diff --git a/master/.buildinfo b/master/.buildinfo index aea0ea3f0..74ab52926 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: a4b63b97119581c99ae752dcc55638f1 +config: 59e8199fdccc20214d3ba6bfb97e71d7 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index ac3adc7ec..4cb4a44fc 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index b48029cd8..96713c4dd 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 68e4d39a3..342e27b13 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 4a0dd73b9..ae79c7837 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 17cece3c4..044f93231 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 68b2f1228..6c7dcebc7 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 700acf6d8..8c173271a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index c6952b10b..f0f45787b 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index f8048c0dc..446020680 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 35e83dbfe..8b25611f0 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 26b2733ce..811c20649 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 2a4a1ca8c..3927eefaf 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 2caee9ce5..df643bbe0 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 44387c5bd..0f5f4c05a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 5bc511e43..12e1bbd25 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 42dfd6bd6..e4db7e1ad 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index f208d33a7..78749c99e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 0e4cce05f..ca1d1a2b2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 18f9d0e58..7ae83be69 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 428e090dd..16393f5c1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 293b5fc51..af4961803 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index ebfc045ad..62ac64f96 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 5c220bdd6..a78e8b786 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index af0caed43..3bb462a97 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 55af8dce1..1bb6c8fed 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 7ba595ded..f06d332d0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 72173a775..ab6644564 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 25f33cae2..ffcef79db 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index a46250bf0..57d06f716 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 4f7adce46..f8e3d1935 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index ea09dd376..c8990d99a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index d0a8980bc..2bf527b57 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 1825779cb..3eaf6e517 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index b554d27a5..29ba11df9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 99133e521..3c2940ecb 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 09a76b2b6..166b5e9d3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 6aa3a0207..22a3ac2d3 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 6db1655c3..b946b714e 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 6b75c077e..902b119d4 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index b14fb07ac..782fbd998 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 151b9f4fe..cb709f330 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 122626f2a..0824d7276 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 88ccefddc..b5c9a41fd 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 1b72692e3..c8fe8a20c 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 078d6df02..c5e108a9c 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index b1e6e0029..29c17697f 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 1c7f35a81..629fd140a 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 60b374e60..28dd54785 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 35f857b8c..8dbd4d39b 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 80f1d8c11..1330f5d72 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index c7f1b7588..613f5be3a 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 33d6c638e..18e408bed 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 99566fb99..cb6ca47f1 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 8776a9240..e474ac86f 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index bf525d87a..ce97b98b5 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 1774bb0de..9ef378275 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 4878bd3b2..9d77a22d0 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index a54861c4a..2254729b5 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 296a8f21d..fea6bbbd7 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 95379adf5..bda9ef22b 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 2975798cc..6229a93ba 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 61af796c4..9cb2b0659 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c01343d51..7d3c34429 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index eb13b9064..4289dd726 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 522e3b6ea..7fdf121ce 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 54a6b6710..96050621e 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 31cb5dfd0..cfdd2800b 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 5bf5d46ff..12c82b852 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index d2fe8aae9..fb79f5b5d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 23f436bfd..a07ce4829 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 3f17df99a..c821aae5b 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index cae9aff8b..cd5f5f24d 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index e8f47ce38..2b64b7a8d 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 298e2acef..46680f4b0 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 9f559cbff..1cf29abb5 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index e23ae1689..449464bdf 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 65bd0f7fd..b038d8306 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index bd62247cf..2db7562dd 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index c83cf2e3d..82f710a58 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 384ec6584..20390e97f 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index bc9265a57..93f8a16e8 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 7f7384fdd..30eadc5da 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 18f43f65c..579f4e33b 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index e1e620bb5..e03ebb22b 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index ce2d51e04..a6a9867c6 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 6e00aec87..b70c8c754 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 76fc0cf88..1b1f01adb 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:36.624070Z", - "iopub.status.busy": "2024-07-18T04:01:36.623720Z", - "iopub.status.idle": "2024-07-18T04:01:37.842464Z", - "shell.execute_reply": "2024-07-18T04:01:37.841899Z" + "iopub.execute_input": "2024-07-30T16:31:34.527671Z", + "iopub.status.busy": "2024-07-30T16:31:34.527492Z", + "iopub.status.idle": "2024-07-30T16:31:36.140632Z", + "shell.execute_reply": "2024-07-30T16:31:36.140024Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:37.845272Z", - "iopub.status.busy": "2024-07-18T04:01:37.844748Z", - "iopub.status.idle": "2024-07-18T04:01:37.863056Z", - "shell.execute_reply": "2024-07-18T04:01:37.862447Z" + "iopub.execute_input": "2024-07-30T16:31:36.143586Z", + "iopub.status.busy": "2024-07-30T16:31:36.143047Z", + "iopub.status.idle": "2024-07-30T16:31:36.178768Z", + "shell.execute_reply": "2024-07-30T16:31:36.178228Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:37.865460Z", - "iopub.status.busy": "2024-07-18T04:01:37.865067Z", - "iopub.status.idle": "2024-07-18T04:01:38.092310Z", - "shell.execute_reply": "2024-07-18T04:01:38.091732Z" + "iopub.execute_input": "2024-07-30T16:31:36.181589Z", + "iopub.status.busy": "2024-07-30T16:31:36.181045Z", + "iopub.status.idle": "2024-07-30T16:31:36.338074Z", + "shell.execute_reply": "2024-07-30T16:31:36.337466Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.121141Z", - "iopub.status.busy": "2024-07-18T04:01:38.120969Z", - "iopub.status.idle": "2024-07-18T04:01:38.124263Z", - "shell.execute_reply": "2024-07-18T04:01:38.123800Z" + "iopub.execute_input": "2024-07-30T16:31:36.372204Z", + "iopub.status.busy": "2024-07-30T16:31:36.371964Z", + "iopub.status.idle": "2024-07-30T16:31:36.377781Z", + "shell.execute_reply": "2024-07-30T16:31:36.377262Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.126350Z", - "iopub.status.busy": "2024-07-18T04:01:38.126009Z", - "iopub.status.idle": "2024-07-18T04:01:38.134504Z", - "shell.execute_reply": "2024-07-18T04:01:38.134029Z" + "iopub.execute_input": "2024-07-30T16:31:36.380079Z", + "iopub.status.busy": "2024-07-30T16:31:36.379702Z", + "iopub.status.idle": "2024-07-30T16:31:36.389163Z", + "shell.execute_reply": "2024-07-30T16:31:36.388645Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.136643Z", - "iopub.status.busy": "2024-07-18T04:01:38.136297Z", - "iopub.status.idle": "2024-07-18T04:01:38.138802Z", - "shell.execute_reply": "2024-07-18T04:01:38.138325Z" + "iopub.execute_input": "2024-07-30T16:31:36.391552Z", + "iopub.status.busy": "2024-07-30T16:31:36.391341Z", + "iopub.status.idle": "2024-07-30T16:31:36.394409Z", + "shell.execute_reply": "2024-07-30T16:31:36.393862Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.140938Z", - "iopub.status.busy": "2024-07-18T04:01:38.140608Z", - "iopub.status.idle": "2024-07-18T04:01:38.660247Z", - "shell.execute_reply": "2024-07-18T04:01:38.659701Z" + "iopub.execute_input": "2024-07-30T16:31:36.396451Z", + "iopub.status.busy": "2024-07-30T16:31:36.396262Z", + "iopub.status.idle": "2024-07-30T16:31:36.936436Z", + "shell.execute_reply": "2024-07-30T16:31:36.935844Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.662748Z", - "iopub.status.busy": "2024-07-18T04:01:38.662379Z", - "iopub.status.idle": "2024-07-18T04:01:40.571765Z", - "shell.execute_reply": "2024-07-18T04:01:40.571111Z" + "iopub.execute_input": "2024-07-30T16:31:36.939261Z", + "iopub.status.busy": "2024-07-30T16:31:36.938884Z", + "iopub.status.idle": "2024-07-30T16:31:39.269788Z", + "shell.execute_reply": "2024-07-30T16:31:39.269009Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.574577Z", - "iopub.status.busy": "2024-07-18T04:01:40.573829Z", - "iopub.status.idle": "2024-07-18T04:01:40.584210Z", - "shell.execute_reply": "2024-07-18T04:01:40.583746Z" + "iopub.execute_input": "2024-07-30T16:31:39.273002Z", + "iopub.status.busy": "2024-07-30T16:31:39.272142Z", + "iopub.status.idle": "2024-07-30T16:31:39.283199Z", + "shell.execute_reply": "2024-07-30T16:31:39.282635Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.586373Z", - "iopub.status.busy": "2024-07-18T04:01:40.586110Z", - "iopub.status.idle": "2024-07-18T04:01:40.590039Z", - "shell.execute_reply": "2024-07-18T04:01:40.589558Z" + "iopub.execute_input": "2024-07-30T16:31:39.285386Z", + "iopub.status.busy": "2024-07-30T16:31:39.285054Z", + "iopub.status.idle": "2024-07-30T16:31:39.289139Z", + "shell.execute_reply": "2024-07-30T16:31:39.288681Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.592168Z", - "iopub.status.busy": "2024-07-18T04:01:40.591831Z", - "iopub.status.idle": "2024-07-18T04:01:40.598929Z", - "shell.execute_reply": "2024-07-18T04:01:40.598494Z" + "iopub.execute_input": "2024-07-30T16:31:39.291246Z", + "iopub.status.busy": "2024-07-30T16:31:39.290919Z", + "iopub.status.idle": "2024-07-30T16:31:39.298453Z", + "shell.execute_reply": "2024-07-30T16:31:39.297891Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.600960Z", - "iopub.status.busy": "2024-07-18T04:01:40.600619Z", - "iopub.status.idle": "2024-07-18T04:01:40.712077Z", - "shell.execute_reply": "2024-07-18T04:01:40.711624Z" + "iopub.execute_input": "2024-07-30T16:31:39.301188Z", + "iopub.status.busy": "2024-07-30T16:31:39.300801Z", + "iopub.status.idle": "2024-07-30T16:31:39.419299Z", + "shell.execute_reply": "2024-07-30T16:31:39.418728Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.714154Z", - "iopub.status.busy": "2024-07-18T04:01:40.713728Z", - "iopub.status.idle": "2024-07-18T04:01:40.716643Z", - "shell.execute_reply": "2024-07-18T04:01:40.716066Z" + "iopub.execute_input": "2024-07-30T16:31:39.421608Z", + "iopub.status.busy": "2024-07-30T16:31:39.421234Z", + "iopub.status.idle": "2024-07-30T16:31:39.424361Z", + "shell.execute_reply": "2024-07-30T16:31:39.423765Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.718951Z", - "iopub.status.busy": "2024-07-18T04:01:40.718505Z", - "iopub.status.idle": "2024-07-18T04:01:42.835910Z", - "shell.execute_reply": "2024-07-18T04:01:42.835101Z" + "iopub.execute_input": "2024-07-30T16:31:39.426671Z", + "iopub.status.busy": "2024-07-30T16:31:39.426252Z", + "iopub.status.idle": "2024-07-30T16:31:41.720026Z", + "shell.execute_reply": "2024-07-30T16:31:41.719145Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:42.839563Z", - "iopub.status.busy": "2024-07-18T04:01:42.838450Z", - "iopub.status.idle": "2024-07-18T04:01:42.850192Z", - "shell.execute_reply": "2024-07-18T04:01:42.849635Z" + "iopub.execute_input": "2024-07-30T16:31:41.723999Z", + "iopub.status.busy": "2024-07-30T16:31:41.722968Z", + "iopub.status.idle": "2024-07-30T16:31:41.736024Z", + "shell.execute_reply": "2024-07-30T16:31:41.735553Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:42.852397Z", - "iopub.status.busy": "2024-07-18T04:01:42.851948Z", - "iopub.status.idle": "2024-07-18T04:01:42.971378Z", - "shell.execute_reply": "2024-07-18T04:01:42.970812Z" + "iopub.execute_input": "2024-07-30T16:31:41.738164Z", + "iopub.status.busy": "2024-07-30T16:31:41.737959Z", + "iopub.status.idle": "2024-07-30T16:31:41.800777Z", + "shell.execute_reply": "2024-07-30T16:31:41.800288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 6b885ed09..0ca024c1d 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:46.668712Z", - "iopub.status.busy": "2024-07-18T04:01:46.668554Z", - "iopub.status.idle": "2024-07-18T04:01:49.461835Z", - "shell.execute_reply": "2024-07-18T04:01:49.461271Z" + "iopub.execute_input": "2024-07-30T16:31:45.538656Z", + "iopub.status.busy": "2024-07-30T16:31:45.538493Z", + "iopub.status.idle": "2024-07-30T16:31:49.398554Z", + "shell.execute_reply": "2024-07-30T16:31:49.397834Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.464660Z", - "iopub.status.busy": "2024-07-18T04:01:49.464107Z", - "iopub.status.idle": "2024-07-18T04:01:49.467448Z", - "shell.execute_reply": "2024-07-18T04:01:49.466979Z" + "iopub.execute_input": "2024-07-30T16:31:49.401469Z", + "iopub.status.busy": "2024-07-30T16:31:49.401084Z", + "iopub.status.idle": "2024-07-30T16:31:49.404559Z", + "shell.execute_reply": "2024-07-30T16:31:49.404113Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.469527Z", - "iopub.status.busy": "2024-07-18T04:01:49.469126Z", - "iopub.status.idle": "2024-07-18T04:01:49.472275Z", - "shell.execute_reply": "2024-07-18T04:01:49.471805Z" + "iopub.execute_input": "2024-07-30T16:31:49.406866Z", + "iopub.status.busy": "2024-07-30T16:31:49.406454Z", + "iopub.status.idle": "2024-07-30T16:31:49.409954Z", + "shell.execute_reply": "2024-07-30T16:31:49.409295Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.474142Z", - "iopub.status.busy": "2024-07-18T04:01:49.473968Z", - "iopub.status.idle": "2024-07-18T04:01:49.588009Z", - "shell.execute_reply": "2024-07-18T04:01:49.587466Z" + "iopub.execute_input": "2024-07-30T16:31:49.412895Z", + "iopub.status.busy": "2024-07-30T16:31:49.412480Z", + "iopub.status.idle": "2024-07-30T16:31:49.471562Z", + "shell.execute_reply": "2024-07-30T16:31:49.470965Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.589968Z", - "iopub.status.busy": "2024-07-18T04:01:49.589787Z", - "iopub.status.idle": "2024-07-18T04:01:49.593376Z", - "shell.execute_reply": "2024-07-18T04:01:49.592931Z" + "iopub.execute_input": "2024-07-30T16:31:49.473824Z", + "iopub.status.busy": "2024-07-30T16:31:49.473632Z", + "iopub.status.idle": "2024-07-30T16:31:49.477513Z", + "shell.execute_reply": "2024-07-30T16:31:49.477050Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.595482Z", - "iopub.status.busy": "2024-07-18T04:01:49.595092Z", - "iopub.status.idle": "2024-07-18T04:01:49.598627Z", - "shell.execute_reply": "2024-07-18T04:01:49.598158Z" + "iopub.execute_input": "2024-07-30T16:31:49.479493Z", + "iopub.status.busy": "2024-07-30T16:31:49.479316Z", + "iopub.status.idle": "2024-07-30T16:31:49.482910Z", + "shell.execute_reply": "2024-07-30T16:31:49.482450Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'lost_or_stolen_phone'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.600656Z", - "iopub.status.busy": "2024-07-18T04:01:49.600330Z", - "iopub.status.idle": "2024-07-18T04:01:49.603386Z", - "shell.execute_reply": "2024-07-18T04:01:49.602846Z" + "iopub.execute_input": "2024-07-30T16:31:49.484867Z", + "iopub.status.busy": "2024-07-30T16:31:49.484521Z", + "iopub.status.idle": "2024-07-30T16:31:49.487821Z", + "shell.execute_reply": "2024-07-30T16:31:49.487340Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.605480Z", - "iopub.status.busy": "2024-07-18T04:01:49.605149Z", - "iopub.status.idle": "2024-07-18T04:01:49.608580Z", - "shell.execute_reply": "2024-07-18T04:01:49.607995Z" + "iopub.execute_input": "2024-07-30T16:31:49.489683Z", + "iopub.status.busy": "2024-07-30T16:31:49.489500Z", + "iopub.status.idle": "2024-07-30T16:31:49.492910Z", + "shell.execute_reply": "2024-07-30T16:31:49.492341Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.610780Z", - "iopub.status.busy": "2024-07-18T04:01:49.610348Z", - "iopub.status.idle": "2024-07-18T04:01:54.796801Z", - "shell.execute_reply": "2024-07-18T04:01:54.796219Z" + "iopub.execute_input": "2024-07-30T16:31:49.495136Z", + "iopub.status.busy": "2024-07-30T16:31:49.494608Z", + "iopub.status.idle": "2024-07-30T16:31:53.944545Z", + "shell.execute_reply": "2024-07-30T16:31:53.943984Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "83b2420f333343458a1e286e0240c1ae", + "model_id": "97c7a5a1b558446099d39e138e95bd3c", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b0962e591ec4487841dcc3bb135137b", + "model_id": "91c91931728e42119a5ed1a8e771a320", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07d2941c07a44b5ba94397e076325ff4", + "model_id": "a58243eb6a194ea7957507b4c0fcd20c", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a4b6a256d1ca4f4eb87362bb9b27857a", + "model_id": "f47d961a8a6443fdb97fc093198a3a37", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "594bd335e58344c1a96d7e14714fe720", + "model_id": "cd86dc9f79bf4ea6b32ccf1b10684fdd", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "27a9d77c69074a5d90239d0ec1bef651", + "model_id": "3f07a08b8ebf486cbecde146931b6ae3", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a916345ea2fb4a09a0a9731240dd711e", + "model_id": "d9438aa4de0a49669ef6cc3e242dea8a", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.799563Z", - "iopub.status.busy": "2024-07-18T04:01:54.799374Z", - "iopub.status.idle": "2024-07-18T04:01:54.802131Z", - "shell.execute_reply": "2024-07-18T04:01:54.801644Z" + "iopub.execute_input": "2024-07-30T16:31:53.947400Z", + "iopub.status.busy": "2024-07-30T16:31:53.946989Z", + "iopub.status.idle": "2024-07-30T16:31:53.949968Z", + "shell.execute_reply": "2024-07-30T16:31:53.949474Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.804143Z", - "iopub.status.busy": "2024-07-18T04:01:54.803966Z", - "iopub.status.idle": "2024-07-18T04:01:54.806508Z", - "shell.execute_reply": "2024-07-18T04:01:54.806059Z" + "iopub.execute_input": "2024-07-30T16:31:53.952023Z", + "iopub.status.busy": "2024-07-30T16:31:53.951691Z", + "iopub.status.idle": "2024-07-30T16:31:53.954244Z", + "shell.execute_reply": "2024-07-30T16:31:53.953779Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.808380Z", - "iopub.status.busy": "2024-07-18T04:01:54.808205Z", - "iopub.status.idle": "2024-07-18T04:01:57.530182Z", - "shell.execute_reply": "2024-07-18T04:01:57.529534Z" + "iopub.execute_input": "2024-07-30T16:31:53.956328Z", + "iopub.status.busy": "2024-07-30T16:31:53.955997Z", + "iopub.status.idle": "2024-07-30T16:31:56.844109Z", + "shell.execute_reply": "2024-07-30T16:31:56.843384Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.533334Z", - "iopub.status.busy": "2024-07-18T04:01:57.532532Z", - "iopub.status.idle": "2024-07-18T04:01:57.540347Z", - "shell.execute_reply": "2024-07-18T04:01:57.539824Z" + "iopub.execute_input": "2024-07-30T16:31:56.847565Z", + "iopub.status.busy": "2024-07-30T16:31:56.846661Z", + "iopub.status.idle": "2024-07-30T16:31:56.854826Z", + "shell.execute_reply": "2024-07-30T16:31:56.854335Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.542577Z", - "iopub.status.busy": "2024-07-18T04:01:57.542120Z", - "iopub.status.idle": "2024-07-18T04:01:57.546071Z", - "shell.execute_reply": "2024-07-18T04:01:57.545610Z" + "iopub.execute_input": "2024-07-30T16:31:56.856986Z", + "iopub.status.busy": "2024-07-30T16:31:56.856636Z", + "iopub.status.idle": "2024-07-30T16:31:56.860988Z", + "shell.execute_reply": "2024-07-30T16:31:56.860503Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.547927Z", - "iopub.status.busy": "2024-07-18T04:01:57.547755Z", - "iopub.status.idle": "2024-07-18T04:01:57.551227Z", - "shell.execute_reply": "2024-07-18T04:01:57.550746Z" + "iopub.execute_input": "2024-07-30T16:31:56.863129Z", + "iopub.status.busy": "2024-07-30T16:31:56.862787Z", + "iopub.status.idle": "2024-07-30T16:31:56.866220Z", + "shell.execute_reply": "2024-07-30T16:31:56.865721Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.553099Z", - "iopub.status.busy": "2024-07-18T04:01:57.552927Z", - "iopub.status.idle": "2024-07-18T04:01:57.555992Z", - "shell.execute_reply": "2024-07-18T04:01:57.555438Z" + "iopub.execute_input": "2024-07-30T16:31:56.868248Z", + "iopub.status.busy": "2024-07-30T16:31:56.867919Z", + "iopub.status.idle": "2024-07-30T16:31:56.871062Z", + "shell.execute_reply": "2024-07-30T16:31:56.870497Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.557955Z", - "iopub.status.busy": "2024-07-18T04:01:57.557775Z", - "iopub.status.idle": "2024-07-18T04:01:57.564590Z", - "shell.execute_reply": "2024-07-18T04:01:57.564124Z" + "iopub.execute_input": "2024-07-30T16:31:56.873122Z", + "iopub.status.busy": "2024-07-30T16:31:56.872946Z", + "iopub.status.idle": "2024-07-30T16:31:56.880133Z", + "shell.execute_reply": "2024-07-30T16:31:56.879673Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.566659Z", - "iopub.status.busy": "2024-07-18T04:01:57.566320Z", - "iopub.status.idle": "2024-07-18T04:01:57.826486Z", - "shell.execute_reply": "2024-07-18T04:01:57.825872Z" + "iopub.execute_input": "2024-07-30T16:31:56.882358Z", + "iopub.status.busy": "2024-07-30T16:31:56.881972Z", + "iopub.status.idle": "2024-07-30T16:31:57.113724Z", + "shell.execute_reply": "2024-07-30T16:31:57.113137Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.829319Z", - "iopub.status.busy": "2024-07-18T04:01:57.829097Z", - "iopub.status.idle": "2024-07-18T04:01:58.004835Z", - "shell.execute_reply": "2024-07-18T04:01:58.004337Z" + "iopub.execute_input": "2024-07-30T16:31:57.116220Z", + "iopub.status.busy": "2024-07-30T16:31:57.115868Z", + "iopub.status.idle": "2024-07-30T16:31:57.325117Z", + "shell.execute_reply": "2024-07-30T16:31:57.324552Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:58.007345Z", - "iopub.status.busy": "2024-07-18T04:01:58.006948Z", - "iopub.status.idle": "2024-07-18T04:01:58.010676Z", - "shell.execute_reply": "2024-07-18T04:01:58.010167Z" + "iopub.execute_input": "2024-07-30T16:31:57.328218Z", + "iopub.status.busy": "2024-07-30T16:31:57.327844Z", + "iopub.status.idle": "2024-07-30T16:31:57.332176Z", + "shell.execute_reply": "2024-07-30T16:31:57.331645Z" }, "nbsphinx": "hidden" }, @@ -1105,7 +1105,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00f42b9345fc42da8a2daf26b2415eb5": { + "0243ca7793174c8d987c19c51daa3a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1158,31 +1158,74 @@ "width": null } }, - "07d2941c07a44b5ba94397e076325ff4": { + "05556e121c214fd9a3ccf7b3e260d069": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6cf0a7b40a514d448cdcaa75fc9cdd59", - "IPY_MODEL_20db3c3f04654a07ac858f22274e5158", - "IPY_MODEL_357b9f5a21344b9d9bee9460189ba7cd" - ], - "layout": "IPY_MODEL_45b37783117e408889a02d47eace6f0d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "09d6edb40022407d9d74e5d3f54b74a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", + "placeholder": "​", + "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "0b13ec61dc594dfda9fb9ff4a3ffa610": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08ee1f13e3784ed698a1a539052275f6": { + "0b36279738da476c8b898b110b96cb68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1235,100 +1278,48 @@ "width": null } }, - "094a232267ee4ed08fbe7d3ca6e5b9b9": { + "0d2e898cf98f4ff0bf943ff097e1df72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b0962e591ec4487841dcc3bb135137b": { + "16f0cb3955fd4bc4ad142727ace2acb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4ddfba613cd4d45b02b54b40a5f4b81", - "IPY_MODEL_f7e7688b1f6f44858c99eaa0b436d560", - "IPY_MODEL_bc02936354f148bcb509652443a972fc" - ], - "layout": "IPY_MODEL_c2ceb3a14bea41e0b2071454cb90297b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", + "placeholder": "​", + "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", "tabbable": null, - "tooltip": null - } - }, - "0cf81ed339d447e0950cc24ec082be5e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "14d0a87899f24b19b23890d6a24ae65f": { + "19de02d763694c5da9f2eb73acc8c2d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1344,33 +1335,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22e98405775f47efb60fbfd0cff2a814", - "max": 231508.0, + "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64c5e77d2a8e4c3b9cb87653f70314a5", + "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 665.0 } }, - "1d14f54f08eb43fab79058f85af4af4e": { + "1f441a285fe8463eb8d4917032d171f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "24871bcd90cc412a87f3523b51b28390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", + "placeholder": "​", + "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "208ff78a62bf47daa967f97128bd3c55": { + "2cd2c3cd9a904a8393460eb703c6bfe3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1423,33 +1439,7 @@ "width": null } }, - "20db3c3f04654a07ac858f22274e5158": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c9323ed77eb40068958d2833451705f", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c496aa336ebb4288a9b319e35addd407", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "22e98405775f47efb60fbfd0cff2a814": { + "2d0af3b45858495695ecd11901488921": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1502,46 +1492,7 @@ "width": null } }, - "23513a6f1e644dee88e8debf1eb8ea3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "24ff99be1a8e43c78152308e8e494cc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a3a35bec6aa4c63b61c761ddabfe31f", - "placeholder": "​", - "style": "IPY_MODEL_fff28c4abb7743bcbc87068c18fc714d", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 3.83MB/s]" - } - }, - "264c67ebf46545d8bed6c7353b7c21e5": { + "2e1b0d7a21034fc5824ae939b257969c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1557,41 +1508,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_918eeb7bb1b04196934bc0ebc509abf8", + "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1d14f54f08eb43fab79058f85af4af4e", + "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", "tabbable": null, "tooltip": null, "value": 466062.0 } }, - "27a9d77c69074a5d90239d0ec1bef651": { + "2f7d28a055234c1d9dec696453f0b0d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_430e366c4b0542399882361b4786da60", - "IPY_MODEL_5c9ec6a5f99a44cd86eafa04ce0e6b50", - "IPY_MODEL_b8758c33d0204b0f8f728a3c7217b7f7" - ], - "layout": "IPY_MODEL_c2fb900f4e8141aa9eb8c43510310702", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2a3a35bec6aa4c63b61c761ddabfe31f": { + "2fd8b281b8a747ff8f3a6b5dd31fa793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1644,7 +1589,7 @@ "width": null } }, - "346652bef05c4087ac0185f41005faa4": { + "317e39ae55e344a2b95726702a28d6e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1660,103 +1605,16 @@ "description_width": "" } }, - "357b9f5a21344b9d9bee9460189ba7cd": { - "model_module": "@jupyter-widgets/controls", + "318a21d452c84bceac013df1bdff9465": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcf2fc689e0b41b7991703338eeccef9", - "placeholder": "​", - "style": "IPY_MODEL_b382553d1eb34a5ebe547c2c8df03f3e", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 147kB/s]" - } - }, - "3b382ceb65cb4474bde20c4e6b43a8ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6115c283e46c449e862188900d96f40d", - "placeholder": "​", - "style": "IPY_MODEL_d4e43e629e334723b53074458099ebe1", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "421920c6f3fb4409a6b93f0a3bf375d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "430e366c4b0542399882361b4786da60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_741959084d66436a8dee2f1fa979c6e7", - "placeholder": "​", - "style": "IPY_MODEL_65e7bc18440c416583450c4ab68f2cc0", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "45b37783117e408889a02d47eace6f0d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -1800,25 +1658,30 @@ "width": null } }, - "555dca7a425b43efb60fcc6200dc6f25": { + "3c44f2615b974d98a8796c59d501f913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", + "placeholder": "​", + "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 9.54MB/s]" } }, - "594bd335e58344c1a96d7e14714fe720": { + "3f07a08b8ebf486cbecde146931b6ae3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1833,42 +1696,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3b382ceb65cb4474bde20c4e6b43a8ca", - "IPY_MODEL_264c67ebf46545d8bed6c7353b7c21e5", - "IPY_MODEL_9ad0dd89c0ec43d684a8f7abf301c59e" + "IPY_MODEL_564246d366604d34ab1d16ad529ba126", + "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", + "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9" ], - "layout": "IPY_MODEL_00f42b9345fc42da8a2daf26b2415eb5", + "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", "tabbable": null, "tooltip": null } }, - "5c9ec6a5f99a44cd86eafa04ce0e6b50": { + "4084d229b3ea480b905a4c74c66cf73d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "45c8dc232e4c422a8454eafb546ca6d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7d342c65197942659c09c9e001836e30", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_346652bef05c4087ac0185f41005faa4", + "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", + "placeholder": "​", + "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 232k/232k [00:00<00:00, 28.7MB/s]" } }, - "609442c072ad4df48e117eda6b493701": { + "46885cc820904880a25c68c839f552a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1921,7 +1799,7 @@ "width": null } }, - "6115c283e46c449e862188900d96f40d": { + "4a10916e9e8e41ad8ad3c7000d4222bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,41 +1852,99 @@ "width": null } }, - "64c5e77d2a8e4c3b9cb87653f70314a5": { + "4cee3f6cf3334eca8b80cf3b48dcb2c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", + "placeholder": "​", + "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.35kB/s]" } }, - "65e7bc18440c416583450c4ab68f2cc0": { + "4dc231bcb3b84bae9ceb7afa763c8645": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", + "placeholder": "​", + "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 125kB/s]" + } + }, + "4e75d528fab848b998f06bb5793338b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", + "placeholder": "​", + "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 413kB/s]" + } + }, + "52be430244ac43218140c7633e6f1dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", + "placeholder": "​", + "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 68.8kB/s]" } }, - "6c9323ed77eb40068958d2833451705f": { + "534c2062a82441dcbe8775003ff3ab5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +1997,57 @@ "width": null } }, - "6cf0a7b40a514d448cdcaa75fc9cdd59": { + "54eaf3ed21294c3ca4cc75eea7eeaf3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "55672ddc10b54cec865a6468894f8351": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "55a0b5fabd584495be04d9dc3cb4051e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "564246d366604d34ab1d16ad529ba126": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2076,15 +2062,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b3eec33a4cb54d92ab7a9e1ad1747d76", + "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", "placeholder": "​", - "style": "IPY_MODEL_d3da7f98621641758fe69549d23255f3", + "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": "tokenizer_config.json: 100%" + } + }, + "5899664489c24407968ee1c33db9b3ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6fe4f4d5f7af4bd8a45795ce3caa67d8": { + "5a71b8cd70d84f7ba31770899fe09c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2137,7 +2139,7 @@ "width": null } }, - "73a3462f4bab49678fc11865bb9b8d38": { + "6059268df3744b559c76372905e85f89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2155,60 +2157,25 @@ "text_color": null } }, - "741959084d66436a8dee2f1fa979c6e7": { - "model_module": "@jupyter-widgets/base", + "6a5bc0b6202c42d4becd870c3fc89c4a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7577b718b40b42bf9633cd31e1bff8bd": { + "6c5f50cde5734e65ae80022e95c8a7d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2224,17 +2191,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_208ff78a62bf47daa967f97128bd3c55", - "max": 391.0, + "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_23513a6f1e644dee88e8debf1eb8ea3d", + "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 231508.0 + } + }, + "6d71c0eb8f1045b997085b72f441bf64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77f496a9bf524de2a865e4bdfbfbc367": { + "753e8b7795c943afa31e39370262dac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2250,17 +2235,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb708ac4acfb47f2b2c8d64e7f8ccd47", + "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_094a232267ee4ed08fbe7d3ca6e5b9b9", + "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "7d342c65197942659c09c9e001836e30": { + "7de6fba59ec94a1aa5df391d3b952eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2313,43 +2298,30 @@ "width": null } }, - "7efbd8a387824c6dab4c6ea19e3bcdd6": { + "80b423d8da65443590ae4c634d0b83a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "81138bdef66c4e3c96527e5438ddf3dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", + "placeholder": "​", + "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "812dafde65964029908a43fd12d8905c": { + "8da99fc57db34318a69f0a2f7aa23f9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,25 +2374,7 @@ "width": null } }, - "830a143f93fe42b49f124b7a1041f772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83b2420f333343458a1e286e0240c1ae": { + "91c91931728e42119a5ed1a8e771a320": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2435,39 +2389,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dbfddca5cc6a4a88aef89852808cfbfc", - "IPY_MODEL_7577b718b40b42bf9633cd31e1bff8bd", - "IPY_MODEL_bdb1d0e80f3941589397d41409c76171" + "IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", + "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", + "IPY_MODEL_4e75d528fab848b998f06bb5793338b2" ], - "layout": "IPY_MODEL_e5cc4d957ac64618badb70fa990772e1", + "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", "tabbable": null, "tooltip": null } }, - "8eb45aed0fc64ca4b060c66f163ab125": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb64ff862b840a681a3358b0c1fb5ca", - "placeholder": "​", - "style": "IPY_MODEL_421920c6f3fb4409a6b93f0a3bf375d8", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 293MB/s]" - } - }, - "918eeb7bb1b04196934bc0ebc509abf8": { + "92f1ff004b1f40519e67fbe042500034": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2520,7 +2451,7 @@ "width": null } }, - "96ba4d9e807c4a8e8def5eb25c4422aa": { + "948f678b67764226a70290363bc21f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2573,30 +2504,33 @@ "width": null } }, - "9ad0dd89c0ec43d684a8f7abf301c59e": { + "94a5cc6c053e4ead8726e97f9ce65217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fe4f4d5f7af4bd8a45795ce3caa67d8", - "placeholder": "​", - "style": "IPY_MODEL_830a143f93fe42b49f124b7a1041f772", + "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 1.90MB/s]" + "value": 391.0 } }, - "a3f98d4160d0404fb6f57ecf02ae64df": { + "97a2c254de1b4787a362825c816f4b69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2649,31 +2583,7 @@ "width": null } }, - "a4b6a256d1ca4f4eb87362bb9b27857a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f132dc25482746f199401cb51fe590df", - "IPY_MODEL_77f496a9bf524de2a865e4bdfbfbc367", - "IPY_MODEL_8eb45aed0fc64ca4b060c66f163ab125" - ], - "layout": "IPY_MODEL_c50e16d4ae244ba1a7808ec0f23f1a9b", - "tabbable": null, - "tooltip": null - } - }, - "a916345ea2fb4a09a0a9731240dd711e": { + "97c7a5a1b558446099d39e138e95bd3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2688,52 +2598,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_df453fe04d4e4793a5e935685001523f", - "IPY_MODEL_14d0a87899f24b19b23890d6a24ae65f", - "IPY_MODEL_24ff99be1a8e43c78152308e8e494cc6" + "IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", + "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", + "IPY_MODEL_52be430244ac43218140c7633e6f1dfa" ], - "layout": "IPY_MODEL_08ee1f13e3784ed698a1a539052275f6", + "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", "tabbable": null, "tooltip": null } }, - "aa8ac95cb2ee4f72bc599eed8a77d72a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b382553d1eb34a5ebe547c2c8df03f3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3eec33a4cb54d92ab7a9e1ad1747d76": { + "9e52acaf4e244873ab2a7f8db7a56f87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2786,112 +2660,190 @@ "width": null } }, - "b4ddfba613cd4d45b02b54b40a5f4b81": { + "a58243eb6a194ea7957507b4c0fcd20c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7f9c7ca7440434985d7aff042e3ce7a", - "placeholder": "​", - "style": "IPY_MODEL_aa8ac95cb2ee4f72bc599eed8a77d72a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_24871bcd90cc412a87f3523b51b28390", + "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", + "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645" + ], + "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "tooltip": null } }, - "b4e22ef817f2458e91e12c9bf63d3f2a": { - "model_module": "@jupyter-widgets/controls", + "b562a3e54de946de8de1969318bc9932": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b8758c33d0204b0f8f728a3c7217b7f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4d302d48d244388bcc8a7e180f83823", - "placeholder": "​", - "style": "IPY_MODEL_7efbd8a387824c6dab4c6ea19e3bcdd6", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 10.3kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b88c7aecc522424e9987feb281cdbb25": { - "model_module": "@jupyter-widgets/controls", + "b969c4646a1f4296a60d5269570d7812": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc02936354f148bcb509652443a972fc": { - "model_module": "@jupyter-widgets/controls", + "badf4422987648d180ccbecfa7665702": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb6c46de574d4ea3b8dd44655a823f51", - "placeholder": "​", - "style": "IPY_MODEL_555dca7a425b43efb60fcc6200dc6f25", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 477kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bcf2fc689e0b41b7991703338eeccef9": { + "bb8179f5ad91428198964675263f3c98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2944,30 +2896,93 @@ "width": null } }, - "bdb1d0e80f3941589397d41409c76171": { + "c394f7a4870a4f5f8de748644e8df357": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cd86dc9f79bf4ea6b32ccf1b10684fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", + "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", + "IPY_MODEL_3c44f2615b974d98a8796c59d501f913" + ], + "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", + "tabbable": null, + "tooltip": null + } + }, + "cf7840537df1484d8fb3ea86b9dee4a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0cf81ed339d447e0950cc24ec082be5e", - "placeholder": "​", - "style": "IPY_MODEL_b4e22ef817f2458e91e12c9bf63d3f2a", + "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 71.1kB/s]" + "value": 2211.0 + } + }, + "cf8ed7281baa435093a60e267938b36c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c2ceb3a14bea41e0b2071454cb90297b": { + "d2f0816714c7481ea3ba31bd7408fe93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3020,7 +3035,7 @@ "width": null } }, - "c2fb900f4e8141aa9eb8c43510310702": { + "d4bfc6c1d28d468a844bbd112010b800": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3073,7 +3088,7 @@ "width": null } }, - "c496aa336ebb4288a9b319e35addd407": { + "d6a96c30e59a4ad1801f48d9410f7122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3089,7 +3104,7 @@ "description_width": "" } }, - "c50e16d4ae244ba1a7808ec0f23f1a9b": { + "d6c44d17bd624eb985c735cf50307d2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3142,7 +3157,47 @@ "width": null } }, - "c7f9c7ca7440434985d7aff042e3ce7a": { + "d9438aa4de0a49669ef6cc3e242dea8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", + "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", + "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8" + ], + "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", + "tabbable": null, + "tooltip": null + } + }, + "debd8d9478f64845b7f4de702d42849e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df19c92cc2b34e7ca61218f410745348": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3195,7 +3250,7 @@ "width": null } }, - "c9824f35786644daa37d42bd953ade4a": { + "e50c4161bc6e46ceb2c825d8a4f8cb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3211,7 +3266,7 @@ "description_width": "" } }, - "cb6c46de574d4ea3b8dd44655a823f51": { + "ee3043f31e4f41de93cd71ed1d3aaceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,7 +3319,30 @@ "width": null } }, - "cfb64ff862b840a681a3358b0c1fb5ca": { + "eebcc942ebba414e8985c53b0046690f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", + "placeholder": "​", + "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "ef05813c951740c2a35d4b744ebef5a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3317,25 +3395,7 @@ "width": null } }, - "d3da7f98621641758fe69549d23255f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d4e43e629e334723b53074458099ebe1": { + "f16d80c7cb544353a5e1babe95cc1a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3353,7 +3413,7 @@ "text_color": null } }, - "dbfddca5cc6a4a88aef89852808cfbfc": { + "f44abb2240724661a8f28fabeb7e6152": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3368,38 +3428,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_812dafde65964029908a43fd12d8905c", + "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", "placeholder": "​", - "style": "IPY_MODEL_81138bdef66c4e3c96527e5438ddf3dc", + "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 237MB/s]" } }, - "df453fe04d4e4793a5e935685001523f": { + "f47d961a8a6443fdb97fc093198a3a37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609442c072ad4df48e117eda6b493701", - "placeholder": "​", - "style": "IPY_MODEL_73a3462f4bab49678fc11865bb9b8d38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eebcc942ebba414e8985c53b0046690f", + "IPY_MODEL_753e8b7795c943afa31e39370262dac0", + "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152" + ], + "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "e5cc4d957ac64618badb70fa990772e1": { + "f492c8a7a79d41b082fc05a8a4fa2314": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3452,7 +3513,7 @@ "width": null } }, - "eb708ac4acfb47f2b2c8d64e7f8ccd47": { + "f57043327c7a43d580fbd77e72e74801": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3505,109 +3566,48 @@ "width": null } }, - "f132dc25482746f199401cb51fe590df": { + "f9e39c8f34f044faabfd9b2d9c388e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96ba4d9e807c4a8e8def5eb25c4422aa", - "placeholder": "​", - "style": "IPY_MODEL_b88c7aecc522424e9987feb281cdbb25", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "f4d302d48d244388bcc8a7e180f83823": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f7e7688b1f6f44858c99eaa0b436d560": { + "fc3db8eb310345b3b1c927bd575ab50e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3f98d4160d0404fb6f57ecf02ae64df", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9824f35786644daa37d42bd953ade4a", + "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", + "placeholder": "​", + "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "fff28c4abb7743bcbc87068c18fc714d": { + "fe392344d7834620bada4587f2dbf065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index c06368ad7..a2d329ad2 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:01.117687Z", - "iopub.status.busy": "2024-07-18T04:02:01.117526Z", - "iopub.status.idle": "2024-07-18T04:02:06.436581Z", - "shell.execute_reply": "2024-07-18T04:02:06.435951Z" + "iopub.execute_input": "2024-07-30T16:32:01.430387Z", + "iopub.status.busy": "2024-07-30T16:32:01.430194Z", + "iopub.status.idle": "2024-07-30T16:32:07.507356Z", + "shell.execute_reply": "2024-07-30T16:32:07.506775Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.439753Z", - "iopub.status.busy": "2024-07-18T04:02:06.438998Z", - "iopub.status.idle": "2024-07-18T04:02:06.442507Z", - "shell.execute_reply": "2024-07-18T04:02:06.442047Z" + "iopub.execute_input": "2024-07-30T16:32:07.510541Z", + "iopub.status.busy": "2024-07-30T16:32:07.509839Z", + "iopub.status.idle": "2024-07-30T16:32:07.513583Z", + "shell.execute_reply": "2024-07-30T16:32:07.513077Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.444488Z", - "iopub.status.busy": "2024-07-18T04:02:06.444150Z", - "iopub.status.idle": "2024-07-18T04:02:06.448808Z", - "shell.execute_reply": "2024-07-18T04:02:06.448377Z" + "iopub.execute_input": "2024-07-30T16:32:07.515817Z", + "iopub.status.busy": "2024-07-30T16:32:07.515454Z", + "iopub.status.idle": "2024-07-30T16:32:07.520703Z", + "shell.execute_reply": "2024-07-30T16:32:07.520274Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.450829Z", - "iopub.status.busy": "2024-07-18T04:02:06.450489Z", - "iopub.status.idle": "2024-07-18T04:02:08.286142Z", - "shell.execute_reply": "2024-07-18T04:02:08.285466Z" + "iopub.execute_input": "2024-07-30T16:32:07.522733Z", + "iopub.status.busy": "2024-07-30T16:32:07.522401Z", + "iopub.status.idle": "2024-07-30T16:32:09.284078Z", + "shell.execute_reply": "2024-07-30T16:32:09.283231Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.288955Z", - "iopub.status.busy": "2024-07-18T04:02:08.288547Z", - "iopub.status.idle": "2024-07-18T04:02:08.299806Z", - "shell.execute_reply": "2024-07-18T04:02:08.299296Z" + "iopub.execute_input": "2024-07-30T16:32:09.287053Z", + "iopub.status.busy": "2024-07-30T16:32:09.286654Z", + "iopub.status.idle": "2024-07-30T16:32:09.297621Z", + "shell.execute_reply": "2024-07-30T16:32:09.297169Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.302021Z", - "iopub.status.busy": "2024-07-18T04:02:08.301679Z", - "iopub.status.idle": "2024-07-18T04:02:08.307287Z", - "shell.execute_reply": "2024-07-18T04:02:08.306826Z" + "iopub.execute_input": "2024-07-30T16:32:09.299786Z", + "iopub.status.busy": "2024-07-30T16:32:09.299427Z", + "iopub.status.idle": "2024-07-30T16:32:09.304872Z", + "shell.execute_reply": "2024-07-30T16:32:09.304392Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.309302Z", - "iopub.status.busy": "2024-07-18T04:02:08.308959Z", - "iopub.status.idle": "2024-07-18T04:02:08.779123Z", - "shell.execute_reply": "2024-07-18T04:02:08.778615Z" + "iopub.execute_input": "2024-07-30T16:32:09.307010Z", + "iopub.status.busy": "2024-07-30T16:32:09.306676Z", + "iopub.status.idle": "2024-07-30T16:32:09.814179Z", + "shell.execute_reply": "2024-07-30T16:32:09.813575Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.781502Z", - "iopub.status.busy": "2024-07-18T04:02:08.780993Z", - "iopub.status.idle": "2024-07-18T04:02:09.831176Z", - "shell.execute_reply": "2024-07-18T04:02:09.830565Z" + "iopub.execute_input": "2024-07-30T16:32:09.816449Z", + "iopub.status.busy": "2024-07-30T16:32:09.816091Z", + "iopub.status.idle": "2024-07-30T16:32:11.566172Z", + "shell.execute_reply": "2024-07-30T16:32:11.565639Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.833594Z", - "iopub.status.busy": "2024-07-18T04:02:09.833376Z", - "iopub.status.idle": "2024-07-18T04:02:09.851912Z", - "shell.execute_reply": "2024-07-18T04:02:09.851466Z" + "iopub.execute_input": "2024-07-30T16:32:11.568615Z", + "iopub.status.busy": "2024-07-30T16:32:11.568320Z", + "iopub.status.idle": "2024-07-30T16:32:11.586724Z", + "shell.execute_reply": "2024-07-30T16:32:11.586277Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.853723Z", - "iopub.status.busy": "2024-07-18T04:02:09.853550Z", - "iopub.status.idle": "2024-07-18T04:02:09.856982Z", - "shell.execute_reply": "2024-07-18T04:02:09.856425Z" + "iopub.execute_input": "2024-07-30T16:32:11.588741Z", + "iopub.status.busy": "2024-07-30T16:32:11.588441Z", + "iopub.status.idle": "2024-07-30T16:32:11.591552Z", + "shell.execute_reply": "2024-07-30T16:32:11.591039Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.859010Z", - "iopub.status.busy": "2024-07-18T04:02:09.858672Z", - "iopub.status.idle": "2024-07-18T04:02:23.705662Z", - "shell.execute_reply": "2024-07-18T04:02:23.705044Z" + "iopub.execute_input": "2024-07-30T16:32:11.593585Z", + "iopub.status.busy": "2024-07-30T16:32:11.593193Z", + "iopub.status.idle": "2024-07-30T16:32:26.818572Z", + "shell.execute_reply": "2024-07-30T16:32:26.817879Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:23.708515Z", - "iopub.status.busy": "2024-07-18T04:02:23.708112Z", - "iopub.status.idle": "2024-07-18T04:02:23.711931Z", - "shell.execute_reply": "2024-07-18T04:02:23.711369Z" + "iopub.execute_input": "2024-07-30T16:32:26.821335Z", + "iopub.status.busy": "2024-07-30T16:32:26.821126Z", + "iopub.status.idle": "2024-07-30T16:32:26.825126Z", + "shell.execute_reply": "2024-07-30T16:32:26.824635Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:23.713930Z", - "iopub.status.busy": "2024-07-18T04:02:23.713624Z", - "iopub.status.idle": "2024-07-18T04:02:24.398596Z", - "shell.execute_reply": "2024-07-18T04:02:24.398020Z" + "iopub.execute_input": "2024-07-30T16:32:26.827091Z", + "iopub.status.busy": "2024-07-30T16:32:26.826917Z", + "iopub.status.idle": "2024-07-30T16:32:27.596925Z", + "shell.execute_reply": "2024-07-30T16:32:27.596317Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.401422Z", - "iopub.status.busy": "2024-07-18T04:02:24.401003Z", - "iopub.status.idle": "2024-07-18T04:02:24.406081Z", - "shell.execute_reply": "2024-07-18T04:02:24.405558Z" + "iopub.execute_input": "2024-07-30T16:32:27.600680Z", + "iopub.status.busy": "2024-07-30T16:32:27.599702Z", + "iopub.status.idle": "2024-07-30T16:32:27.606621Z", + "shell.execute_reply": "2024-07-30T16:32:27.606103Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.409353Z", - "iopub.status.busy": "2024-07-18T04:02:24.408424Z", - "iopub.status.idle": "2024-07-18T04:02:24.518831Z", - "shell.execute_reply": "2024-07-18T04:02:24.518201Z" + "iopub.execute_input": "2024-07-30T16:32:27.610268Z", + "iopub.status.busy": "2024-07-30T16:32:27.609309Z", + "iopub.status.idle": "2024-07-30T16:32:27.732351Z", + "shell.execute_reply": "2024-07-30T16:32:27.731717Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.521227Z", - "iopub.status.busy": "2024-07-18T04:02:24.521025Z", - "iopub.status.idle": "2024-07-18T04:02:24.533914Z", - "shell.execute_reply": "2024-07-18T04:02:24.533353Z" + "iopub.execute_input": "2024-07-30T16:32:27.734791Z", + "iopub.status.busy": "2024-07-30T16:32:27.734594Z", + "iopub.status.idle": "2024-07-30T16:32:27.747001Z", + "shell.execute_reply": "2024-07-30T16:32:27.746549Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.536409Z", - "iopub.status.busy": "2024-07-18T04:02:24.536011Z", - "iopub.status.idle": "2024-07-18T04:02:24.546219Z", - "shell.execute_reply": "2024-07-18T04:02:24.545646Z" + "iopub.execute_input": "2024-07-30T16:32:27.749097Z", + "iopub.status.busy": "2024-07-30T16:32:27.748752Z", + "iopub.status.idle": "2024-07-30T16:32:27.756559Z", + "shell.execute_reply": "2024-07-30T16:32:27.756099Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.548577Z", - "iopub.status.busy": "2024-07-18T04:02:24.548223Z", - "iopub.status.idle": "2024-07-18T04:02:24.552829Z", - "shell.execute_reply": "2024-07-18T04:02:24.552251Z" + "iopub.execute_input": "2024-07-30T16:32:27.758711Z", + "iopub.status.busy": "2024-07-30T16:32:27.758331Z", + "iopub.status.idle": "2024-07-30T16:32:27.762339Z", + "shell.execute_reply": "2024-07-30T16:32:27.761744Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.554997Z", - "iopub.status.busy": "2024-07-18T04:02:24.554598Z", - "iopub.status.idle": "2024-07-18T04:02:24.561408Z", - "shell.execute_reply": "2024-07-18T04:02:24.560893Z" + "iopub.execute_input": "2024-07-30T16:32:27.764292Z", + "iopub.status.busy": "2024-07-30T16:32:27.764112Z", + "iopub.status.idle": "2024-07-30T16:32:27.769903Z", + "shell.execute_reply": "2024-07-30T16:32:27.769437Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.563575Z", - "iopub.status.busy": "2024-07-18T04:02:24.563220Z", - "iopub.status.idle": "2024-07-18T04:02:24.675460Z", - "shell.execute_reply": "2024-07-18T04:02:24.674903Z" + "iopub.execute_input": "2024-07-30T16:32:27.772012Z", + "iopub.status.busy": "2024-07-30T16:32:27.771665Z", + "iopub.status.idle": "2024-07-30T16:32:27.883771Z", + "shell.execute_reply": "2024-07-30T16:32:27.883239Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.677403Z", - "iopub.status.busy": "2024-07-18T04:02:24.677229Z", - "iopub.status.idle": "2024-07-18T04:02:24.777959Z", - "shell.execute_reply": "2024-07-18T04:02:24.777499Z" + "iopub.execute_input": "2024-07-30T16:32:27.886039Z", + "iopub.status.busy": "2024-07-30T16:32:27.885669Z", + "iopub.status.idle": "2024-07-30T16:32:27.991085Z", + "shell.execute_reply": "2024-07-30T16:32:27.990488Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.779879Z", - "iopub.status.busy": "2024-07-18T04:02:24.779706Z", - "iopub.status.idle": "2024-07-18T04:02:24.878772Z", - "shell.execute_reply": "2024-07-18T04:02:24.878242Z" + "iopub.execute_input": "2024-07-30T16:32:27.993501Z", + "iopub.status.busy": "2024-07-30T16:32:27.993093Z", + "iopub.status.idle": "2024-07-30T16:32:28.099248Z", + "shell.execute_reply": "2024-07-30T16:32:28.098713Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.880733Z", - "iopub.status.busy": "2024-07-18T04:02:24.880559Z", - "iopub.status.idle": "2024-07-18T04:02:24.978145Z", - "shell.execute_reply": "2024-07-18T04:02:24.977703Z" + "iopub.execute_input": "2024-07-30T16:32:28.101776Z", + "iopub.status.busy": "2024-07-30T16:32:28.101402Z", + "iopub.status.idle": "2024-07-30T16:32:28.203687Z", + "shell.execute_reply": "2024-07-30T16:32:28.203188Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.980012Z", - "iopub.status.busy": "2024-07-18T04:02:24.979836Z", - "iopub.status.idle": "2024-07-18T04:02:24.982977Z", - "shell.execute_reply": "2024-07-18T04:02:24.982521Z" + "iopub.execute_input": "2024-07-30T16:32:28.205976Z", + "iopub.status.busy": "2024-07-30T16:32:28.205604Z", + "iopub.status.idle": "2024-07-30T16:32:28.209012Z", + "shell.execute_reply": "2024-07-30T16:32:28.208540Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0310f2e8275a4fee997ba703be9a74bf": { + "0141de0607f0403f827d29243c404408": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0a09ec5bab80464fbc3525d61fd287e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,23 +1463,25 @@ "width": null } }, - "03ad2371a2ae4a21a351c5689665109d": { + "0f05b5620d3c4ea8b8c2b62df6fd1976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "03ae8018dd3e4b8f9ba566d10e173229": { + "163b36917c2b4640bf87813ecc7aecc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1514,7 +1534,48 @@ "width": null } }, - "099dabc8ca1a419a8f798757fe52e113": { + "19d0ea09fbe34640848d1ec2ad02d65b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1ca803e568a640c2aa768e33ebf24164": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", + "placeholder": "​", + "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 438kB/s]" + } + }, + "1cf489240a5147e7be36c2ebd34e4991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1567,55 +1628,92 @@ "width": null } }, - "13ec23ae0b82478c8649f822bdeff432": { + "2133a9fb59af4c94a6d3bf96899e9fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "24117d460fe04c2595c8a3df89e4dc71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d993effcd2114158b661354c687df470", - "IPY_MODEL_c411bd6633714cf883bba455ac3fb08c", - "IPY_MODEL_ca83975994744617a0dd97e13eb64600" - ], - "layout": "IPY_MODEL_03ae8018dd3e4b8f9ba566d10e173229", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", + "placeholder": "​", + "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 49.6MB/s]" } }, - "15b022401b854b9f8a7d29991ca0a46e": { + "245870b17e934b70a9d46ac916c5ab49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2afe02bb7907473397517feb001d0bc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b29f12837770460a87639969e2501c71", - "IPY_MODEL_a36698d045934e159fd6780d8ed22d02", - "IPY_MODEL_649584acb89f4352b3f09502fe90047b" - ], - "layout": "IPY_MODEL_83ef83e6f0894eff87649ed19057ece7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 2041.0 } }, - "1b88ef880cd544cb8f81cff091ac52a8": { + "2e035e4e57004636a79bb03dccd33238": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,7 +1766,7 @@ "width": null } }, - "2af897d03f6c437f9abbacc9d5621adc": { + "2eb75fcccd564c998153fe7eb21cc15f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1684,7 +1782,7 @@ "description_width": "" } }, - "2b762b42a5fb477cbcb248129d768237": { + "35b6e4408720413d9e978a6f60746c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1737,7 +1835,31 @@ "width": null } }, - "2e049b1e243d439eb9c1a88bb6cbf0ae": { + "35fc2caf823447f2b6a4e5ac4e1060cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", + "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", + "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58" + ], + "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", + "tabbable": null, + "tooltip": null + } + }, + "4e7a3765a82041cc9826e87725016075": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1753,30 +1875,25 @@ "description_width": "" } }, - "2e1f958e94414f2f8535d9ce4e7de1a9": { + "520e56fda33e4c98b222ee893d4a3946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e17953cf4d17415b9ee3947612388244", - "placeholder": "​", - "style": "IPY_MODEL_b5c9a576afba43079bc817ed712e6359", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2e20561ab8d544cea586887a7ec2f7ca": { + "563342ed4a724e169020735f2e098785": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,7 +1946,7 @@ "width": null } }, - "37e542373cdc444f9efa49bf35d6b577": { + "5915bf142f9949d0b62f3936280ff677": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1844,76 +1961,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b5104eaceb154661be8ee4c9dfc5100b", - "IPY_MODEL_5c9bc263c50141be932168a8d5361efe", - "IPY_MODEL_b18ff1f2c364471ab3f90ae046a14c9f" + "IPY_MODEL_ffa1c84fb874460b957924837b893cd2", + "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", + "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71" ], - "layout": "IPY_MODEL_51ec0fbf36d74595b531f469980746ac", + "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", "tabbable": null, "tooltip": null } }, - "43febdd3ddaa4e99855db177b8402c0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44b3171020814a07b41fd05ef40a7b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_099dabc8ca1a419a8f798757fe52e113", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff81642801b140aa8a6bc1154da9218a", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "491fa28fae4c4af281e4e86c8a7b7250": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "51ec0fbf36d74595b531f469980746ac": { + "6696954ac6cc4663830ff71533e2274a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,25 +2023,33 @@ "width": null } }, - "527dc89a8299473ba6e5fa06b793206d": { + "6724f0872c634ed28a8ddf5141b6cf52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "544bf43a6fb44b508e651a1196f3a11d": { + "6b0531130fa84e98afcd52b0fc37a26a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2002,33 +2067,31 @@ "text_color": null } }, - "5c9bc263c50141be932168a8d5361efe": { + "6cedc3a0e8f548a1ad9c3884bd4addbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0310f2e8275a4fee997ba703be9a74bf", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_03ad2371a2ae4a21a351c5689665109d", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", + "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", + "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164" + ], + "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", + "tabbable": null, + "tooltip": null } }, - "649584acb89f4352b3f09502fe90047b": { + "6e641d93e8364bb38c2649d5e9409472": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2043,59 +2106,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70d386cfb3b545aea9eb732a6255b51b", + "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", "placeholder": "​", - "style": "IPY_MODEL_7693962195d54179b9f977de6699c1a5", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.03MB/s]" - } - }, - "6aee6459e1484a5db4b27eee1cff5c7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbe4bbaa9f6e4821adc6bb3a71cf48fd", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43febdd3ddaa4e99855db177b8402c0f", + "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "6d97a818ca904253a36ed52659548563": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "70d386cfb3b545aea9eb732a6255b51b": { + "6f35caf701d147819bcff508b0d7b21f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,66 +2167,63 @@ "width": null } }, - "72eb98c6e3e441dab912e332f8a0b34c": { + "7130d0c967334fd481dd95531afcbff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92943e95bab34361b569654e8de40b5b", - "placeholder": "​", - "style": "IPY_MODEL_9c7097304f134ad0b086bc6ccfcb350c", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7693962195d54179b9f977de6699c1a5": { + "798e65658ced4c4ba43c73541fcaf498": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7dacc3decb544148af7b1ad745f6e811": { + "7f9cdd5eb8e645049e955cd7017ad172": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a86987978bf2456880b33e417bfcc80e", + "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", + "IPY_MODEL_d6b535061cda444d9943ac6bb614b319" + ], + "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", + "tabbable": null, + "tooltip": null } }, - "810b336e7d6a4d95a3675aa7455715fa": { + "8203d92bb037499eb58f4a94cf43af20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2260,7 +2276,7 @@ "width": null } }, - "837c89ce37a6469693f3ac5183cf9cc8": { + "8f877b024aaa4832a870ddeafa209522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2275,15 +2291,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2cfdce64a8f4a02b6bc16745bd1d185", + "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", "placeholder": "​", - "style": "IPY_MODEL_7dacc3decb544148af7b1ad745f6e811", + "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 262MB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 850kB/s]" } }, - "83ef83e6f0894eff87649ed19057ece7": { + "9087116450574f6e82ab1912c77b4c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2336,60 +2352,59 @@ "width": null } }, - "92943e95bab34361b569654e8de40b5b": { - "model_module": "@jupyter-widgets/base", + "9401b730a9fa4869b1a2ed1a91ae3804": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "94b5339e1e5d462ca9a8ed81c2cbc6d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "93da3ce1cc95446bb0144f7100dec07e": { + "9aedd1b5b4a94daa8e57b77e4932c62f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2436,299 +2451,13 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9c7097304f134ad0b086bc6ccfcb350c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a36698d045934e159fd6780d8ed22d02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b88ef880cd544cb8f81cff091ac52a8", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e049b1e243d439eb9c1a88bb6cbf0ae", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "acdd14865d9645b59233616afa6233af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b18ff1f2c364471ab3f90ae046a14c9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93da3ce1cc95446bb0144f7100dec07e", - "placeholder": "​", - "style": "IPY_MODEL_491fa28fae4c4af281e4e86c8a7b7250", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 800kB/s]" - } - }, - "b29f12837770460a87639969e2501c71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f966ca32ba7546c09b4de99fe354effc", - "placeholder": "​", - "style": "IPY_MODEL_acdd14865d9645b59233616afa6233af", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "b5104eaceb154661be8ee4c9dfc5100b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62c3116d2b74642a243ae7703bf3201", - "placeholder": "​", - "style": "IPY_MODEL_527dc89a8299473ba6e5fa06b793206d", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "b5c9a576afba43079bc817ed712e6359": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c411bd6633714cf883bba455ac3fb08c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece0b818044746469aca3f330ee29274", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2af897d03f6c437f9abbacc9d5621adc", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "c663b817e37949eb86658a8eba8c4ae7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72eb98c6e3e441dab912e332f8a0b34c", - "IPY_MODEL_44b3171020814a07b41fd05ef40a7b32", - "IPY_MODEL_2e1f958e94414f2f8535d9ce4e7de1a9" - ], - "layout": "IPY_MODEL_810b336e7d6a4d95a3675aa7455715fa", - "tabbable": null, - "tooltip": null - } - }, - "ca83975994744617a0dd97e13eb64600": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b762b42a5fb477cbcb248129d768237", - "placeholder": "​", - "style": "IPY_MODEL_544bf43a6fb44b508e651a1196f3a11d", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 225MB/s]" - } - }, - "ccb4dc555c114cf2a02ac20d97c88315": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce73ce3464244c60b3bf466af79429a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec1cdbea1e874548abb716b6420bf941", - "placeholder": "​", - "style": "IPY_MODEL_ccb4dc555c114cf2a02ac20d97c88315", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "d993effcd2114158b661354c687df470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f16e9b4820324eeaad22e87dd6fc0203", - "placeholder": "​", - "style": "IPY_MODEL_6d97a818ca904253a36ed52659548563", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e17953cf4d17415b9ee3947612388244": { + "9dc82a7b78864ce18d1e3cff48063e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2781,7 +2510,7 @@ "width": null } }, - "ec1cdbea1e874548abb716b6420bf941": { + "a0f3a3764e7a4f70a89147d24e41d44a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,7 +2563,7 @@ "width": null } }, - "ece0b818044746469aca3f330ee29274": { + "a609aacd3b83432398f55caed51374bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2887,7 +2616,69 @@ "width": null } }, - "f16e9b4820324eeaad22e87dd6fc0203": { + "a6e2619a05cf4c6892ae13e2c851eb0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", + "placeholder": "​", + "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "a86987978bf2456880b33e417bfcc80e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", + "placeholder": "​", + "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "ae2362edc22d424a8ca4ef7ba7dc22f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b018e0e6db134be6ba16634195b51282": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2940,7 +2731,25 @@ "width": null } }, - "f2cfdce64a8f4a02b6bc16745bd1d185": { + "bba811cedf5144c1a2c8e84f62b80614": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc3fca0de1e34fe0841a520f49a44fcb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2993,7 +2802,7 @@ "width": null } }, - "f62c3116d2b74642a243ae7703bf3201": { + "d0912c4ce6314fffb1eec46e7902061a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3046,7 +2855,48 @@ "width": null } }, - "f7fb476aafa14916ba5acbbe7338a574": { + "d2e5a2475afa46a89c0cfc93e8649905": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", + "placeholder": "​", + "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "d4103846b2bc4a4a8e12430befda4a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5272de0323e4c94ba3b04a6b32e6aa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3061,16 +2911,62 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce73ce3464244c60b3bf466af79429a2", - "IPY_MODEL_6aee6459e1484a5db4b27eee1cff5c7d", - "IPY_MODEL_837c89ce37a6469693f3ac5183cf9cc8" + "IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", + "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", + "IPY_MODEL_8f877b024aaa4832a870ddeafa209522" ], - "layout": "IPY_MODEL_2e20561ab8d544cea586887a7ec2f7ca", + "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", "tabbable": null, "tooltip": null } }, - "f966ca32ba7546c09b4de99fe354effc": { + "d6b535061cda444d9943ac6bb614b319": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", + "placeholder": "​", + "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 39.7MB/s]" + } + }, + "dce5f0e1a3174c649eb53b9cab013b58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", + "placeholder": "​", + "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 5.64MB/s]" + } + }, + "e22da2b2272b421bbef0df76cace290f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,7 +3019,7 @@ "width": null } }, - "fbe4bbaa9f6e4821adc6bb3a71cf48fd": { + "ecf9dd73dda64d359b746655a5a60031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,20 +3072,124 @@ "width": null } }, - "ff81642801b140aa8a6bc1154da9218a": { + "ef4ce1e627f64413bff7de5ef03c1544": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "fac37b2db5114541b4cfa045627b25a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd8d727262ef4b3c8a26a144efa6a319": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffa1c84fb874460b957924837b893cd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", + "placeholder": "​", + "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 1d8d4bc13..899e02b72 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:29.204779Z", - "iopub.status.busy": "2024-07-18T04:02:29.204616Z", - "iopub.status.idle": "2024-07-18T04:02:30.379450Z", - "shell.execute_reply": "2024-07-18T04:02:30.378831Z" + "iopub.execute_input": "2024-07-30T16:32:32.656232Z", + "iopub.status.busy": "2024-07-30T16:32:32.656056Z", + "iopub.status.idle": "2024-07-30T16:32:34.118637Z", + "shell.execute_reply": "2024-07-30T16:32:34.117917Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.382052Z", - "iopub.status.busy": "2024-07-18T04:02:30.381624Z", - "iopub.status.idle": "2024-07-18T04:02:30.384679Z", - "shell.execute_reply": "2024-07-18T04:02:30.384157Z" + "iopub.execute_input": "2024-07-30T16:32:34.121608Z", + "iopub.status.busy": "2024-07-30T16:32:34.121097Z", + "iopub.status.idle": "2024-07-30T16:32:34.124191Z", + "shell.execute_reply": "2024-07-30T16:32:34.123735Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.386897Z", - "iopub.status.busy": "2024-07-18T04:02:30.386555Z", - "iopub.status.idle": "2024-07-18T04:02:30.395101Z", - "shell.execute_reply": "2024-07-18T04:02:30.394657Z" + "iopub.execute_input": "2024-07-30T16:32:34.126267Z", + "iopub.status.busy": "2024-07-30T16:32:34.126096Z", + "iopub.status.idle": "2024-07-30T16:32:34.134798Z", + "shell.execute_reply": "2024-07-30T16:32:34.134311Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.397072Z", - "iopub.status.busy": "2024-07-18T04:02:30.396747Z", - "iopub.status.idle": "2024-07-18T04:02:30.401452Z", - "shell.execute_reply": "2024-07-18T04:02:30.401038Z" + "iopub.execute_input": "2024-07-30T16:32:34.136971Z", + "iopub.status.busy": "2024-07-30T16:32:34.136634Z", + "iopub.status.idle": "2024-07-30T16:32:34.141247Z", + "shell.execute_reply": "2024-07-30T16:32:34.140806Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.403464Z", - "iopub.status.busy": "2024-07-18T04:02:30.403158Z", - "iopub.status.idle": "2024-07-18T04:02:30.584668Z", - "shell.execute_reply": "2024-07-18T04:02:30.584074Z" + "iopub.execute_input": "2024-07-30T16:32:34.143531Z", + "iopub.status.busy": "2024-07-30T16:32:34.143189Z", + "iopub.status.idle": "2024-07-30T16:32:34.151658Z", + "shell.execute_reply": "2024-07-30T16:32:34.151032Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.586832Z", - "iopub.status.busy": "2024-07-18T04:02:30.586642Z", - "iopub.status.idle": "2024-07-18T04:02:30.955459Z", - "shell.execute_reply": "2024-07-18T04:02:30.954890Z" + "iopub.execute_input": "2024-07-30T16:32:34.153882Z", + "iopub.status.busy": "2024-07-30T16:32:34.153554Z", + "iopub.status.idle": "2024-07-30T16:32:34.532146Z", + "shell.execute_reply": "2024-07-30T16:32:34.531569Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.957670Z", - "iopub.status.busy": "2024-07-18T04:02:30.957486Z", - "iopub.status.idle": "2024-07-18T04:02:30.980305Z", - "shell.execute_reply": "2024-07-18T04:02:30.979879Z" + "iopub.execute_input": "2024-07-30T16:32:34.534572Z", + "iopub.status.busy": "2024-07-30T16:32:34.534215Z", + "iopub.status.idle": "2024-07-30T16:32:34.557586Z", + "shell.execute_reply": "2024-07-30T16:32:34.557126Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.982226Z", - "iopub.status.busy": "2024-07-18T04:02:30.982048Z", - "iopub.status.idle": "2024-07-18T04:02:30.993230Z", - "shell.execute_reply": "2024-07-18T04:02:30.992801Z" + "iopub.execute_input": "2024-07-30T16:32:34.559946Z", + "iopub.status.busy": "2024-07-30T16:32:34.559562Z", + "iopub.status.idle": "2024-07-30T16:32:34.574011Z", + "shell.execute_reply": "2024-07-30T16:32:34.573551Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.995299Z", - "iopub.status.busy": "2024-07-18T04:02:30.994966Z", - "iopub.status.idle": "2024-07-18T04:02:33.034709Z", - "shell.execute_reply": "2024-07-18T04:02:33.034140Z" + "iopub.execute_input": "2024-07-30T16:32:34.576252Z", + "iopub.status.busy": "2024-07-30T16:32:34.575906Z", + "iopub.status.idle": "2024-07-30T16:32:36.755631Z", + "shell.execute_reply": "2024-07-30T16:32:36.755030Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.037102Z", - "iopub.status.busy": "2024-07-18T04:02:33.036820Z", - "iopub.status.idle": "2024-07-18T04:02:33.057501Z", - "shell.execute_reply": "2024-07-18T04:02:33.057031Z" + "iopub.execute_input": "2024-07-30T16:32:36.758222Z", + "iopub.status.busy": "2024-07-30T16:32:36.757670Z", + "iopub.status.idle": "2024-07-30T16:32:36.781789Z", + "shell.execute_reply": "2024-07-30T16:32:36.781269Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.059378Z", - "iopub.status.busy": "2024-07-18T04:02:33.059207Z", - "iopub.status.idle": "2024-07-18T04:02:33.076924Z", - "shell.execute_reply": "2024-07-18T04:02:33.076333Z" + "iopub.execute_input": "2024-07-30T16:32:36.783987Z", + "iopub.status.busy": "2024-07-30T16:32:36.783638Z", + "iopub.status.idle": "2024-07-30T16:32:36.801674Z", + "shell.execute_reply": "2024-07-30T16:32:36.801212Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.079121Z", - "iopub.status.busy": "2024-07-18T04:02:33.078763Z", - "iopub.status.idle": "2024-07-18T04:02:33.093985Z", - "shell.execute_reply": "2024-07-18T04:02:33.093445Z" + "iopub.execute_input": "2024-07-30T16:32:36.803794Z", + "iopub.status.busy": "2024-07-30T16:32:36.803471Z", + "iopub.status.idle": "2024-07-30T16:32:36.818094Z", + "shell.execute_reply": "2024-07-30T16:32:36.817505Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.096034Z", - "iopub.status.busy": "2024-07-18T04:02:33.095855Z", - "iopub.status.idle": "2024-07-18T04:02:33.115172Z", - "shell.execute_reply": "2024-07-18T04:02:33.114557Z" + "iopub.execute_input": "2024-07-30T16:32:36.820298Z", + "iopub.status.busy": "2024-07-30T16:32:36.819881Z", + "iopub.status.idle": "2024-07-30T16:32:36.842978Z", + "shell.execute_reply": "2024-07-30T16:32:36.842357Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "015de6fc683f4baaa22cb8b403a13432", + "model_id": "724816767a8e4540b761b5447f273b35", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.117002Z", - "iopub.status.busy": "2024-07-18T04:02:33.116833Z", - "iopub.status.idle": "2024-07-18T04:02:33.132198Z", - "shell.execute_reply": "2024-07-18T04:02:33.131663Z" + "iopub.execute_input": "2024-07-30T16:32:36.845323Z", + "iopub.status.busy": "2024-07-30T16:32:36.844892Z", + "iopub.status.idle": "2024-07-30T16:32:36.859999Z", + "shell.execute_reply": "2024-07-30T16:32:36.859413Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.134209Z", - "iopub.status.busy": "2024-07-18T04:02:33.133882Z", - "iopub.status.idle": "2024-07-18T04:02:33.139556Z", - "shell.execute_reply": "2024-07-18T04:02:33.139102Z" + "iopub.execute_input": "2024-07-30T16:32:36.862276Z", + "iopub.status.busy": "2024-07-30T16:32:36.861910Z", + "iopub.status.idle": "2024-07-30T16:32:36.868061Z", + "shell.execute_reply": "2024-07-30T16:32:36.867583Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.141446Z", - "iopub.status.busy": "2024-07-18T04:02:33.141272Z", - "iopub.status.idle": "2024-07-18T04:02:33.159771Z", - "shell.execute_reply": "2024-07-18T04:02:33.159275Z" + "iopub.execute_input": "2024-07-30T16:32:36.870048Z", + "iopub.status.busy": "2024-07-30T16:32:36.869719Z", + "iopub.status.idle": "2024-07-30T16:32:36.889337Z", + "shell.execute_reply": "2024-07-30T16:32:36.888743Z" } }, "outputs": [ @@ -1447,65 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "015de6fc683f4baaa22cb8b403a13432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d23e2ab4630b440f9ef86ee9b8882048", - "IPY_MODEL_a2f48d81a080433fa84848011182083e", - "IPY_MODEL_3b449a3c7d1b4be4ad41c40c8b11a491" - ], - "layout": "IPY_MODEL_960116dab3344fc8a824d39c6d7c5b37", - "tabbable": null, - "tooltip": null - } - }, - "2818c73205bb431a93742b1f5090693d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3336c4c3c4d64feeb15f1975452e8cfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3b449a3c7d1b4be4ad41c40c8b11a491": { + "24e5bfd20a30498b87f31ca923bcaee0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1520,15 +1462,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c3f56f4b21a4b48bea56e97391218d3", + "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", "placeholder": "​", - "style": "IPY_MODEL_2818c73205bb431a93742b1f5090693d", + "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 13336.10 examples/s]" + "value": " 132/132 [00:00<00:00, 9927.17 examples/s]" } }, - "4c3f56f4b21a4b48bea56e97391218d3": { + "71845e53cfb34c7390d3c257eefae520": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1523,31 @@ "width": null } }, - "56926f83ffd946b2891a0c5b59d5efe7": { + "724816767a8e4540b761b5447f273b35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", + "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", + "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0" + ], + "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", + "tabbable": null, + "tooltip": null + } + }, + "a8759625ec944bbbac04db9cec87a317": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1634,7 +1600,7 @@ "width": null } }, - "763e5f2ae48c455985ff412e49431ad8": { + "c9a94c2705dc4c6888c5b9bcb593ec3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1687,7 +1653,64 @@ "width": null } }, - "839aa6fe30a94d79a49415b12a228e66": { + "d477eb478231404692d7fabdeafcfa6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", + "placeholder": "​", + "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "e1d8b31237d943e5a791e20c8cb36100": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee9027d19159444e8d46c66083251836": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f9c800ac49fd453fbbdcc88f12d35194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1705,7 +1728,33 @@ "text_color": null } }, - "960116dab3344fc8a824d39c6d7c5b37": { + "fa38f1de6f7849ee9f7cd7ad7a504555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "fe623ece577749be8a8ce449c28b2074": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1757,55 +1806,6 @@ "visibility": null, "width": null } - }, - "a2f48d81a080433fa84848011182083e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56926f83ffd946b2891a0c5b59d5efe7", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3336c4c3c4d64feeb15f1975452e8cfd", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d23e2ab4630b440f9ef86ee9b8882048": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_763e5f2ae48c455985ff412e49431ad8", - "placeholder": "​", - "style": "IPY_MODEL_839aa6fe30a94d79a49415b12a228e66", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index d88ccd2ad..dd27cd645 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:36.051413Z", - "iopub.status.busy": "2024-07-18T04:02:36.051244Z", - "iopub.status.idle": "2024-07-18T04:02:37.266874Z", - "shell.execute_reply": "2024-07-18T04:02:37.266234Z" + "iopub.execute_input": "2024-07-30T16:32:39.968392Z", + "iopub.status.busy": "2024-07-30T16:32:39.968219Z", + "iopub.status.idle": "2024-07-30T16:32:41.428731Z", + "shell.execute_reply": "2024-07-30T16:32:41.428142Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.269397Z", - "iopub.status.busy": "2024-07-18T04:02:37.269128Z", - "iopub.status.idle": "2024-07-18T04:02:37.272272Z", - "shell.execute_reply": "2024-07-18T04:02:37.271823Z" + "iopub.execute_input": "2024-07-30T16:32:41.431407Z", + "iopub.status.busy": "2024-07-30T16:32:41.430932Z", + "iopub.status.idle": "2024-07-30T16:32:41.433897Z", + "shell.execute_reply": "2024-07-30T16:32:41.433429Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.274522Z", - "iopub.status.busy": "2024-07-18T04:02:37.274188Z", - "iopub.status.idle": "2024-07-18T04:02:37.283099Z", - "shell.execute_reply": "2024-07-18T04:02:37.282643Z" + "iopub.execute_input": "2024-07-30T16:32:41.436056Z", + "iopub.status.busy": "2024-07-30T16:32:41.435693Z", + "iopub.status.idle": "2024-07-30T16:32:41.444683Z", + "shell.execute_reply": "2024-07-30T16:32:41.444228Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.285099Z", - "iopub.status.busy": "2024-07-18T04:02:37.284756Z", - "iopub.status.idle": "2024-07-18T04:02:37.289489Z", - "shell.execute_reply": "2024-07-18T04:02:37.289025Z" + "iopub.execute_input": "2024-07-30T16:32:41.446855Z", + "iopub.status.busy": "2024-07-30T16:32:41.446459Z", + "iopub.status.idle": "2024-07-30T16:32:41.451834Z", + "shell.execute_reply": "2024-07-30T16:32:41.451242Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.291764Z", - "iopub.status.busy": "2024-07-18T04:02:37.291422Z", - "iopub.status.idle": "2024-07-18T04:02:37.472524Z", - "shell.execute_reply": "2024-07-18T04:02:37.472008Z" + "iopub.execute_input": "2024-07-30T16:32:41.454128Z", + "iopub.status.busy": "2024-07-30T16:32:41.453789Z", + "iopub.status.idle": "2024-07-30T16:32:41.461841Z", + "shell.execute_reply": "2024-07-30T16:32:41.461254Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.474534Z", - "iopub.status.busy": "2024-07-18T04:02:37.474266Z", - "iopub.status.idle": "2024-07-18T04:02:37.844349Z", - "shell.execute_reply": "2024-07-18T04:02:37.843783Z" + "iopub.execute_input": "2024-07-30T16:32:41.463879Z", + "iopub.status.busy": "2024-07-30T16:32:41.463564Z", + "iopub.status.idle": "2024-07-30T16:32:41.841201Z", + "shell.execute_reply": "2024-07-30T16:32:41.840606Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.846655Z", - "iopub.status.busy": "2024-07-18T04:02:37.846287Z", - "iopub.status.idle": "2024-07-18T04:02:37.849124Z", - "shell.execute_reply": "2024-07-18T04:02:37.848661Z" + "iopub.execute_input": "2024-07-30T16:32:41.843720Z", + "iopub.status.busy": "2024-07-30T16:32:41.843358Z", + "iopub.status.idle": "2024-07-30T16:32:41.846353Z", + "shell.execute_reply": "2024-07-30T16:32:41.845761Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.851174Z", - "iopub.status.busy": "2024-07-18T04:02:37.850810Z", - "iopub.status.idle": "2024-07-18T04:02:37.884496Z", - "shell.execute_reply": "2024-07-18T04:02:37.884041Z" + "iopub.execute_input": "2024-07-30T16:32:41.848467Z", + "iopub.status.busy": "2024-07-30T16:32:41.848142Z", + "iopub.status.idle": "2024-07-30T16:32:41.882970Z", + "shell.execute_reply": "2024-07-30T16:32:41.882316Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.886502Z", - "iopub.status.busy": "2024-07-18T04:02:37.886186Z", - "iopub.status.idle": "2024-07-18T04:02:39.946867Z", - "shell.execute_reply": "2024-07-18T04:02:39.946264Z" + "iopub.execute_input": "2024-07-30T16:32:41.885593Z", + "iopub.status.busy": "2024-07-30T16:32:41.885224Z", + "iopub.status.idle": "2024-07-30T16:32:44.166781Z", + "shell.execute_reply": "2024-07-30T16:32:44.166160Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.949465Z", - "iopub.status.busy": "2024-07-18T04:02:39.948936Z", - "iopub.status.idle": "2024-07-18T04:02:39.967547Z", - "shell.execute_reply": "2024-07-18T04:02:39.967070Z" + "iopub.execute_input": "2024-07-30T16:32:44.169594Z", + "iopub.status.busy": "2024-07-30T16:32:44.168967Z", + "iopub.status.idle": "2024-07-30T16:32:44.189239Z", + "shell.execute_reply": "2024-07-30T16:32:44.188670Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.969591Z", - "iopub.status.busy": "2024-07-18T04:02:39.969258Z", - "iopub.status.idle": "2024-07-18T04:02:39.975832Z", - "shell.execute_reply": "2024-07-18T04:02:39.975379Z" + "iopub.execute_input": "2024-07-30T16:32:44.191720Z", + "iopub.status.busy": "2024-07-30T16:32:44.191313Z", + "iopub.status.idle": "2024-07-30T16:32:44.198409Z", + "shell.execute_reply": "2024-07-30T16:32:44.197866Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.977855Z", - "iopub.status.busy": "2024-07-18T04:02:39.977518Z", - "iopub.status.idle": "2024-07-18T04:02:39.983314Z", - "shell.execute_reply": "2024-07-18T04:02:39.982722Z" + "iopub.execute_input": "2024-07-30T16:32:44.200671Z", + "iopub.status.busy": "2024-07-30T16:32:44.200330Z", + "iopub.status.idle": "2024-07-30T16:32:44.206405Z", + "shell.execute_reply": "2024-07-30T16:32:44.205886Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.985271Z", - "iopub.status.busy": "2024-07-18T04:02:39.984975Z", - "iopub.status.idle": "2024-07-18T04:02:39.995497Z", - "shell.execute_reply": "2024-07-18T04:02:39.994935Z" + "iopub.execute_input": "2024-07-30T16:32:44.208540Z", + "iopub.status.busy": "2024-07-30T16:32:44.208187Z", + "iopub.status.idle": "2024-07-30T16:32:44.218769Z", + "shell.execute_reply": "2024-07-30T16:32:44.218292Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.997551Z", - "iopub.status.busy": "2024-07-18T04:02:39.997256Z", - "iopub.status.idle": "2024-07-18T04:02:40.006036Z", - "shell.execute_reply": "2024-07-18T04:02:40.005587Z" + "iopub.execute_input": "2024-07-30T16:32:44.221000Z", + "iopub.status.busy": "2024-07-30T16:32:44.220629Z", + "iopub.status.idle": "2024-07-30T16:32:44.230293Z", + "shell.execute_reply": "2024-07-30T16:32:44.229490Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.008141Z", - "iopub.status.busy": "2024-07-18T04:02:40.007823Z", - "iopub.status.idle": "2024-07-18T04:02:40.014540Z", - "shell.execute_reply": "2024-07-18T04:02:40.014100Z" + "iopub.execute_input": "2024-07-30T16:32:44.232925Z", + "iopub.status.busy": "2024-07-30T16:32:44.232545Z", + "iopub.status.idle": "2024-07-30T16:32:44.240606Z", + "shell.execute_reply": "2024-07-30T16:32:44.239954Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.016481Z", - "iopub.status.busy": "2024-07-18T04:02:40.016306Z", - "iopub.status.idle": "2024-07-18T04:02:40.025823Z", - "shell.execute_reply": "2024-07-18T04:02:40.025365Z" + "iopub.execute_input": "2024-07-30T16:32:44.242998Z", + "iopub.status.busy": "2024-07-30T16:32:44.242622Z", + "iopub.status.idle": "2024-07-30T16:32:44.252782Z", + "shell.execute_reply": "2024-07-30T16:32:44.252133Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.027917Z", - "iopub.status.busy": "2024-07-18T04:02:40.027593Z", - "iopub.status.idle": "2024-07-18T04:02:40.042624Z", - "shell.execute_reply": "2024-07-18T04:02:40.042164Z" + "iopub.execute_input": "2024-07-30T16:32:44.255163Z", + "iopub.status.busy": "2024-07-30T16:32:44.254809Z", + "iopub.status.idle": "2024-07-30T16:32:44.273057Z", + "shell.execute_reply": "2024-07-30T16:32:44.272419Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index ae9c3c784..4228b95b6 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:42.669719Z", - "iopub.status.busy": "2024-07-18T04:02:42.669546Z", - "iopub.status.idle": "2024-07-18T04:02:45.613067Z", - "shell.execute_reply": "2024-07-18T04:02:45.612422Z" + "iopub.execute_input": "2024-07-30T16:32:47.382198Z", + "iopub.status.busy": "2024-07-30T16:32:47.381761Z", + "iopub.status.idle": "2024-07-30T16:32:50.574056Z", + "shell.execute_reply": "2024-07-30T16:32:50.573420Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:45.615720Z", - "iopub.status.busy": "2024-07-18T04:02:45.615473Z", - "iopub.status.idle": "2024-07-18T04:02:45.619132Z", - "shell.execute_reply": "2024-07-18T04:02:45.618589Z" + "iopub.execute_input": "2024-07-30T16:32:50.576906Z", + "iopub.status.busy": "2024-07-30T16:32:50.576348Z", + "iopub.status.idle": "2024-07-30T16:32:50.580381Z", + "shell.execute_reply": "2024-07-30T16:32:50.579783Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:45.621224Z", - "iopub.status.busy": "2024-07-18T04:02:45.620918Z", - "iopub.status.idle": "2024-07-18T04:02:59.785458Z", - "shell.execute_reply": "2024-07-18T04:02:59.784890Z" + "iopub.execute_input": "2024-07-30T16:32:50.582599Z", + "iopub.status.busy": "2024-07-30T16:32:50.582229Z", + "iopub.status.idle": "2024-07-30T16:33:02.303436Z", + "shell.execute_reply": "2024-07-30T16:33:02.302939Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cfa127d2d15346cfaecddd1f501e10b5", + "model_id": "7cd770708ca5498492377d6a0fd76616", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84cc79fb8dfc4c8b9878470743351e05", + "model_id": "c4fa7fdeeb9446ddbf6516f8963fa52e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ff98a3cd12749eaa0f172837c5ee79f", + "model_id": "a6e2987ba28d48c28d884b33288562df", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e5e8b53b8e7c4bbe8e49fb581f733d5b", + "model_id": "29ade62a53ac448198f24b5900001b05", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "777602f50c1c472883ca1e491224fbf8", + "model_id": "926846a8c6954c46acf37f4dd63e7eb9", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8253b9a8b625435f97de457cdd8b57a4", + "model_id": "6aaa8d39274f4cfea54a66eb8516a06f", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84b77d23a1794224b69e4e95c7b2f83d", + "model_id": "96697881a93440babad369ae2e2fd4b8", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d781af0165714c0d9c2a1ea7cc0d7fab", + "model_id": "efe64e5c44d94c6bb0bed3ad6e844c33", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:59.787598Z", - "iopub.status.busy": "2024-07-18T04:02:59.787373Z", - "iopub.status.idle": "2024-07-18T04:02:59.791159Z", - "shell.execute_reply": "2024-07-18T04:02:59.790668Z" + "iopub.execute_input": "2024-07-30T16:33:02.305705Z", + "iopub.status.busy": "2024-07-30T16:33:02.305351Z", + "iopub.status.idle": "2024-07-30T16:33:02.309197Z", + "shell.execute_reply": "2024-07-30T16:33:02.308695Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:59.793186Z", - "iopub.status.busy": "2024-07-18T04:02:59.792855Z", - "iopub.status.idle": "2024-07-18T04:03:11.249028Z", - "shell.execute_reply": "2024-07-18T04:03:11.248480Z" + "iopub.execute_input": "2024-07-30T16:33:02.311412Z", + "iopub.status.busy": "2024-07-30T16:33:02.311066Z", + "iopub.status.idle": "2024-07-30T16:33:14.158148Z", + "shell.execute_reply": "2024-07-30T16:33:14.157496Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe3ea1a98f724dee92ced94c01b8f215", + "model_id": "c48d73b75d8543b7900f7e3a24c14ff0", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:11.251514Z", - "iopub.status.busy": "2024-07-18T04:03:11.251273Z", - "iopub.status.idle": "2024-07-18T04:03:29.163263Z", - "shell.execute_reply": "2024-07-18T04:03:29.162608Z" + "iopub.execute_input": "2024-07-30T16:33:14.161054Z", + "iopub.status.busy": "2024-07-30T16:33:14.160637Z", + "iopub.status.idle": "2024-07-30T16:33:33.040556Z", + "shell.execute_reply": "2024-07-30T16:33:33.039889Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.166273Z", - "iopub.status.busy": "2024-07-18T04:03:29.165751Z", - "iopub.status.idle": "2024-07-18T04:03:29.171052Z", - "shell.execute_reply": "2024-07-18T04:03:29.170476Z" + "iopub.execute_input": "2024-07-30T16:33:33.043526Z", + "iopub.status.busy": "2024-07-30T16:33:33.043163Z", + "iopub.status.idle": "2024-07-30T16:33:33.048147Z", + "shell.execute_reply": "2024-07-30T16:33:33.047576Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.173245Z", - "iopub.status.busy": "2024-07-18T04:03:29.172808Z", - "iopub.status.idle": "2024-07-18T04:03:29.176965Z", - "shell.execute_reply": "2024-07-18T04:03:29.176548Z" + "iopub.execute_input": "2024-07-30T16:33:33.050340Z", + "iopub.status.busy": "2024-07-30T16:33:33.049814Z", + "iopub.status.idle": "2024-07-30T16:33:33.054210Z", + "shell.execute_reply": "2024-07-30T16:33:33.053653Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.179181Z", - "iopub.status.busy": "2024-07-18T04:03:29.178764Z", - "iopub.status.idle": "2024-07-18T04:03:29.187660Z", - "shell.execute_reply": "2024-07-18T04:03:29.187210Z" + "iopub.execute_input": "2024-07-30T16:33:33.056104Z", + "iopub.status.busy": "2024-07-30T16:33:33.055933Z", + "iopub.status.idle": "2024-07-30T16:33:33.065120Z", + "shell.execute_reply": "2024-07-30T16:33:33.064640Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.189749Z", - "iopub.status.busy": "2024-07-18T04:03:29.189427Z", - "iopub.status.idle": "2024-07-18T04:03:29.217121Z", - "shell.execute_reply": "2024-07-18T04:03:29.216709Z" + "iopub.execute_input": "2024-07-30T16:33:33.067246Z", + "iopub.status.busy": "2024-07-30T16:33:33.066927Z", + "iopub.status.idle": "2024-07-30T16:33:33.096315Z", + "shell.execute_reply": "2024-07-30T16:33:33.095690Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.219128Z", - "iopub.status.busy": "2024-07-18T04:03:29.218782Z", - "iopub.status.idle": "2024-07-18T04:04:02.310457Z", - "shell.execute_reply": "2024-07-18T04:04:02.309852Z" + "iopub.execute_input": "2024-07-30T16:33:33.098981Z", + "iopub.status.busy": "2024-07-30T16:33:33.098550Z", + "iopub.status.idle": "2024-07-30T16:34:08.613598Z", + "shell.execute_reply": "2024-07-30T16:34:08.612987Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.886\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.221\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.688\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.922\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5f6a6c71bb6e4541a581f4f3310c0e87", + "model_id": "4800d17f20734ee3900349a11b2585dc", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8e7468aca074d3ea5c95769c1d98882", + "model_id": "21d92163462b4f67a981a814fcb48508", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.882\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.233\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.635\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.913\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f7547caf87ef4a6e9cdaf34ecfe7a776", + "model_id": "8af1aec52aef434b81a22b708073556f", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf776da7e61c45d184a4ccbaec7843e3", + "model_id": "19a5e3a37b304b559df2c5101035122f", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.455\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.559\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.031\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce1365ddf37d4fd386cefbbc32a2b2a4", + "model_id": "a2738be416ce480c95fff046962f1137", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6cc5976d20884235b934ecfaa7687b01", + "model_id": "6c2f40cf42cc413e8b1040c82a085028", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.312910Z", - "iopub.status.busy": "2024-07-18T04:04:02.312660Z", - "iopub.status.idle": "2024-07-18T04:04:02.327049Z", - "shell.execute_reply": "2024-07-18T04:04:02.326569Z" + "iopub.execute_input": "2024-07-30T16:34:08.616395Z", + "iopub.status.busy": "2024-07-30T16:34:08.615872Z", + "iopub.status.idle": "2024-07-30T16:34:08.631241Z", + "shell.execute_reply": "2024-07-30T16:34:08.630690Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.329066Z", - "iopub.status.busy": "2024-07-18T04:04:02.328768Z", - "iopub.status.idle": "2024-07-18T04:04:02.796841Z", - "shell.execute_reply": "2024-07-18T04:04:02.796286Z" + "iopub.execute_input": "2024-07-30T16:34:08.633394Z", + "iopub.status.busy": "2024-07-30T16:34:08.633052Z", + "iopub.status.idle": "2024-07-30T16:34:09.125544Z", + "shell.execute_reply": "2024-07-30T16:34:09.124944Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.799526Z", - "iopub.status.busy": "2024-07-18T04:04:02.799081Z", - "iopub.status.idle": "2024-07-18T04:05:39.908807Z", - "shell.execute_reply": "2024-07-18T04:05:39.908161Z" + "iopub.execute_input": "2024-07-30T16:34:09.128240Z", + "iopub.status.busy": "2024-07-30T16:34:09.127855Z", + "iopub.status.idle": "2024-07-30T16:35:49.585066Z", + "shell.execute_reply": "2024-07-30T16:35:49.584319Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "83f24aa593964f26bcdc4ca9d1acb2c1", + "model_id": "1e7ed9a8db3f47d499c32f8ab98695a3", "version_major": 2, "version_minor": 0 }, @@ -1120,7 +1120,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n", + "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 7714 issues found in the dataset.