "2024-09-27T13:51:26.868178Z", + "iopub.status.idle": "2024-09-27T13:51:26.964126Z", + "shell.execute_reply": "2024-09-27T13:51:26.963551Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.785728Z", - "iopub.status.busy": "2024-09-26T17:04:56.785306Z", - "iopub.status.idle": "2024-09-26T17:04:56.793844Z", - "shell.execute_reply": "2024-09-26T17:04:56.793274Z" + "iopub.execute_input": "2024-09-27T13:51:26.966053Z", + "iopub.status.busy": "2024-09-27T13:51:26.965821Z", + "iopub.status.idle": "2024-09-27T13:51:26.974429Z", + "shell.execute_reply": "2024-09-27T13:51:26.973838Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.795479Z", - "iopub.status.busy": "2024-09-26T17:04:56.795160Z", - "iopub.status.idle": "2024-09-26T17:04:56.797955Z", - "shell.execute_reply": "2024-09-26T17:04:56.797402Z" + "iopub.execute_input": "2024-09-27T13:51:26.976211Z", + "iopub.status.busy": "2024-09-27T13:51:26.975775Z", + "iopub.status.idle": "2024-09-27T13:51:26.978660Z", + "shell.execute_reply": "2024-09-27T13:51:26.978085Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:04:56.799958Z", - "iopub.status.busy": "2024-09-26T17:04:56.799621Z", - "iopub.status.idle": "2024-09-26T17:05:02.434662Z", - "shell.execute_reply": "2024-09-26T17:05:02.434117Z" + "iopub.execute_input": "2024-09-27T13:51:26.980464Z", + "iopub.status.busy": "2024-09-27T13:51:26.980130Z", + "iopub.status.idle": "2024-09-27T13:51:32.684948Z", + "shell.execute_reply": "2024-09-27T13:51:32.684334Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.436647Z", - "iopub.status.busy": "2024-09-26T17:05:02.436258Z", - "iopub.status.idle": "2024-09-26T17:05:02.444773Z", - "shell.execute_reply": "2024-09-26T17:05:02.444312Z" + "iopub.execute_input": "2024-09-27T13:51:32.686957Z", + "iopub.status.busy": "2024-09-27T13:51:32.686573Z", + "iopub.status.idle": "2024-09-27T13:51:32.695195Z", + "shell.execute_reply": "2024-09-27T13:51:32.694586Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:02.446489Z", - "iopub.status.busy": "2024-09-26T17:05:02.446154Z", - "iopub.status.idle": "2024-09-26T17:05:02.514195Z", - "shell.execute_reply": "2024-09-26T17:05:02.513712Z" + "iopub.execute_input": "2024-09-27T13:51:32.696968Z", + "iopub.status.busy": "2024-09-27T13:51:32.696618Z", + "iopub.status.idle": "2024-09-27T13:51:32.764496Z", + "shell.execute_reply": "2024-09-27T13:51:32.763852Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5a7767d24..ed49b4512 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -813,13 +813,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1209,7 +1209,7 @@

Get label quality scores -{"state": {"8748256d360d48058ef6b131aab916a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c88cab906e394a4a84904cc6c17850f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c95ca6d393b43da8b16aed149c46f65": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", "tabbable": null, "tooltip": null, "value": 30.0}}, "30b8f1a9ff53472095e7c2a925cb7b4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "adc4d154c7ff4de08c98e30f3e42eeb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61df8743d35a43c98e0022ff4bc97293": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", "placeholder": "\u200b", "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ead2da2da60e4805a2043cd58fc66569": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34abae56904c4b1bb3364dd32eb17639": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24272bf2500848a5bcf2d55525f3a0f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", "placeholder": "\u200b", "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007789.56it/s]"}}, "0517b037a82440458d02ea86105f06d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9433b8180b7c45728863cb9c40d5e567": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9"], "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", "tabbable": null, "tooltip": null}}, "17297470645a4db58aed91eed1a148be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "081848e4dbc24107bd57eb8c702bd684": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01cec593b4a8405da7b3c690d0e52a52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", "tabbable": null, "tooltip": null, "value": 30.0}}, "af9ecce7424246c7b19990283f91d514": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "010b8225b6d644ccabdfd571da8a8792": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5cb76de001c842278b1d786d5a645fac": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", "placeholder": "\u200b", "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "9ea0920685234045bf68210b35f9cadc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6dd9c9d112440f3bc8d3d30e256ab38": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b40d316ff104deb90302ab718996261": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", "placeholder": "\u200b", "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.15it/s]"}}, "761e7aa8f1fd44fc9b5324d18d7cc6f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "069caa427ad347c5bd1333db3bd5ec8b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5cb76de001c842278b1d786d5a645fac", "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", "IPY_MODEL_6b40d316ff104deb90302ab718996261"], "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", "tabbable": null, "tooltip": null}}, "a171038c0af1477c8a19cfa21eb51810": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41247db7415843a19203dea65c75a294": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "46241f4b5b034271b6b861ea2799165d