\n" ] @@ -1144,10 +1150,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:39.911277Z", - "iopub.status.busy": "2024-07-18T04:05:39.910826Z", - "iopub.status.idle": "2024-07-18T04:05:40.363119Z", - "shell.execute_reply": "2024-07-18T04:05:40.362545Z" + "iopub.execute_input": "2024-07-30T16:35:49.587886Z", + "iopub.status.busy": "2024-07-30T16:35:49.587314Z", + "iopub.status.idle": "2024-07-30T16:35:50.063963Z", + "shell.execute_reply": "2024-07-30T16:35:50.063372Z" } }, "outputs": [ @@ -1233,7 +1239,7 @@ "\n", "\n", "\n", - "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.5 \n", + "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1 \n", "------------------ low_information images ------------------\n", "\n", "Number of examples with this issue: 166\n", @@ -1293,10 +1299,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.365503Z", - "iopub.status.busy": "2024-07-18T04:05:40.365120Z", - "iopub.status.idle": "2024-07-18T04:05:40.427219Z", - "shell.execute_reply": "2024-07-18T04:05:40.426389Z" + "iopub.execute_input": "2024-07-30T16:35:50.066551Z", + "iopub.status.busy": "2024-07-30T16:35:50.065928Z", + "iopub.status.idle": "2024-07-30T16:35:50.128967Z", + "shell.execute_reply": "2024-07-30T16:35:50.128437Z" } }, "outputs": [ @@ -1400,10 +1406,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.429398Z", - "iopub.status.busy": "2024-07-18T04:05:40.428968Z", - "iopub.status.idle": "2024-07-18T04:05:40.437542Z", - "shell.execute_reply": "2024-07-18T04:05:40.437085Z" + "iopub.execute_input": "2024-07-30T16:35:50.131433Z", + "iopub.status.busy": "2024-07-30T16:35:50.130978Z", + "iopub.status.idle": "2024-07-30T16:35:50.141475Z", + "shell.execute_reply": "2024-07-30T16:35:50.140991Z" } }, "outputs": [ @@ -1533,10 +1539,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.439398Z", - "iopub.status.busy": "2024-07-18T04:05:40.439226Z", - "iopub.status.idle": "2024-07-18T04:05:40.443724Z", - "shell.execute_reply": "2024-07-18T04:05:40.443274Z" + "iopub.execute_input": "2024-07-30T16:35:50.143638Z", + "iopub.status.busy": "2024-07-30T16:35:50.143453Z", + "iopub.status.idle": "2024-07-30T16:35:50.148446Z", + "shell.execute_reply": "2024-07-30T16:35:50.147959Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1588,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.445775Z", - "iopub.status.busy": "2024-07-18T04:05:40.445449Z", - "iopub.status.idle": "2024-07-18T04:05:40.937446Z", - "shell.execute_reply": "2024-07-18T04:05:40.936903Z" + "iopub.execute_input": "2024-07-30T16:35:50.150589Z", + "iopub.status.busy": "2024-07-30T16:35:50.150254Z", + "iopub.status.idle": "2024-07-30T16:35:50.655702Z", + "shell.execute_reply": "2024-07-30T16:35:50.655117Z" } }, "outputs": [ @@ -1620,10 +1626,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.939591Z", - "iopub.status.busy": "2024-07-18T04:05:40.939250Z", - "iopub.status.idle": "2024-07-18T04:05:40.947145Z", - "shell.execute_reply": "2024-07-18T04:05:40.946558Z" + "iopub.execute_input": "2024-07-30T16:35:50.658180Z", + "iopub.status.busy": "2024-07-30T16:35:50.657804Z", + "iopub.status.idle": "2024-07-30T16:35:50.666671Z", + "shell.execute_reply": "2024-07-30T16:35:50.666179Z" } }, "outputs": [ @@ -1790,10 +1796,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.949355Z", - "iopub.status.busy": "2024-07-18T04:05:40.949021Z", - "iopub.status.idle": "2024-07-18T04:05:40.956013Z", - "shell.execute_reply": "2024-07-18T04:05:40.955573Z" + "iopub.execute_input": "2024-07-30T16:35:50.668871Z", + "iopub.status.busy": "2024-07-30T16:35:50.668531Z", + "iopub.status.idle": "2024-07-30T16:35:50.675953Z", + "shell.execute_reply": "2024-07-30T16:35:50.675476Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1875,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.957854Z", - "iopub.status.busy": "2024-07-18T04:05:40.957563Z", - "iopub.status.idle": "2024-07-18T04:05:41.700271Z", - "shell.execute_reply": "2024-07-18T04:05:41.699684Z" + "iopub.execute_input": "2024-07-30T16:35:50.677971Z", + "iopub.status.busy": "2024-07-30T16:35:50.677635Z", + "iopub.status.idle": "2024-07-30T16:35:51.461209Z", + "shell.execute_reply": "2024-07-30T16:35:51.460595Z" } }, "outputs": [ @@ -1909,10 +1915,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.702563Z", - "iopub.status.busy": "2024-07-18T04:05:41.702218Z", - "iopub.status.idle": "2024-07-18T04:05:41.717782Z", - "shell.execute_reply": "2024-07-18T04:05:41.717223Z" + "iopub.execute_input": "2024-07-30T16:35:51.463335Z", + "iopub.status.busy": "2024-07-30T16:35:51.463157Z", + "iopub.status.idle": "2024-07-30T16:35:51.478468Z", + "shell.execute_reply": "2024-07-30T16:35:51.477939Z" } }, "outputs": [ @@ -2069,10 +2075,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.720064Z", - "iopub.status.busy": "2024-07-18T04:05:41.719741Z", - "iopub.status.idle": "2024-07-18T04:05:41.725292Z", - "shell.execute_reply": "2024-07-18T04:05:41.724826Z" + "iopub.execute_input": "2024-07-30T16:35:51.480643Z", + "iopub.status.busy": "2024-07-30T16:35:51.480298Z", + "iopub.status.idle": "2024-07-30T16:35:51.486080Z", + "shell.execute_reply": "2024-07-30T16:35:51.485499Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2123,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.727255Z", - "iopub.status.busy": "2024-07-18T04:05:41.726947Z", - "iopub.status.idle": "2024-07-18T04:05:42.108095Z", - "shell.execute_reply": "2024-07-18T04:05:42.107541Z" + "iopub.execute_input": "2024-07-30T16:35:51.488104Z", + "iopub.status.busy": "2024-07-30T16:35:51.487778Z", + "iopub.status.idle": "2024-07-30T16:35:51.924919Z", + "shell.execute_reply": "2024-07-30T16:35:51.924107Z" } }, "outputs": [ @@ -2202,10 +2208,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.110467Z", - "iopub.status.busy": "2024-07-18T04:05:42.110297Z", - "iopub.status.idle": "2024-07-18T04:05:42.119483Z", - "shell.execute_reply": "2024-07-18T04:05:42.118929Z" + "iopub.execute_input": "2024-07-30T16:35:51.927416Z", + "iopub.status.busy": "2024-07-30T16:35:51.927225Z", + "iopub.status.idle": "2024-07-30T16:35:51.936102Z", + "shell.execute_reply": "2024-07-30T16:35:51.935657Z" } }, "outputs": [ @@ -2230,47 +2236,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2333,10 +2339,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.121840Z", - "iopub.status.busy": "2024-07-18T04:05:42.121675Z", - "iopub.status.idle": "2024-07-18T04:05:42.127275Z", - "shell.execute_reply": "2024-07-18T04:05:42.126719Z" + "iopub.execute_input": "2024-07-30T16:35:51.938423Z", + "iopub.status.busy": "2024-07-30T16:35:51.938102Z", + "iopub.status.idle": "2024-07-30T16:35:51.942887Z", + "shell.execute_reply": "2024-07-30T16:35:51.942471Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2379,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.129465Z", - "iopub.status.busy": "2024-07-18T04:05:42.129300Z", - "iopub.status.idle": "2024-07-18T04:05:42.307685Z", - "shell.execute_reply": "2024-07-18T04:05:42.307222Z" + "iopub.execute_input": "2024-07-30T16:35:51.944959Z", + "iopub.status.busy": "2024-07-30T16:35:51.944785Z", + "iopub.status.idle": "2024-07-30T16:35:52.122597Z", + "shell.execute_reply": "2024-07-30T16:35:52.121954Z" } }, "outputs": [ @@ -2418,10 +2424,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.310041Z", - "iopub.status.busy": "2024-07-18T04:05:42.309876Z", - "iopub.status.idle": "2024-07-18T04:05:42.317464Z", - "shell.execute_reply": "2024-07-18T04:05:42.317044Z" + "iopub.execute_input": "2024-07-30T16:35:52.124950Z", + "iopub.status.busy": "2024-07-30T16:35:52.124756Z", + "iopub.status.idle": "2024-07-30T16:35:52.135215Z", + "shell.execute_reply": "2024-07-30T16:35:52.134594Z" } }, "outputs": [ @@ -2507,10 +2513,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.319520Z", - "iopub.status.busy": "2024-07-18T04:05:42.319216Z", - "iopub.status.idle": "2024-07-18T04:05:42.488104Z", - "shell.execute_reply": "2024-07-18T04:05:42.487720Z" + "iopub.execute_input": "2024-07-30T16:35:52.137816Z", + "iopub.status.busy": "2024-07-30T16:35:52.137602Z", + "iopub.status.idle": "2024-07-30T16:35:52.311705Z", + "shell.execute_reply": "2024-07-30T16:35:52.311080Z" } }, "outputs": [ @@ -2550,10 +2556,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.490200Z", - "iopub.status.busy": "2024-07-18T04:05:42.489883Z", - "iopub.status.idle": "2024-07-18T04:05:42.494879Z", - "shell.execute_reply": "2024-07-18T04:05:42.494374Z" + "iopub.execute_input": "2024-07-30T16:35:52.314392Z", + "iopub.status.busy": "2024-07-30T16:35:52.313905Z", + "iopub.status.idle": "2024-07-30T16:35:52.318429Z", + "shell.execute_reply": "2024-07-30T16:35:52.317890Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2596,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "025a1c24bb1742378b7e895247166823": { + "0013256c6393414d897e747fbb692b2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2649,88 @@ "width": null } }, - "03829977c9ce4072b8e6be2abf9c81d1": { + "004fcea71628418685555fb760dec429": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6826340ac4a7479cb63a98919d60e1b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcd9b7afd17f44798d2064cf5a3862de", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "0119a979303348feaf5374a2e7f3b418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7d9dcc168074809a9f461109ae607c0", + "placeholder": "​", + "style": "IPY_MODEL_e4613e030b794d219b1926a1e5b67f63", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" + } + }, + "01972cf3b8f94fab866c986e21f7f91f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "035a0174785c4ed3bb69dcff3281ef55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06d84d61f0474ccabad6fb12d0aa215b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,7 +2783,25 @@ "width": null } }, - "067d787b02cd4f76a7ad8e7caaa198dd": { + "08618be7a9234af1a5348de326d6418b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0af0baad7c99404cbce2f5872c14531d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,7 +2854,7 @@ "width": null } }, - "06e5b497708943179a656ffcb7a430e9": { + "0b1ef64e0ea844c4a0efed4b089ecc5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2764,15 +2869,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff6c65a3e52748a9a9493f576321c597", + "layout": "IPY_MODEL_3123f857e00343f4bd9235d4bafc70bf", "placeholder": "​", - "style": "IPY_MODEL_43b68727ad8347a984bc34cf61b6c807", + "style": "IPY_MODEL_166f4e2b87384d8f94272fd75e017ce1", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "100%" + } + }, + "0ca0287b646c497e8e812ef207ee400f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a502ea89a10b4d3f8b810850b097c4c8", + "placeholder": "​", + "style": "IPY_MODEL_106a78e01b744c7e853e027a36ffe806", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1209.26it/s]" + } + }, + "0ccaafe3fa3d4248819d0a351c6afed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60e6b313ac404eb49b45082ef785605e", + "placeholder": "​", + "style": "IPY_MODEL_60cd2aa7a8ab4eadbcc00cf551cf13f2", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "0747ae38449040eaa67d2ed970cd5a19": { + "0db4b028aefb4687827337f7e184db65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2941,30 @@ "text_color": null } }, - "084065e8d6e54783a4303357eca88b12": { + "0f32fa1658214a03a0e7b355268571f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9c9176e7a0b4f09b751df8cc4e0666a", + "placeholder": "​", + "style": "IPY_MODEL_480213636d724918930198d0a10688df", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0f477d12bbbc409caed9b4d8a9bcc695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +3017,7 @@ "width": null } }, - "0850e868cb924126a2f32e6fd18a0743": { + "106a78e01b744c7e853e027a36ffe806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2861,7 +3035,30 @@ "text_color": null } }, - "0acca4d1618941bcac99b7038a2c0d3c": { + "116f6fc2329645d68a83663b5feb94ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67da9cc8d08944909f459041ea4e201e", + "placeholder": "​", + "style": "IPY_MODEL_be62105b70444309b42629557d23dd31", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "15aa61db4cc44bdc991db5521f2fa425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2914,7 +3111,77 @@ "width": null } }, - "0edf2b48b11e4a86915c9187956e4679": { + "166f4e2b87384d8f94272fd75e017ce1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16ff670713eb4f70a0cc1728a34d5452": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f477d12bbbc409caed9b4d8a9bcc695", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d8bc20fd5c14f0b8fe44ed387e39400", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "184ad9317d854ba1a1ced110910cca10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d8be42381424e8386712e589902ea33", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d3edf2e39d944c09f3fbef854866461", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "194f679dc6e14a978e8925bb038e3793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2967,10 +3234,60 @@ "width": null } }, - "109ee4ce035b4358b7b3c6db518278b8": { - "model_module": "@jupyter-widgets/base", + "19a5e3a37b304b559df2c5101035122f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_798557df3a2647b7986d02dc545587b8", + "IPY_MODEL_1ebb404b2871496886508c42693e8007", + "IPY_MODEL_4247f90a7e514d59a156a29ddfc979bc" + ], + "layout": "IPY_MODEL_7b0284c026ce41ef999e0bad78664f3a", + "tabbable": null, + "tooltip": null + } + }, + "1d157e6477da483192d99d6ea6dc4738": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50def53d0bfc4f10b462dc84ac9d3884", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ee495dc542a4878b7b0589a8865264f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1e1a87a8a45e4b57adf13faea5793824": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3020,130 +3337,73 @@ "width": null } }, - "11f1bfd4003047d5a2d688fd05dbfec5": { + "1e7ed9a8db3f47d499c32f8ab98695a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa0b775e48fa44f1a13511452bc20105", - "placeholder": "​", - "style": "IPY_MODEL_5bee064f7e584882bfaab2c78499c5c0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f32fa1658214a03a0e7b355268571f9", + "IPY_MODEL_fabe89de1f3f41f493f2490c661f6d02", + "IPY_MODEL_5868a22f8e0e413da7cdf7bc7c8f6baf" + ], + "layout": "IPY_MODEL_82a91f795cc0496d884607edf4c43169", "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "13469b245a7849b881b3d6c14cd95835": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "150eec890513431c81f66688c32bbc6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1581d2e68d7847108100e4a2b1f305b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "1587aaca6e464ecda853c67dcb3a281c": { + "1ebb404b2871496886508c42693e8007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adf412eb248c4f4fb9faef6c838f7aeb", - "placeholder": "​", - "style": "IPY_MODEL_94ddb00bb597452babe24c7d7822cb8a", + "layout": "IPY_MODEL_4718f5d7ff96463c8fc9e38bcb1d4f84", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57c02383588c4f38bf7a1f4d6e862131", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:06<00:00, 8817.84 examples/s]" + "value": 40.0 } }, - "15f53d41e91b426491e177d9300adb8f": { + "1ee495dc542a4878b7b0589a8865264f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b6fdaf81a0e41419555be8c52d508ed", - "placeholder": "​", - "style": "IPY_MODEL_7e59bedd02fd4768bb6dead5e34e5fa8", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1644281bdd9d45ae84dafdfa9b69beb7": { + "1ff7f1a37c2a45dcb7598e70cf6710d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3161,7 +3421,7 @@ "text_color": null } }, - "16715418ff784f57a5c29074b9ea7029": { + "213272b1b45445c7b3f2b35602fa31b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3214,41 +3474,7 @@ "width": null } }, - "173da0035c2643149768ea84c79d308c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1998eff58e854928a588ea6f29ea7801": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1fe45791ce3a4396915402cc63026c86": { + "21c7629462754933abb55f66fa8af51e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3301,7 +3527,31 @@ "width": null } }, - "205091d3502f413c917b57d35126bb95": { + "21d92163462b4f67a981a814fcb48508": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_365106e243354786ba305456bcfe36bb", + "IPY_MODEL_50051443ed9e43948d3f683823437ef4", + "IPY_MODEL_97665d87bb634843b13c86ccc743aab1" + ], + "layout": "IPY_MODEL_d9fce56a4501415dbadef0b6597c3c59", + "tabbable": null, + "tooltip": null + } + }, + "2276743b098540579a44bab387084257": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3354,7 +3604,7 @@ "width": null } }, - "20a77e64b07f4fdb8cbb2d169fc358bc": { + "22a0669e75de415dac70a25c5054d25b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3407,51 +3657,7 @@ "width": null } }, - "20b34901440345ca9ec063e5e02dba7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acac1db8cce54dc9a77b6b7e8495e062", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_340ae5071beb49d599ddbad4c6196ee1", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "215bfd67d9674bb59f77787a88426436": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21ee233f699541d78b4c166f75263571": { + "22b2d39a70b04bfeb7943490bd911b90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3504,7 +3710,7 @@ "width": null } }, - "2490647e9e444afea9456e2607fabf83": { + "23c83cfb62484a5aa0c6f3daa481f042": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3557,143 +3763,110 @@ "width": null } }, - "254d4a9aeb4b4b55abccd1e20ac55fc0": { + "24bcebdd6f9f41bb84c60f2b915efbc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aee010ee679c45a6b71fd152c945c80c", - "placeholder": "​", - "style": "IPY_MODEL_7764019fa11d43f39c2e1c60bf728582", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "269aeaa9341f4f97a704b8b36e768e01": { + "24daedc2073f4af4960d8c11c761dfdc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_025a1c24bb1742378b7e895247166823", - "placeholder": "​", - "style": "IPY_MODEL_821f19b478024465b3abc71264fc248f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.06it/s]" - } - }, - "26f7f5bb3feb4b209e3f81a4c1843e33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "274041d096514b7b94c33fe5dab1cb25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03829977c9ce4072b8e6be2abf9c81d1", - "placeholder": "​", - "style": "IPY_MODEL_0850e868cb924126a2f32e6fd18a0743", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "bar_color": null, + "description_width": "" } }, - "2ca67e4598ed4ef1bf1090dd216d6eee": { - "model_module": "@jupyter-widgets/controls", + "274b94c3c9414616afaa8d88d50ed39a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbeabefbeaa64d04a806c1856623bc1c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c7bc6372bc4f480ca03f7a39c8b9ca60", - "tabbable": null, - "tooltip": null, - "value": 4.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f52558eef5a4b28a94aafab88303832": { + "28a88184c039419c865f50a0132f936e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0acca4d1618941bcac99b7038a2c0d3c", - "placeholder": "​", - "style": "IPY_MODEL_150eec890513431c81f66688c32bbc6c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.87it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f8c307c65924ee584e38d06585146ef": { + "29ad3993f94346419af35928193d2eb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3746,33 +3919,31 @@ "width": null } }, - "301547355b334e17a9b1c044d70ec23b": { + "29ade62a53ac448198f24b5900001b05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21ee233f699541d78b4c166f75263571", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a2c944eb1e104ff1937ecfaae2893cfd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e2c7cda7d9b4df4a04a6753ab931f09", + "IPY_MODEL_4ba04e6400bf4886bd6115b9e964954f", + "IPY_MODEL_585a8b54491d4c409958f8e777013c6d" + ], + "layout": "IPY_MODEL_274b94c3c9414616afaa8d88d50ed39a", "tabbable": null, - "tooltip": null, - "value": 29515.0 + "tooltip": null } }, - "30b0eb3dc72a4f1b9697396466fae05a": { + "2ab5cadb30864d4bb423984588e08dc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3825,7 +3996,7 @@ "width": null } }, - "336eeae1ed694f72bc2769cf4f87f020": { + "2c4d2a0d6acb4e3890230f3c2c9bfe68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3878,23 +4049,25 @@ "width": null } }, - "340ae5071beb49d599ddbad4c6196ee1": { + "2d6fb7b4b561449a9dee9ff41aedb47f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3557e96d08c141d6bf425f8b00e3b421": { + "2e0328d5e45b46aab2d236490c3e32c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3912,7 +4085,7 @@ "text_color": null } }, - "35a8bc22117549fb80c22a49630cdf6d": { + "2e2c7cda7d9b4df4a04a6753ab931f09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3927,31 +4100,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_815a04a1f0884b2c83b2190ca1006c89", + "layout": "IPY_MODEL_554c4f5cf7704bc59bac43290853c47f", "placeholder": "​", - "style": "IPY_MODEL_173da0035c2643149768ea84c79d308c", + "style": "IPY_MODEL_ca407d230f484390a47362031adf31b7", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.64MB/s]" + "value": "Downloading data: 100%" + } + }, + "2ea002ba5ef6449d8d22840ba751df3c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3701815c9598434184badd22e50840c2": { + "303be7344e754dc0b81cc4362585ad42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "382afbc9ffd4441e9f689c27fbeb411d": { + "3123f857e00343f4bd9235d4bafc70bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4004,30 +4232,25 @@ "width": null } }, - "38866248116c466c87d72da1e9250e42": { + "35038d2d13684a2a91ad7feed779f096": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_382afbc9ffd4441e9f689c27fbeb411d", - "placeholder": "​", - "style": "IPY_MODEL_9e478de77c4e4c76aa96aa4b7595836f", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a234f95cf424e59b72989dcf062fd9e": { + "365106e243354786ba305456bcfe36bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4042,15 +4265,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a56bbbdacce14f949c4fcb81f9764b4e", + "layout": "IPY_MODEL_c47e19aac35c46eb9cad874bb2fde728", "placeholder": "​", - "style": "IPY_MODEL_7d71c9468e114abaa87e0fe1fb97a4e2", + "style": "IPY_MODEL_35038d2d13684a2a91ad7feed779f096", "tabbable": null, "tooltip": null, "value": "100%" } }, - "3a46d8405e3b4ef6ab3050c545de700f": { + "3704b910152b45dc924bb624c0ee95f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4065,15 +4288,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e53edb735bc049319576eca58e1bdbfe", + "layout": "IPY_MODEL_605c839bcc484635bec417281648e724", "placeholder": "​", - "style": "IPY_MODEL_5e1780cff25847e4a05d1502dfde56cd", + "style": "IPY_MODEL_0db4b028aefb4687827337f7e184db65", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 4.83k/4.83k [00:00<00:00, 594kB/s]" } }, - "3a6de9ee60874688addbc81ffee23089": { + "3b6ea79aef284f04a18098981d12f5e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4126,68 +4349,16 @@ "width": null } }, - "3a7f6b08a8134701aaa1be5a8ca7d7b0": { - "model_module": "@jupyter-widgets/controls", + "418123f93e554dba92a9656f5d7cee79": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ed1b8d025ba74579ba0469452c32b071", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fa54871983cc4f06913c94c644a0a55c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "3dfcdb1321bf4eed84bd120b118452f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3046446726f4433b4970c929c396889", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f2ff897ffb24e3992ffcbfed9738f79", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3ecf932245c4495887d4997a395a3d24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4231,59 +4402,56 @@ "width": null } }, - "3f1c062ac1a64a30b28682f4b271dbd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "43049d6b1ad7404f94287db340c9aeb3": { + "4247f90a7e514d59a156a29ddfc979bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9eaf779387934026b193e48e9bb55a86", + "placeholder": "​", + "style": "IPY_MODEL_2e0328d5e45b46aab2d236490c3e32c0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.22it/s]" } }, - "43b68727ad8347a984bc34cf61b6c807": { + "43ffe5059e7e475ebc29e46493f6aaa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b578fa4f2c45411b949fd41b642899ec", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54d3aef6e7d041718cf3822974717221", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "4491a7f34d5f47d4a183a6ece2f9f802": { + "465e03a22e1f4b66b9a21c2e90039525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4336,7 +4504,33 @@ "width": null } }, - "459091439ddb4761bb7ea9c603198f52": { + "46b2604d41d1439898a0f49c0ba53f78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_884c1f18b9ab4af49db7098fea18ef3d", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9078ad04df284aceade5e9637028e264", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "4718f5d7ff96463c8fc9e38bcb1d4f84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4389,7 +4583,7 @@ "width": null } }, - "45bc614770ee446da94cd6e5e3b53e84": { + "4800d17f20734ee3900349a11b2585dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4404,32 +4598,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_50d424b65d9b4492a12ca099d54fc1f4", - "IPY_MODEL_2ca67e4598ed4ef1bf1090dd216d6eee", - "IPY_MODEL_691c9e9681af4665b83d5a5f4a60f0a0" + "IPY_MODEL_0ccaafe3fa3d4248819d0a351c6afed7", + "IPY_MODEL_cc7c41fca7e14c8384b2ce49dac60516", + "IPY_MODEL_83644b7829034008a0cf8f0a63589d9c" ], - "layout": "IPY_MODEL_b387ae2ecb0d4fa284927960c0cc983c", + "layout": "IPY_MODEL_06d84d61f0474ccabad6fb12d0aa215b", "tabbable": null, "tooltip": null } }, - "45e4cdedfd994fa68ebf275fc19c2b0e": { + "480213636d724918930198d0a10688df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "48f43503f3ab4823b8198939eddc905f": { + "4a320115b97a42bd89dd7903073750fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4482,7 +4678,7 @@ "width": null } }, - "4a03705dc29f4e0393edb513f1d529d6": { + "4a6f02046de3424183282c1ef1a1321c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4535,7 +4731,67 @@ "width": null } }, - "4e90596536664b249241df80a239815d": { + "4ba04e6400bf4886bd6115b9e964954f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21c7629462754933abb55f66fa8af51e", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_035a0174785c4ed3bb69dcff3281ef55", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "4be2bfe6a47d40969d0226111c98ad2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c1a2e32c7124951b219b1f250f77e8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f219139576c49c8b25a132eec1c1644": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4588,62 +4844,33 @@ "width": null } }, - "4f29d1b13e6546fdbce0fd55462b8638": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f2ff897ffb24e3992ffcbfed9738f79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "50d424b65d9b4492a12ca099d54fc1f4": { + "50051443ed9e43948d3f683823437ef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_777a3f5a37e44119b42044aa9ab7731f", - "placeholder": "​", - "style": "IPY_MODEL_215bfd67d9674bb59f77787a88426436", + "layout": "IPY_MODEL_886c2364549848efa14fa9cf9f8ebde8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c1a2e32c7124951b219b1f250f77e8e", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": 40.0 } }, - "52b7ca925a40402cbfd35b32fcb21eab": { + "50def53d0bfc4f10b462dc84ac9d3884": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4696,7 +4923,23 @@ "width": null } }, - "52c407789081499caa67c8e86db71772": { + "54d3aef6e7d041718cf3822974717221": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54f8cf66c9fb4adfb6053467fa1dd06a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4749,7 +4992,7 @@ "width": null } }, - "532ca127e03f4a56be8b301c45c8c80a": { + "554c4f5cf7704bc59bac43290853c47f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4802,152 +5045,124 @@ "width": null } }, - "5bee064f7e584882bfaab2c78499c5c0": { + "56e6cb6825cc46a2918ad113792fcfad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_418123f93e554dba92a9656f5d7cee79", + "placeholder": "​", + "style": "IPY_MODEL_973ecb943cf94facbeaff08a43b11a14", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 791kB/s]" } }, - "5e1780cff25847e4a05d1502dfde56cd": { + "57c02383588c4f38bf7a1f4d6e862131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5f530614d3ef42ec8689f11c454b4e38": { - "model_module": "@jupyter-widgets/base", + "57f0147d0b40481487ead645778ad6f0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f6a6c71bb6e4541a581f4f3310c0e87": { + "57fdb406a0104c008712f455671416ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d144627d3cf144deb4f911cb6eb89f6d", - "IPY_MODEL_3dfcdb1321bf4eed84bd120b118452f8", - "IPY_MODEL_c73ffe3904c64a1d828761cd31677884" - ], - "layout": "IPY_MODEL_4491a7f34d5f47d4a183a6ece2f9f802", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "646ee45635c84ed2ba977b9283df8062": { + "585a8b54491d4c409958f8e777013c6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70fd4c0942f949219503830958a45c03", + "placeholder": "​", + "style": "IPY_MODEL_a5bb522450e449f9b7e10fcb83ff9537", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" } }, - "65118b91fbf545009ceabf5f2215d7c8": { + "5868a22f8e0e413da7cdf7bc7c8f6baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_804696d71f5c428aa77920387c9f13ab", + "placeholder": "​", + "style": "IPY_MODEL_80dbd77206334fa4a9255057329a0f43", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:39<00:00, 1541.50it/s]" } }, - "66fa9f08729d4807b8b59132e63080ae": { + "5a01deaf41c841cab934b678df22a7e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4963,40 +5178,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd1982fee53e41bf8c0bc0f8e25d67cd", - "max": 60000.0, + "layout": "IPY_MODEL_54f8cf66c9fb4adfb6053467fa1dd06a", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f1c062ac1a64a30b28682f4b271dbd7", + "style": "IPY_MODEL_c5138f4ab850429ba23c48fd5efae242", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 4833.0 } }, - "691c9e9681af4665b83d5a5f4a60f0a0": { + "5d8bc20fd5c14f0b8fe44ed387e39400": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e90596536664b249241df80a239815d", - "placeholder": "​", - "style": "IPY_MODEL_bda9f12523974ede82995084618a87bf", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1327.21it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b6fdaf81a0e41419555be8c52d508ed": { + "605c839bcc484635bec417281648e724": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,80 +5257,7 @@ "width": null } }, - "6b957d1d9fbe463c98ae7c1b63332490": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e89df2d6769046448524cb6ff6d00f02", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8080183439e1485986625a2e6cdd9f17", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "6cc5976d20884235b934ecfaa7687b01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef0edb3177c64147a8b62f9aca23f99c", - "IPY_MODEL_bf56c0b8f25e4c3d87a253bfad346268", - "IPY_MODEL_2f52558eef5a4b28a94aafab88303832" - ], - "layout": "IPY_MODEL_16715418ff784f57a5c29074b9ea7029", - "tabbable": null, - "tooltip": null - } - }, - "6cc9e9f5b5f744df91fff7ff46d05237": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78e51bbf4d5a427b8fb703c563744189", - "placeholder": "​", - "style": "IPY_MODEL_6e4f7d2fbb4c4adc99a94e235b9692ab", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.63it/s]" - } - }, - "6e4f7d2fbb4c4adc99a94e235b9692ab": { + "60cd2aa7a8ab4eadbcc00cf551cf13f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5140,31 +5275,7 @@ "text_color": null } }, - "6ff98a3cd12749eaa0f172837c5ee79f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a46d8405e3b4ef6ab3050c545de700f", - "IPY_MODEL_76c4b91db604478992590636065720b1", - "IPY_MODEL_87b028711ed941708ca088dffd622180" - ], - "layout": "IPY_MODEL_1fe45791ce3a4396915402cc63026c86", - "tabbable": null, - "tooltip": null - } - }, - "73dcccd22b3a4471aade8f07ecf349dd": { + "60e6b313ac404eb49b45082ef785605e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5217,51 +5328,23 @@ "width": null } }, - "744303da18fc4002b5679084cf39dc3d": { + "610a71ef770945809dc9f2e4b94664af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76c4b91db604478992590636065720b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_532ca127e03f4a56be8b301c45c8c80a", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef3c0c626f614525935057f6640fc612", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 + "bar_color": null, + "description_width": "" } }, - "7764019fa11d43f39c2e1c60bf728582": { + "61751669aa9c4b51923ed3a7deea7f56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5279,31 +5362,25 @@ "text_color": null } }, - "777602f50c1c472883ca1e491224fbf8": { + "61d0c2efb0824d70ac0138f650ac65ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdd378c59c5640b6b2e1303e4ed8ed50", - "IPY_MODEL_6b957d1d9fbe463c98ae7c1b63332490", - "IPY_MODEL_ca6152cc3c464dafa50d135c867685fd" - ], - "layout": "IPY_MODEL_fb66250e6795458bbd8d5ce9a9f1a7e2", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "777a3f5a37e44119b42044aa9ab7731f": { + "6443147e64204784b6b79779c4b0ece4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5356,7 +5433,30 @@ "width": null } }, - "78e51bbf4d5a427b8fb703c563744189": { + "6538276c3913471e82d12b7dfb5e849f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d68dfef9ba6d482e8e9c7a037d2c1ef7", + "placeholder": "​", + "style": "IPY_MODEL_ab22b295e4a042c898986f757b7461df", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 71.3MB/s]" + } + }, + "66018dbdfa8e4496b534e3d80379136d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,25 +5509,7 @@ "width": null } }, - "79885906947f4f9b85f31ff7b0a3799c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a10d96061fb4d3b9074e70ce47a0724": { + "67da9cc8d08944909f459041ea4e201e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5480,7 +5562,30 @@ "width": null } }, - "7b234ae1ceb8427797f558c31ebf01b7": { + "67df8310ec724197b5a903618210990a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ab5cadb30864d4bb423984588e08dc5", + "placeholder": "​", + "style": "IPY_MODEL_1ff7f1a37c2a45dcb7598e70cf6710d0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 51.58it/s]" + } + }, + "6826340ac4a7479cb63a98919d60e1b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5533,85 +5638,94 @@ "width": null } }, - "7b38470950be4ec5a60ad0cdb0fd2a04": { + "6aaa8d39274f4cfea54a66eb8516a06f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8a212a49ff945ff9d75a27df6f47bc6", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_65118b91fbf545009ceabf5f2215d7c8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f6229a7aab1d42ca8805f534935617d9", + "IPY_MODEL_f4570a2a6a834672b816a3c3c92674d9", + "IPY_MODEL_56e6cb6825cc46a2918ad113792fcfad" + ], + "layout": "IPY_MODEL_2276743b098540579a44bab387084257", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "7be2bd76bb3e43ab8575ac5f3be11436": { + "6b304bb9a46443e0bf010d5cb11b422e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c4d2a0d6acb4e3890230f3c2c9bfe68", + "placeholder": "​", + "style": "IPY_MODEL_61d0c2efb0824d70ac0138f650ac65ef", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "7d71c9468e114abaa87e0fe1fb97a4e2": { + "6c2f40cf42cc413e8b1040c82a085028": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8e2ad07a3434005b3e28de5674a34fc", + "IPY_MODEL_43ffe5059e7e475ebc29e46493f6aaa2", + "IPY_MODEL_82514eeb7db2422c95cbe913e49e59dd" + ], + "layout": "IPY_MODEL_4f219139576c49c8b25a132eec1c1644", + "tabbable": null, + "tooltip": null } }, - "7e59bedd02fd4768bb6dead5e34e5fa8": { + "6d3edf2e39d944c09f3fbef854866461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7e9be49f9e06426c88bb867124e54bec": { + "70c567e5ed4d420aa7f58a9bfe7d98f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5664,41 +5778,7 @@ "width": null } }, - "8080183439e1485986625a2e6cdd9f17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "80b7c84a674f4cc192d7ddb206ce9587": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "815a04a1f0884b2c83b2190ca1006c89": { + "70fd4c0942f949219503830958a45c03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5751,99 +5831,78 @@ "width": null } }, - "821f19b478024465b3abc71264fc248f": { - "model_module": "@jupyter-widgets/controls", + "728c63d0a7f54119aa080aaa6102d38f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8253b9a8b625435f97de457cdd8b57a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf9ca4c1eea74b6b8b5419ea32af2860", - "IPY_MODEL_833c3cf7167748a1be43b6b01af86798", - "IPY_MODEL_9d2f2202a4704fe9be836c005564d6db" - ], - "layout": "IPY_MODEL_52c407789081499caa67c8e86db71772", - "tabbable": null, - "tooltip": null - } - }, - "833c3cf7167748a1be43b6b01af86798": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2490647e9e444afea9456e2607fabf83", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1998eff58e854928a588ea6f29ea7801", - "tabbable": null, - "tooltip": null, - "value": 5148.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "83f24aa593964f26bcdc4ca9d1acb2c1": { + "74c23aa172ae42798ea320ca991b942f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_15f53d41e91b426491e177d9300adb8f", - "IPY_MODEL_84a6f8168b8b4b32b8aa43c974fb7038", - "IPY_MODEL_915f55e3b8e649c4b23552001f14d789" - ], - "layout": "IPY_MODEL_d75259c27bf347e3b718bbaedcdcfc45", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "84a6f8168b8b4b32b8aa43c974fb7038": { + "78e8cecb5a6641d5a9de69eb25af212d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5859,65 +5918,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9c1aff3dbc841dba1d6b9fa102c61e3", - "max": 60000.0, + "layout": "IPY_MODEL_66018dbdfa8e4496b534e3d80379136d", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f41c25f12ded4df5b01f2c30b33c91d8", + "style": "IPY_MODEL_610a71ef770945809dc9f2e4b94664af", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "84b77d23a1794224b69e4e95c7b2f83d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_274041d096514b7b94c33fe5dab1cb25", - "IPY_MODEL_66fa9f08729d4807b8b59132e63080ae", - "IPY_MODEL_1587aaca6e464ecda853c67dcb3a281c" - ], - "layout": "IPY_MODEL_f74fc0c6579e4010bf9d4fb96aa94b47", - "tabbable": null, - "tooltip": null + "value": 4422102.0 } }, - "84cc79fb8dfc4c8b9878470743351e05": { + "798557df3a2647b7986d02dc545587b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11f1bfd4003047d5a2d688fd05dbfec5", - "IPY_MODEL_20b34901440345ca9ec063e5e02dba7f", - "IPY_MODEL_ae9ac75e621744d397dc5c30167711d4" - ], - "layout": "IPY_MODEL_109ee4ce035b4358b7b3c6db518278b8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c64517cd44d84c8293b4115971217abf", + "placeholder": "​", + "style": "IPY_MODEL_f36e7eec2ef6494ea5dfe75f34bb946e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "85e0e62e6c744fde907b2153c35ae0ab": { + "7a2680bb83ca418e9bc7dd0bd7182858": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5933,40 +5967,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3ecf932245c4495887d4997a395a3d24", - "max": 40.0, + "layout": "IPY_MODEL_0af0baad7c99404cbce2f5872c14531d", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_45e4cdedfd994fa68ebf275fc19c2b0e", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "87b028711ed941708ca088dffd622180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e9be49f9e06426c88bb867124e54bec", - "placeholder": "​", - "style": "IPY_MODEL_9df5140f2d2d4e47a9ad9ce486454084", + "style": "IPY_MODEL_57fdb406a0104c008712f455671416ae", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 108MB/s]" + "value": 4.0 } }, - "898adcdaafa64a2d9fdb33f1732faa46": { + "7b0284c026ce41ef999e0bad78664f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6019,33 +6030,54 @@ "width": null } }, - "8b275dda5f4447a2abe3023d2fa37d8a": { + "7cd770708ca5498492377d6a0fd76616": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0119a979303348feaf5374a2e7f3b418", + "IPY_MODEL_5a01deaf41c841cab934b678df22a7e6", + "IPY_MODEL_3704b910152b45dc924bb624c0ee95f3" + ], + "layout": "IPY_MODEL_465e03a22e1f4b66b9a21c2e90039525", + "tabbable": null, + "tooltip": null + } + }, + "7d944b6142fa4b42a31040ba023cc921": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_de11909af9d94f1fbd44447d6a2da336", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_646ee45635c84ed2ba977b9283df8062", + "layout": "IPY_MODEL_8839fda3f07946ab99f1eff02138bef9", + "placeholder": "​", + "style": "IPY_MODEL_4be2bfe6a47d40969d0226111c98ad2c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:07<00:00, 8586.20 examples/s]" } }, - "8bfe63527ba741e48abbc03d2590020c": { + "7de7c4771e83468099e7dd5e21e3dc6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,43 +6130,7 @@ "width": null } }, - "8cac2b7b3ff94ad1a1599233df5e0376": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "91109e43749e484abb12f5549945289f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "915f55e3b8e649c4b23552001f14d789": { + "7f7fd12e202d45a4909d8a8ceaeebfa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6149,15 +6145,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4090ea7594b4008a1b1522b65b3b3d5", + "layout": "IPY_MODEL_3b6ea79aef284f04a18098981d12f5e7", "placeholder": "​", - "style": "IPY_MODEL_91109e43749e484abb12f5549945289f", + "style": "IPY_MODEL_eebb5bc624d34a7bb328172559a2334c", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:37<00:00, 1569.06it/s]" + "value": " 10000/10000 [00:01<00:00, 8543.66 examples/s]" } }, - "918570fe365c40839c1c0e55002a0ff6": { + "804696d71f5c428aa77920387c9f13ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6210,30 +6206,25 @@ "width": null } }, - "932c2344bdae4b169b685b28dd30c460": { + "806b07de0bfe4dc2b704114688fd1694": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f530614d3ef42ec8689f11c454b4e38", - "placeholder": "​", - "style": "IPY_MODEL_26f7f5bb3feb4b209e3f81a4c1843e33", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.46it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "94ddb00bb597452babe24c7d7822cb8a": { + "80dbd77206334fa4a9255057329a0f43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6251,25 +6242,30 @@ "text_color": null } }, - "9529efe107064cfeb676e7525d67a9ee": { + "82514eeb7db2422c95cbe913e49e59dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6443147e64204784b6b79779c4b0ece4", + "placeholder": "​", + "style": "IPY_MODEL_8a1fee4cdac341fd9b445fbcbffb8655", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.37it/s]" } }, - "9750ce6b87c449c689354e9ece51264e": { + "82a91f795cc0496d884607edf4c43169": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6322,7 +6318,30 @@ "width": null } }, - "99316e1c2ae44ccd9f09d41218cc069c": { + "83644b7829034008a0cf8f0a63589d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7de7c4771e83468099e7dd5e21e3dc6d", + "placeholder": "​", + "style": "IPY_MODEL_08618be7a9234af1a5348de326d6418b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 52.85it/s]" + } + }, + "83dffa805ce741a0bea9dd9b781586ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6375,7 +6394,7 @@ "width": null } }, - "9ba57d4a84d14735b80d998edbf99790": { + "840737321da24bfe8003332a0accc1cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6393,7 +6412,7 @@ "text_color": null } }, - "9d2f2202a4704fe9be836c005564d6db": { + "8555634c504d4027997abd8cfba7db7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6403,72 +6422,20 @@ "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6e97e358cd34f368251e09e1825d4b2", - "placeholder": "​", - "style": "IPY_MODEL_79885906947f4f9b85f31ff7b0a3799c", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 851kB/s]" - } - }, - "9df5140f2d2d4e47a9ad9ce486454084": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e478de77c4e4c76aa96aa4b7595836f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2c944eb1e104ff1937ecfaae2893cfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d9413cabdaf84f7c8e9a6c68232b43ae", + "placeholder": "​", + "style": "IPY_MODEL_c72bb5b65a6a48329cdc5dd5ef15e73d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6952.76 examples/s]" } }, - "a56bbbdacce14f949c4fcb81f9764b4e": { + "8839fda3f07946ab99f1eff02138bef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6521,7 +6488,7 @@ "width": null } }, - "a800ce83aee241cf976b279f20c603cc": { + "884c1f18b9ab4af49db7098fea18ef3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6574,33 +6541,7 @@ "width": null } }, - "a81d54c54031418ca8350d17d1b7e068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48f43503f3ab4823b8198939eddc905f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f29d1b13e6546fdbce0fd55462b8638", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "aa0b775e48fa44f1a13511452bc20105": { + "886c2364549848efa14fa9cf9f8ebde8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6653,7 +6594,216 @@ "width": null } }, - "acac1db8cce54dc9a77b6b7e8495e062": { + "8a1fee4cdac341fd9b445fbcbffb8655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8af1aec52aef434b81a22b708073556f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b1ef64e0ea844c4a0efed4b089ecc5e", + "IPY_MODEL_aa62616f2a584678acaa6072d7e59db6", + "IPY_MODEL_67df8310ec724197b5a903618210990a" + ], + "layout": "IPY_MODEL_4a320115b97a42bd89dd7903073750fa", + "tabbable": null, + "tooltip": null + } + }, + "9078ad04df284aceade5e9637028e264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "926846a8c6954c46acf37f4dd63e7eb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_116f6fc2329645d68a83663b5feb94ce", + "IPY_MODEL_78e8cecb5a6641d5a9de69eb25af212d", + "IPY_MODEL_6538276c3913471e82d12b7dfb5e849f" + ], + "layout": "IPY_MODEL_22b2d39a70b04bfeb7943490bd911b90", + "tabbable": null, + "tooltip": null + } + }, + "92906e8f1e224908beeb119e4f788514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83dffa805ce741a0bea9dd9b781586ec", + "placeholder": "​", + "style": "IPY_MODEL_faaac1dac8fa4eccb56fbb10b45393c3", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 111MB/s]" + } + }, + "96697881a93440babad369ae2e2fd4b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c8b3aec713be46d29ce76b2b35b3db44", + "IPY_MODEL_1d157e6477da483192d99d6ea6dc4738", + "IPY_MODEL_7d944b6142fa4b42a31040ba023cc921" + ], + "layout": "IPY_MODEL_9e2827b7c35b4ceea2534454dcbc9f13", + "tabbable": null, + "tooltip": null + } + }, + "973ecb943cf94facbeaff08a43b11a14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "97665d87bb634843b13c86ccc743aab1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0013256c6393414d897e747fbb692b2e", + "placeholder": "​", + "style": "IPY_MODEL_303be7344e754dc0b81cc4362585ad42", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.52it/s]" + } + }, + "9776abbe72d44baf86b75b8e6e2ec747": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a6f02046de3424183282c1ef1a1321c", + "placeholder": "​", + "style": "IPY_MODEL_806b07de0bfe4dc2b704114688fd1694", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "97cb96d8ca67417bb98eb22b83b67f3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d8be42381424e8386712e589902ea33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6706,7 +6856,7 @@ "width": null } }, - "adf412eb248c4f4fb9faef6c838f7aeb": { + "9e2827b7c35b4ceea2534454dcbc9f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6759,30 +6909,25 @@ "width": null } }, - "ae9ac75e621744d397dc5c30167711d4": { + "9e819f5dcbd74990a4ed32e6c6f49d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b234ae1ceb8427797f558c31ebf01b7", - "placeholder": "​", - "style": "IPY_MODEL_43049d6b1ad7404f94287db340c9aeb3", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.49MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aee010ee679c45a6b71fd152c945c80c": { + "9eaf779387934026b193e48e9bb55a86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6828,40 +6973,14 @@ "object_position": null, "order": null, "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "af3b2a90dd80499684e447a5b6241215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73dcccd22b3a4471aade8f07ecf349dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7be2bd76bb3e43ab8575ac5f3be11436", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b387ae2ecb0d4fa284927960c0cc983c": { + "a13807ee4fd84d609c078799a117b6c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6914,7 +7033,31 @@ "width": null } }, - "b9c1aff3dbc841dba1d6b9fa102c61e3": { + "a2738be416ce480c95fff046962f1137": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9776abbe72d44baf86b75b8e6e2ec747", + "IPY_MODEL_184ad9317d854ba1a1ced110910cca10", + "IPY_MODEL_d5b6ab4287134b9b8225c58b595314d0" + ], + "layout": "IPY_MODEL_2ea002ba5ef6449d8d22840ba751df3c", + "tabbable": null, + "tooltip": null + } + }, + "a28b02ad590c40019d88dd42a2c3e05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6967,74 +7110,7 @@ "width": null } }, - "bda9f12523974ede82995084618a87bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "beae343f221d429f9b051d96e0a519a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_336eeae1ed694f72bc2769cf4f87f020", - "placeholder": "​", - "style": "IPY_MODEL_fc65da9484aa4360a3e81eeeaed7602a", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "bf56c0b8f25e4c3d87a253bfad346268": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1b203fa45024375baf53c4d636634be", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3701815c9598434184badd22e50840c2", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "c23f3fd913e041ff9dc793bab0c07461": { + "a502ea89a10b4d3f8b810850b097c4c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7087,7 +7163,7 @@ "width": null } }, - "c250df04e89441f3b2fb0415786aed4d": { + "a5bb522450e449f9b7e10fcb83ff9537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7105,92 +7181,31 @@ "text_color": null } }, - "c4d9581d15d44748bfde9b08de4c39b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52b7ca925a40402cbfd35b32fcb21eab", - "placeholder": "​", - "style": "IPY_MODEL_80b7c84a674f4cc192d7ddb206ce9587", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8795.27 examples/s]" - } - }, - "c63438660f6e44098700b6a7883e3079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4369c3fd52e483db5b9a6e8e352cb07", - "placeholder": "​", - "style": "IPY_MODEL_13469b245a7849b881b3d6c14cd95835", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "c73ffe3904c64a1d828761cd31677884": { + "a6e2987ba28d48c28d884b33288562df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a10d96061fb4d3b9074e70ce47a0724", - "placeholder": "​", - "style": "IPY_MODEL_9ba57d4a84d14735b80d998edbf99790", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac29494915a144d3970c7c69d41b68c3", + "IPY_MODEL_46b2604d41d1439898a0f49c0ba53f78", + "IPY_MODEL_92906e8f1e224908beeb119e4f788514" + ], + "layout": "IPY_MODEL_a28b02ad590c40019d88dd42a2c3e05a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.71it/s]" - } - }, - "c7bc6372bc4f480ca03f7a39c8b9ca60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "c8a212a49ff945ff9d75a27df6f47bc6": { + "a9da43a6101a4854b4273cf805b61e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7243,77 +7258,7 @@ "width": null } }, - "ca6152cc3c464dafa50d135c867685fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a6de9ee60874688addbc81ffee23089", - "placeholder": "​", - "style": "IPY_MODEL_cf06b386d62f4c379f61ecfc6a69b6ee", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 80.1MB/s]" - } - }, - "cd84ca093c2d4c798af38ceb71e1eb00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_067d787b02cd4f76a7ad8e7caaa198dd", - "placeholder": "​", - "style": "IPY_MODEL_3557e96d08c141d6bf425f8b00e3b421", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 619kB/s]" - } - }, - "ce1365ddf37d4fd386cefbbc32a2b2a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da3f69b98a094123abd8fb2b604ce6f2", - "IPY_MODEL_8b275dda5f4447a2abe3023d2fa37d8a", - "IPY_MODEL_269aeaa9341f4f97a704b8b36e768e01" - ], - "layout": "IPY_MODEL_4a03705dc29f4e0393edb513f1d529d6", - "tabbable": null, - "tooltip": null - } - }, - "cf06b386d62f4c379f61ecfc6a69b6ee": { + "aa4c4e45414a4a46a86dfc2a94bebb72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7331,78 +7276,51 @@ "text_color": null } }, - "cf776da7e61c45d184a4ccbaec7843e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_254d4a9aeb4b4b55abccd1e20ac55fc0", - "IPY_MODEL_a81d54c54031418ca8350d17d1b7e068", - "IPY_MODEL_d8be8930fccb4d9ab103eb45e9769d67" - ], - "layout": "IPY_MODEL_20a77e64b07f4fdb8cbb2d169fc358bc", - "tabbable": null, - "tooltip": null - } - }, - "cf9ca4c1eea74b6b8b5419ea32af2860": { + "aa62616f2a584678acaa6072d7e59db6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a800ce83aee241cf976b279f20c603cc", - "placeholder": "​", - "style": "IPY_MODEL_c250df04e89441f3b2fb0415786aed4d", + "layout": "IPY_MODEL_15aa61db4cc44bdc991db5521f2fa425", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24bcebdd6f9f41bb84c60f2b915efbc6", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "cfa127d2d15346cfaecddd1f501e10b5": { + "ab22b295e4a042c898986f757b7461df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_beae343f221d429f9b051d96e0a519a3", - "IPY_MODEL_7b38470950be4ec5a60ad0cdb0fd2a04", - "IPY_MODEL_cd84ca093c2d4c798af38ceb71e1eb00" - ], - "layout": "IPY_MODEL_9750ce6b87c449c689354e9ece51264e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d144627d3cf144deb4f911cb6eb89f6d": { + "ac29494915a144d3970c7c69d41b68c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7417,15 +7335,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_084065e8d6e54783a4303357eca88b12", + "layout": "IPY_MODEL_213272b1b45445c7b3f2b35602fa31b9", "placeholder": "​", - "style": "IPY_MODEL_1644281bdd9d45ae84dafdfa9b69beb7", + "style": "IPY_MODEL_61751669aa9c4b51923ed3a7deea7f56", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "d1b203fa45024375baf53c4d636634be": { + "b578fa4f2c45411b949fd41b642899ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7478,60 +7396,66 @@ "width": null } }, - "d4369c3fd52e483db5b9a6e8e352cb07": { - "model_module": "@jupyter-widgets/base", + "bc3ee82f278d4b7facddd3df9e43d736": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_29ad3993f94346419af35928193d2eb8", + "placeholder": "​", + "style": "IPY_MODEL_9e819f5dcbd74990a4ed32e6c6f49d6e", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "be62105b70444309b42629557d23dd31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c15afcf9ca54456fadfde7d364d41e12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d75259c27bf347e3b718bbaedcdcfc45": { + "c47e19aac35c46eb9cad874bb2fde728": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7584,7 +7508,7 @@ "width": null } }, - "d781af0165714c0d9c2a1ea7cc0d7fab": { + "c48d73b75d8543b7900f7e3a24c14ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7599,39 +7523,56 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_38866248116c466c87d72da1e9250e42", - "IPY_MODEL_f68b49bb0e314f3a807ad354dbb11551", - "IPY_MODEL_c4d9581d15d44748bfde9b08de4c39b1" + "IPY_MODEL_bc3ee82f278d4b7facddd3df9e43d736", + "IPY_MODEL_004fcea71628418685555fb760dec429", + "IPY_MODEL_8555634c504d4027997abd8cfba7db7f" ], - "layout": "IPY_MODEL_99316e1c2ae44ccd9f09d41218cc069c", + "layout": "IPY_MODEL_f3268349f66e4fca99547204d4fed8cf", "tabbable": null, "tooltip": null } }, - "d8be8930fccb4d9ab103eb45e9769d67": { + "c4fa7fdeeb9446ddbf6516f8963fa52e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c23f3fd913e041ff9dc793bab0c07461", - "placeholder": "​", - "style": "IPY_MODEL_9529efe107064cfeb676e7525d67a9ee", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b304bb9a46443e0bf010d5cb11b422e", + "IPY_MODEL_cc170bcc85274d65b3c110def1444c5a", + "IPY_MODEL_e4168627ec534009a964921f659ea6bb" + ], + "layout": "IPY_MODEL_fd82af84285840158e600b4d0204c84e", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.04it/s]" + "tooltip": null + } + }, + "c5138f4ab850429ba23c48fd5efae242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "da3f69b98a094123abd8fb2b604ce6f2": { + "c5cd2207d2c8442b87534fd93bb1dd5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7646,15 +7587,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_205091d3502f413c917b57d35126bb95", + "layout": "IPY_MODEL_1e1a87a8a45e4b57adf13faea5793824", "placeholder": "​", - "style": "IPY_MODEL_744303da18fc4002b5679084cf39dc3d", + "style": "IPY_MODEL_caba801044f146d4838a5424c49f290c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "dbeabefbeaa64d04a806c1856623bc1c": { + "c64517cd44d84c8293b4115971217abf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7707,7 +7648,25 @@ "width": null } }, - "de11909af9d94f1fbd44447d6a2da336": { + "c72bb5b65a6a48329cdc5dd5ef15e73d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c72eded270c04594b9cd5ab865ec18ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7760,7 +7719,30 @@ "width": null } }, - "df156437b1d54844a302425c91315733": { + "c8b3aec713be46d29ce76b2b35b3db44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_194f679dc6e14a978e8925bb038e3793", + "placeholder": "​", + "style": "IPY_MODEL_28a88184c039419c865f50a0132f936e", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "c9c9176e7a0b4f09b751df8cc4e0666a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7813,99 +7795,95 @@ "width": null } }, - "df5e7e28414e4159ba337ce29cc336fd": { + "ca407d230f484390a47362031adf31b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e277307688f74bec8f2c8ea22a9e10cd": { + "caba801044f146d4838a5424c49f290c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cc170bcc85274d65b3c110def1444c5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_898adcdaafa64a2d9fdb33f1732faa46", - "placeholder": "​", - "style": "IPY_MODEL_8cac2b7b3ff94ad1a1599233df5e0376", + "layout": "IPY_MODEL_e5b12b259dcd4360b125dc57fbb0fca2", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24daedc2073f4af4960d8c11c761dfdc", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 8845.0 } }, - "e3046446726f4433b4970c929c396889": { - "model_module": "@jupyter-widgets/base", + "cc7c41fca7e14c8384b2ce49dac60516": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_728c63d0a7f54119aa080aaa6102d38f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97cb96d8ca67417bb98eb22b83b67f3d", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "e53edb735bc049319576eca58e1bdbfe": { + "cf74cfcebf544df0b3274fc9e22c1e9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7958,31 +7936,7 @@ "width": null } }, - "e5e8b53b8e7c4bbe8e49fb581f733d5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c63438660f6e44098700b6a7883e3079", - "IPY_MODEL_301547355b334e17a9b1c044d70ec23b", - "IPY_MODEL_35a8bc22117549fb80c22a49630cdf6d" - ], - "layout": "IPY_MODEL_e9e74804836e4ac9a24bdf2bca2116d4", - "tabbable": null, - "tooltip": null - } - }, - "e6e97e358cd34f368251e09e1825d4b2": { + "d1dd8bf5204a4dccaa8161ea728fbc07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8035,7 +7989,30 @@ "width": null } }, - "e85de978a90644fc9de2f534a52cb11e": { + "d5b6ab4287134b9b8225c58b595314d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22a0669e75de415dac70a25c5054d25b", + "placeholder": "​", + "style": "IPY_MODEL_aa4c4e45414a4a46a86dfc2a94bebb72", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.87it/s]" + } + }, + "d677f0e9aa7d41e8851465e678a739d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8050,15 +8027,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f8c307c65924ee584e38d06585146ef", + "layout": "IPY_MODEL_a9da43a6101a4854b4273cf805b61e2f", "placeholder": "​", - "style": "IPY_MODEL_0747ae38449040eaa67d2ed970cd5a19", + "style": "IPY_MODEL_74c23aa172ae42798ea320ca991b942f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7505.06 examples/s]" + "value": "Generating test split: 100%" } }, - "e89df2d6769046448524cb6ff6d00f02": { + "d68dfef9ba6d482e8e9c7a037d2c1ef7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8111,31 +8088,30 @@ "width": null } }, - "e8e7468aca074d3ea5c95769c1d98882": { + "d8e2ad07a3434005b3e28de5674a34fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a234f95cf424e59b72989dcf062fd9e", - "IPY_MODEL_af3b2a90dd80499684e447a5b6241215", - "IPY_MODEL_6cc9e9f5b5f744df91fff7ff46d05237" - ], - "layout": "IPY_MODEL_8bfe63527ba741e48abbc03d2590020c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23c83cfb62484a5aa0c6f3daa481f042", + "placeholder": "​", + "style": "IPY_MODEL_2d6fb7b4b561449a9dee9ff41aedb47f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "e9e74804836e4ac9a24bdf2bca2116d4": { + "d9413cabdaf84f7c8e9a6c68232b43ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8188,25 +8164,7 @@ "width": null } }, - "ecf93b1a7f0e47d092301d0a21751f60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ed1b8d025ba74579ba0469452c32b071": { + "d9fce56a4501415dbadef0b6597c3c59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8259,30 +8217,7 @@ "width": null } }, - "ef0edb3177c64147a8b62f9aca23f99c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df156437b1d54844a302425c91315733", - "placeholder": "​", - "style": "IPY_MODEL_ecf93b1a7f0e47d092301d0a21751f60", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ef3c0c626f614525935057f6640fc612": { + "dcd9b7afd17f44798d2064cf5a3862de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8298,7 +8233,7 @@ "description_width": "" } }, - "f4090ea7594b4008a1b1522b65b3b3d5": { + "e1158e5544334ef2b34dff2aa52d6bf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8351,49 +8286,72 @@ "width": null } }, - "f41c25f12ded4df5b01f2c30b33c91d8": { + "e1894c9537a6499eb9bfed91c77fb518": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5cd2207d2c8442b87534fd93bb1dd5e", + "IPY_MODEL_7a2680bb83ca418e9bc7dd0bd7182858", + "IPY_MODEL_0ca0287b646c497e8e812ef207ee400f" + ], + "layout": "IPY_MODEL_70c567e5ed4d420aa7f58a9bfe7d98f6", + "tabbable": null, + "tooltip": null } }, - "f68b49bb0e314f3a807ad354dbb11551": { + "e4168627ec534009a964921f659ea6bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_459091439ddb4761bb7ea9c603198f52", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_df5e7e28414e4159ba337ce29cc336fd", + "layout": "IPY_MODEL_e1158e5544334ef2b34dff2aa52d6bf0", + "placeholder": "​", + "style": "IPY_MODEL_840737321da24bfe8003332a0accc1cb", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 8.85k/8.85k [00:00<00:00, 1.41MB/s]" + } + }, + "e4613e030b794d219b1926a1e5b67f63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f74fc0c6579e4010bf9d4fb96aa94b47": { + "e5b12b259dcd4360b125dc57fbb0fca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8446,7 +8404,25 @@ "width": null } }, - "f7547caf87ef4a6e9cdaf34ecfe7a776": { + "eebb5bc624d34a7bb328172559a2334c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "efe64e5c44d94c6bb0bed3ad6e844c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8461,32 +8437,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e277307688f74bec8f2c8ea22a9e10cd", - "IPY_MODEL_85e0e62e6c744fde907b2153c35ae0ab", - "IPY_MODEL_932c2344bdae4b169b685b28dd30c460" + "IPY_MODEL_d677f0e9aa7d41e8851465e678a739d6", + "IPY_MODEL_16ff670713eb4f70a0cc1728a34d5452", + "IPY_MODEL_7f7fd12e202d45a4909d8a8ceaeebfa9" ], - "layout": "IPY_MODEL_0edf2b48b11e4a86915c9187956e4679", + "layout": "IPY_MODEL_cf74cfcebf544df0b3274fc9e22c1e9c", "tabbable": null, "tooltip": null } }, - "fa54871983cc4f06913c94c644a0a55c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fb66250e6795458bbd8d5ce9a9f1a7e2": { + "f3268349f66e4fca99547204d4fed8cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8539,7 +8499,7 @@ "width": null } }, - "fc65da9484aa4360a3e81eeeaed7602a": { + "f36e7eec2ef6494ea5dfe75f34bb946e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8557,7 +8517,56 @@ "text_color": null } }, - "fd1982fee53e41bf8c0bc0f8e25d67cd": { + "f4570a2a6a834672b816a3c3c92674d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1dd8bf5204a4dccaa8161ea728fbc07", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57f0147d0b40481487ead645778ad6f0", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "f6229a7aab1d42ca8805f534935617d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a13807ee4fd84d609c078799a117b6c5", + "placeholder": "​", + "style": "IPY_MODEL_c15afcf9ca54456fadfde7d364d41e12", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "f7d9dcc168074809a9f461109ae607c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8610,54 +8619,51 @@ "width": null } }, - "fdd378c59c5640b6b2e1303e4ed8ed50": { + "faaac1dac8fa4eccb56fbb10b45393c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_918570fe365c40839c1c0e55002a0ff6", - "placeholder": "​", - "style": "IPY_MODEL_1581d2e68d7847108100e4a2b1f305b1", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fe3ea1a98f724dee92ced94c01b8f215": { + "fabe89de1f3f41f493f2490c661f6d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06e5b497708943179a656ffcb7a430e9", - "IPY_MODEL_3a7f6b08a8134701aaa1be5a8ca7d7b0", - "IPY_MODEL_e85de978a90644fc9de2f534a52cb11e" - ], - "layout": "IPY_MODEL_30b0eb3dc72a4f1b9697396466fae05a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c72eded270c04594b9cd5ab865ec18ee", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01972cf3b8f94fab866c986e21f7f91f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "ff6c65a3e52748a9a9493f576321c597": { + "fd82af84285840158e600b4d0204c84e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 4d38880f7..a6ed7ee61 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:46.059528Z", - "iopub.status.busy": "2024-07-18T04:05:46.059357Z", - "iopub.status.idle": "2024-07-18T04:05:47.184703Z", - "shell.execute_reply": "2024-07-18T04:05:47.184146Z" + "iopub.execute_input": "2024-07-30T16:35:56.051172Z", + "iopub.status.busy": "2024-07-30T16:35:56.050992Z", + "iopub.status.idle": "2024-07-30T16:35:57.510285Z", + "shell.execute_reply": "2024-07-30T16:35:57.509737Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.187068Z", - "iopub.status.busy": "2024-07-18T04:05:47.186797Z", - "iopub.status.idle": "2024-07-18T04:05:47.205431Z", - "shell.execute_reply": "2024-07-18T04:05:47.204882Z" + "iopub.execute_input": "2024-07-30T16:35:57.512868Z", + "iopub.status.busy": "2024-07-30T16:35:57.512386Z", + "iopub.status.idle": "2024-07-30T16:35:57.530631Z", + "shell.execute_reply": "2024-07-30T16:35:57.530189Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.207698Z", - "iopub.status.busy": "2024-07-18T04:05:47.207321Z", - "iopub.status.idle": "2024-07-18T04:05:47.233000Z", - "shell.execute_reply": "2024-07-18T04:05:47.232462Z" + "iopub.execute_input": "2024-07-30T16:35:57.532740Z", + "iopub.status.busy": "2024-07-30T16:35:57.532388Z", + "iopub.status.idle": "2024-07-30T16:35:57.570290Z", + "shell.execute_reply": "2024-07-30T16:35:57.569781Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.235099Z", - "iopub.status.busy": "2024-07-18T04:05:47.234749Z", - "iopub.status.idle": "2024-07-18T04:05:47.238601Z", - "shell.execute_reply": "2024-07-18T04:05:47.238176Z" + "iopub.execute_input": "2024-07-30T16:35:57.572398Z", + "iopub.status.busy": "2024-07-30T16:35:57.572060Z", + "iopub.status.idle": "2024-07-30T16:35:57.575328Z", + "shell.execute_reply": "2024-07-30T16:35:57.574903Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.240630Z", - "iopub.status.busy": "2024-07-18T04:05:47.240299Z", - "iopub.status.idle": "2024-07-18T04:05:47.247818Z", - "shell.execute_reply": "2024-07-18T04:05:47.247390Z" + "iopub.execute_input": "2024-07-30T16:35:57.577365Z", + "iopub.status.busy": "2024-07-30T16:35:57.576966Z", + "iopub.status.idle": "2024-07-30T16:35:57.584694Z", + "shell.execute_reply": "2024-07-30T16:35:57.584132Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.249866Z", - "iopub.status.busy": "2024-07-18T04:05:47.249525Z", - "iopub.status.idle": "2024-07-18T04:05:47.251977Z", - "shell.execute_reply": "2024-07-18T04:05:47.251524Z" + "iopub.execute_input": "2024-07-30T16:35:57.586954Z", + "iopub.status.busy": "2024-07-30T16:35:57.586638Z", + "iopub.status.idle": "2024-07-30T16:35:57.589280Z", + "shell.execute_reply": "2024-07-30T16:35:57.588805Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.254011Z", - "iopub.status.busy": "2024-07-18T04:05:47.253687Z", - "iopub.status.idle": "2024-07-18T04:05:50.331843Z", - "shell.execute_reply": "2024-07-18T04:05:50.331208Z" + "iopub.execute_input": "2024-07-30T16:35:57.591284Z", + "iopub.status.busy": "2024-07-30T16:35:57.590950Z", + "iopub.status.idle": "2024-07-30T16:36:00.688049Z", + "shell.execute_reply": "2024-07-30T16:36:00.687486Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:50.334588Z", - "iopub.status.busy": "2024-07-18T04:05:50.334171Z", - "iopub.status.idle": "2024-07-18T04:05:50.343958Z", - "shell.execute_reply": "2024-07-18T04:05:50.343394Z" + "iopub.execute_input": "2024-07-30T16:36:00.690868Z", + "iopub.status.busy": "2024-07-30T16:36:00.690451Z", + "iopub.status.idle": "2024-07-30T16:36:00.700262Z", + "shell.execute_reply": "2024-07-30T16:36:00.699795Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:50.346159Z", - "iopub.status.busy": "2024-07-18T04:05:50.345987Z", - "iopub.status.idle": "2024-07-18T04:05:52.286664Z", - "shell.execute_reply": "2024-07-18T04:05:52.286109Z" + "iopub.execute_input": "2024-07-30T16:36:00.702232Z", + "iopub.status.busy": "2024-07-30T16:36:00.702054Z", + "iopub.status.idle": "2024-07-30T16:36:02.934148Z", + "shell.execute_reply": "2024-07-30T16:36:02.933492Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.289279Z", - "iopub.status.busy": "2024-07-18T04:05:52.288785Z", - "iopub.status.idle": "2024-07-18T04:05:52.307212Z", - "shell.execute_reply": "2024-07-18T04:05:52.306758Z" + "iopub.execute_input": "2024-07-30T16:36:02.936729Z", + "iopub.status.busy": "2024-07-30T16:36:02.936205Z", + "iopub.status.idle": "2024-07-30T16:36:02.954952Z", + "shell.execute_reply": "2024-07-30T16:36:02.954378Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.309234Z", - "iopub.status.busy": "2024-07-18T04:05:52.308879Z", - "iopub.status.idle": "2024-07-18T04:05:52.316628Z", - "shell.execute_reply": "2024-07-18T04:05:52.316083Z" + "iopub.execute_input": "2024-07-30T16:36:02.957056Z", + "iopub.status.busy": "2024-07-30T16:36:02.956878Z", + "iopub.status.idle": "2024-07-30T16:36:02.964858Z", + "shell.execute_reply": "2024-07-30T16:36:02.964382Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.318738Z", - "iopub.status.busy": "2024-07-18T04:05:52.318420Z", - "iopub.status.idle": "2024-07-18T04:05:52.327148Z", - "shell.execute_reply": "2024-07-18T04:05:52.326685Z" + "iopub.execute_input": "2024-07-30T16:36:02.966898Z", + "iopub.status.busy": "2024-07-30T16:36:02.966576Z", + "iopub.status.idle": "2024-07-30T16:36:02.975334Z", + "shell.execute_reply": "2024-07-30T16:36:02.974877Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.329288Z", - "iopub.status.busy": "2024-07-18T04:05:52.328960Z", - "iopub.status.idle": "2024-07-18T04:05:52.336509Z", - "shell.execute_reply": "2024-07-18T04:05:52.336049Z" + "iopub.execute_input": "2024-07-30T16:36:02.977396Z", + "iopub.status.busy": "2024-07-30T16:36:02.977076Z", + "iopub.status.idle": "2024-07-30T16:36:02.984945Z", + "shell.execute_reply": "2024-07-30T16:36:02.984391Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.338513Z", - "iopub.status.busy": "2024-07-18T04:05:52.338182Z", - "iopub.status.idle": "2024-07-18T04:05:52.346902Z", - "shell.execute_reply": "2024-07-18T04:05:52.346464Z" + "iopub.execute_input": "2024-07-30T16:36:02.987002Z", + "iopub.status.busy": "2024-07-30T16:36:02.986692Z", + "iopub.status.idle": "2024-07-30T16:36:02.995395Z", + "shell.execute_reply": "2024-07-30T16:36:02.994843Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.349015Z", - "iopub.status.busy": "2024-07-18T04:05:52.348609Z", - "iopub.status.idle": "2024-07-18T04:05:52.356966Z", - "shell.execute_reply": "2024-07-18T04:05:52.356427Z" + "iopub.execute_input": "2024-07-30T16:36:02.997442Z", + "iopub.status.busy": "2024-07-30T16:36:02.997120Z", + "iopub.status.idle": "2024-07-30T16:36:03.004551Z", + "shell.execute_reply": "2024-07-30T16:36:03.004009Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.359411Z", - "iopub.status.busy": "2024-07-18T04:05:52.359043Z", - "iopub.status.idle": "2024-07-18T04:05:52.368156Z", - "shell.execute_reply": "2024-07-18T04:05:52.367618Z" + "iopub.execute_input": "2024-07-30T16:36:03.006659Z", + "iopub.status.busy": "2024-07-30T16:36:03.006343Z", + "iopub.status.idle": "2024-07-30T16:36:03.014117Z", + "shell.execute_reply": "2024-07-30T16:36:03.013629Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.370501Z", - "iopub.status.busy": "2024-07-18T04:05:52.370163Z", - "iopub.status.idle": "2024-07-18T04:05:52.378576Z", - "shell.execute_reply": "2024-07-18T04:05:52.378040Z" + "iopub.execute_input": "2024-07-30T16:36:03.016347Z", + "iopub.status.busy": "2024-07-30T16:36:03.016027Z", + "iopub.status.idle": "2024-07-30T16:36:03.024539Z", + "shell.execute_reply": "2024-07-30T16:36:03.023965Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 9ede7e8a3..b380e2cea 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:55.129783Z", - "iopub.status.busy": "2024-07-18T04:05:55.129618Z", - "iopub.status.idle": "2024-07-18T04:05:57.865032Z", - "shell.execute_reply": "2024-07-18T04:05:57.864464Z" + "iopub.execute_input": "2024-07-30T16:36:05.906897Z", + "iopub.status.busy": "2024-07-30T16:36:05.906716Z", + "iopub.status.idle": "2024-07-30T16:36:09.210694Z", + "shell.execute_reply": "2024-07-30T16:36:09.210137Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.867630Z", - "iopub.status.busy": "2024-07-18T04:05:57.867176Z", - "iopub.status.idle": "2024-07-18T04:05:57.870439Z", - "shell.execute_reply": "2024-07-18T04:05:57.869974Z" + "iopub.execute_input": "2024-07-30T16:36:09.213471Z", + "iopub.status.busy": "2024-07-30T16:36:09.212961Z", + "iopub.status.idle": "2024-07-30T16:36:09.216206Z", + "shell.execute_reply": "2024-07-30T16:36:09.215755Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.872389Z", - "iopub.status.busy": "2024-07-18T04:05:57.872088Z", - "iopub.status.idle": "2024-07-18T04:05:57.875228Z", - "shell.execute_reply": "2024-07-18T04:05:57.874636Z" + "iopub.execute_input": "2024-07-30T16:36:09.218344Z", + "iopub.status.busy": "2024-07-30T16:36:09.217971Z", + "iopub.status.idle": "2024-07-30T16:36:09.221010Z", + "shell.execute_reply": "2024-07-30T16:36:09.220555Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.877320Z", - "iopub.status.busy": "2024-07-18T04:05:57.876885Z", - "iopub.status.idle": "2024-07-18T04:05:57.898872Z", - "shell.execute_reply": "2024-07-18T04:05:57.898311Z" + "iopub.execute_input": "2024-07-30T16:36:09.223151Z", + "iopub.status.busy": "2024-07-30T16:36:09.222813Z", + "iopub.status.idle": "2024-07-30T16:36:09.264547Z", + "shell.execute_reply": "2024-07-30T16:36:09.263969Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.900978Z", - "iopub.status.busy": "2024-07-18T04:05:57.900574Z", - "iopub.status.idle": "2024-07-18T04:05:57.904377Z", - "shell.execute_reply": "2024-07-18T04:05:57.903827Z" + "iopub.execute_input": "2024-07-30T16:36:09.266828Z", + "iopub.status.busy": "2024-07-30T16:36:09.266456Z", + "iopub.status.idle": "2024-07-30T16:36:09.270175Z", + "shell.execute_reply": "2024-07-30T16:36:09.269659Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}\n" + "Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.906549Z", - "iopub.status.busy": "2024-07-18T04:05:57.906236Z", - "iopub.status.idle": "2024-07-18T04:05:57.909389Z", - "shell.execute_reply": "2024-07-18T04:05:57.908857Z" + "iopub.execute_input": "2024-07-30T16:36:09.272350Z", + "iopub.status.busy": "2024-07-30T16:36:09.271989Z", + "iopub.status.idle": "2024-07-30T16:36:09.275119Z", + "shell.execute_reply": "2024-07-30T16:36:09.274559Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.911634Z", - "iopub.status.busy": "2024-07-18T04:05:57.911199Z", - "iopub.status.idle": "2024-07-18T04:06:01.969964Z", - "shell.execute_reply": "2024-07-18T04:06:01.969310Z" + "iopub.execute_input": "2024-07-30T16:36:09.277262Z", + "iopub.status.busy": "2024-07-30T16:36:09.276911Z", + "iopub.status.idle": "2024-07-30T16:36:13.012240Z", + "shell.execute_reply": "2024-07-30T16:36:13.011588Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:01.972914Z", - "iopub.status.busy": "2024-07-18T04:06:01.972480Z", - "iopub.status.idle": "2024-07-18T04:06:02.905487Z", - "shell.execute_reply": "2024-07-18T04:06:02.904899Z" + "iopub.execute_input": "2024-07-30T16:36:13.015209Z", + "iopub.status.busy": "2024-07-30T16:36:13.014850Z", + "iopub.status.idle": "2024-07-30T16:36:13.913858Z", + "shell.execute_reply": "2024-07-30T16:36:13.913251Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:02.909182Z", - "iopub.status.busy": "2024-07-18T04:06:02.908234Z", - "iopub.status.idle": "2024-07-18T04:06:02.912302Z", - "shell.execute_reply": "2024-07-18T04:06:02.911802Z" + "iopub.execute_input": "2024-07-30T16:36:13.917763Z", + "iopub.status.busy": "2024-07-30T16:36:13.916780Z", + "iopub.status.idle": "2024-07-30T16:36:13.920912Z", + "shell.execute_reply": "2024-07-30T16:36:13.920410Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:02.915812Z", - "iopub.status.busy": "2024-07-18T04:06:02.914874Z", - "iopub.status.idle": "2024-07-18T04:06:04.898450Z", - "shell.execute_reply": "2024-07-18T04:06:04.897813Z" + "iopub.execute_input": "2024-07-30T16:36:13.924505Z", + "iopub.status.busy": "2024-07-30T16:36:13.923570Z", + "iopub.status.idle": "2024-07-30T16:36:16.057240Z", + "shell.execute_reply": "2024-07-30T16:36:16.056500Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.901548Z", - "iopub.status.busy": "2024-07-18T04:06:04.900932Z", - "iopub.status.idle": "2024-07-18T04:06:04.924390Z", - "shell.execute_reply": "2024-07-18T04:06:04.923883Z" + "iopub.execute_input": "2024-07-30T16:36:16.060459Z", + "iopub.status.busy": "2024-07-30T16:36:16.059879Z", + "iopub.status.idle": "2024-07-30T16:36:16.084329Z", + "shell.execute_reply": "2024-07-30T16:36:16.083774Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.926793Z", - "iopub.status.busy": "2024-07-18T04:06:04.926402Z", - "iopub.status.idle": "2024-07-18T04:06:04.935972Z", - "shell.execute_reply": "2024-07-18T04:06:04.935475Z" + "iopub.execute_input": "2024-07-30T16:36:16.087159Z", + "iopub.status.busy": "2024-07-30T16:36:16.086783Z", + "iopub.status.idle": "2024-07-30T16:36:16.096644Z", + "shell.execute_reply": "2024-07-30T16:36:16.096072Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.938170Z", - "iopub.status.busy": "2024-07-18T04:06:04.937989Z", - "iopub.status.idle": "2024-07-18T04:06:04.942216Z", - "shell.execute_reply": "2024-07-18T04:06:04.941644Z" + "iopub.execute_input": "2024-07-30T16:36:16.098946Z", + "iopub.status.busy": "2024-07-30T16:36:16.098549Z", + "iopub.status.idle": "2024-07-30T16:36:16.103008Z", + "shell.execute_reply": "2024-07-30T16:36:16.102445Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.944237Z", - "iopub.status.busy": "2024-07-18T04:06:04.943959Z", - "iopub.status.idle": "2024-07-18T04:06:04.950201Z", - "shell.execute_reply": "2024-07-18T04:06:04.949747Z" + "iopub.execute_input": "2024-07-30T16:36:16.105150Z", + "iopub.status.busy": "2024-07-30T16:36:16.104822Z", + "iopub.status.idle": "2024-07-30T16:36:16.111211Z", + "shell.execute_reply": "2024-07-30T16:36:16.110658Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.952147Z", - "iopub.status.busy": "2024-07-18T04:06:04.951973Z", - "iopub.status.idle": "2024-07-18T04:06:04.958732Z", - "shell.execute_reply": "2024-07-18T04:06:04.958268Z" + "iopub.execute_input": "2024-07-30T16:36:16.113187Z", + "iopub.status.busy": "2024-07-30T16:36:16.112885Z", + "iopub.status.idle": "2024-07-30T16:36:16.119267Z", + "shell.execute_reply": "2024-07-30T16:36:16.118719Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.960553Z", - "iopub.status.busy": "2024-07-18T04:06:04.960383Z", - "iopub.status.idle": "2024-07-18T04:06:04.966173Z", - "shell.execute_reply": "2024-07-18T04:06:04.965718Z" + "iopub.execute_input": "2024-07-30T16:36:16.121235Z", + "iopub.status.busy": "2024-07-30T16:36:16.120924Z", + "iopub.status.idle": "2024-07-30T16:36:16.126639Z", + "shell.execute_reply": "2024-07-30T16:36:16.126077Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.968159Z", - "iopub.status.busy": "2024-07-18T04:06:04.967881Z", - "iopub.status.idle": "2024-07-18T04:06:04.976603Z", - "shell.execute_reply": "2024-07-18T04:06:04.976039Z" + "iopub.execute_input": "2024-07-30T16:36:16.128700Z", + "iopub.status.busy": "2024-07-30T16:36:16.128385Z", + "iopub.status.idle": "2024-07-30T16:36:16.136815Z", + "shell.execute_reply": "2024-07-30T16:36:16.136243Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.978783Z", - "iopub.status.busy": "2024-07-18T04:06:04.978354Z", - "iopub.status.idle": "2024-07-18T04:06:04.983722Z", - "shell.execute_reply": "2024-07-18T04:06:04.983158Z" + "iopub.execute_input": "2024-07-30T16:36:16.138817Z", + "iopub.status.busy": "2024-07-30T16:36:16.138521Z", + "iopub.status.idle": "2024-07-30T16:36:16.143841Z", + "shell.execute_reply": "2024-07-30T16:36:16.143287Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.985767Z", - "iopub.status.busy": "2024-07-18T04:06:04.985339Z", - "iopub.status.idle": "2024-07-18T04:06:04.990755Z", - "shell.execute_reply": "2024-07-18T04:06:04.990193Z" + "iopub.execute_input": "2024-07-30T16:36:16.145732Z", + "iopub.status.busy": "2024-07-30T16:36:16.145554Z", + "iopub.status.idle": "2024-07-30T16:36:16.150879Z", + "shell.execute_reply": "2024-07-30T16:36:16.150344Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.992910Z", - "iopub.status.busy": "2024-07-18T04:06:04.992598Z", - "iopub.status.idle": "2024-07-18T04:06:04.996239Z", - "shell.execute_reply": "2024-07-18T04:06:04.995691Z" + "iopub.execute_input": "2024-07-30T16:36:16.152863Z", + "iopub.status.busy": "2024-07-30T16:36:16.152548Z", + "iopub.status.idle": "2024-07-30T16:36:16.156185Z", + "shell.execute_reply": "2024-07-30T16:36:16.155650Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.998334Z", - "iopub.status.busy": "2024-07-18T04:06:04.998026Z", - "iopub.status.idle": "2024-07-18T04:06:05.003252Z", - "shell.execute_reply": "2024-07-18T04:06:05.002678Z" + "iopub.execute_input": "2024-07-30T16:36:16.158400Z", + "iopub.status.busy": "2024-07-30T16:36:16.158078Z", + "iopub.status.idle": "2024-07-30T16:36:16.163394Z", + "shell.execute_reply": "2024-07-30T16:36:16.162837Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 8c4e0af06..d6d1d2769 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.315133Z", - "iopub.status.busy": "2024-07-18T04:06:09.314702Z", - "iopub.status.idle": "2024-07-18T04:06:09.737826Z", - "shell.execute_reply": "2024-07-18T04:06:09.737324Z" + "iopub.execute_input": "2024-07-30T16:36:19.928818Z", + "iopub.status.busy": "2024-07-30T16:36:19.928315Z", + "iopub.status.idle": "2024-07-30T16:36:20.362342Z", + "shell.execute_reply": "2024-07-30T16:36:20.361793Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.740480Z", - "iopub.status.busy": "2024-07-18T04:06:09.740061Z", - "iopub.status.idle": "2024-07-18T04:06:09.869002Z", - "shell.execute_reply": "2024-07-18T04:06:09.868461Z" + "iopub.execute_input": "2024-07-30T16:36:20.365042Z", + "iopub.status.busy": "2024-07-30T16:36:20.364603Z", + "iopub.status.idle": "2024-07-30T16:36:20.497373Z", + "shell.execute_reply": "2024-07-30T16:36:20.496781Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.871271Z", - "iopub.status.busy": "2024-07-18T04:06:09.870845Z", - "iopub.status.idle": "2024-07-18T04:06:09.893540Z", - "shell.execute_reply": "2024-07-18T04:06:09.892922Z" + "iopub.execute_input": "2024-07-30T16:36:20.499582Z", + "iopub.status.busy": "2024-07-30T16:36:20.499349Z", + "iopub.status.idle": "2024-07-30T16:36:20.524504Z", + "shell.execute_reply": "2024-07-30T16:36:20.523915Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.896111Z", - "iopub.status.busy": "2024-07-18T04:06:09.895870Z", - "iopub.status.idle": "2024-07-18T04:06:12.653881Z", - "shell.execute_reply": "2024-07-18T04:06:12.653225Z" + "iopub.execute_input": "2024-07-30T16:36:20.527274Z", + "iopub.status.busy": "2024-07-30T16:36:20.527018Z", + "iopub.status.idle": "2024-07-30T16:36:23.840701Z", + "shell.execute_reply": "2024-07-30T16:36:23.840107Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:12.656529Z", - "iopub.status.busy": "2024-07-18T04:06:12.656139Z", - "iopub.status.idle": "2024-07-18T04:06:31.030202Z", - "shell.execute_reply": "2024-07-18T04:06:31.029589Z" + "iopub.execute_input": "2024-07-30T16:36:23.843646Z", + "iopub.status.busy": "2024-07-30T16:36:23.843036Z", + "iopub.status.idle": "2024-07-30T16:36:32.528462Z", + "shell.execute_reply": "2024-07-30T16:36:32.527887Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:31.032605Z", - "iopub.status.busy": "2024-07-18T04:06:31.032254Z", - "iopub.status.idle": "2024-07-18T04:06:31.191251Z", - "shell.execute_reply": "2024-07-18T04:06:31.190718Z" + "iopub.execute_input": "2024-07-30T16:36:32.530759Z", + "iopub.status.busy": "2024-07-30T16:36:32.530398Z", + "iopub.status.idle": "2024-07-30T16:36:32.692452Z", + "shell.execute_reply": "2024-07-30T16:36:32.691890Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:31.193870Z", - "iopub.status.busy": "2024-07-18T04:06:31.193450Z", - "iopub.status.idle": "2024-07-18T04:06:32.501314Z", - "shell.execute_reply": "2024-07-18T04:06:32.500719Z" + "iopub.execute_input": "2024-07-30T16:36:32.695108Z", + "iopub.status.busy": "2024-07-30T16:36:32.694738Z", + "iopub.status.idle": "2024-07-30T16:36:34.079949Z", + "shell.execute_reply": "2024-07-30T16:36:34.079473Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.503635Z", - "iopub.status.busy": "2024-07-18T04:06:32.503261Z", - "iopub.status.idle": "2024-07-18T04:06:32.915426Z", - "shell.execute_reply": "2024-07-18T04:06:32.914838Z" + "iopub.execute_input": "2024-07-30T16:36:34.082291Z", + "iopub.status.busy": "2024-07-30T16:36:34.081898Z", + "iopub.status.idle": "2024-07-30T16:36:34.326676Z", + "shell.execute_reply": "2024-07-30T16:36:34.326094Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.917986Z", - "iopub.status.busy": "2024-07-18T04:06:32.917468Z", - "iopub.status.idle": "2024-07-18T04:06:32.930644Z", - "shell.execute_reply": "2024-07-18T04:06:32.930084Z" + "iopub.execute_input": "2024-07-30T16:36:34.329162Z", + "iopub.status.busy": "2024-07-30T16:36:34.328791Z", + "iopub.status.idle": "2024-07-30T16:36:34.342431Z", + "shell.execute_reply": "2024-07-30T16:36:34.341938Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.932608Z", - "iopub.status.busy": "2024-07-18T04:06:32.932309Z", - "iopub.status.idle": "2024-07-18T04:06:32.951966Z", - "shell.execute_reply": "2024-07-18T04:06:32.951527Z" + "iopub.execute_input": "2024-07-30T16:36:34.344554Z", + "iopub.status.busy": "2024-07-30T16:36:34.344214Z", + "iopub.status.idle": "2024-07-30T16:36:34.363020Z", + "shell.execute_reply": "2024-07-30T16:36:34.362540Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.953897Z", - "iopub.status.busy": "2024-07-18T04:06:32.953626Z", - "iopub.status.idle": "2024-07-18T04:06:33.209964Z", - "shell.execute_reply": "2024-07-18T04:06:33.209446Z" + "iopub.execute_input": "2024-07-30T16:36:34.365426Z", + "iopub.status.busy": "2024-07-30T16:36:34.365076Z", + "iopub.status.idle": "2024-07-30T16:36:34.596927Z", + "shell.execute_reply": "2024-07-30T16:36:34.596358Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.212305Z", - "iopub.status.busy": "2024-07-18T04:06:33.212116Z", - "iopub.status.idle": "2024-07-18T04:06:33.231185Z", - "shell.execute_reply": "2024-07-18T04:06:33.230616Z" + "iopub.execute_input": "2024-07-30T16:36:34.599630Z", + "iopub.status.busy": "2024-07-30T16:36:34.599295Z", + "iopub.status.idle": "2024-07-30T16:36:34.619495Z", + "shell.execute_reply": "2024-07-30T16:36:34.618989Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.233319Z", - "iopub.status.busy": "2024-07-18T04:06:33.232923Z", - "iopub.status.idle": "2024-07-18T04:06:33.400233Z", - "shell.execute_reply": "2024-07-18T04:06:33.399669Z" + "iopub.execute_input": "2024-07-30T16:36:34.621703Z", + "iopub.status.busy": "2024-07-30T16:36:34.621342Z", + "iopub.status.idle": "2024-07-30T16:36:34.761643Z", + "shell.execute_reply": "2024-07-30T16:36:34.761053Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.402401Z", - "iopub.status.busy": "2024-07-18T04:06:33.402059Z", - "iopub.status.idle": "2024-07-18T04:06:33.411545Z", - "shell.execute_reply": "2024-07-18T04:06:33.411006Z" + "iopub.execute_input": "2024-07-30T16:36:34.763998Z", + "iopub.status.busy": "2024-07-30T16:36:34.763799Z", + "iopub.status.idle": "2024-07-30T16:36:34.774206Z", + "shell.execute_reply": "2024-07-30T16:36:34.773713Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.413706Z", - "iopub.status.busy": "2024-07-18T04:06:33.413388Z", - "iopub.status.idle": "2024-07-18T04:06:33.422844Z", - "shell.execute_reply": "2024-07-18T04:06:33.422288Z" + "iopub.execute_input": "2024-07-30T16:36:34.776254Z", + "iopub.status.busy": "2024-07-30T16:36:34.776071Z", + "iopub.status.idle": "2024-07-30T16:36:34.785886Z", + "shell.execute_reply": "2024-07-30T16:36:34.785435Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.424928Z", - "iopub.status.busy": "2024-07-18T04:06:33.424591Z", - "iopub.status.idle": "2024-07-18T04:06:33.450139Z", - "shell.execute_reply": "2024-07-18T04:06:33.449701Z" + "iopub.execute_input": "2024-07-30T16:36:34.787902Z", + "iopub.status.busy": "2024-07-30T16:36:34.787724Z", + "iopub.status.idle": "2024-07-30T16:36:34.815725Z", + "shell.execute_reply": "2024-07-30T16:36:34.815298Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.452187Z", - "iopub.status.busy": "2024-07-18T04:06:33.451788Z", - "iopub.status.idle": "2024-07-18T04:06:33.454639Z", - "shell.execute_reply": "2024-07-18T04:06:33.454072Z" + "iopub.execute_input": "2024-07-30T16:36:34.817795Z", + "iopub.status.busy": "2024-07-30T16:36:34.817615Z", + "iopub.status.idle": "2024-07-30T16:36:34.820486Z", + "shell.execute_reply": "2024-07-30T16:36:34.820013Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.456808Z", - "iopub.status.busy": "2024-07-18T04:06:33.