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "9cc9bcba55184478a96ee6f5db50d92b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "192f38f69433493bbd3eeffe870e0abf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "daf32bd5ad8e47cbb62b30e0cc60714c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", "placeholder": "\u200b", "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", "tabbable": null, "tooltip": null, "value": "100%"}}, "26346b2762a446b3852dd6fc6794aee5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9cbc0159e8e401daeafe1258f07445e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b7aa1adb8d04265acda6569262d2b70": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", "placeholder": "\u200b", "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007150688.70it/s]"}}, "f68fd43ccb474f5d9dd542f446750d8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "419483351ddf440f89b247293c5dcdc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70"], "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", "tabbable": null, "tooltip": null}}, "8df337a907d546958dee64127541ca0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f22d093744347f3b34a78e1d9fddc5c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9c63f3dd112d4cd188297907c9dc0947": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", "tabbable": null, "tooltip": null, "value": 30.0}}, "a011a519ef08415e9947399082ef4823": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "704f533bc271466791f4aed2ff606b9f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "69bb131944b64f9999675a9ef28e496f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", "placeholder": "\u200b", "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "3c78a7ea81274c7ab75aad3c51051fca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2fcbf282272460dbb60c23ea7337738": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2414eb65ad8d4b00b3ea3d85c9bb9d16": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", "placeholder": "\u200b", "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.14it/s]"}}, "1b492cce44314110abd310d191addb69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5a1fa9574814a138f8b11ada26aa7ce": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_69bb131944b64f9999675a9ef28e496f", "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16"], "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"26ae1571806b4102a738df4d53c727cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6b9386ba4bd4ef382728a8509ff9733": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb81abffee574a08838324a05306fee5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", "tabbable": null, "tooltip": null, "value": 30.0}}, "7bc851f2a1a84711b61cce3293e573e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc7c8ce9cbda4e2ea98b9c02eba16a10": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a84d7163b7a34ae3a5db5e214e41505f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", "placeholder": "\u200b", "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "2350f154084b4431bc8dc7aa3d7b707d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b2a798493d54864b1c2c54e441dd6d1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f8b6a653a2f4f39afc4a68e4562f8c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", "placeholder": "\u200b", "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007796.57it/s]"}}, "b39e88ec9789404db8f52fe3fad91062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0cacd283386e42a5bdc7ef667a30ed27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", "IPY_MODEL_bb81abffee574a08838324a05306fee5", "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9"], "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null}}, "0203b35b408140bab3d7c2a3022596ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8793ef7a8f54cf1875b005a6c1f7124": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "780258fed6944d3cbee72b74d6ec1757": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, "value": 30.0}}, "fdddcd906c904034b566400adef66822": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "128282009133450bb17bacece244696d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f50700f58f74bcf874d2f107ce9d245": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "\u200b", "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "bac053573d6d41a1a54925af41d6af17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68adef88f65c4a45bd1410adbc35fdf8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "097e65cda3524af0905ade254303944d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", "placeholder": "\u200b", "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.13it/s]"}}, "4775464e0f1042de98b0e5962d567596": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4644996a967241dfa8d773a9ca551092": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", "IPY_MODEL_097e65cda3524af0905ade254303944d"], "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", "tabbable": null, "tooltip": null}}, "5948a70e11d04859b1e2b8b837fb140f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53c5265699634e29a6682fe80468d7c3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c336c8b7a3b4cb59ec5f9f24031e6ee": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "fa32975e7754475ba3d7e3d4cae1cee7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c4c694a56634ea0a695dac6f2a36795": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5e463cc2461436bbdd695f021b40430": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", "placeholder": "\u200b", "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, "value": "100%"}}, "ee0e7b61c689421686d277113f1ec067": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f6962414e7246219b6d8d7d1e22b96e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b49455ea450540e083563000c3fff983": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", "placeholder": "\u200b", "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:33<00:00,\u2007147202.41it/s]"}}, "5fbe8a5f1e7f4dfeb36f47d3f14ece88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba6bd71b6bee41189f78a1c572677822": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5e463cc2461436bbdd695f021b40430", "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", "IPY_MODEL_b49455ea450540e083563000c3fff983"], "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", "tabbable": null, "tooltip": null}}, "d8d7e1a536fa4ed695fd3e65770925ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99eeb655b5874902944d39a1906553c3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eaf56531a9604d9b8b406e1e02d9f203": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", "tabbable": null, "tooltip": null, "value": 30.0}}, "b03044509d8e445ba8aede58ad56b8ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74279ce0a6444b85a63f9df791957b87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84fbc4b7384b4f32ad612456874e559c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "\u200b", "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "1f59ad6477954ccdb68838abe6de8461": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b5b1e2e2b08468b89e5133045604b4b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3122d5a201ad446fa1be25d4b21acc06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "\u200b", "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.64it/s]"}}, "af09b1cee1824c9dbea2ba4a3df827b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5ee6722fdee41c9a5f051d5f4bc9eff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06"], "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 0c953a37d..9dca2eb7d 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:05.717015Z", - "iopub.status.busy": "2024-09-26T17:05:05.716843Z", - "iopub.status.idle": "2024-09-26T17:05:08.037778Z", - "shell.execute_reply": "2024-09-26T17:05:08.037084Z" + "iopub.execute_input": "2024-09-27T13:51:35.933316Z", + "iopub.status.busy": "2024-09-27T13:51:35.933122Z", + "iopub.status.idle": "2024-09-27T13:51:38.270090Z", + "shell.execute_reply": "2024-09-27T13:51:38.269373Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:05:08.040304Z", - "iopub.status.busy": "2024-09-26T17:05:08.039827Z", - "iopub.status.idle": "2024-09-26T17:06:15.788536Z", - "shell.execute_reply": "2024-09-26T17:06:15.787814Z" + "iopub.execute_input": "2024-09-27T13:51:38.272195Z", + "iopub.status.busy": "2024-09-27T13:51:38.271991Z", + "iopub.status.idle": "2024-09-27T13:52:43.930890Z", + "shell.execute_reply": "2024-09-27T13:52:43.930121Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:15.791492Z", - "iopub.status.busy": "2024-09-26T17:06:15.790929Z", - "iopub.status.idle": "2024-09-26T17:06:17.030438Z", - "shell.execute_reply": "2024-09-26T17:06:17.029934Z" + "iopub.execute_input": "2024-09-27T13:52:43.933175Z", + "iopub.status.busy": "2024-09-27T13:52:43.932718Z", + "iopub.status.idle": "2024-09-27T13:52:45.152829Z", + "shell.execute_reply": "2024-09-27T13:52:45.152260Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.032578Z", - "iopub.status.busy": "2024-09-26T17:06:17.032181Z", - "iopub.status.idle": "2024-09-26T17:06:17.035397Z", - "shell.execute_reply": "2024-09-26T17:06:17.034940Z" + "iopub.execute_input": "2024-09-27T13:52:45.154808Z", + "iopub.status.busy": "2024-09-27T13:52:45.154531Z", + "iopub.status.idle": "2024-09-27T13:52:45.158007Z", + "shell.execute_reply": "2024-09-27T13:52:45.157435Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.037239Z", - "iopub.status.busy": "2024-09-26T17:06:17.036895Z", - "iopub.status.idle": "2024-09-26T17:06:17.040814Z", - "shell.execute_reply": "2024-09-26T17:06:17.040350Z" + "iopub.execute_input": "2024-09-27T13:52:45.159874Z", + "iopub.status.busy": "2024-09-27T13:52:45.159484Z", + "iopub.status.idle": "2024-09-27T13:52:45.163392Z", + "shell.execute_reply": "2024-09-27T13:52:45.162836Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.042465Z", - "iopub.status.busy": "2024-09-26T17:06:17.042192Z", - "iopub.status.idle": "2024-09-26T17:06:17.045640Z", - "shell.execute_reply": "2024-09-26T17:06:17.045177Z" + "iopub.execute_input": "2024-09-27T13:52:45.165264Z", + "iopub.status.busy": "2024-09-27T13:52:45.164843Z", + "iopub.status.idle": "2024-09-27T13:52:45.168434Z", + "shell.execute_reply": "2024-09-27T13:52:45.168001Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.047315Z", - "iopub.status.busy": "2024-09-26T17:06:17.046980Z", - "iopub.status.idle": "2024-09-26T17:06:17.049687Z", - "shell.execute_reply": "2024-09-26T17:06:17.049193Z" + "iopub.execute_input": "2024-09-27T13:52:45.170026Z", + "iopub.status.busy": "2024-09-27T13:52:45.169831Z", + "iopub.status.idle": "2024-09-27T13:52:45.172854Z", + "shell.execute_reply": "2024-09-27T13:52:45.172440Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:17.051353Z", - "iopub.status.busy": "2024-09-26T17:06:17.051011Z", - "iopub.status.idle": "2024-09-26T17:06:55.164616Z", - "shell.execute_reply": "2024-09-26T17:06:55.163984Z" + "iopub.execute_input": "2024-09-27T13:52:45.174469Z", + "iopub.status.busy": "2024-09-27T13:52:45.174131Z", + "iopub.status.idle": "2024-09-27T13:53:23.240572Z", + "shell.execute_reply": "2024-09-27T13:53:23.239851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9433b8180b7c45728863cb9c40d5e567", + "model_id": "0cacd283386e42a5bdc7ef667a30ed27", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "069caa427ad347c5bd1333db3bd5ec8b", + "model_id": "4644996a967241dfa8d773a9ca551092", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.166835Z", - "iopub.status.busy": "2024-09-26T17:06:55.166581Z", - "iopub.status.idle": "2024-09-26T17:06:55.838631Z", - "shell.execute_reply": "2024-09-26T17:06:55.838008Z" + "iopub.execute_input": "2024-09-27T13:53:23.243096Z", + "iopub.status.busy": "2024-09-27T13:53:23.242875Z", + "iopub.status.idle": "2024-09-27T13:53:23.927697Z", + "shell.execute_reply": "2024-09-27T13:53:23.927078Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:55.840661Z", - "iopub.status.busy": "2024-09-26T17:06:55.840128Z", - "iopub.status.idle": "2024-09-26T17:06:58.654558Z", - "shell.execute_reply": "2024-09-26T17:06:58.653954Z" + "iopub.execute_input": "2024-09-27T13:53:23.929799Z", + "iopub.status.busy": "2024-09-27T13:53:23.929338Z", + "iopub.status.idle": "2024-09-27T13:53:26.776889Z", + "shell.execute_reply": "2024-09-27T13:53:26.776303Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:06:58.656660Z", - "iopub.status.busy": "2024-09-26T17:06:58.656193Z", - "iopub.status.idle": "2024-09-26T17:07:31.282511Z", - "shell.execute_reply": "2024-09-26T17:07:31.282022Z" + "iopub.execute_input": "2024-09-27T13:53:26.778857Z", + "iopub.status.busy": "2024-09-27T13:53:26.778501Z", + "iopub.status.idle": "2024-09-27T13:54:00.727701Z", + "shell.execute_reply": "2024-09-27T13:54:00.727143Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "419483351ddf440f89b247293c5dcdc0", + "model_id": "ba6bd71b6bee41189f78a1c572677822", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:31.284330Z", - "iopub.status.busy": "2024-09-26T17:07:31.283976Z", - "iopub.status.idle": "2024-09-26T17:07:47.118288Z", - "shell.execute_reply": "2024-09-26T17:07:47.117716Z" + "iopub.execute_input": "2024-09-27T13:54:00.729587Z", + "iopub.status.busy": "2024-09-27T13:54:00.729293Z", + "iopub.status.idle": "2024-09-27T13:54:16.723181Z", + "shell.execute_reply": "2024-09-27T13:54:16.722543Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:47.120299Z", - "iopub.status.busy": "2024-09-26T17:07:47.119974Z", - "iopub.status.idle": "2024-09-26T17:07:50.977077Z", - "shell.execute_reply": "2024-09-26T17:07:50.976571Z" + "iopub.execute_input": "2024-09-27T13:54:16.725370Z", + "iopub.status.busy": "2024-09-27T13:54:16.725011Z", + "iopub.status.idle": "2024-09-27T13:54:20.576835Z", + "shell.execute_reply": "2024-09-27T13:54:20.576292Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:50.978894Z", - "iopub.status.busy": "2024-09-26T17:07:50.978599Z", - "iopub.status.idle": "2024-09-26T17:07:52.469581Z", - "shell.execute_reply": "2024-09-26T17:07:52.468926Z" + "iopub.execute_input": "2024-09-27T13:54:20.578749Z", + "iopub.status.busy": "2024-09-27T13:54:20.578398Z", + "iopub.status.idle": "2024-09-27T13:54:22.071673Z", + "shell.execute_reply": "2024-09-27T13:54:22.071167Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5a1fa9574814a138f8b11ada26aa7ce", + "model_id": "d5ee6722fdee41c9a5f051d5f4bc9eff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.471634Z", - "iopub.status.busy": "2024-09-26T17:07:52.471286Z", - "iopub.status.idle": "2024-09-26T17:07:52.502859Z", - "shell.execute_reply": "2024-09-26T17:07:52.502297Z" + "iopub.execute_input": "2024-09-27T13:54:22.073573Z", + "iopub.status.busy": "2024-09-27T13:54:22.073206Z", + "iopub.status.idle": "2024-09-27T13:54:22.104042Z", + "shell.execute_reply": "2024-09-27T13:54:22.103489Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:52.505051Z", - "iopub.status.busy": "2024-09-26T17:07:52.504670Z", - "iopub.status.idle": "2024-09-26T17:07:58.645124Z", - "shell.execute_reply": "2024-09-26T17:07:58.644610Z" + "iopub.execute_input": "2024-09-27T13:54:22.106225Z", + "iopub.status.busy": "2024-09-27T13:54:22.105837Z", + "iopub.status.idle": "2024-09-27T13:54:28.273568Z", + "shell.execute_reply": "2024-09-27T13:54:28.273000Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:07:58.646914Z", - "iopub.status.busy": "2024-09-26T17:07:58.646726Z", - "iopub.status.idle": "2024-09-26T17:07:58.703002Z", - "shell.execute_reply": "2024-09-26T17:07:58.702503Z" + "iopub.execute_input": "2024-09-27T13:54:28.275502Z", + "iopub.status.busy": "2024-09-27T13:54:28.275151Z", + "iopub.status.idle": "2024-09-27T13:54:28.331073Z", + "shell.execute_reply": "2024-09-27T13:54:28.330504Z" }, "nbsphinx": "hidden" }, @@ -1038,51 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010b8225b6d644ccabdfd571da8a8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "01cec593b4a8405da7b3c690d0e52a52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17297470645a4db58aed91eed1a148be", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_081848e4dbc24107bd57eb8c702bd684", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0517b037a82440458d02ea86105f06d8": { + "0203b35b408140bab3d7c2a3022596ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1135,7 +1091,48 @@ "width": null } }, - "069caa427ad347c5bd1333db3bd5ec8b": { + "097e65cda3524af0905ade254303944d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bac053573d6d41a1a54925af41d6af17", + "placeholder": "​", + "style": "IPY_MODEL_68adef88f65c4a45bd1410adbc35fdf8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.13it/s]" + } + }, + "0b5b1e2e2b08468b89e5133045604b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0cacd283386e42a5bdc7ef667a30ed27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1150,32 +1147,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5cb76de001c842278b1d786d5a645fac", - "IPY_MODEL_01cec593b4a8405da7b3c690d0e52a52", - "IPY_MODEL_6b40d316ff104deb90302ab718996261" + "IPY_MODEL_a84d7163b7a34ae3a5db5e214e41505f", + "IPY_MODEL_bb81abffee574a08838324a05306fee5", + "IPY_MODEL_0f8b6a653a2f4f39afc4a68e4562f8c9" ], - "layout": "IPY_MODEL_761e7aa8f1fd44fc9b5324d18d7cc6f0", + "layout": "IPY_MODEL_b39e88ec9789404db8f52fe3fad91062", "tabbable": null, "tooltip": null } }, - "081848e4dbc24107bd57eb8c702bd684": { + "0f8b6a653a2f4f39afc4a68e4562f8c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2350f154084b4431bc8dc7aa3d7b707d", + "placeholder": "​", + "style": "IPY_MODEL_7b2a798493d54864b1c2c54e441dd6d1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 796.57it/s]" + } + }, + "128282009133450bb17bacece244696d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "17297470645a4db58aed91eed1a148be": { + "1f59ad6477954ccdb68838abe6de8461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,25 +1250,60 @@ "width": null } }, - "192f38f69433493bbd3eeffe870e0abf": { - "model_module": "@jupyter-widgets/controls", + "2350f154084b4431bc8dc7aa3d7b707d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1b492cce44314110abd310d191addb69": { + "26ae1571806b4102a738df4d53c727cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1299,7 +1356,7 @@ "width": null } }, - "2414eb65ad8d4b00b3ea3d85c9bb9d16": { + "3122d5a201ad446fa1be25d4b21acc06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1314,38 +1371,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c78a7ea81274c7ab75aad3c51051fca", + "layout": "IPY_MODEL_1f59ad6477954ccdb68838abe6de8461", "placeholder": "​", - "style": "IPY_MODEL_e2fcbf282272460dbb60c23ea7337738", + "style": "IPY_MODEL_0b5b1e2e2b08468b89e5133045604b4b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.14it/s]" + "value": " 30/30 [00:01<00:00, 20.64it/s]" } }, - "24272bf2500848a5bcf2d55525f3a0f9": { + "3c336c8b7a3b4cb59ec5f9f24031e6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ead2da2da60e4805a2043cd58fc66569", - "placeholder": "​", - "style": "IPY_MODEL_34abae56904c4b1bb3364dd32eb17639", + "layout": "IPY_MODEL_5948a70e11d04859b1e2b8b837fb140f", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53c5265699634e29a6682fe80468d7c3", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 789.56it/s]" + "value": 4997683.0 + } + }, + "4644996a967241dfa8d773a9ca551092": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f50700f58f74bcf874d2f107ce9d245", + "IPY_MODEL_780258fed6944d3cbee72b74d6ec1757", + "IPY_MODEL_097e65cda3524af0905ade254303944d" + ], + "layout": "IPY_MODEL_4775464e0f1042de98b0e5962d567596", + "tabbable": null, + "tooltip": null } }, - "26346b2762a446b3852dd6fc6794aee5": { + "4775464e0f1042de98b0e5962d567596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1398,7 +1482,23 @@ "width": null } }, - "30b8f1a9ff53472095e7c2a925cb7b4f": { + "53c5265699634e29a6682fe80468d7c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5948a70e11d04859b1e2b8b837fb140f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1451,7 +1551,7 @@ "width": null } }, - "34abae56904c4b1bb3364dd32eb17639": { + "5c4c694a56634ea0a695dac6f2a36795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1469,7 +1569,7 @@ "text_color": null } }, - "3c78a7ea81274c7ab75aad3c51051fca": { + "5fbe8a5f1e7f4dfeb36f47d3f14ece88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1522,47 +1622,43 @@ "width": null } }, - "41247db7415843a19203dea65c75a294": { + "68adef88f65c4a45bd1410adbc35fdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "419483351ddf440f89b247293c5dcdc0": { + "74279ce0a6444b85a63f9df791957b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf32bd5ad8e47cbb62b30e0cc60714c", - "IPY_MODEL_46241f4b5b034271b6b861ea2799165d", - "IPY_MODEL_6b7aa1adb8d04265acda6569262d2b70" - ], - "layout": "IPY_MODEL_f68fd43ccb474f5d9dd542f446750d8c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "46241f4b5b034271b6b861ea2799165d": { + "780258fed6944d3cbee72b74d6ec1757": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,56 +1674,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a171038c0af1477c8a19cfa21eb51810", - "max": 4997683.0, + "layout": "IPY_MODEL_0203b35b408140bab3d7c2a3022596ee", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41247db7415843a19203dea65c75a294", + "style": "IPY_MODEL_f8793ef7a8f54cf1875b005a6c1f7124", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "4f22d093744347f3b34a78e1d9fddc5c": { + "7b2a798493d54864b1c2c54e441dd6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5cb76de001c842278b1d786d5a645fac": { - "model_module": "@jupyter-widgets/controls", + "7bc851f2a1a84711b61cce3293e573e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ecce7424246c7b19990283f91d514", - "placeholder": "​", - "style": "IPY_MODEL_010b8225b6d644ccabdfd571da8a8792", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "61df8743d35a43c98e0022ff4bc97293": { + "7f50700f58f74bcf874d2f107ce9d245": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1642,15 +1770,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30b8f1a9ff53472095e7c2a925cb7b4f", + "layout": "IPY_MODEL_fdddcd906c904034b566400adef66822", "placeholder": "​", - "style": "IPY_MODEL_adc4d154c7ff4de08c98e30f3e42eeb6", + "style": "IPY_MODEL_128282009133450bb17bacece244696d", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "69bb131944b64f9999675a9ef28e496f": { + "84fbc4b7384b4f32ad612456874e559c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1665,79 +1793,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a011a519ef08415e9947399082ef4823", + "layout": "IPY_MODEL_b03044509d8e445ba8aede58ad56b8ee", "placeholder": "​", - "style": "IPY_MODEL_704f533bc271466791f4aed2ff606b9f", + "style": "IPY_MODEL_74279ce0a6444b85a63f9df791957b87", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "6b40d316ff104deb90302ab718996261": { + "99eeb655b5874902944d39a1906553c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ea0920685234045bf68210b35f9cadc", - "placeholder": "​", - "style": "IPY_MODEL_d6dd9c9d112440f3bc8d3d30e256ab38", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.15it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b7aa1adb8d04265acda6569262d2b70": { + "9f6962414e7246219b6d8d7d1e22b96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_26346b2762a446b3852dd6fc6794aee5", - "placeholder": "​", - "style": "IPY_MODEL_f9cbc0159e8e401daeafe1258f07445e", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150688.70it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "704f533bc271466791f4aed2ff606b9f": { + "a6b9386ba4bd4ef382728a8509ff9733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "761e7aa8f1fd44fc9b5324d18d7cc6f0": { + "a84d7163b7a34ae3a5db5e214e41505f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc851f2a1a84711b61cce3293e573e7", + "placeholder": "​", + "style": "IPY_MODEL_dc7c8ce9cbda4e2ea98b9c02eba16a10", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "af09b1cee1824c9dbea2ba4a3df827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1927,7 @@ "width": null } }, - "8748256d360d48058ef6b131aab916a1": { + "b03044509d8e445ba8aede58ad56b8ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,33 +1980,7 @@ "width": null } }, - "8c95ca6d393b43da8b16aed149c46f65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8748256d360d48058ef6b131aab916a1", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c88cab906e394a4a84904cc6c17850f0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "8df337a907d546958dee64127541ca0c": { + "b39e88ec9789404db8f52fe3fad91062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,110 +2033,77 @@ "width": null } }, - "9433b8180b7c45728863cb9c40d5e567": { + "b49455ea450540e083563000c3fff983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_61df8743d35a43c98e0022ff4bc97293", - "IPY_MODEL_8c95ca6d393b43da8b16aed149c46f65", - "IPY_MODEL_24272bf2500848a5bcf2d55525f3a0f9" - ], - "layout": "IPY_MODEL_0517b037a82440458d02ea86105f06d8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee0e7b61c689421686d277113f1ec067", + "placeholder": "​", + "style": "IPY_MODEL_9f6962414e7246219b6d8d7d1e22b96e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:33<00:00, 147202.41it/s]" } }, - "9c63f3dd112d4cd188297907c9dc0947": { + "b5e463cc2461436bbdd695f021b40430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8df337a907d546958dee64127541ca0c", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f22d093744347f3b34a78e1d9fddc5c", + "layout": "IPY_MODEL_fa32975e7754475ba3d7e3d4cae1cee7", + "placeholder": "​", + "style": "IPY_MODEL_5c4c694a56634ea0a695dac6f2a36795", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "100%" } }, - "9cc9bcba55184478a96ee6f5db50d92b": { - "model_module": "@jupyter-widgets/base", + "ba6bd71b6bee41189f78a1c572677822": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5e463cc2461436bbdd695f021b40430", + "IPY_MODEL_3c336c8b7a3b4cb59ec5f9f24031e6ee", + "IPY_MODEL_b49455ea450540e083563000c3fff983" + ], + "layout": "IPY_MODEL_5fbe8a5f1e7f4dfeb36f47d3f14ece88", + "tabbable": null, + "tooltip": null } }, - "9ea0920685234045bf68210b35f9cadc": { + "bac053573d6d41a1a54925af41d6af17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,60 +2156,57 @@ "width": null } }, - "a011a519ef08415e9947399082ef4823": { - "model_module": "@jupyter-widgets/base", + "bb81abffee574a08838324a05306fee5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26ae1571806b4102a738df4d53c727cf", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6b9386ba4bd4ef382728a8509ff9733", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "d5ee6722fdee41c9a5f051d5f4bc9eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84fbc4b7384b4f32ad612456874e559c", + "IPY_MODEL_eaf56531a9604d9b8b406e1e02d9f203", + "IPY_MODEL_3122d5a201ad446fa1be25d4b21acc06" + ], + "layout": "IPY_MODEL_af09b1cee1824c9dbea2ba4a3df827b5", + "tabbable": null, + "tooltip": null } }, - "a171038c0af1477c8a19cfa21eb51810": { + "d8d7e1a536fa4ed695fd3e65770925ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2184,7 +2259,7 @@ "width": null } }, - "adc4d154c7ff4de08c98e30f3e42eeb6": { + "dc7c8ce9cbda4e2ea98b9c02eba16a10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,7 +2277,33 @@ "text_color": null } }, - "af9ecce7424246c7b19990283f91d514": { + "eaf56531a9604d9b8b406e1e02d9f203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8d7e1a536fa4ed695fd3e65770925ab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_99eeb655b5874902944d39a1906553c3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ee0e7b61c689421686d277113f1ec067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2255,7 +2356,7 @@ "width": null } }, - "c88cab906e394a4a84904cc6c17850f0": { + "f8793ef7a8f54cf1875b005a6c1f7124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2271,90 +2372,7 @@ "description_width": "" } }, - "d5a1fa9574814a138f8b11ada26aa7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69bb131944b64f9999675a9ef28e496f", - "IPY_MODEL_9c63f3dd112d4cd188297907c9dc0947", - "IPY_MODEL_2414eb65ad8d4b00b3ea3d85c9bb9d16" - ], - "layout": "IPY_MODEL_1b492cce44314110abd310d191addb69", - "tabbable": null, - "tooltip": null - } - }, - "d6dd9c9d112440f3bc8d3d30e256ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "daf32bd5ad8e47cbb62b30e0cc60714c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cc9bcba55184478a96ee6f5db50d92b", - "placeholder": "​", - "style": "IPY_MODEL_192f38f69433493bbd3eeffe870e0abf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e2fcbf282272460dbb60c23ea7337738": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ead2da2da60e4805a2043cd58fc66569": { + "fa32975e7754475ba3d7e3d4cae1cee7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2425,7 @@ "width": null } }, - "f68fd43ccb474f5d9dd542f446750d8c": { + "fdddcd906c904034b566400adef66822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,24 +2477,6 @@ "visibility": null, "width": null } - }, - "f9cbc0159e8e401daeafe1258f07445e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index c8a7ae83c..df34a08a4 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -723,16 +723,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index d173b02c1..77eaf7ec4 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:01.172227Z", - "iopub.status.busy": "2024-09-26T17:08:01.172043Z", - "iopub.status.idle": "2024-09-26T17:08:03.693417Z", - "shell.execute_reply": "2024-09-26T17:08:03.692836Z" + "iopub.execute_input": "2024-09-27T13:54:30.682391Z", + "iopub.status.busy": "2024-09-27T13:54:30.682226Z", + "iopub.status.idle": "2024-09-27T13:54:32.499916Z", + "shell.execute_reply": "2024-09-27T13:54:32.499221Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-27 13:54:30-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.105, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.105|:443... connected.\r\n", + "185.93.1.244, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.72MB/s in 0.2s \r\n", "\r\n", - "2024-09-26 17:08:01 (95.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-27 13:54:31 (5.72 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,16 +131,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-26 17:08:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.64, 3.5.16.102, 3.5.29.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.64|:443... " + "--2024-09-27 13:54:31-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.1.185, 3.5.27.97, 3.5.28.23, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.1.185|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -161,7 +160,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 391.92K 1.81MB/s " + "pred_probs.npz 10%[=> ] 1.67M 8.13MB/s " ] }, { @@ -169,7 +168,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 6%[> ] 1.02M 2.40MB/s " + "pred_probs.npz 30%[=====> ] 4.95M 12.0MB/s " ] }, { @@ -177,7 +176,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 12%[=> ] 1.98M 3.12MB/s " + "pred_probs.npz 63%[===========> ] 10.30M 16.7MB/s " ] }, { @@ -185,41 +184,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 21%[===> ] 3.50M 4.13MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 36%[======> ] 5.85M 5.49MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 58%[==========> ] 9.48M 7.48MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 89%[================> ] 14.59M 9.94MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 10.7MB/s in 1.5s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 21.2MB/s in 0.8s \r\n", "\r\n", - "2024-09-26 17:08:03 (10.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-27 13:54:32 (21.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -236,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:03.695462Z", - "iopub.status.busy": "2024-09-26T17:08:03.695082Z", - "iopub.status.idle": "2024-09-26T17:08:05.014993Z", - "shell.execute_reply": "2024-09-26T17:08:05.014477Z" + "iopub.execute_input": "2024-09-27T13:54:32.502093Z", + "iopub.status.busy": "2024-09-27T13:54:32.501871Z", + "iopub.status.idle": "2024-09-27T13:54:33.874271Z", + "shell.execute_reply": "2024-09-27T13:54:33.873712Z" }, "nbsphinx": "hidden" }, @@ -250,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4a1a1fc4e03d74f176fb1a05e67805e9548be4ff\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@58573e181a2e4beba7f8f4ed160356a7505ee223\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -276,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.017376Z", - "iopub.status.busy": "2024-09-26T17:08:05.016785Z", - "iopub.status.idle": "2024-09-26T17:08:05.020348Z", - "shell.execute_reply": "2024-09-26T17:08:05.019888Z" + "iopub.execute_input": "2024-09-27T13:54:33.876182Z", + "iopub.status.busy": "2024-09-27T13:54:33.875906Z", + "iopub.status.idle": "2024-09-27T13:54:33.879350Z", + "shell.execute_reply": "2024-09-27T13:54:33.878885Z" } }, "outputs": [], @@ -329,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.022091Z", - "iopub.status.busy": "2024-09-26T17:08:05.021753Z", - "iopub.status.idle": "2024-09-26T17:08:05.024810Z", - "shell.execute_reply": "2024-09-26T17:08:05.024352Z" + "iopub.execute_input": "2024-09-27T13:54:33.880907Z", + "iopub.status.busy": "2024-09-27T13:54:33.880727Z", + "iopub.status.idle": "2024-09-27T13:54:33.883843Z", + "shell.execute_reply": "2024-09-27T13:54:33.883277Z" }, "nbsphinx": "hidden" }, @@ -350,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:05.026456Z", - "iopub.status.busy": "2024-09-26T17:08:05.026117Z", - "iopub.status.idle": "2024-09-26T17:08:14.109789Z", - "shell.execute_reply": "2024-09-26T17:08:14.109088Z" + "iopub.execute_input": "2024-09-27T13:54:33.885688Z", + "iopub.status.busy": "2024-09-27T13:54:33.885271Z", + "iopub.status.idle": "2024-09-27T13:54:43.002666Z", + "shell.execute_reply": "2024-09-27T13:54:43.002108Z" } }, "outputs": [], @@ -427,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.112027Z", - "iopub.status.busy": "2024-09-26T17:08:14.111813Z", - "iopub.status.idle": "2024-09-26T17:08:14.117508Z", - "shell.execute_reply": "2024-09-26T17:08:14.117014Z" + "iopub.execute_input": "2024-09-27T13:54:43.004773Z", + "iopub.status.busy": "2024-09-27T13:54:43.004417Z", + "iopub.status.idle": "2024-09-27T13:54:43.010152Z", + "shell.execute_reply": "2024-09-27T13:54:43.009564Z" }, "nbsphinx": "hidden" }, @@ -470,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.119321Z", - "iopub.status.busy": "2024-09-26T17:08:14.118911Z", - "iopub.status.idle": "2024-09-26T17:08:14.502060Z", - "shell.execute_reply": "2024-09-26T17:08:14.501537Z" + "iopub.execute_input": "2024-09-27T13:54:43.011857Z", + "iopub.status.busy": "2024-09-27T13:54:43.011526Z", + "iopub.status.idle": "2024-09-27T13:54:43.353802Z", + "shell.execute_reply": "2024-09-27T13:54:43.353253Z" } }, "outputs": [], @@ -510,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.504135Z", - "iopub.status.busy": "2024-09-26T17:08:14.503821Z", - "iopub.status.idle": "2024-09-26T17:08:14.508644Z", - "shell.execute_reply": "2024-09-26T17:08:14.508165Z" + "iopub.execute_input": "2024-09-27T13:54:43.355704Z", + "iopub.status.busy": "2024-09-27T13:54:43.355518Z", + "iopub.status.idle": "2024-09-27T13:54:43.359631Z", + "shell.execute_reply": "2024-09-27T13:54:43.359167Z" } }, "outputs": [ @@ -585,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:14.510434Z", - "iopub.status.busy": "2024-09-26T17:08:14.510026Z", - "iopub.status.idle": "2024-09-26T17:08:17.327713Z", - "shell.execute_reply": "2024-09-26T17:08:17.326897Z" + "iopub.execute_input": "2024-09-27T13:54:43.361213Z", + "iopub.status.busy": "2024-09-27T13:54:43.361042Z", + "iopub.status.idle": "2024-09-27T13:54:45.990197Z", + "shell.execute_reply": "2024-09-27T13:54:45.989515Z" } }, "outputs": [], @@ -610,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.330466Z", - "iopub.status.busy": "2024-09-26T17:08:17.329827Z", - "iopub.status.idle": "2024-09-26T17:08:17.334402Z", - "shell.execute_reply": "2024-09-26T17:08:17.333930Z" + "iopub.execute_input": "2024-09-27T13:54:45.992775Z", + "iopub.status.busy": "2024-09-27T13:54:45.992168Z", + "iopub.status.idle": "2024-09-27T13:54:45.996546Z", + "shell.execute_reply": "2024-09-27T13:54:45.995970Z" } }, "outputs": [ @@ -649,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.335919Z", - "iopub.status.busy": "2024-09-26T17:08:17.335751Z", - "iopub.status.idle": "2024-09-26T17:08:17.341503Z", - "shell.execute_reply": "2024-09-26T17:08:17.341006Z" + "iopub.execute_input": "2024-09-27T13:54:45.998310Z", + "iopub.status.busy": "2024-09-27T13:54:45.998135Z", + "iopub.status.idle": "2024-09-27T13:54:46.003376Z", + "shell.execute_reply": "2024-09-27T13:54:46.002924Z" } }, "outputs": [ @@ -830,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.343180Z", - "iopub.status.busy": "2024-09-26T17:08:17.342845Z", - "iopub.status.idle": "2024-09-26T17:08:17.369375Z", - "shell.execute_reply": "2024-09-26T17:08:17.368871Z" + "iopub.execute_input": "2024-09-27T13:54:46.004939Z", + "iopub.status.busy": "2024-09-27T13:54:46.004762Z", + "iopub.status.idle": "2024-09-27T13:54:46.031322Z", + "shell.execute_reply": "2024-09-27T13:54:46.030837Z" } }, "outputs": [ @@ -935,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.371259Z", - "iopub.status.busy": "2024-09-26T17:08:17.370906Z", - "iopub.status.idle": "2024-09-26T17:08:17.375750Z", - "shell.execute_reply": "2024-09-26T17:08:17.375279Z" + "iopub.execute_input": "2024-09-27T13:54:46.032945Z", + "iopub.status.busy": "2024-09-27T13:54:46.032771Z", + "iopub.status.idle": "2024-09-27T13:54:46.036702Z", + "shell.execute_reply": "2024-09-27T13:54:46.036275Z" } }, "outputs": [ @@ -1012,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:17.377603Z", - "iopub.status.busy": "2024-09-26T17:08:17.377268Z", - "iopub.status.idle": "2024-09-26T17:08:18.815313Z", - "shell.execute_reply": "2024-09-26T17:08:18.814781Z" + "iopub.execute_input": "2024-09-27T13:54:46.038328Z", + "iopub.status.busy": "2024-09-27T13:54:46.038152Z", + "iopub.status.idle": "2024-09-27T13:54:47.420865Z", + "shell.execute_reply": "2024-09-27T13:54:47.420360Z" } }, "outputs": [ @@ -1187,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-26T17:08:18.817270Z", - "iopub.status.busy": "2024-09-26T17:08:18.816826Z", - "iopub.status.idle": "2024-09-26T17:08:18.820963Z", - "shell.execute_reply": "2024-09-26T17:08:18.820481Z" + "iopub.execute_input": "2024-09-27T13:54:47.422597Z", + "iopub.status.busy": "2024-09-27T13:54:47.422413Z", + "iopub.status.idle": "2024-09-27T13:54:47.426601Z", + "shell.execute_reply": "2024-09-27T13:54:47.426150Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 605e05247..f86b4064e 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.7.0", - commit_hash: "4a1a1fc4e03d74f176fb1a05e67805e9548be4ff", + commit_hash: "58573e181a2e4beba7f8f4ed160356a7505ee223", }; \ No newline at end of file