456509Z", - "iopub.status.idle": "2024-07-18T04:06:33.475334Z", - "shell.execute_reply": "2024-07-18T04:06:33.474761Z" + "iopub.execute_input": "2024-07-30T16:36:34.822391Z", + "iopub.status.busy": "2024-07-30T16:36:34.822219Z", + "iopub.status.idle": "2024-07-30T16:36:34.841825Z", + "shell.execute_reply": "2024-07-30T16:36:34.841320Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.477330Z", - "iopub.status.busy": "2024-07-18T04:06:33.477157Z", - "iopub.status.idle": "2024-07-18T04:06:33.481414Z", - "shell.execute_reply": "2024-07-18T04:06:33.480961Z" + "iopub.execute_input": "2024-07-30T16:36:34.843927Z", + "iopub.status.busy": "2024-07-30T16:36:34.843742Z", + "iopub.status.idle": "2024-07-30T16:36:34.848323Z", + "shell.execute_reply": "2024-07-30T16:36:34.847833Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.483270Z", - "iopub.status.busy": "2024-07-18T04:06:33.483101Z", - "iopub.status.idle": "2024-07-18T04:06:33.510551Z", - "shell.execute_reply": "2024-07-18T04:06:33.510000Z" + "iopub.execute_input": "2024-07-30T16:36:34.850257Z", + "iopub.status.busy": "2024-07-30T16:36:34.850081Z", + "iopub.status.idle": "2024-07-30T16:36:34.879946Z", + "shell.execute_reply": "2024-07-30T16:36:34.879477Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.512640Z", - "iopub.status.busy": "2024-07-18T04:06:33.512331Z", - "iopub.status.idle": "2024-07-18T04:06:33.880625Z", - "shell.execute_reply": "2024-07-18T04:06:33.880120Z" + "iopub.execute_input": "2024-07-30T16:36:34.881917Z", + "iopub.status.busy": "2024-07-30T16:36:34.881737Z", + "iopub.status.idle": "2024-07-30T16:36:35.259340Z", + "shell.execute_reply": "2024-07-30T16:36:35.258831Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.882759Z", - "iopub.status.busy": "2024-07-18T04:06:33.882433Z", - "iopub.status.idle": "2024-07-18T04:06:33.885582Z", - "shell.execute_reply": "2024-07-18T04:06:33.885032Z" + "iopub.execute_input": "2024-07-30T16:36:35.261459Z", + "iopub.status.busy": "2024-07-30T16:36:35.261275Z", + "iopub.status.idle": "2024-07-30T16:36:35.264720Z", + "shell.execute_reply": "2024-07-30T16:36:35.264247Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.887734Z", - "iopub.status.busy": "2024-07-18T04:06:33.887293Z", - "iopub.status.idle": "2024-07-18T04:06:33.899883Z", - "shell.execute_reply": "2024-07-18T04:06:33.899389Z" + "iopub.execute_input": "2024-07-30T16:36:35.266610Z", + "iopub.status.busy": "2024-07-30T16:36:35.266439Z", + "iopub.status.idle": "2024-07-30T16:36:35.280154Z", + "shell.execute_reply": "2024-07-30T16:36:35.279707Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.901737Z", - "iopub.status.busy": "2024-07-18T04:06:33.901564Z", - "iopub.status.idle": "2024-07-18T04:06:33.915004Z", - "shell.execute_reply": "2024-07-18T04:06:33.914529Z" + "iopub.execute_input": "2024-07-30T16:36:35.282287Z", + "iopub.status.busy": "2024-07-30T16:36:35.281841Z", + "iopub.status.idle": "2024-07-30T16:36:35.296091Z", + "shell.execute_reply": "2024-07-30T16:36:35.295529Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.916796Z", - "iopub.status.busy": "2024-07-18T04:06:33.916623Z", - "iopub.status.idle": "2024-07-18T04:06:33.926482Z", - "shell.execute_reply": "2024-07-18T04:06:33.926021Z" + "iopub.execute_input": "2024-07-30T16:36:35.298365Z", + "iopub.status.busy": "2024-07-30T16:36:35.297955Z", + "iopub.status.idle": "2024-07-30T16:36:35.308443Z", + "shell.execute_reply": "2024-07-30T16:36:35.307980Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.928354Z", - "iopub.status.busy": "2024-07-18T04:06:33.928187Z", - "iopub.status.idle": "2024-07-18T04:06:33.937453Z", - "shell.execute_reply": "2024-07-18T04:06:33.936881Z" + "iopub.execute_input": "2024-07-30T16:36:35.310642Z", + "iopub.status.busy": "2024-07-30T16:36:35.310307Z", + "iopub.status.idle": "2024-07-30T16:36:35.319369Z", + "shell.execute_reply": "2024-07-30T16:36:35.318850Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.939664Z", - "iopub.status.busy": "2024-07-18T04:06:33.939220Z", - "iopub.status.idle": "2024-07-18T04:06:33.943065Z", - "shell.execute_reply": "2024-07-18T04:06:33.942490Z" + "iopub.execute_input": "2024-07-30T16:36:35.321481Z", + "iopub.status.busy": "2024-07-30T16:36:35.321145Z", + "iopub.status.idle": "2024-07-30T16:36:35.324693Z", + "shell.execute_reply": "2024-07-30T16:36:35.324231Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.944962Z", - "iopub.status.busy": "2024-07-18T04:06:33.944790Z", - "iopub.status.idle": "2024-07-18T04:06:33.995866Z", - "shell.execute_reply": "2024-07-18T04:06:33.995310Z" + "iopub.execute_input": "2024-07-30T16:36:35.326670Z", + "iopub.status.busy": "2024-07-30T16:36:35.326496Z", + "iopub.status.idle": "2024-07-30T16:36:35.379645Z", + "shell.execute_reply": "2024-07-30T16:36:35.379123Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.998159Z", - "iopub.status.busy": "2024-07-18T04:06:33.997771Z", - "iopub.status.idle": "2024-07-18T04:06:34.003397Z", - "shell.execute_reply": "2024-07-18T04:06:34.002868Z" + "iopub.execute_input": "2024-07-30T16:36:35.382058Z", + "iopub.status.busy": "2024-07-30T16:36:35.381569Z", + "iopub.status.idle": "2024-07-30T16:36:35.388152Z", + "shell.execute_reply": "2024-07-30T16:36:35.387714Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.005349Z", - "iopub.status.busy": "2024-07-18T04:06:34.005044Z", - "iopub.status.idle": "2024-07-18T04:06:34.015924Z", - "shell.execute_reply": "2024-07-18T04:06:34.015375Z" + "iopub.execute_input": "2024-07-30T16:36:35.390322Z", + "iopub.status.busy": "2024-07-30T16:36:35.389885Z", + "iopub.status.idle": "2024-07-30T16:36:35.401052Z", + "shell.execute_reply": "2024-07-30T16:36:35.400566Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.018073Z", - "iopub.status.busy": "2024-07-18T04:06:34.017731Z", - "iopub.status.idle": "2024-07-18T04:06:34.230278Z", - "shell.execute_reply": "2024-07-18T04:06:34.229718Z" + "iopub.execute_input": "2024-07-30T16:36:35.402986Z", + "iopub.status.busy": "2024-07-30T16:36:35.402810Z", + "iopub.status.idle": "2024-07-30T16:36:35.583541Z", + "shell.execute_reply": "2024-07-30T16:36:35.582923Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.232505Z", - "iopub.status.busy": "2024-07-18T04:06:34.232146Z", - "iopub.status.idle": "2024-07-18T04:06:34.239448Z", - "shell.execute_reply": "2024-07-18T04:06:34.238981Z" + "iopub.execute_input": "2024-07-30T16:36:35.586049Z", + "iopub.status.busy": "2024-07-30T16:36:35.585823Z", + "iopub.status.idle": "2024-07-30T16:36:35.594126Z", + "shell.execute_reply": "2024-07-30T16:36:35.593611Z" }, "nbsphinx": "hidden" }, @@ -3725,15 +3725,14 @@ "This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels.\n", "These correlations could lead to unreliable model predictions and poor generalization.\n", "\n", - "\n", - "By providing an `image_key` argument, we can analyze image-specific attributes such as:\n", + "`Datalab` automatically analyzes image-specific attributes such as:\n", "\n", "- Darkness\n", "- Blurriness\n", "- Aspect ratio anomalies\n", "- More image-specific features from [CleanVision](https://cleanvision.readthedocs.io/en/latest/tutorials/tutorial.html#What-is-CleanVision?)\n", "\n", - "This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.\n" + "This analysis helps identify unintended biases in datasets and guides steps to enhance the robustness of machine learning models.\n" ] }, { @@ -3742,17 +3741,14 @@ "source": [ "### 1. Load the Dataset\n", "\n", - "We'll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:\n", - "\n", - "- We'll artificially introduce a bias by altering all images of one class (e.g., darkening them).\n", - "- The correlation scores range from 0 to 1, where:\n", - " - Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.\n", - " - Scores close to 1 suggest little to no correlation between the property and class labels.\n", - "- By introducing this bias, we expect to see:\n", - " - A decrease in the `dark_score` for the darkened class, indicating an increased correlation between darkness and that class label.\n", - " - Similar effects can be observed with `blurry_score` or `odd_aspect_ratio_score` by introducing corresponding characteristics to one class.\n", - "\n", - "This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels." + "For this tutorial, we'll use a subset of the CIFAR-10 dataset with artificially introduced biases to illustrate how Datalab detects spurious correlations. We'll assume you have a directory of images organized into subdirectories by class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To fetch the data for this tutorial, make sure you have `wget` and `zip` installed." ] }, { @@ -3760,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.241391Z", - "iopub.status.busy": "2024-07-18T04:06:34.241211Z", - "iopub.status.idle": "2024-07-18T04:06:43.025032Z", - "shell.execute_reply": "2024-07-18T04:06:43.024474Z" + "iopub.execute_input": "2024-07-30T16:36:35.596219Z", + "iopub.status.busy": "2024-07-30T16:36:35.596032Z", + "iopub.status.idle": "2024-07-30T16:36:36.032446Z", + "shell.execute_reply": "2024-07-30T16:36:36.031724Z" } }, "outputs": [ @@ -3771,409 +3767,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/170498071 [00:00] 963.58K --.-KB/s in 0.03s \r\n", + "\r\n", + "2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "\r\n" ] } ], "source": [ - "from cleanlab import Datalab\n", - "from torchvision.datasets import CIFAR10\n", - "from datasets import Dataset\n", - "import io\n", - "from PIL import Image, ImageEnhance\n", - "import random\n", - "import numpy as np\n", - "from IPython.display import display, Markdown\n", - "\n", - "# Download the CIFAR-10 test dataset\n", - "data = CIFAR10(root='./data', train=False, download=True)\n", - "\n", - "# Set seed for reproducibility\n", - "np.random.seed(0)\n", - "random.seed(0)\n", - "\n", - "# Randomly select two classes\n", - "classes = list(range(len(data.classes)))\n", - "selected_classes = random.sample(classes, 2)\n", - "\n", - "# Function to convert PIL object to PNG image to be passed to the Datalab object\n", - "def convert_to_png_image(image):\n", - " buffer = io.BytesIO()\n", - " image.save(buffer, format='PNG')\n", - " buffer.seek(0)\n", - " return Image.open(buffer)\n", - "\n", - "# Generating 100 ('max_num_images') images from each of the two chosen classes\n", - "max_num_images = 100\n", - "list_images, list_labels = [], []\n", - "num_images = {selected_classes[0]: 0, selected_classes[1]: 0}\n", - "\n", - "for img, label in data:\n", - " if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:\n", - " break\n", - " if label in selected_classes:\n", - " if num_images[label] == max_num_images:\n", - " continue\n", - " list_images.append(convert_to_png_image(img))\n", - " list_labels.append(label)\n", - " num_images[label] += 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find image-related issues" + "# Download the dataset\n", + "!wget -nc https://s.cleanlab.ai/CIFAR-10-subset.zip\n", + "!unzip -q CIFAR-10-subset.zip" ] }, { @@ -4181,24 +3808,48 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.027804Z", - "iopub.status.busy": "2024-07-18T04:06:43.027169Z", - "iopub.status.idle": "2024-07-18T04:06:43.094948Z", - "shell.execute_reply": "2024-07-18T04:06:43.094485Z" + "iopub.execute_input": "2024-07-30T16:36:36.035427Z", + "iopub.status.busy": "2024-07-30T16:36:36.035017Z", + "iopub.status.idle": "2024-07-30T16:36:38.005904Z", + "shell.execute_reply": "2024-07-30T16:36:38.005342Z" } }, "outputs": [], "source": [ - "# Create a datasets.Dataset object from list of images and their corresponding labels\n", - "dataset_dict = {'image': list_images, 'label': list_labels}\n", - "dataset = Dataset.from_dict(dataset_dict)" + "from datasets import Dataset\n", + "from torchvision.datasets import ImageFolder\n", + "\n", + "def load_image_dataset(data_dir: str):\n", + " \"\"\"\n", + " Load images from a directory structure and create a datasets.Dataset object.\n", + " \n", + " Parameters\n", + " ----------\n", + " data_dir : str\n", + " Path to the root directory containing class subdirectories.\n", + " \n", + " Returns\n", + " -------\n", + " datasets.Dataset\n", + " A Dataset object containing 'image' and 'label' columns.\n", + " \"\"\"\n", + " image_dataset = ImageFolder(data_dir)\n", + " images = [img for img, _ in image_dataset]\n", + " labels = [label for _, label in image_dataset]\n", + " return Dataset.from_dict({\"image\": images, \"label\": labels})\n", + "\n", + "# Load the dataset\n", + "data_dir = \"CIFAR-10-subset/darkened_images\"\n", + "dataset = load_image_dataset(data_dir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 3. (Optional) Creating a transformed dataset using `ImageEnhance` to induce darkness" + "### 2. Run Datalab Analysis\n", + "\n", + "Now that we have loaded our dataset, let's use `Datalab` to analyze it for potential spurious correlations." ] }, { @@ -4206,36 +3857,99 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.097002Z", - "iopub.status.busy": "2024-07-18T04:06:43.096662Z", - "iopub.status.idle": "2024-07-18T04:06:43.137694Z", - "shell.execute_reply": "2024-07-18T04:06:43.137236Z" + "iopub.execute_input": "2024-07-30T16:36:38.008499Z", + "iopub.status.busy": "2024-07-30T16:36:38.008189Z", + "iopub.status.idle": "2024-07-30T16:36:38.487271Z", + "shell.execute_reply": "2024-07-30T16:36:38.486659Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding class_imbalance issues ...\n", + "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ed4efbeb1874db0a5e2316cc6fdcc53", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/200 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# Function to reduce brightness to 30%\n", - "def apply_dark(image):\n", - " \"\"\"Decreases brightness of the image.\"\"\"\n", - " enhancer = ImageEnhance.Brightness(image)\n", - " return enhancer.enhance(0.3)\n", - "\n", - "# Applying the darkness filter to one of the classes\n", - "transformed_list_images = [\n", - " apply_dark(img) if label == selected_classes[0] else img\n", - " for label, img in zip(list_labels, list_images)\n", - "]\n", - "\n", - "# Creating datasets.Dataset object from the transformed dataset\n", - "transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}\n", - "transformed_dataset = Dataset.from_dict(transformed_dataset_dict)" + "from cleanlab import Datalab\n", + "\n", + "# Initialize Datalab with the dataset\n", + "lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", + "\n", + "# Run the analysis\n", + "lab.find_issues()\n", + "\n", + "# Generate and display the report\n", + "lab.report()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 4. (Optional) Visualizing Images in the dataset" + "### 3. Interpret the Results\n", + "\n", + "While the `lab.report()` output is comprehensive, we can use more targeted methods to examine the results:" ] }, { @@ -4243,28 +3957,208 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.139729Z", - "iopub.status.busy": "2024-07-18T04:06:43.139403Z", - "iopub.status.idle": "2024-07-18T04:06:44.587790Z", - "shell.execute_reply": "2024-07-18T04:06:44.587181Z" + "iopub.execute_input": "2024-07-30T16:36:38.491380Z", + "iopub.status.busy": "2024-07-30T16:36:38.490234Z", + "iopub.status.idle": "2024-07-30T16:36:38.508457Z", + "shell.execute_reply": "2024-07-30T16:36:38.507923Z" } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correlation scores for image properties:\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZBkZ3ku+n5rzFw5V9Zc1V1VPbdaas0tQSOEGLyFDfiKbVk6+8TdtsKEj8Pm+hCKwBzjCAMmuNd22NiYwAGECQw23gewD+MWm8FIYjBSax5a6rm7urq65sp5XOP9A1B45fMaClvZuDufXwR/1MvKzJWr1vetb60uvY8WRVGkiIiIiIiIiIiIiPpI/3nvABEREREREREREV35+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CDyZzQ/P680TVN//ud//rK958MPP6w0TVMPP/zwy/aeRHT543xDRJcK5xsiulQ43xDRpcL55j+ngXgQ+alPfUppmqaeeOKJn/eu9NXnPvc59cpXvlKl02lVKBTU4cOH1YMPPvjz3i2igcL5hoguFc43RHSpDMJ889nPflbdeOONKplMqtHRUfW2t71NbWxs/Lx3i2jgcL658pk/7x2gl8f73vc+9f73v1/dfffd6r777lOe56mjR4+qixcv/rx3jYiuMJxviOhS4XxDRJfCRz/6UfU7v/M76vWvf736i7/4C7W4uKj+6q/+Sj3xxBPqyJEjKplM/rx3kYiuEJxv+CDyivDoo4+q97///eqDH/yguv/++3/eu0NEVzDON0R0qXC+IaJLwXVd9Qd/8Afq9ttvV9/61reUpmlKKaUOHz6s3vKWt6i/+Zu/Ub/7u7/7c95LIroScL75oYH4T7O3wnVd9Z73vEfddNNNKp/Pq3Q6rV796lerhx566N98zV/+5V+q2dlZ5TiOes1rXqOOHj0K2xw/flzdfffdqlgsqmQyqW6++Wb1la985afuT6vVUsePH9/Sn+d+6EMfUhMTE+od73iHiqJINRqNn/oaIvr54XxDRJcK5xsiulQu1/nm6NGjqlKpqHvvvfelhwJKKfXmN79ZZTIZ9dnPfvanfhYRXVqcby5vfBD5I7VaTX3iE59Qd9xxh/rTP/1T9b73vU+tr6+rO++8Uz3zzDOw/d/93d+pD3/4w+rtb3+7eve7362OHj2qXve616nV1dWXtnnhhRfUK17xCnXs2DH1+7//++qDH/ygSqfT6q677lJf/OIXf+L+PPbYY+qqq65SH/nIR37qvn/7299Whw4dUh/+8IfV6OioymazanJyckuvJaJLj/MNEV0qnG+I6FK5XOebbrerlFLKcRz4/xzHUU8//bQKw3ALR4CILhXON5e5aAD87d/+baSUih5//PF/cxvf96NutxurlcvlaHx8PPqN3/iNl2rnzp2LlFKR4zjR4uLiS/UjR45ESqno/vvvf6n2+te/Pjp48GDU6XReqoVhGB0+fDjas2fPS7WHHnooUkpFDz30ENTe+973/sTvViqVIqVUNDw8HGUymejP/uzPos997nPRG9/4xkgpFX3sYx/7ia8nopcX5xsiulQ43xDRpXIlzzfr6+uRpmnR2972tlj9+PHjkVIqUkpFGxsbP/E9iOjlw/nmyp9v+BeRP2IYhrJtWymlVBiGqlQqKd/31c0336yeeuop2P6uu+5S09PTL/18yy23qFtvvVV97WtfU0opVSqV1IMPPqjuueceVa/X1cbGhtrY2FCbm5vqzjvvVKdOnfqJjdbvuOMOFUWRet/73vcT9/vH/5nS5uam+sQnPqHe+c53qnvuuUc98MAD6sCBA+oDH/jAz3ooiKjPON8Q0aXC+YaILpXLdb4ZGRlR99xzj/r0pz+tPvjBD6qzZ8+q733ve+ree+9VlmUppZRqt9s/6+Egoj7ifHN544PIf+XTn/60uvbaa1UymVTDw8NqdHRUPfDAA6parcK2e/bsgdrevXvV/Py8Ukqp06dPqyiK1B/+4R+q0dHR2P/e+973KqWUWltb+w/v84//pNeyLHX33Xe/VNd1Xd17771qcXFRLSws/Ic/h4heXpxviOhS4XxDRJfK5TjfKKXUxz/+cfVLv/RL6p3vfKfatWuXuv3229XBgwfVW97yFqWUUplM5mX5HCJ6+XC+uXwxNftHPvOZz6j77rtP3XXXXer3fu/31NjYmDIMQ/3xH/+xOnPmzM/8fj/+7/rf+c53qjvvvFPcZvfu3f+hfVZKvdREtVAoKMMwYv/f2NiYUkqpcrmsZmZm/sOfRUQvD843RHSpcL4hokvlcp1vlFIqn8+rL3/5y2phYUHNz8+r2dlZNTs7qw4fPqxGR0dVoVB4WT6HiF4enG8ub3wQ+SP/9E//pHbu3Km+8IUvxNKLfvz0u9epU6egdvLkSTU3N6eUUmrnzp1KqR/+S/4b3vCGl3+Hf0TXdXX99derxx9/XLmu+9KfJyul1NLSklJKqdHR0b59PhH97DjfENGlwvmGiC6Vy3W++ddmZmZe+geOSqWinnzySfUrv/Irl+SziWjrON9c3vifZv/Ij/+1PYqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6of/Wn/HHXeoj3/842p5eRlev76+/hP3Z6vx70opde+996ogCNSnP/3pl2qdTkf9wz/8gzpw4ICampr6qe9BRJcO5xsiulQ43xDRpXI5zzeSd7/73cr3fXX//ff/u15PRP3D+ebyNlB/EfnJT35Sff3rX4f6O97xDvXmN79ZfeELX1Bvfetb1Zve9CZ17tw59bGPfUwdOHDgpYbp/9ru3bvVbbfdpn77t39bdbtd9aEPfUgNDw+rd73rXS9t89d//dfqtttuUwcPHlS/+Zu/qXbu3KlWV1fVI488ohYXF9Wzzz77b+7rY489pl772teq9773vT+14elv/dZvqU984hPq7W9/uzp58qSamZlRf//3f6/Onz+vvvrVr279ABHRy4bzDRFdKpxviOhSuVLnmz/5kz9RR48eVbfeeqsyTVN96UtfUt/85jfVBz7wAXXo0KGtHyAietlwvrlyDdSDyI9+9KNi/b777lP33XefWllZUR//+MfVN77xDXXgwAH1mc98Rv3jP/6jevjhh+E1v/Zrv6Z0XVcf+tCH1NramrrlllvURz7yETU5OfnSNgcOHFBPPPGE+qM/+iP1qU99Sm1ubqqxsTF1ww03qPe85z0v2/dyHEc9+OCD6l3vepf65Cc/qZrNprr++uvVAw888G/2NyCi/uJ8Q0SXCucbIrpUrtT55uDBg+qLX/yi+spXvqKCIFDXXnut+vznP69+9Vd/9WX7DCL62XC+uXJp0b/+W1YiIiIiIiIiIiKiPmCPSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7c6sbvu4XboKalc1Bba1cglqpVIFat96B2tAEvp9ZHIaaZvU8PzXweapX96C28NSLULNyNtS275mEmmNqUAs9C2qBj9sNjSahNrkDv5dh4q8jDHyomRbuc62E33d9ZQ1qXhjfv1fesh+2ibr4md/85nehNj03DTXHSkBt6cIK1AwnA7VsOgu1f/7st6FGV77/+X/dDbXja3g+f/fZM1BLp1JQO7RnO9QKEc4bUbMNNS+Kjwcr48A2uo7vVavVoZZI4PhQugGlagv3o9rtQi0wcS5IZnBuKTVdqK2s4/FUbRz7OQvnL4XTnPJVCLWmF9/nhIPHzvfxdaEXQC2TwP0YFa4PC6uruB8uzo/CV1BfeQavEXTlu/vX74FapCKsRVjzfeEareHZZQr/7mvbaahpvdtpeO4aFtbsJI7xdhvnDK+L843nYi0McG7xA/zcjt+EWhDgvoQhjvMoEtZVgXSMpRrOEZ7n/cSf/61a6OHvMBL2Vxd+r10Xv6svfIZ0nqwtCXMwDQA8F4IQz2dpvgmlC5dAx5cqTaj1foYwJOX3F9Y80v5qwpjRpKvvFj9XJH0vqSiQ9u9l3A2lQqwee/Z5qG1W8N75Fbe9Cmq2jfPy1o873rPSle/I598Mtc2lJagNTeB62usK6/MGzl9+iPdd9Saeb34m/szBSuFzhBsPvwJqup2H2tOPPwe1X3jzW6Fm2cKzFWFcBgHOwWG0tXlZmtOkMegHeDzFeyBhDdUK4+uKXBKfmaUcvE8SdnfLpNdKazmJk9ra3zryLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1ZgYbYDqjQ1DLCIEKpXIZasVxDCaZ2IUhMZWO1BSzpwGoEPLS6jSgFoTYQDyfwwaoo2O4b2YkBMRUhcamBn5uZgSbuHpCU9RuG2uBhw1LE2mpubLQgL6L39e042ERw3lsdtpqVLFWa0FtfWkTao7QSNmIcN/SuQLUXOH702CyMnheugsLULtp/xzUigUhCAlPQaUaQhNiB8dqIR0fM2GAQTJSk2MngfOSpgmNijs4Z+Ysoam48BnNLs4PhoHhEVoHw8Fs4Z+hOkK7dZxFlNzyXOhqbPX8W1ejjHNLKDRvzmdxDk4lcG7RInxtOomBQKZwPCPhtTSYNF24pkphD1sMNpDOLalfeCQ0Qu/NrgoiIQzFxTGuTHwvyxaapXs43yjhe4VK2E5oyG5o0r9nC+NNWH8JOYPKi4QwGSGYRgqBiHrDdITP1EJstK8JQSFKasguBUAIrzWF80kKmaDB5AvnTCCEGZ08dgJqI2OjWBsfg5on3Ds88+hjUOu04+uZV7zmdtjGtHAt44khXTigQ2HNI115pSAoKVwnlGdSfO0W028iMThHuh5In/HTCkppQhDF+WMnoXbm7Fmo3fiKW6EmhZqK+yZ8B2m+pStfGm+nlNsR1tPC+VGvCddt4XJpmDjfZJP43KDdeCr2c3npB7DNkeoTUAtSu6FmpzCE9NR5DOGR5gzLxDVKp4v3SfNL61Bru8Kzn1AaXDgGG8JzmVZXWAcG+Nys04wfz1ddfwC2ueWGg1ALhABAcY4TSME8Uk22tTUPpyUiIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7beliNEGpiCeEBmRyGDKRLuN34tiLUnGwaalUXw1/M3iajOn6NoI2BEqbw2DUthPBITZj1yIFap1nDmou10B/B7arYFLW0UoGaYWND1dEZ3BdTaErfbWLz2KQTP8bJBL5/0MFkj04LG6y6LWxYOj6Mv9dkDsNDPOEZ+LLQZJYGk9+b2KCUGi7guTUxiY3b3S4GObi1OtQaXWykbNg4BwU9wQOhi/NDMoEBKVJLdqkhvZST4XVx/koJjY9NYVKzDSFwxsR9WRe+f7ODTZMNDecIS5g3HAvnpawR/z1mHZxHksIcJzWulxqydzvC71B4qS4EVOhiyAYNolAIJomkMBSh6XkobBf2hqYopUwb54hQOC9rtVLsZzuJ+2Ym8P07wpyRSeN8li3geKvX8LVeA2tKx7WcHmAtEI6JEhqmh0JYT+Dh2kiTmq0LIRBRTxCPJvxedeEzDWESNoRm9lKD+yiJa0gp/EgK8qDBJLf6x3NmY3kFagkD73fGJjCs5sLCOaideOpJqBk971e95hrYJjOEoZ5GCs/72loJanYK5wdTeG0oBWFJB0rMlsGi2xHmL2FeslI4R0rhFpo098McJMzVFq5li0U8nmsX8PfaqGJgRcqZgpoYHrHVPAm64rk+rs11G88328Hr2/i0ELhSwnusZhnP81AT1t09STcTmFGsTrbxedPiMo7TbRN4LX/8f2HQjSuMBdvA/Y2EaM5qE+cR38NruRR65brCcxNh3eIJYXyuh68t2PHa9fvxGY+U8CWts6S/Q5QCvrYeTPPvx5URERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsJj+KzZDrFWxMnMykoJYdwrCSwiQGTzS6UFKWjs1Tk3a88aonNCT3O9jw3BZCETQfG3GWVzAgJyk8su02MABDadgUNGVgY+ZsGo9JKDRA9YQmzIaJv7bQx8amupDaYFnxY2AIoSBOAvd3Yjs2SN62fRZqk9N4nnSFIJ3F+UWotdrYmJkGkxdgk+Ox8QmoJRM4ZixhvIUtnA+UhvOGIzRrjqJ4Q2BTGFdOEoMoAmFM2iaON9vB/W3UcQ4KhMAGy8Ym1PVaBWpZXWi+HuCEW28KQRHCZcISmrJrQlNj04o3qi+k8PqQFoJ+AiHEw4/wMys1DAfzPZyDCxkMUdN1/jsc/ZAUdhAJTb+lAADDwPPIF9YV0nZSwMzSyoXYz7t247yXTuOYbHWwcXlHCNbKCmMhV4CSUga+ttPEOSNwcU7zXaGZe4RzqwpxrGpCY3UpdMYShq/txOcbQ2hIrwtrHsvAQA1DE14rnCdiWJHwvaSgDBpMoXAtk/LZpPV5eWMdaheO47n13a98FWrVixgIOTIdX9s/9ci/wDapPM4Zh26/DWo/eOhBqO3etw9q+64/CDVPClQQQp86TQzKsG0cv2dOnYZaV1gHHjr8KtxOCIqwhZCgpdX4fczG5iZss3PfLqitri9Dbf38Gag9+a1vQO11d/9vUNOE80S63gjTIQ2AyiqOmXYHa4ZwP9Vu4jpAE7I5C6P4WreNY6Y3YLMtrNefW8S1wpoQQCw9b3noOXy2EAkhcwnhtUrh+sYXAlyE6QFCv5RSKhDuYz1hbegHeD1oCcGm+3tCnh999Bn8TA+/wy2HroWaY+O9WBDgMbkU90m8EyMiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkhJAFTaiNTWCoSa27ga+18KO7VWyyaevYFdUK489PIyEkwXWxcTu2A1WquoEBKU46DbVOUghAGC5ALZPF4Im60IS55WPT5CCF31UTms23qy2o2TY+U9YsPC6pnjChhI5hF7kxbGK6//r9UFPC7z9y8DN1oWlySggFufEwNlSlARXhea8UnjPlKgZGWTael67Ql9gRQmIyKeGc7kmoMAIcM5EQrpJJ43ZSQ3rfE4K1HJwfOy2c06TjNJbHICxLaGA8Oz0JtY0uNsJ3hWbSQv9mpYR5uF6Jh8mECdyPRA4b4RsmzhlSz+SEjcdJ2A0lvJ0SpiUaUL7QpFs8kQRS0I34GT6OX6lmWfH3CyPcpt7ANUC7WxE+Fbuq1xs4xtMZnAt1E79/IoXHydAwKKLbEdYjQliNYWAtn8N1kC78ekyhObwUTtMrEoJvDOHaoiIhwEg4J3yhqbwndLN3u8L8TQNJvHwKYUZ+B6+X3/v2Q1DLCqdv0sPAO79ZgdrZk/FrdPkCBqnYObwn2ncQQ2iipvCZHZyrvC6Oj64wtoSsGnXs2Weglsvk8P2EObJVx4COoIvHOJT2T7jfadTi689WCdejy2cWoPbCY49CbUQIz7j41BP42p07oDaz5yqo5aQEMuE8oStf2hHOcSEIOBQCPBsVvD+JhLEQCGMmaQlhwz1hn4YQ/nlhcw1qyxs4t0ykMfT4/AK+Np3Be6KEcO/kdnHO8IV1gJbGe5ZEEu/3pIdOYSitK3BDzxMCO3tCbY6enodtXjj2ItTOXcA56Jd/+Y1QKwjHyRdCUsUlr/SAbYt4K0ZERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqupV6tQ04Sm3xcWzkMtbWHz8dZmDWqBhw3TbaGharNSif2sp7BZeuhj41Rd6LBpJ/D9h2cKUEsX8lBLZbGxp5SoEHjY7NNrYPNYTWiK2lgrQa26vgm1A4ewcfTwxBDuX8+uJCw85gWhMXW6iM2g2wEeY0/oWDqUKWBtO54T9QY2o6XBZDvY+Lfr4vhYXcXm4FPj2MA4IQTTBGJABZbMnmbKYjiFME8pIaRKC3DcS51/bRv3t93GsIOa0Ah+aAy//3CIc2QkhEL4QvDExjrO1duHh6FmCwFkm+uV2M+W8P6+MFeHwr+RRUK6jJPA45S08XiGQhCAbbJzO/1QIJ2DwjkjDn1dCLgSghdaLRyrQYANyfM9YVP1BgbqRTqGLugGzi26lPIifK9mC99PCroxNHytk8R1xvjEGNQSJtZ0DcegLnyGKUzMoRASo/esv8SG70JNF1IcAg/XMl0h2MJ3seYK20mvpcH0+LMvQG1p4SLUvKVFqJXPnoJabgzH4PAw3p8YQijVai0eRtGq4zo8FMbfQ//0Fai1L2IQVnkFwyOef+I5qPnCnKkpHKtLC2eglhLWHlkhwKbZwfe7ePIkfq6P86aVwxDPZiM+bzaF8FNTuMvOBW2ojRUxAMPzcQ46+s2vQ211cQlqt//SW6AmLKtpAJiOsA4Qrp9K4fq8UMRroyeEXzZc3K4tfEapFJ+DrDSO06KB89Tw9gmoJZN4T1DI4ndwhPBPXeH9j2ljLRRC8ZRw79AVggfbQsBoJNzb2Da+XyTMfUHP/aOREga0hu//9X/GcKzzy6tQe+ub/gvU9u3ZDTVDiFvz/wNpNfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivtt6WE0TG617OjannH/meahNz05BLZvGQJRCGpsBR0J/72q1p7G61GjexUafGeEzd1w3A7WR3RjEYAhBCZrQFHT1PIb6XDiGDaeLWWwuffU1B6H2xAsY/lPZwGbS6SyG6egGNn/uduNNa1MFbJCcTGCT63Qam8c6EW6nBfiZI4VRqD3/wlNQO/EiNo2mwZTO4xhcPodjwQ1xDCaTOI8EntA0WJhvVCg04e15rSOEY/k61mwN58dQCGSybWE/TCEAQ+g37bYwSKYqhCckNJzqi0Kj55tmR6BWzuLYj4QArsgUAjrs+E67nvAlhASQZlMK48Bj4qTw2EnbGcLx7A0hosEVCqExYYTjNxKCXnoDUpRSSshbUY0SntObm9gwPNlzSR7aJsw3JoYdmJrQfF7YESkMxheCVBI2jplsApu560IAl27jPJfJCPts4PhttHCO8EOcv6Xxa/X827rXFb5rB0rKDYXgPWFd6bv44kBo3C/VNGkCp4H0vx76AdQ2VjHoZa+N5+D+EbyPySZwrPpdnA+k4NChRPy8vNDGc7fj4xxXfRbv9YQpUyUbeJ+QagpjRhjjysc5IyMENNghvl/UxuCYRh2PSa2B83K3jrWh7ZNQGxmP39vMnzkN2ySF7zU7gYGCVeGYJAwMsTAqGP6zEB2Fmvu6X4CawlwQGgAri3hura7hOT67H58HrNSnobbRwet218f7/JaPY1XT47VxA+ez3VMYyLt7Nz5HOn4Rn7fcePNOqIVCEJa0bouEEJZAw+t21sOQVF8I5lmt4fy9fHEeapXyAtRC4T4uGN0T+7lp4TxScHC+TQhhfE8/fw4/0/sa1H71l++E2loJj3smj5PL619xA9Qk/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23JYTauDTYPdEJtzdiOhQfIUBk84ITZNDoTmnLqGTZgzyXh4wnoJmxJ3hIbLu66Zg9rcDdiItRthc2Ehl0bVl7Bh58kfYNPgRlUIl9mHzUMDhfucGxuDWkLYl4QQluHhIVbZ6Xij2LVuCbfJYMPatIPNac0QP1P52K068HCHz568ALXVM9iEmQZTVwg1Ob+ADX1nZ+fwtW0MFNBDPC91ISQlErqtOz3N0U2hMXzkYjPkhPD+miGMU6FBsu/j90/bOKC7IY7LUJgzIwNf2xvsoJRShtBw2RDCec5dXIGanREaU/dMcx3hOmKEOBfWWxiOlhCCMmyhJjWmtixhvg2Ezvo0kIIAm4prwvhVSghpEmqhh+eWLwToRcJ4a/UENdldHH+Bjo3mTeF8tiL8Drowx9lSGJ8Q8KSHQmCUhcvIZhebzZerOC+n0kKoi4lNz20L90/6Ho3N+JrMbwu/w0AI3xJ+h1LQjxSQYwrzaCQsGKVzggbT+dPzUCvVKlCbGcXggTEhjK1p4xjUhjF4zhCCWRI95+p4EQMQ0kP4XulsAT/TxrFlpfE7TG/bBrVkEq/lvUGBSillCN9fUzi2vC6+dr8wH4bC+ktaz3lCGJ/Zk6a6eBwDN7XaBtS6wj1cVce1XM7GdUvaxLWR5uJ3dYVgRIW3kzQADCE4M+/g2uP7z+CJ+cQCXo9dA58RRBoGZwZhBWq7Z+NhMpqJ+3auiudztoVrtIX1i1BLCYFMoXD/FwbC/ZmwXJACCjUfv6up4dy3bwbnuQPb8D7pmcdxjnj8ke9DzZgZjxdSOC97wv66wnyTTGHAcUYIPQ6F4L1vPHwEasPDOLkwrIaIiIiIiIiIiIj+0+CDSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyj0gng/0rGhv437VPTON/Ez+3ayfUhpwhqC2cOQe1pbPnoVYcjfcnsITeiu4E/rfu2/ZPQE2Xeg91hB4kPjYPOPvkItSaJezBsu9a/P77b70KassL2DcxJzSE3H9oL9T0HPYScQrYm9NKxd+v41Zgm9US/q41hX2qDB2PSaDjsavXsS/c+hr2kAqF3gY0mBYuLENtYmwSani2KdVsYA+djDDOQ6HHrSX0APN7tjOEadNQQr/cOu6HJfUqEfo7tVwcM4GLPVJcoS+cK+xf3cP+bPkkzhkp4YBmHexpUhzB+Ts9jHNuS4+P81KrAtsEQp+8QhHfX+oRGQn9IE1hDpK2I/oxfYunhyGcW2Lv0hSOwbltU1CrbOI1+tjpJ2M/R0L/Sml/0w6Ov2wS+7NFIb6fLcx7Qkm1u3XcF13oTZnE+dYLcA5qtLDvr50s4PvpeIxNA4+x5cQPTIBLQ5U0cH1jC/OoJ/TpDSKsKaFXpZ7AudVMCj21aSCtLuC9w7nz81DbvhvvWWZHsT9bMouN0aziOG63DfuYOU469nOQxHlE6nkaCHOQoeN2bhfXQbrQs9kW+tBnC9iv0hR61yqhz6NUCgIcv1InYDPCucUz8AtXe3rUDWdxvvWbq1DTA2HtmcDfjdQP0/SEPt517PV/5ulHoTa1cx/U6MqXTAk9RP001I69iBdMI/oO1MaFcX5xBT+j7uFcte3Q7vh+hPiZyRSOSs/EsZsQblgKaVxnBCG+VuylL/SF1oX+mqHQt3ttA/fZrZyB2swUzq979uAznWPP4/htNeLrLysn9B1P4twlLW+jSHjOpeO8XBjBNaohvGO1UhE+ZWv4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH239bCaIjYdtctVqOlCfEQmiY2UnRw2Jt55FTbSXVlYwdpqPABhIoNNfq+/FsNgtk9gs/goxGexvo7N3E+9cBpq6wvrUBvfMQq1/bdeDbXsMH7/dhubrOay2KQ9MY4NnHULm6d6QoDG6un4Pm/fiw2t2z4GZZhSd3xd+MwQG7ZurC9BrbyJQUeOjseEBlOkYdNcQ8fzuVHFOWgsj/ONbQotyQ0c55aGTY3rjUbsZ18IPslYOO+lctgM2vPxtfUAv2vXlsJ1sBm0k8O5IHDxONU2MBzKq+J8M57Ded4I8NhZFs65VhLHb7KnmXJ7sQzbOCZ+fyshBDsI4VhSwJVmCEEZXTx2UiN4GkzZNIYMOEJIUy6Hc0tOCIrICmN/KI9j6+nHsSG5dT5+XkrX3khYZ5k6jsl8DhuNm8JcmEjgUtDtCuEyFZwzAx2bzUsBNtJwi3wMv/FDXH/oER5PQ1gvJHuOsRbgh+otnOMNhfurhIb8mhAooSlco4nt4YVAHBpMFxYwpKnbwfP+mQsXoTaz41aoXX891uxRDPfreDh+a258/PodHM+hcO76Pr6XKQzySAgF9IXQvmq1BrWlpeNQ84Tv4Lq4z/l8AWrpNM4jm+t4H+d1cfwGwrw57MRrlTrOZ5qL75W18TskwwrUdFe4PxVCBpUQfvPI974HtVf/yq/ja+mKt7GB1/LFJRyrhonX1O2jWBsp4vhtuVhLKgzbGul5DnPyFAa6ZNJ4TfWE+xop4CoS/rxOuO2Sg6CEADxD+Hs9N8L5RtNwTGcL+H6vvmU/1E6lMKj4y0JIYb0dvxfNCHOrRMjqUWGE81m9hb/DWkv4rsJBln4/W8W/iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkpUABIZjE97ArptToWBOCB5w0NgLfdTUG2Dz53SOxn49fxIbOB2/DgJiuhR1LrSru23CE+1FXBahdvXcP1Eb2YPiLJTRebbaaUBudxc+w87gvbexhqooONl498wwG/SwurMV+vm3/Qdgm1LGxrZAJoSIdG/x7AYaHhF4La4FwnghBITSYNjYrUFtbPAe16w7shVrSxjHju9gIPpXYWtPvQm/IhIbj2RYCG7oRvpcw3ahNJQQxpDDYwknjvxsVJ4T5po7BNC0Xx3R9o4Sv7eAYbEc44fg6XjoqNfyMciN+XNarOO9tK2AwTUOYHwOhwb0lhHRpwlxlW/i71jUhwIgG0lV7cZ2RyeD1TQo7SCRwPjBsISRFWG2VhYCGqKcReEI4x5tdnFs2ag2o5dMFqGXz+B1MG79DJIQ+qRaOoyjCOSMSgl7CQAqMkq75wnzj4fcNFM65vhmfIwwLf4fJJIYQZZL4/bUQf2GBsBDyhfVtIHSH9xXXN/RDXRfHQiSEv0zOXQM1fRuGHTQTeaj5wo1Cs4HXVb8nFGGoiO8lhcFI4QS+ENIURlIQFM6P3/z6N6D2/e9i4Eo2V4BaRwije9XhV0HtwIEDUPvBv2BgWLOLx04Kd7j9UPz+aXJmG2xjpnBuSTk4t5SFdZbp4bGzWzjPd3z8/qV/f3YEXWGcDJ67nnB9jwy8NkYanltdIUTJsPA8nxibwe3M+GurwrplagTva6QgqIQQLmMK4ZqhlGCjSTV8bSCMy9DHcdkWQr6GdDwmo0MjUNscwmOgCYGtQc/0Kq1HhCxVce6KhOctvvBcplbH378vhuQIAaNbxL+IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLquy2H1YwbKajNtzCcIBDCHjyhkXDgY1NMPYENjLftnYPa8vz52M8rG9g4NDGFTVc3fWwMP1bF/cgG2Kx5yMGm57tf+3qoFaeKUKu2McCloWFQRDfAQA17SQh1aeL3bTgYCGNpeDx33xBvyp8cwVCMzc0y1FoevldGaMifMPD3n8TNxKCIRgOb0dJg+taD2KR8qoghC/ksnr8ba2tQawnn1sz2MajlUhh009v8NxRCDEo1/ExfyMIxR6agtn3qeqi1qtj4eOkMhvX4TWyknE0JgRppnA9rdfyuoYPHsyM0eg48/NzSGs5zR0/F97njC02zhYbLUpiZ1Ejal0IhfJyDDKFZM8Nq6McmJyagZkkBR0KDd0MIXhBy/KDRuFJKGSaOQbcb39DScO2VFcIOmsL6IRSCZHQTd26ttAG1hBCyoCewIbnfwfFmC4Femob7HAbCusXE9U0kjN9mF1/rq/jvwhIOejLC/bBNodG6sH6SZoxQCOgIInytL4Tw0IAS7n+SDl6jr7v5JqjlczmodVrCOBLWRtJ1NXDj+3Lx4hJuI4QYZIUwL0MIgDBMHAurq6tQ++53vwu1Ww/dArUdO3dBbbOE91MTQpDf2DgGRdz2ujugZgpzvxSWZ/ZcDwJ/FLeZwUDFUMf3N32cv4OL56HWXpV+Pzi3rJdwPUaDyQ9xfmhF+Jyj5eF9RyEQ1v9CMEvCwWcfhZHtUDN7bqjSDq4VCnmc49YW8R6rmClATRPW9ZEQKBcJ4zkUkl4iA8dWZOCc1nGFUC5BbxihUkq127iG0oU1VOjHXxsJC00pKC+U7rGEdUsqg/tmCetFT/iuboDPA7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raZQx7KHZaEJN6O+tqmUMiYmE5sdj27FhvO5gM/drXnld7OeDHWxebAgNRtsb2Lx33MaGoKlAaElebkBp5exp4XOnoZbTsdm8EeD36nrYANQuY1NY28T321jCgJndGWxW3VXx79upY4NR08RGyrXmJr5XhMd4ooD7Fgrfy7Tx1Jsax0bPNJiOLmB4wvTMDNSG8niOGyGOmfSuHVDL5bDZer2G46jb05hZalq+0cGJz0ni+xcKOMdlMtiYubU5DzXTwLH69FPPQG1zcx1qc9PDUOsKTahNA8dlLi0cJyHQqtzG5sehijfgD4U5Y6WO15FCEvfDkf7ZTAieUJbQXFtoVi3tCw0mQ2g+rgnRJJoQmuK5eB55Cs83IadJTUxsg9qLz8fHjC/MLSMjeK2cHMM1lZPB9U0mg9doKSiv7eK4tISwnkjD9YJl45wWCKGFvi8k+IRC2JQQghEIQTehF/+MbAob8ocV/K6uh8ckYeG8J/R3F+eWtoe/i0YbazSYPCEUYmQc7x1MC8dvx8VxJAXHRELwghT4ttETHLOxhkEySgjk2r1nN9TMtHCvo+N3eOrxZ6DWbuH3Gp/E+fF7//Io1J575jmo/eIv/iLUWh4ek8VVDMGQxrlQgrHvCcc8IdxjDgtrqkwK1zJDaZy/FoV51O5gzZQCuGggVWt4/VwtCeeHLwQLBxhC0zLwmp8exbGaK+Bro551VVJ4FiAFAGoR7q+WwNdqrhD8IoxLN8A5WNfxOGk6fkZbCGsxdLy+t2oVqC1euAg1P8DjLgWL5Zz4cRdyfsTnSKEQIh1FuF0mh8c4mxGCeYR7vZbwGVvFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVaCnsijmxbRxq3S4GKgQeNrF0O9gotLyCIQtjc9uhNjQcb4CaLuHX6F5Ygtq00EDd04XG5Ro2n5+aEl4rNAX1LmDj43WhQXIoNMfPCg2M0w42KzZtbCiq61jLJfA588ZmPLDHnccAn6iIQTop4TMNKT3Cwia23RC//9y+nVDbMYPNumkwjY+MQC2RxEboq0IAlSWEQmQKOI66QshEZOA8Zznxc79cxzHeFUJTJkamoGabDtSqFxeg5paWoVZwcM7YvxuDup4Vvtew0PRdambfdXFetoRwi/Y6hgnV2vhatyeMois0klZCg+iUj9slTPzF6row3wjXG88XmkubQrIaDaSucH6oCJuPa1JYiXCuhkK0gVQbK2KI1Ny2udjP5+ZPwjamwnN3bAbnOC3AeSkSAmKGsrj2WC9hQJ8mNCQ3hSAZ3cTP9UMcv1GEc0sQ4TwSKvxcIXdDBT1hNXoGNwocrNUauA5M6ThXtz18baOD8229ie/XamGNBlMoBN6NjmIAldfFc8vMpKFmC+tz6TMiIVgp6lmzp4aHYJuUhePZEmqRhusnLcL5oVLGdZsUrlKv4Rx07uw5qFVLJfxc4fsnEsK9k3AvtrGBYXzNJoZ3dXrud20H54wx4XiOjOFcPVLAObjbxmN8oopz4agQMuIM4/05DSYtIYReBfhMIyNctxPDs1DbHNkPNXsVx7QuPOdZWI0/5zm3hEG4xSE8d+t1fP9ECseCY+PzCzOJc5Dt4NrDEcKRpaVhVQihyQifqwvz7RNPPIZvGOL+eS6G8XlhfE0qheZIQdC+LwTlRXjslhcwSGd1L4bENlx8zucJz3m2in8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq0kWhAbJG9j418lhw05baIBqGlgrL61AbWxyAmqBEW8Y7tewIapXxkafawE29LWS2MQ1l8HvkMRMBJXKYrPXTgsbgHZb2NhTaijaaNSxZuJrDVPYGQMbr9pCk+Tt+XjQTxjiMTl9YhFqQ+NjUOta2OS50cb3M4TTzElgzY3wtTSYXn1wH9SyKTzHn3zmBNQOCM11x4Wmvp6HY7AjnL+JngbkyUwWtpkQ5oJiEQN3PA+bz9eWMKwmaGJj5vwwjsGRcQzzGpnCRs/ZPDZRr9VqUJOa3m+uYoiYZuC/YVlCI3ilx+fqlBB8o2v4ezAtfP+MMC+3O/haV2hSLwWKWEJYDw2mWguDCDTh/DCEf7uV/jVXF4JULOGcdnK4rnrlrbfGfs4Ka5SNTQzMOvrUWahlhnBMTm/H+ctKCoE7Aa49bOE7iOF5wtrAtvF7qA4e46ArjMsQ501NCP/RehqmN9r4e7VtDIqoehiK0Q6kICys1et4nHpDLJRSShOaw9NgSibxWrZj5w6o6QZOJEI2lApDvA7qwjVa6ThmZpx4LafhfUgkXFPbEY6jpsK5xRDG6cTkJNSOn8C1nBJe26zj/oVCAJfr4VquXsF1VaWE66Djx09DTVq7dTvxca7bOD80R/E47c7g/NjUcH5oCXOQH+F823ErUCuVVqFGg2ltFeeHxRaGw7o+zhkrJ/FczWxg8FpxCNcymWQBau1u/Jp82003wja+EPKSTuB71aq4b3VdeG0S5wdLCu4S1nyeEDbcauHzi1pTmKtCvO8KEzjOo/UzUDOEEK1Wz2cMCfOyH+E81W5jTTdwHnn0UZyDz53G53INfOSmcgWc+7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raTYx/MV3sQGmj/01lR9ic84gwMaeZgobe7Zq2Jg4mc/EX5fDJpmH73gN1I489RTU/uWJp6F2cO8eqI0P4WfUN7HBeb6AjYm3jWNj5nYTX7tZKUFNCs9QBh671U1sKJrKYjPS2d3xEBCtg7+bHUID1PkSNsc3c1NQa3Zwf+dPYSPWcyePQ21y7lVQo8G0o4jhL8trG1Bru9iEOVRCeIIuhCdYGJ7QUtiEebNUjv2cKRZgm3QGGzVbNjakT5i4b0Mz2/AzV3F/rRR+hungdmY6AzXPx3GZz+J2uo7/NtVM4j5PTmOj66rQEDnZM6eHLs43bgeDHRxhHp2WPrOG16WFJZyrJJoSEkVoIAVCMIshpEJoQk0K3ksKATOJBAYPeF2cb/KFeKDTa1//atjm+PEXobbxL5v4/g2cH3OJItSCANdZmhCoJ0xfKungus0W5hYPlxVK6Meu2kKAnis0R9eEF+s94RZNIazGyOC+dTX8gHYDrzfKxzldCuMrOHigLEMI66GBpAtpViMjBaiNT2DgXaOF4SpKw9f6kbA2EgIhs6XzsZ+d80/ANp6G9xzt60eh5to4towIv+vxE0IYjI8ThGHjfBsqIaBBGINLG7gOSAiBCusbZaiVKxX8XA/XLr3hWJoQaFO38dhtlvH9N4TwQJXD378hXFtMF4/xeh3XRjSYNldwzCxX8H6i1MWas4xrgzfN4fo8JYzV4hBup/z4tdHJ4jXV7eD5nN5/FdQeenYJai+exnGU0HAsWDo+g9ETuL+BsOhxcJeVE+Fn5Cd3Qm3HTgwdfWEVn9/smMP7nbqKrw0TaQz/FHLLlIrwdyOtxzoBvp93EQO+pKDmlPPvX9/wLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1bhubqqdTQkNyhc16wyR2xXRy+NpUGpsfBwE2CA57mqhfrGKT9j0pbEp8y8EbofbkU9j0vdXFz3QcbGKatIVm6UIT6qWlVahJjetn5+agFoX4fpaFn7u9gU3Zl4XPPX0s/n33Xn0DbLOreDXUSkfWsVbG5qyewn3brGGz0/wQNmHeuWsX1GgwZYTm6JNCAMJqDUMGWi0Mnuh0cLsgEJqee9jpt1SOn7+GMHcNC3NhMokhDvUSNka3hRADQ8fXum2clxIFnG8jIfwlEoLFggiPsWXhvDQ2hOEWYYj/hlUXArhanfh1Y3WzAts4Fs5xqTQGfCWT2CE6V8B5ZHEDP6P3d6iUUiNCmBcNJlMITXFsHAtJG8dqUmhmblq4tAp8HL/lMq5d1tYuxn4+cNVe2GZ6bgJqb0q/AWqlEgbgZTP4HSIN10ul8iJuF+I60BNCbSIPQzEiDY9nqHAOUsIaKtLwF6QZ+H66Hp/TO8Kc6Qa4b7oj/Ju80PS9YAqBYa7wWiHYoinMjzSYpPC8tBAyl89jKECjjWEMvfdESimlNBxHQklpPQE2fgfnDMPG9YgSggJ14X4lEtZyrTbeO7jCGsUwcYwXx/A+sVXDfbGEMLpGC++TGm0cl7kcjvOEsDZyeq4HLSFVK5PF91qq4/wQCeFCmovXh4ZwLz4pHHcDDycNqEi4x5i2cR5JCkG1U9fg84DxIoaafPNbD+MHd3CdsrAQX1fMCc892l0cp4GwpnjDrbjmOXXxBNTWasJg8PG67beE8E8dx2rBFO4ncsL9pLSGTOF60W/jvFFM45rM7llrDudwXm4LgYoZIRzaFebvIIHf1fKF8FdhzZt18LtuFf8ikoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio77YcVmMITcVTGWyunBvGWjfERpy2jc9ANxaXoZYewaCE2lJ8u6TQEPTRF49D7VXXHYLaW//rW6G2eH4eaoHQSDmZxWaiQn9klc0IjetDfL+lxRWo2UKT6NDH15pCo9DxbdjUuboZbwK7sYIN6U9XsYnt5MQc1BZX5qEWZbCJ6cy+GajNv3gOaiuLG1CjwWSFON8MOUJQhFOAWjGHtSgSQp+E4Il8AcfR+ZX4fFNtYiPlfTlsKv/ic89DbWN5DWpX79kPNd0SmtSXcXysnXwBapqJ3yuTKkCtKXyPQGh6X+/i/H1qCb/HufMLUFspxeeSthAGpKdwf0OhabaUa5EQfoe54WGoXVjDY2c3sWE+DaZsGgMFbAOv25aONVPHtYwtBKk4WQy8yxdwDdHq1mM/D0/gdXz/CAbYHH/mKNQmRvC1J05iM/e5HVNQs00cg8vVs1ALhTCKjhDaYFh4nIRRrpQQ5GEJ6yBfyOcIw55m6zo2uHcD3DcrietW5eN+JIVQCK+F4RGlNZwfK3VscE+D6aoDs1CzbRxHfoQjxBDCCKLe814pZQkBT75wDXWT8XnJGcfQyECYzwIN9y0SRnQkJORIYZ3CsFeOgwF1b3j9HVBbmMP7mEwa54yFC0tQO3/uAu6fsNjwbdyXWk/gn9us4zbC3LKk472uIX5/LO5JC+FotnAvnsZzggbT958XzucsjsuOEHQpnG6qUsFrme9i6FNbCIcqrcWDb3dvx+cDC/PzUFtbxcDcV938CqjdehWOhQcew2cmxRSOj2kb1zcnWjhXtwxcL1ba+F1zDTyelS7WWgrvYy5s4v7tvSr+uVOjGBq0WsX9yCeENVUG5zNVGIJS5ONn2Akp6FO4uGwR/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWk3KkZuHY7HSoOAI1vYuNQjsuNuxcu4gNh4eE/pe+F28I7EyOwTYlCzuZ/+DZp6H2ptf9F6hFHWw+vnDmNNQSjhDM42Jz9KkJPCaJBB76Sh2bvSaFMAYtwOO5KgRZBAl8zuyk4w1K200MpvG6GOLwnadPQW2+hY2ZM0LYR34Yz51t+7ZBbWR8HGo0mFJCY/BAaIZbruI5qOkYVpLIYviLG+D48DvY6LfTM39dOI3z1MED10OtUcaGziM5DKcoCoFci2exgfpTzz4Htfw4NhfeXNuE2vgohlFsNHCcL6zja6stnKuXLmIYQ7uFIRDJVM/YFzrS59P4u9GEJIpcHhtEKyHoZkgI6HADDC+rCnM1DaaEgfONkxCCkDI4foeHcPxOTOL1TVobpdJ4vRwZj293/DSGXk1M45pneKwAtaSJY+bosRehFgjrLCeNTcqNFq5bXCFYSmpbHgnBG0KOhTKF8MFQCHKQkjdcLz6naUJAjhfiuLeF92/X8FqwXsKaW8L5sd3FNaSmC1+WBtL0OI6tnI3jw/LxmqoJ533Xw3sCKSTG9zEAoZqOrw02d+A8ZQmBVJEQ2GDrOHYNA1+bE9ZBY2N43S4WcX2Tz+B6IXBxvRAKgaB37LkVanu24/c1WrgOSjq4rvRT8bnfVTi3mCYek9Es/v6LGs4Z0ry0KIRHPPX9f4ZaWwhRo8HUCnDMXLVvH9SmJoX7JCFg8umTOD7MJJ6siSSuF155yw2xn8eHcIwfP46fmRSu5RfXMPRp4QLOcd0uvp+n43zbruGcEWpYSw/hetFy8bvmAlwbZBt4Xzg7hUGGWgvXlRknPpfOTuIxGR8S7pOE8FdPCGBu1HF/pZBBX/hejSbOX1vFmYqIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO/4IJKIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO+2HFbj5IUGwRE2J9WFZsVL589BzU1jI+XQxNrqAgZDbJuLh5q4bWycWRSaub/4yDNQS3/3e1C74Zo9UOu0MUjGTmFYzcgENmF2W9ic1HWxCfVIEZshh0LD6aWlFagFrvBM2RWaVfe8XxBiE1cnYUPtwhqGU+jD2OS5tFHGz6xUoHbj7a+C2sQIw2roh0yh0Xa1hc1wS+US1EY6eF66SggKSGGTZOlz8z1hFF/9n9+FbfbM7YfarrndUAuEcKhqBb9DubQOtUKmALXbD/8C1C6cPgm148extrSJ+3J6Dcevq3Ce9wOc5yeGcP+cTLyp83IVv2vKEho/C3EXhtC4vTCFITxVHy9rAfalVlUhlIwG0+5d2Lh9fATXEKMjOLfkctho3DTxnO52MMhAOqevv/7m2M+nFzAo7sXTJ3A/hNVcuoABEJaD1/fFlSWoTU5jyJwphOx1QlzLSHE1obDW0BUOTNPAzzCEedkw8TOCniAaw8TG9Z4QbNEVArlaQjCNvoGvtTzcX03HY6wJ+0uDKVXA+SGfxxCSbBbH4GYFz7eukDbltnG+8YRQG02LX8t9TRjjUFFKj3BNpbcqUDMNXCsUh/FeJ5fDe8yJiQmopR0h4GsU5+CNTQzw3DE3C7VD1+Dc3zqFAWFGHj9j2Yrf7506dx62CTycg0IT54eacB+rXFyjtJsY0Dg5gdcqz+F8Qz+0YxbHWyaLi4/pIo79C6t4vi2W8Zq/q4ghKQsL+OzH1uMhgItL+IwnsnBuyWRw/H3/GQz1XFzHZzBvPoTrNlsIAt6s4GdUykIQlrDW0kLc5/IKzkFlWwiEifB41jbwuKxeiIcmH33iUdim0xYCzoT7X93ANVVOCAfrdnH+SgprSEeYl7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww+ryWAj5XoHm3ieO3Eaas0yNuxMp7CJuic0bm+2sWG40RNucHZ+AbaplbDB6vRBDI/42re/D7V6F0Mcbjl4EGrdDjZ+TqWwCbVt4WGuCgEuUuiOIwTi6BY2sE442PTdEZq+uz0N47tC8+pugM1Jt+/cBbWGic1Jqzo2SB4ax9+1SmCj2NXOJm5HA0kTGummHJyDZrZvh1rSxHPLd/E8122hCbFw7vcGcC0uYZDMxz79Wai95c7XQG2kgI2UnTUMwqperEBN1fE71OaXoTadw8bU62n83OPnMKBCa7SgVhwTQqTS2Jha6o1uafGi4WID/Ua1ArVgFOc428Lfa8bB7SaFoLLiGDZhXl/BAC4aTLccOgy1hNDMXIvwJNc0nKuaLVx/PHoE1xqRiWM6PxKf56odnG/KVTx3x1MFqFVquJYx8jgGWy0MqWr6uJ2p4yLNFpaRkSaE1WhCWI0QeGFFeDylfzH3hNf2huREobAfPq6VojbWMibOLV0DwyMMIczLEM6TKMTfNQ2m7O4ZqHWF+aa8LIQd1HFuqW7MQy1t471ISrhuW078c00hrFLXtxYgJY9IrCaEz1hbw3nuu9/9AdTmZnE9Ytr4vaR7seqxx6H2pX85CrWFhrBOEe7ZStX42q3WwvtVaU0ZCTNaTgjDGcrgHLRLWGhd98ZDUDOLeIxpMAUWns8PPIL3Dv/8L7iusFLCqE4UoFTAJbZSDZyrHvzuY7GfazW8/7nt1bdCbWoCnyMc3xCCuyIc99fuw7CayTSOy5ow7suP4nOZFQ/nailY2LBwXZFwcI44+cJZqD31+NNQ27FzW+znShWP3fIaPkcZKhSgls3jPeF1ezF0VXqWlhOC1RbP47O/reJfRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oSQgDE8voFqJ0/fgJqBw9dDTXDxAbf9UBoGC408O204w1Fh4tF2GbhwnmoTe6dhdqOmw5A7fT8ItR2zmFz6V2z+H6dBjYi9QNsLjw2MQ21pUXc53ING4XaCo+TLzRCLwtNRhOp+O8xCoVGyj42lbeT2Ii1WcWmqNt24HGaPYBBNxfLGDDU6GCjWBpMSSGERMPTXrXLGMbQEhr4eu0u1AJVhVp1fQVqCwvx+cAUmrRvlPC9Pv+Vb0ItLzQIHh/C+WvUwCAovYKf0WpiuExuNAe19SbOBWFCavSM80irjE3kIwPnb0cIj5gcis/fI8L3j4Tv6glzUL2OQRGjXZwzUkn8XkNFPCbl5VWo0WCyhaAIKXohEhqS60IoXKuLc9D3juB8sFnFczCRi88v7QDnuFQa97dTwcCZlluBWjPE7ZSJk+vKOjZpj7rC2iCN41cTjlMghNWoEOcRU6iFLu5Lu4PH2A3i85cv7K/q4L7ZnhAekcO1Z11IVGzXcF6yhI/VA/67P/1QZOGYCSI8t1wf7x1WLmLI3He+9g2oWcL12BSCM/VkPNQkncNrdCFfgFpRuO+amMAgGSkg55nHn4BaXVi3ZYRQy1oe14ZBA+9Fh6fxXiRRxrlv8/SLUCsZGG4ReLiGTPbM/ZlhfJ0hHXMp6EeomcK9nqnhPZvr476ZEZ5jNJjufMOdUBs6jvPNZgPX/2GIF7PNpZNQa5fwvFxZwvsp3Yuf02khAO/0yXmoXbN3H9QSm/iZgXDv8D++js+lMibOrVYC92WjhXOQnsbthhwcb6ZwyW/UcT23a88c1K6+Dp+bNWuV2M+jYxhM6ggBV6EQ2pfOYhCyKazRshn8rlqEc7UuzFVbxZURERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsplrBBpuNagVqmZTQuFwIREkksHlmcSgJteUNbATedOONeed2YVPi/OgQ1M6cOgO1/bMYpKKbKai5EYYitDoYTJMTvn/dx0brroe1VK4AtY3KGtTaQsPlXBYbq6csfM6s9zQjHUpjY9N6gI1I00IoRkFoJJ0fH4PaehfDLho+hmeoyMYaDSTDFhptd3Ae8To4jjTsrasapQrUwhw2Zq7VcJ7bXI+PwavnJmGb/PAo1BaFRs0bZQycOd/CsdVNYyPhUSFQoyU0Vz4uBHWdWd2AmpbA+bYmHDu3K4RWCGEM611smO71hEdMCw3upfAfT2jSf/YsBlyNjE1BTcvh9xrK4jzHVu70Y4GG55skDPDEbzZwzjh3Hs/VMMDBlUhgMITZk8rVqODYLW2WoOa7Qk3DuUUTgqbsCNcPzRUcz906Xrend2IQlCUcztCQgvFwO80VQoKE465ZOB+mE/FRbQkhDn4LP1QTQm0SDi6P7RFcVy5LQWjCmteQOtfTQLKEUADDwFpxCOeHThvvifLDeF31Grhdo45re60n8O3MSbxPcoTwQEsI3DF0HLuGibW6sB9BiNutr2KY14TzWqjtzOK9Q72CYZpdIcAnkcDX2koIaLDwvrA3BCKMhMAGoRZ4QuCoh7//MMA1ansW5+p1IUhHVXDdRoPp8E23Qu2VN+L5Vuvg+VYS7lkq6zhmFubxfse+YS/WesJkWj0BLEopdXQR3+vcwkWouRV8bSHCwCjP3w215a4wZwiBO6bwlCyfwQWOEeF4C9tYK5fwGI8M41pmZtcOqL347POxn6enMfRYF+bg558/BjVDCscSrkuRje+XFAKGTGkxt0VcGREREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2paTWzInkpgs+LDb8BGwvuv2gm1C5vYEHlRSEpon8KGy+1WPCSm7mGTzNHMMNQ2Q2z6fuyF41C7/erroDaSwYbs9U1shpwTwhg0oWF6tYXhN0rDX4cu9D5Op7GBdSqJzaTbwu+stzFzqGEz1VZC+F23cEd2TmKj1E1TaM5axeNuOdic1W8LCRg0kHwhnKAqNCbOpDDUxbKlJsT4WlPIRooUNiGe2xY/z/fO4jbLSzgXJHM4Z1w1Mg41Q2gGHPnY0LiQxfdbEwLDXljEBu8LFWwOH0X4WkNoQG8ZeKBMHber+UKQR0+oRqODc+FYEt8/NY2BQBubGNJ17vgJqO04gNeb6SKGTJwwhWQeGkj1LgbPra9hyNq5+XNQOy8E0zSkucrBJuqOg9fySIuvDUohBsTMn8PP9G0MtjNsISjQSENtLDMBtdEiBnCdXMXxdvToBagVt+Fn6A6uIRxhrs4lMYwh4eDcJ0xLKnDj4Tx+V1hnNYQgGQ/XXqGFr005+L2yOayVNyv4uUQ/okcYIrVaOgs1rYvr5EIGw9gKQ3h9qwv3E5GG1+1sOn7+VoRgUulvVoIA10GNBs6jurCm0nXh1lMI0arU8Tj909cfgVpB+JOaKI/zyOwEHqeyh59bbeJawwtw/nJ7AmaCCL+rJwSTqhDfyxJCJq7ajyEbswcxYHXDrUDNF447DSY3wGueJYSnpQ287/CEYOGhnduh9tUvfxtqmjDfDOXjzypGx3Bd9Lb7/jeoJWwcp40mzjdugN+r3hBCn4THDW0PFxVHz2JYzyOnMDjn3Dquv8ZSeL8zWhTWMgHOEUlLWOBo8e/m+cL6TrivsYWbXd/DYzI2is/Nqi18BieFkmXyp6C2VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LfeILE5g78PJPXuhdv3eWagNjWCvjlwRewfY2EpQmRn8b9E3V+P/XXwo9FBaOL8MtUIK98Maxd5Ia218v+1p7ANk+Ng7IRB6oPku1gKFfV5sA38dtobPittCX4DJMeF7YMsC1WjGv1tF+K6dCI95u4Kfud5ehFok9MDTXOxFkEhjbz89gdvRYNosYc/FstDncdvUNqjlC9gH6HwFB0NlGeeI2R3Yf2d0Lj6nbSwcg20unsBes7N5oR9kiPNeKoHj3hP6FtUa2C8p7OKYKeax50orwl5TnjAuu0It8nA+aAa4nW/id9Os+Py12sTvMJ7FuVUTepqsr67gvnXxd5FM4fEcH8LeJ3t34++aBtMXvvQFqK2u4PnW6WIvn1Do92WGOH6lsdoU+jh3uvF+rraO/Z+3D+O5e24Dr9GdFl7fnQy+X3YEa6YmrDO24TpwU2gppwv9p2ycgpRlC2seoQ+jbuF6IVTYwzGZjH+ulcY12uaK0C9X6G/bauB2ptDbbqhYgJor9F9q1LGfFQ2mfZkpLAo9F1MFvGfpLOE1NHn1NVB78fhJ/IghvJYnrJ5z+iSuZXzhnkPT8L004X7FEGpKw/kxn8O5xU7gvLS5iT3b1jWcC/T1CtQSIY7Lu+9+K9Q+9vFPQW3xIq4Xw56/5UmmU7DNnn3Y5zHl4P3fiRdfhNpmGdfBpdIY1Cw8TMrk7RT9yNHnnoLa9il8ZqA6eI1qt3FsTe/FPuy3veE2qJ09i/3qaz396ucv4oOfinDe75zDTApN4aJiduceqEVdXAeZUg/GAPshpixc8z36AtY6Po5p38e5Op/Gz73x2qugVqo9CrUwjF8jFs7jMxhdmG6DCNeo1Tou3KT8kVXhvtsTeo5m0vj9t4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtpt7A552LjItRcD5uTzu7YAbVt4xiosG9qH9QMoTm4Y5diP3e72Gi8W8f9rVWxe++1ezFwJ5nC0IXKGjZPHTWxOefiOjZevbiJr40sbMi+cwLDLbIp7EKsGdjoue1iQ1lTx6aojUa8aasvNFUfz2Az5Bebp6D2wrlzUNsxi81OUzYeT6+Nv58L5xegRoNJF/6NZHIMm5kndDzvmzUcbwmhYXpVaMK7quE5aG+fjP2cmcRG87M34H6MDY1CrXRxHWorF3DOyFg4t+SFBudhChvG6w6Ot4zQwbjm4T5vtLBZdcvFxsSqI3RCD/D9HD2+z1ZSaOhs4zy1XMPm0mtCk3o3xO/feeYE1GbmZqA2ux2DjmgwHX3maajphhC8IIwjT7iGdprY9NxvY2idZeK1PNET8JQUmqrnRvHczWYKUCttYuBO0sJxGgkhVU2FzcztNH7/VIj7p1m4JrOEdYAljP1cAed5K4mhHbUGzvPdTnxd4QiN4UemcV6un8e5JRIDZ/CYFIoYhJUXAmzqQlAXDaZ9OVzrd4SgS+m+y3TLUJsax+vbC5g5o3bsmoNaOhEfl49+73uwTRBg2IEu3IfoSgqwwe0sIbnKFAKuduzE76UU7svzLz4HtaQQutlt4jE++iLe2zRb0ljFMKGoJ/xGj3DOyCTw+wfC/VokhJ8+/dizUGsIITz3v+O3oJZOb/n2nq5wH/nQ30Bt+xQ+g5kcL0DNsvC6PX4cJ5e5HRhUPH0jjl8rEb8HmJraDtukLRy79SoGs2jCXBC4+PzC6+B49nUMNY2EEJaucE+USwhrmYIQsudhSKqh4TiXgmPCCLez7fhxuXhBOCY6zjepND5Hcl08dvNnz0MtK6ReGQmcv4oj//7wT/5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3225m+3mCgYq+D42JH/xOIY97FjFUJvDrzwEtZFCBmqzI9iU3ehpxnmhgg1Bt1+FDUvXFrHJ8+nTj0OtMDQBtZzQOLSO/ejVwgI2Dz1x/gLUxoZx/0ZS2Fh9tICN0IcKOahdWMbjnhOCbgo9TdSbzRRss14rQa3UbECtKgRKKA2bzLaF82Tl7GmoOSEeYxpU+G8kkRAU0RUakiuhGfBwoQC1VA6bCy9u4FzyyA/iY+umV9wM2/gGhrA8efRFqGU0nHJ9IRRjaAwDFVJCM3ejKjRQF46JHm0trCafxfkgFI57q4WTX6uJTZ3T6fgxNoQG956L7yU1lR8fKUBtegKDg8anJqH24osvQG2yiM2qaTD5bWxm3hUCBTyhFobY9DspNDN3UjiOLBwOSg/izcE9Yd/qQpiC28Wm4ikhU6oqhB2UbdwwOYrrh2Qav1cCL++qrXD8BsIcJM1VhoGfYdrCUtXAua/T87muh3NLIoGf6WSEILAq/l49D8NDegMAlVLKTuE8ms7i9YYGU9vHUIR6G8/VcgXvWZQwZxw7imEt505iaJtl4j1GIR+/nwiE9bqwylK6sNZXQihgJNw7SS/NCuOj1cL7jh075qC2vIQBVyuLS1A7UcVQiKOn8F5ECuKJhDWp1vNFOk28Pjz+yFNQCwKcb/PCfd1rX/cqqF173TVQG5/FwA+DWTX0I5aB4VCrGxjQVu/gGt628bx/5gTOLSvLuCYxhGt0YSgeaLt9Ep+3TI/hc49MBsfkqBB6vL6J82hOCCDOj+BnZFN4nCJhzVeMcF4aHce1QauBE13vPZFSStWFNUTg4Rqqd4oo7Mc5w3GEEDHhmmFb+LwtaVSgNj5cED4Dv4MUSrZV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23I721YbG3bmktiQ+9T8OtQWzq1CrVHDpqiHDh+AWnEIAwUmRmZiP6edPH5meR5q4TZssNlI4n7Umhgu4yexmXk9FIJZRrNQM01sJFxuYLNTX+r1KTR6rpUrUBseH8d9aWAz2nI1XtOF5tUXNzGY6KnT56A2cv1OqNlCs+rFkxjgkxGCeexI6KxPA0kKwoosHIOrZWzymxD+eWVHHucRXQhHyiYwoKHsxxvGzx+fh22GxjF8arGJ38EXmrQnTWykrEfYzF4PcIIYMnF/SwHOaTmhCXPRwkbHgTCndTrY/LkjhHFoRXy/XK6nEX6Ix6TZxv2VGtxbQsflbBrnkbQQ6pO2cbtQ+F40mEobeM1TEYaVJITzKCXUErYQGKXh9c1v4zqgW4vX2kIoXKuOr7OE5JuiEMgUCuu2jWYFap0qjtWkhrWEh8fJx5JSCl/bCrHB/VIHQyaconCcIiHkqhM/xponzMFCuI4VCNcbIfxHCQ3Z28JaLhBy99IZhtXQD9W7OD/UOnjStEMh9MrB6+xoBoMSbtg1DbWl5XmonXwhHuASCGNB4glhd8JlW7zHkKaHTAbDE+bn8b6j3cE5IyeEEW6u45yeyuMacnwC751qNQy1WVnB+9h2p/e4C4E2QrpQEOLcsm0bhuy97Td/HWpJB9dyvhB+42PWBQ2obbMYzBKGOGfo0vVNWJ9Law1XWNvXNvEz5i9UYj8//sQp2MY0cYYwhM80TawVsvgMppjHuWV0COfRYgGfJZXbQtjuagVqtTQ+TnOEa35jCn8XplWAmqHjPWA+E79u5PMY1jNaxPc3DLxPTCfxOA0L7yflwQaBEEq2tcuGiH8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq3FS2ORX+disWA+ws+XqyibUvv3l70Mtl8fGo3sO7oZayow3Gd2WHYVtEjo2Oz0RYmiKhv2Bld3FjstRF7+rl8QGweMjGFox5uOHNEvYDLkufEYmEhrVu9gA1nSE0IYENjUu93STPrd4FrY5Pn8aaiqFzU7HprdB7bnvHIHaa26+GWqHXv1KqH3vwW/i59JASjp4vrlCI+VyHRuXFxxs8N6FpuJK1aoVqDUaON6GkvGGw5qH88OZF05ALZ/ARsWzYxNQawlBEVGIc0EY4feydZzCh1IYRuFauJ2l4fs1qxi8gL8JpcwMXg8sC98v1TNveD42YHaFuSsIcf4OhfAQ6fd19tga1MaHsAnz3ATO1TSYDAvXLbaO57MUhKX7OLd0Kxik4nax6Xu7iuevW49vp7k4Zkyhg3hqqID7puMOW8L8mIlwrZAWgruCNZwfVAu/qykE04QWzpuBht9jQ8M53RouQS2Zwf1L9DSv1wKcp9wm7m+7hrWEEB6S1HF/Qw1/P01PCBNKM6yGfihUeB5pBl6jdaGWcvD6PjWN9xhSUNVsCcfR2lr8/qwyh2uUdluYz1xcozSbOHbbwnrJE0LxpLSD/VdhgGlZCO+6uIxBMm6A4/J1tx2G2uwMhvqUS3jP2mph+svjjz8Z+/n8PN5jRsJcmBDWPNdcsx9qgYvHvSaEh5hCkJ8pBIfSYEqncCx0u1irCyHClZowptv4WkNhrZjHtUak4ud+5ON1sdXFsVZq4r51hcCsehMDkxdXMbhKF8aHFH6TEsIvk0JYZ8kUAkGHMfzmKm8f1Fwh2LSQxn1Jz/UE0Zj4OiMphSfiNcNK4vt3wjLU/DZu53t4THT73z/fcKYiIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVWGl8ZinkDihrCJtizhaw+fHisRWoff9bz0ItlcOG5Kl0vAF52sF9G8vvxH1LDUPt/AYGs9RaGELTcbApaLmKTVHrLtY6a1WopVrYRN0Li1CrJDGgwU5koea6uF25gY2pLzbi+1KSGshncd8mhvH3sH7uPNRMYT9mdmegZpjYDLqQwcauNJjWVnF+SKRzUBsV5oeJERznbgebH1tC+M1QCseWMuLzSyKH2xjCP+kkhCCZpIbjTfrnoEjDcdRROC+ZwosdB5sma4EwpzUwMMsTgidyWWwmnRTmXE0Ixkj2hkfY2OS53cV9k3rZeyFecHBvlRrO4zwyMoSN+zM2NnWmwZQSQiEioRF6pyU0bq/jOHLbGFYSCeF+KsBxrvz4WkMXpoxQmkaEoh5gTVP4mWlhLGgd3F+/KgTT+PgZfiCE1ehYs4T5QElBNy4GVIRCWGBoxN9PE0KvpODBqIFzi49vrzwdt4s0PHc6QqBgxxd+1zSQbGEd4Bt40dOF4IGMietpLcQ1uy+EQEyM4Boq2BkPa3G7OMYDH8ekK8yP7Tae9y0hHKpSwfnxuTMYMtdoCKGFXRxHtQreY2nCfPj0E09B7cVnnodaKo2fm84I66CeEEDbFOZbIWRvz+x2qI0V8P2Xz+P9aSqF26WSQpissP6kweRYwno9wFoopPFFWTyPEsLSWVN4P6WEz2j3rBfKQohfNxQCeYXQmFAIRzZs3A9DuEHThcA/JayrbOH9Mhl8zpUT5ofhYgFqgYdrSFOYv4tCtp3eE8zcFkJ93AhrgVvB7UIhwDQhBJ36+P2DSAhBtPC+c6v4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH235W62UYgNNiub2GR0+SKGtVx16xzU3CZ2Ba1sYkPyh77xBNT8nqbn7l5sID7lYW04hyEW+yauhlq5jo2P11obUDOEpuopHZt9du0C1E4+/SLUltewWfPktl1QK509AzW3gw2hNYXNWJ2x+L7MHNgH2wzNzECt2cHm0rrQPHZ4cgxqkYO/i0odz51KTYqeoEGUSmGz8FwGOyRnhe3sBDb+LZWxsbpt4vRnWPgZYU+z8SjAZsAjQqNxx8T3sjycM6R/DmoEuL8bQuCO38H3ywoN7kMhKMMQxq8jhP9EUhN9IdxD03G7SIvXksLvJhBCzwIN38sXgjdSaWzcH0bYXNkSulC7QvAIDab6Kl5723Vcj3hNvA6GLo5LW+iDnjLxvNSFOcjtCZMJhWCLQAiDiVwc42FbWBfoGJ6QEPatVsUQHkMIpjGFcWkIwSymLcwZQsN4zRO+bxO/r24Kjdr9+PcV2ucrS8eqJjS9D4Q0xq7we5Xmb18IynBdXPPQYHKEmDXLktI/hZNLCDYIhXPVE2q+h+e+H8THpZeURg3SpGu0cN/lCWF0rQaOhXQK752eObkovB9et8fTQlBCJMyRTby3EyLEVFDH79a2sGb3hHtcu2sctskJa5TxMbwXNT3hnPBxPeZouL5LCsE0CencoYGUT41CLZvE66cq4JjxhFCqQAi/rDdxvdDu4vstrvSMQR3HbtsV1gVC8I0UOCrdOxhCJl4kXPNNHTdMOzgGR0aFYJphDALLp3CsOhrOQd06rit9ISDMMuNzf8LCYM6hNH6mH+Hvq1LGObjt4ff3hWMsxe6lbSHodYs4UxEREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oqq2WoHX/yJNQ6TWyAaiSxufLw9gLU3Da+9uIpDIl5VD0b+9lysMFmbbQEtVwJP3NqbCfUCtkRqNlC49+U0DR4NIWvHZ3DJsyzeWzs+Z1HMZjnXHMFahvNi1AbLkxAbXpmFmrbtk3Gft4+tR3ffxN/1w3VgZoSAiCy2SGodUOhSXuAx2RsWmobTYMoITQIzghNv00bx2WtjefbYq2C21UwjGIkjeMyl483Jja6+JmrtU2opVLYhDmBQ0bpITYD9gycW1yhmXlFCNSIhAbnqQTuS1I4xp4QMqEJYRl2AvcvioQgi54wDqnBvWHg8ewIDbIzwnfICNcWN8Qmz4aGnxEJAT40mJbnz0NNE8IeEkIgkyGcbwkL1yRRF9/PFYIcQjP+GYHwmX6E4zQQzmdN2DdPCLUxhblAF5rD+8J3iITgHE2YC1QkhHEI4TeG8NowxH3RQly+RmH8M0IhNCYSjqeQO6iEr6W6IX4HTQjzioR/44+EfaHBJJwyykxIiQrCi4XzSBhZytSFc1CYl/yetDjPE0KlpOunMAdJC5wwiQMpn8W13IgQ4HLNVXNQq9cw2KHTlQI18HN9H+dbXwgQlNYpphDu17t2sW1cFxnCMU8mhbWhsL5JpTAUIynUbOG10r7QYBrfhs8CfOF5iybNJFJeljD2vS4+c3F9HKtT2+Jjv9HCMVkWwqK6bWG97uN3kMJqEgn8EgkhTNQQgllc3D2VK+B4S2eFzzUxWEsXJnVPWGvpGj4j6b0gCFO88lz83RgmvpfjCKF9wht6beE7CMcpEgKTt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdaJCUMEBEREREREREREb2M+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRP6P5+XmlaZr68z//85ftPR9++GGlaZp6+OGHX7b3JKLLH+cbIrpUON8Q0aXC+YaILhXON/85DcSDyE996lNK0zT1xBNP/Lx3pa8+97nPqVe+8pUqnU6rQqGgDh8+rB588MGf924RDZRBmG8++9nPqhtvvFElk0k1Ojqq3va2t6mNjY2f924RDRzON0R0qQzCfKMU76eI/jPgfHPlM3/eO0Avj/e9733q/e9/v7r77rvVfffdpzzPU0ePHlUXL178ee8aEV1BPvrRj6rf+Z3fUa9//evVX/zFX6jFxUX1V3/1V+qJJ55QR44cUclk8ue9i0R0heB8Q0SXEu+niOhSGfT5hg8irwCPPvqoev/7368++MEPqvvvv//nvTtEdIVyXVf9wR/8gbr99tvVt771LaVpmlJKqcOHD6u3vOUt6m/+5m/U7/7u7/6c95KIrgScb4joUuL9FBFdKpxvBuQ/zd4K13XVe97zHnXTTTepfD6v0um0evWrX60eeuihf/M1f/mXf6lmZ2eV4zjqNa95jTp69Chsc/z4cXX33XerYrGoksmkuvnmm9VXvvKVn7o/rVZLHT9+fEv/+dGHPvQhNTExod7xjneoKIpUo9H4qa8hop+fy3W+OXr0qKpUKuree+996aGAUkq9+c1vVplMRn32s5/9qZ9FRJcW5xsiulQu1/lGKd5PEV1uON9c3vgg8kdqtZr6xCc+oe644w71p3/6p+p973ufWl9fV3feead65plnYPu/+7u/Ux/+8IfV29/+dvXud79bHT16VL3uda9Tq6urL23zwgsvqFe84hXq2LFj6vd///fVBz/4QZVOp9Vdd92lvvjFL/7E/XnsscfUVVddpT7ykY/81H3/9re/rQ4dOqQ+/OEPq9HRUZXNZtXk5OSWXktEl97lOt90u12llFKO48D/5ziOevrpp1UYhls4AkR0qXC+IaJL5XKdb5Ti/RTR5YbzzWUuGgB/+7d/Gymloscff/zf3Mb3/ajb7cZq5XI5Gh8fj37jN37jpdq5c+cipVTkOE60uLj4Uv3IkSORUiq6//77X6q9/vWvjw4ePBh1Op2XamEYRocPH4727NnzUu2hhx6KlFLRQw89BLX3vve9P/G7lUqlSCkVDQ8PR5lMJvqzP/uz6HOf+1z0xje+MVJKRR/72Md+4uuJ6OV1Jc836+vrkaZp0dve9rZY/fjx45FSKlJKRRsbGz/xPYjo5cP5hvMN0aVyJc83vJ8i+s+F882Vj38R+SOGYSjbtpVSSoVhqEqlkvJ9X918883qqaeegu3vuusuNT09/dLPt9xyi7r11lvV1772NaWUUqVSST344IPqnnvuUfV6XW1sbKiNjQ21ubmp7rzzTnXq1Kmf2Ij0jjvuUFEUqfe9730/cb9//Ge8m5ub6hOf+IR65zvfqe655x71wAMPqAMHDqgPfOADP+uhIKI+u1znm5GREXXPPfeoT3/60+qDH/ygOnv2rPre976n7r33XmVZllJKqXa7/bMeDiLqI843RHSpXK7zDe+niC4/nG8ub3wQ+a98+tOfVtdee61KJpNqeHhYjY6OqgceeEBVq1XYds+ePVDbu3evmp+fV0opdfr0aRVFkfrDP/xDNTo6Gvvfe9/7XqWUUmtra//hff7xf7JkWZa6++67X6rruq7uvfdetbi4qBYWFv7Dn0NEL6/Lcb5RSqmPf/zj6pd+6ZfUO9/5TrVr1y51++23q4MHD6q3vOUtSimlMpnMy/I5RPTy4XxDRJfK5Tjf8H6K6PLE+ebyxdTsH/nMZz6j7rvvPnXXXXep3/u931NjY2PKMAz1x3/8x+rMmTM/8/v9uG/RO9/5TnXnnXeK2+zevfs/tM9KqZeaqBYKBWUYRuz/GxsbU0opVS6X1czMzH/4s4jo5XG5zjdKKZXP59WXv/xltbCwoObn59Xs7KyanZ1Vhw8fVqOjo6pQKLwsn0NELw/ON0R0qVyu8w3vp4guP5xvLm98EPkj//RP/6R27typvvCFL8TSGX/89LvXqVOnoHby5Ek1NzenlFJq586dSqkfPul+wxve8PLv8I/ouq6uv/569fjjjyvXdV/682SllFpaWlJKKTU6Otq3zyein93lOt/8azMzMy9dICuVinryySfVr/zKr1ySzyaireN8Q0SXyuU63/B+iujyw/nm8sb/NPtHfvw0Ooqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6odPs++44w718Y9/XC0vL8Pr19fXf+L+/Czx7/fee68KgkB9+tOffqnW6XTUP/zDP6gDBw6oqampn/oeRHTpXM7zjeTd73638n1f3X///f+u1xNR/3C+IaJL5XKeb3g/RXR54XxzeRuov4j85Cc/qb7+9a9D/R3veId685vfrL7whS+ot771repNb3qTOnfunPrYxz6mDhw48FJD0X9t9+7d6rbbblO//du/rbrdrvrQhz6khoeH1bve9a6Xtvnrv/5rddttt6mDBw+q3/zN31Q7d+5Uq6ur6pFHHlGLi4vq2Wef/Tf39bHHHlOvfe1r1Xvf+96f2vD0t37rt9QnPvEJ9fa3v12dPHlSzczMqL//+79X58+fV1/96le3foCI6GVzpc43f/Inf6KOHj2qbr31VmWapvrSl76kvvnNb6oPfOAD6tChQ1s/QET0suF8Q0SXypU63/B+iug/H843V66BehD50Y9+VKzfd9996r777lMrKyvq4x//uPrGN76hDhw4oD7zmc+of/zHf1QPP/wwvObXfu3XlK7r6kMf+pBaW1tTt9xyi/rIRz6iJicnX9rmwIED6oknnlB/9Ed/pD71qU+pzc1NNTY2pm644Qb1nve852X7Xo7jqAcffFC9613vUp/85CdVs9lU119/vXrggQf+zf4GRNRfV+p8c/DgQfXFL35RfeUrX1FBEKhrr71Wff7zn1e/+qu/+rJ9BhH9bDjfENGlcqXON7yfIvrPh/PNlUuL/vXfshIRERERERERERH1AXtEEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd+ZW93wFfuug5rvhVCLQg1qmhXhdjq+1rYs3A5fqtyuG3//EN8rmTKgZujC1/XwA1yvC7WuizUnZeN2nQC3s/Fzh0bxtaaVgJplp3E7hd+3VKrivoT4nLn39+N3PNy3Au7b+Cjumx8Jx9jCz5wr4HfouPi5msLP+MA/PAA1uvLd9b//JtSi+hrUdDsJNcPEecQU/smlE+DYDzR8P9eLv9g08P1Dr4Wv6zagpqcdqOUyGaglNRzj41n83DPPPgI1r1aGWn5kH9SWx3fg/k3MQU2r1KGWMnDsl1ptqBk9E7jbrME2Y0M4P2Rt/N2EwvFsVEtQizwfarv34fcfm5iG2h+88/+EGl35/uD//O9Q27Z9EmrSmmd4eAJq2SKe041OBWr5oWGoJdPZ2M9dD9cUSuFcsGPn9VAzItxubGQMahcunIXaqRPPQu3sqedxV0Icb5lsDmpWEo+JZePcl84OQa1WqUBtJJ+FWrEYf+3I5Axs4wzh988WcD9UhBeNs6fwOH3sr/8KagsXXoBat4Pz18MPPYOfS1e8//b+q6Hm4dJAFefwvDSqeC9SW8RzNTRwu9Esjhmz5/Le1puwTWTjvKeHuAaoVPH6biVwDsoUca3fKuP6ob2J27W7uNaa3D0KNdXBdUt3RViTuXjsCtM4B9kzOKdVmpV4oenCNlZC+K4LOGd2dZznp185BTW3ht+huYmf26p0oPb3HzgBNbryHZ7Fc3B02zaoDQ/jesSt43ywsTgPtUwSP2N6DK+1kR+/96818H7FD/H5QCqJE2TGSUHNEu5NNBOfwWRyOJ6dLK5RvBDHZauNc2s6XcDP1XFuabVx/mq08BibJj5LM/R4rdPFMe52hWdVwnFyUsLzJuEzV9Y3oXbi3AbUIhOP5z8/cx5qEv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYXAgBcF2tOEsMeMjmsdQJsqBn62KDUFcJfEk68GWk2j++fTmGT57MnV6EWCYEVqTSGtfgRNmtudbBBcMLEfQkVNk/tCA2SNRe/a9bCz03n8P2m09hcudXFzzh/fiX2syWEfSQ0bGK6bRibJpd9/P1vbK5DbbOJv9e56QLUPOF8osGk+djQVxcCrnwhKKHbxXGUTmLD9Fodz9V0fhx3piecph3guE+lpKAt4d95NGwGrISSEgKpOi1sUp5LYQPnrhCc0wywiXxSCNuqN7H5sWrg981ksPlxTmgmrav476faxN9NJISDGTbOcUN5bCR988HdUNsxgyEjO3ftxM8QQo1oMOWH8Nx1fQw7aLVwfOh4qqrNBo7B9fIFqNkpHEfDo/E5SFpnFAoYkHP1NYfw/U18f1eYH+p1bBi/urYEtUCY+7wu1mZ2XQU1ZeGabLOGxzPycVlqC43gixN4DMqbPY3VUzhnFp0i1FIBzoVeF9ctThK/Q7OJn+ELa9mEENpBg8mMcAyOTe6B2mgCQ1gatXNQ8yt4fZ9xcG1fKGFtYyN+Te52hXlvP65lzGEMJzBruJ0vBIe6GVzfeCUMbAiFALxEQQgoFMJ0uj7e25ljuM9GA8dlfQ3Hb07DOVJPxOevzAj+vlob+DqVxN9/MoXHri3cT+nCmtfK4HfIDRXwc2kg5YVrz2QRx0LHxeuxZeI4yuSEkBghEVRLCvOBF7/hydgYoGXZeD3OZgv4/r5wPyF8B9PGZxqFkRGoKSEwOScEfOlVvObbQvCeZeD31xM4v2oWrnkMIXTHC+LznC4EBqeS+HtNCMcz5QjrEeGWtRng/m628Ka1UsPg0K3iX0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfXdlsNqXA+bBieFZpfJLDax1A0heKGMzXpNoaFqOodNNhM9YTJ2Ap+nekKz8CDEUIQowkasSQdDEVwXm536QriKZuO+1FrYSNo0saFoWmjI7tWFQBiheb3URL84hE2dt0/Em8ymHAy5GR7G77/Zxf2oNbC5tCb8rn0dz51jJ6u4bzPboUaDyVBCw2EL55ZmWwhXMXHOaLZx7LddbMJrhUID5zDeENnFU1xl0tiouIunvSrmcLxpJn6vRg33LfSwQbLQR1olkthI2s9gGIey8DglhaAqM4kNobuNCtSElyrDiH+33XMYMHHjwX1Q27VtDGqTo/i7sYUD4Ll4nNZXz0OtKYT/HDx4C9Toynf81PNQy+VxzIyOYJhVcRSbmbddHFvPv3ACaomU0PS7shHfRhjPY6MFqBnCtffMmWNQG8rjHOR6eC3f2FyGWtLAuaDTwbl1fRPnr/RwAWq+sA5yhYlk+zYMgXCEOW11oxL7OdTx99AJcI3muvh7SFj4/qaJS2bPw2tQSwoWywpzMA2kUS8PtVckb4NaVggjqAZ4vnXHcRzldDzPN57Fe5HK8/FxXhfGeGJOuDfT8NobaDgHhRXc31C49XQKQgBGHe/jGiG+X6WK38sW5mW7gYuy+qqwUGsIgYcGft8wH6+FBXyr7ATOt00N7381D79r+YwQDiaE1aSzWEvm+XdG9ENpA8+jqIHhIuPC2qAhjMFyG69vyQw+N2gL2xWG4nOVHuLcohlCwLHC7RJp4VlNhPvb9YUgrAqGF4fCfJsW7jE1HeevIMLv2hGeQ5lCMM3oBK4r2y2cI6Jm/HsUCwXYJiUEICYSuKbqtHCNtiQEa1U7eEwK4zNQm189CbWt4kxFREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rGZvGJqa6wgbf7SY2RQ09bPybtLChZiAExwQRPivtdOINQDUPv4ZuYG37zDDUDBf3NyWE5oRtbPbZ0PD7O6O43bTQPNQrYRNTv1WBWsvHY5ebnsTPTeNxMoTvMTK2LfazKTS+Lozg/q6X16FmBtgguZDGpqtJoem7XsQm8oU910GNBpMtNEwPQymACpujR74wFoT3s/D0VWkN542EHR8Pho0NksOuMMcJDZf1JL5W6Tjv+QaOXSuJDe514ZjoNo63agsDJVI49SlTOE62jhtObsNwnp27MWxq757dsZ/HR/A6Yir8DpsrC1BbW92AmqZwfyOhSX9+CI/d8GgRajSYMnkcq8k0zgVSzY8w7GBoCK+DI0Vs8B0Ia6hGM35Ndhwca0kbz+fzi2egtryyAjW3g43bT595EWrVGl7zk8P4ufmhAtSsBO7zQ999DGqbTRz7TkoIqxEC9EYLGEYx1LMvgYWvC8r4+6oVsXH77BT+Dg3s265MC+ebXA73rVbDRvA0mMwqnjNrjzwHtZqw1phK49ogMIU1tnAdVGO46Gkn42sDu4Frhb01vG77K7j2soTAzZUmzjfdCo7BzBTed+ij+Bm5At47mGlh/hZCr/wqBkBkxnEODnCaU66Dn2vMxkP1uhZOEJoQrmO0hPCIOh73ZArfbzSJ97GRifNop4pzGg2mHVMjUIs0Ye1cxwAbVcEgqAkdx4wmhPdGNRzn1Vb8fiI0cJ6qdCtQqwthNaOTGGrpNzE0ZkoIPXaFecnz8F6sui5ct4W51RCCiiPhGVFCWM/lA/z9tBs4V3Vgn4W0UmE91qjiPHpxCdeGz568CLWmjkFokYnzbSAE82wV/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWo0XYdNNtYXNKWwhZCDxs1ptMCttp2HjTFcJarJ4QlvImNh3VhK82OYoNnSfHsbYhNFI2ktg0eKRQgFpG+F6+i99B1/HYtYXgCU84JrOjwrETQn0iIYjH7GmmbNrYILrWwMam6fQ01PQEHifNx4a1DeH9JmeEwJ0Mhl3QYDI0PGc6LjbzjoR/S9GE8JfAxTkoJ4QoaW0cq6qnqfPoEDZubwgNkjs+Nhtut4WQKgv313KEMC8lBIEJoV8JocF91sTjOTe9DWqzew5Abdd27Nw+M4nNn9tC2JZpxueqtRUM1DCFOa4gNKR3kvj7Cnz8Xi0P5+r1UhVqFy5gIM6NN70RanTl80OcWzJZbNKdymKT7lYHx36lhg3ek2kcv5uVCtSaPWEyk47QLFzHIIKl5XNQe+yJJ6GWz+D7ddq4v5q0RhGCbpIJHJff/e6/QO3sEr52zzUYUHfo0PVQS5u4rhgr4vdwkvHfT9PF+eGZY6eg9j+f/SrUtk1imNV9v/5foTY+geERtfoy1BLC/EWDqR4IQZ8VDApYOrcJtWUDz6Pxa3dBzR7C+abawACq9FB8DWU4eD22XVxnmes4tjIXcS6ccPB6vCbkxLVaOD/oQtBpOoEv1oTAC28dgze6bVwHpueE4IUW/n6sTSHcoyf4Kkji6/Qsfv/cNvwdDm3gPDIc4L75Hl6rykJon5MTghFpIF119UGoBU28P2k0cB3QFQL6LCGYZKON5/npNfyMVs+9XSgEv2w08Ry383g+N5YqUDO7OO8dmN4DtfEsjkFXuE+st4X7OCEkteMJgVEdfEbSFr6b565BLZnA75uw4kE3QSSsKcsVqK2t4XVkaQV/10sb+P0jB4O1ui2cW4vCebJV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23J3yUYNG2wmTCEoQmia63rY2FP3sMmmrwlBETruYq3U06g9wEbmuTTumxFhM9FugI2Z0xkMShgpYihEV2iEfvEihiIIOTJqbgoDIDxN2Gch/MY28HMbDWwy2u5iQ/tEK97stFjAhu/JFIZxGBr+Hjol/B222tgU1dCFZtVrK1CrtB6FmlL3CDW60oUejmkpMMtzcUwbIW7n2Hj+ekJIjBQY1XTjY9oJcax1NJwfXQ3fywnxewVtHEeRwibHmTTOS+Ozc1C77ioMnJma3QG1sWl8bWTifLO4+DzUVpdwbsmncY7Ugvicdvb4s7DN/v37oLa+XobaseMvQu30mXl8bQmPe62KTfSDAK83b/8//i+o0ZVveHQEalYSm3RLoQi2hdslHBznyQyOD0sIsDHL8fN3Zf0EbFOqY7BFMonf4egLOHZHi6NQ27N7FmpBgOuMSAgCqwlN7xcvLEFtZGgOasPCMXnj618DtaIQEmQqKRgvPi+tlnGeKtVxbs0lcG71uhWovfAihv94Pr5frYbrQCuB5wkNJguzZZS6iOEEt9yagdoLP3gOat/5ZwwemLoV54PtuhD+2RMIYxfx3kQK1DNs4Xw+X4FSUgiPGN8nBG5mcQxu2Bhg0ziFY9pKCcEO23GuTtlYCzt4f6JqOLeoCq77dCv+PZLFLO7bkBA8qON6xK1VoLbewECNVgO3Uzg9KstkOBb9kCsEwuSEsN10EsdgEOAc1MFbLPXscxeg9sIGXge1VHzeMIVnPNksBjcpYZ21uYnPG7Qu3ot97ykMydwzi5+xYxs++xgdw1DPTAbDdn0DD0qzhXNVKATMrK1juF2rheuqyIjPw64QmrNRwbllcbUCtc0Kvr8rBCs3GhtQc4TwZsvGc2er+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+Wwmm4LAwC0pNC4PY0Ncm0LP0YTQmKCUGqUic0+dRVv0Dk2jA2Cc3nct0IeG2yOjGOtXsPvungWm6KmHGyeunMOG8F3Qmwe6uvY4Hx8GzaFtYT+n5aODZxH89igtTiGzaqvuvZg7OddO6+GbdaXsdH8D76PQTL5JP5uxorYhLrVxN/rwtoa1Grnj0ONBlOrhY3BPR8biFsGDhBxvomEgJkI308XAgXazfh4CxQ2+XXSOJ/VhYCUXIhjfHo7Nj7esRsbJE9PjUFttFCEmvJxvBkG1mrr56Bmp3A+/MoXPgm1bhPnr1+/59ehNjEeb3w/OzkN2xSy+B1OnJqHWsvFfbv62luhNjk6I+wHHuNsHhtT02AKcfiqQCgKm6kgwmrCxDXJ7Axea6+5WmgE3xMeUanidXajhA3Ea60SfubsFNTcDq5vNkurUItCXGdIc7AKcL4dHsK1RyaD3zUhhBtGXfxcP4HH2BQyJlr1SuxnQwg4k0IWb7wRfzed9jrUvvXNL0ItlcY1TyKB6+DNagVqNJj0YTyfT57EAMfpwn6o3frGw1B79O8egdrR7yxC7Zb9GNBgd+L7Mj6BYTVJ4d6suo7zjVI43tyqcO94VAgZXMVxOXUTzqMV4f7HDXAM6gVcQ0UZIUz0DK7nNCFgVQ3jWjM9HA/J8YVQz3oZ10qGi9t1s0LQ6xwG3agqTnzuAt5Paev4vWgwnV3GMJTpAq5/ZwsY+mSEOC43Ozh/bVbwPNctvOan0vHPqFYwaEu6x8oaeN6Pj41DbX0Fr9unVzH8crWBz3RW63gvcvuNON9OCvcsvhCe5yRwXqo1cN5M2rhds4GhNvVW8yf+rJRSG1WsNbtCULMQdJN08Hc9NoHniSmEFjbruE7dKv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYy8JmlJjzH9D1sYhkKzdxN7GmsErrQ9DuLDTULQ8nYz7k8vi5dwMam+Sw2/h0exUacXoCN29cq2Iizu4ZhFAeuwkOaSEJJVasYLnPoemzsetN12PS80cHjPj23D2ojo7uglh+L1/K5HGxzzMUmrtuEoIw9cxg8MTaBzW7PnrkAtc4j2JhbbBBNA6nVxvGhCXOGJTQDDgNs+h10sIHvzjSOt7SN421Vjzf6nWrge9XK2Cz8lZM4Zm581SuhtvuaPVDzDWwu7IXYDPnU8Reg9txzz0Ltv/+/3wy1lInN1w0hFOLq/Rj+8uV/ehBq/9/3/gXUxkbinzE8hmFeEzM78HWzWLvt9ldBbXICwziKFp4TpoHzcmTgdjSYmkLTb9PC66zrYi2fxwAIv4OhV9unXgG1PXsP4GcE8XFumHjudjxs5t7qLEDts5//H1Cr1XAts7gwD7WG0PRcEwJi8hn8/lkhtHBmGudDQ8drvuZhsJgR4ViNAnzt6Ei8ifzCCob6GDpeH/wQP9NJ4XGfFBq3RwE2lV8cwe1qXWzmT4MpSOFNgY7LAPXM2Xmo/dLN/wVq178C10uP/8M3oPbwGoa13DIW3xd7O+5H2BDO3TLODykhpKuh45zpbQpjvIzjOS+E0GRmsDYv3J81KngfN3YY5yDXxGPXNoQAmyL+ziI/vk7rrOHc0tXwe4XCDXCYwOPkKDxObR/Xhnoej7ue3/LtPV3hfCF478nnjuGGe/Geft8MXt/DOl7z2kIIXq0hBIz2hPwmbVwrNds4/sIA5yDXwWc6+Tw+0zCTOGd0uzi2Ti7hMx0niSG6poFjWvdxPgwjnA88F49d2BbmUuEeMNDi+9wUQlg94V7XFz7TSeP9X1LD82THrBRWAyW1tioEGW4R/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+m7LTSR04T8K9wP878ndBv4367bQ+yIM8b+xTwo9mcYnsffF0Gi8v8b4NPYldNtCDxZd2K6L/5382gr+t/lK6CuUH8Y+H5aNfQwyDvZAGM5PQm3PHP469u7HnibJ3F6s5bEfpOdhv4fSWnyf1y5gX6n1dfwOu3ZdBbXdV+ExHh7C378m9LY7ehx7N21s8Lk4/YjQbiIQeu0YJo5VW+G8VEwXoJZu4Pu5a9hXaP/IROznRA37l7gXLkJtSOhL0jzxItRazQrUcjuxl+LwXuzVuDGKvdj27t6G+5LFOUj3cJybER74W27YD7VyFee+Cy+WodYux+eX8+eXYZsXTmAP2ab/HaiFOn4H08ZjPJnDYzK3HY/d/3H//VCbgAoNAk3D81438PrmJLGBWjKJfUrbQm8vL8DrWwenEhVo8TnNF9ZKto3roloF9/fZZ85ArTiCPZ/SmVmozW67FWqmVYTa4oVFqHnuOag16jhH5oeEnm0dqUckjn1h+amMRHzsZ4bwOIU6/q7bHvaJy6bxeO6ewTXVw9/+OtRaDVzfJGz2bKMfapTxHO+k8Xrc0rD34bPPnYTaDbdcA7W3nDgBtc2TeI32avF7m/nzFdhmHJcUanQ7zoW+jvdTHaHHbfncOr7WxbVc5Qz2tExt4PtNWPi5lnAvOjyE/eP8JH65toH7t3zxFNSq2UrsZ2MCVxBZhfvWamDPtkATekSauJaplGpQU6UCvt+c0NCXBlI+h33+mgUcb0fP4vp8oojPTZLCM51cAc/VgnAv5kXxzx3KY6/+rovXY7ctXLcbFagNFXHfhobzUKvg1KI6LZyDnz6JayjXwz6M187hPVvKFBYpER530xRyDSJc90HfciE4QUraMBM4ZzaEPBdfyFfoCuuxRArXY8n/wPqGT36IiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy90lPaF5qGHgyz0Pm/BaJja2dGxspJtK4efa2P9UZXLxDR0Lm4r7TWwQPDSC23ktbEo8nMbvOn0bNj3fdwAboOaSUoN7PE4zO+agVshhI/hEDhug2pk9UDOTuF2o4XHfuHg+9nOrjg1g53bgeyWMCtQWjmPT7E2hse3ionCaYY9VtbyCjblpMPlCx91Ix2LUxnOmITTzvtjGBsGrLWzWG/k4Hn5xLh50UlrEIAYng/PNs+tLUBuaPw+1+ho2SLb2j0Bt9399LdSCDE6Q24YKUJs/vga1bFSBmraMjZkff+5ZqD09j6/12zgf2j2NmQtZbBa/eyc2eLdtvBh0uvg7XFzH72U4GGBz06FXQC0axjmdBpPQ81vpOl63HAfP3yjC861Rx7CSwMfzt1ptQK1UjYe6WI4QYpDAtcK3vvV9qDWFhuybZVzzNJs4t05N4BgsVXBO67bxQ+obuJ0jLPC0BDZCr0ghE0EBakpYf3b9nl+kjvNjJIRHBCHWMlkM0ikUMZjIF37/mQKGA5Q7JajRYAqbuG4JhDVPVQjte+rE81CzcnjfccthvOY9tvptqNXa8cSss+fxmuppOI6SNoZMJISohKIwj0Z5nAvqdTwmYYDjsl7BdVvCxprl4vtVHsawQGcUg+yGJnH9NZy9EWprzfhcunoB5/NGEX+J9S6uUYcKON8ETgFqURETztprOGemMXeEBlTk4bic3oEBt2dOnIXavzyJ9zs3HtwJtaGCECwc4vOgSi2+XohCXBcVhPdqNnA7IcdPKSHkpbyJ195cDu9XEkKw1toarpeePIHrm1IJ10G7p3EdMD6Ec5om3Nt2PPy+jW78eDbaeHy7ws1zqOMa0hKCPvMOzvOtFu6H28b5JhKCbraKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rMU3s5h4E2ITXtoTGxEIAhJnBRpnJAgbYbJvDBr65bDwQ5cxZbCY6NDIJtZYQTFMs4me+8fpb8LU1bD6/uV6GWn4cm6yOj2Pj406AjVJr6hqoTWQwyEHTsNmpCvEYp9L4O9u2O94k2k5gM9V8Ad/++ONHofaDJzCsZnTqAtSuuRq//+e/tAm1lRI2QKXBFBWwaW4gnOONGjbuXlzFpsGhgfNNxcb3i0xsev7cerzrd62ETdBtoRl0Mo0N5Ic0bPzbqeC8FPzgNNS85zFIxk8IARBvejXUlmz8N6fZVgVq2UeegFqijsd4uI3HzinO4udG8WN1roxz5rkI5yk7gb//dBqb46skBnKNTW2D2i/cdAhqHeFaRYPJEOYHXce1QaWCc4smBKKsr2Lggy+sg4Qe4mptNT4fZDJ4nn7ryMNQe+B/fQtqm2Vs0l7vCusxB6/R5xaxcf3yOl7fd23H1+6Z2wu1QMf5sOHivLmwimstJ4/rqlD4d/RON94wvSUEXOk6Bg7VathovdUW1qjpaah1Iwzoq3eF497CUDIaTI1VDMSsLGLwQLOE65GFNQxKsOdxbfCqA7dCbfv1O6B2+rkXYj+7FZxvtBDvE5SJ43nj/CJu18Ex6AzhtdzJFKAWCuuqbgvnr3YHx5aRxPskU8N7jObiMaitncRjkJ/AoKqDN8Xv2eY8DKE5v4IBhatC+I8XNaEWebheStu4b4mrcA7qLuO+0GA6cxLv1QszGDijUjguzy/g/Yn74kWo1T1cx9dqQihTz/ObrhCEXBjG5z6ZLM4F1Qq+f9LBe4J6E+eHpRVMcxodw88dHcfwXmkdeGYd7wurHZzTt43gPdv4EM4Huo7zXMeN13whrSeZwHnPSeP7JzL4DEoXFqRVYQ3ZaOJcZQvhN1vFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LXfrj0Js3K4UNiGOdGz6bRr4vNNOYhPmye3YRHx4eBxq5eV4k9F0FpuTzsxi49SR4m6opZztUNu2HRu2et1VqGWz2DR6dBTDZYanDkKt1sBGpOmUEAjUXYBavYENSodHZqCmJbEZ6dSeeNPprtBMtSI0pD/yNDZnrXSxWfW+FDZX/p9fPQW1oy9is1M94nNx+qHAx/NS+neTjo81awSbiieS2Mw7Y2Jz4UYNa0EQH29GCoMTNtZxfOSz2JS4aGLTYM3BzzQDbK48WhGOiY5TeDWJ4/K6W6+GmvvoU/i5TWw4PF7Fz7hJ+Fyrgt9jxo9/DyOBc3wohNWEIf5etSbOe80WziOuj420j33tf0Ht6t/8b1CjwdSoC823EzgGwwCbo+fzQmP1DK4hbBubiKcyOC9pRnyt9egjP4Btzp/Btceendh8frKDc+HJc/jatTqOrfU6Bjv4EY57O4Hz4a/86n+H2tIirmVOn8VAnO8/+iR+roFzWkporF+txH+PXSGYx7JwvSj0fFdPPoXrllwG56qWj/t2+vwK1JotnB9pMG2cwuvbwtM4B3VdvE/SR/GcvtjBMX1+Cc/BvbfgvUiyJxjwme9ieEu9jHOBYeO4Tw1jcNXZkxhgEzZwbp2bxrlwaEwInhDWGVEDSiqBw1J127iGMoXbYMvH/Tt15GmoBdX4vtx8B95PZtrCPHoBa4tFIVjroHDfncD9ra/idam+JK2haRDd/srroXbkOK6Tx7fvgtrcNK5v/uU7R6AmrRc0ITgl0uLndEsIvnTXMMw2l8f5QTfweZNh4DXaFIJUulWcRy4u4TwqhWSOTeJznrbwLGWzjMF7tQv4jGRdmNNmJwtQC734HBEp/K7XXYdz/OQUPh9aK+M969IyBvg063itSqRwctU06Rnh1vDJDxEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMbzsaGo1CjT97F5aHYIPyY/jM1Dh7LYWL3VwC7EgR7fl5ECNg7dOTcNtcnte6GWMLDBpt/GJp4dvwu1sRH8XkaAzU7XF7GJ6eg0NoVtNLD5cza/DWqTcxjgE2n4+ylv4L6cfOpc7Oeggc2wh4bx9zpWnIfa7CQ21166iMfpwYfx+wcedocPI9wXGkwJVwi9MnG8lT1s8O3i1KJsW2ik28Dz3PZwO7Nn7rOVEGLhYVPiXAqbK6dcrPlCUkJ6BENdOn4LagUL9/fi2fP4ucKcseTiWG07ePC2mbgv48J22vI61LLV+D5L82ikC78bQ7g0afj7GrJxu1IVm0GvPf441A7++n/Fz6CB1BYCBZoNHG+2gdeostD0e7NUgdr/8yUMTHJSGBi1sRkfv8vnX4BtbrnhENQ8HB6q3cbxVigOQe3pU9ikfKmG4TJBhOuMTgdr/+Pv/xFq5RLOkekshnflRkehtryBv5+pCfweVk+Ahqnj9aHTxnWLpuO/yfshzi2VBl6X0nlca1YaeNwDha+lAYVDRllZDHYIhfPN2MDr5UID56DuyKNQc6+fhVoxHx8z2w/sgG1WzmDwjbCEV06hALXcKI7djfMloYbzQ7uD66WkgwE2uTweO9vCHYyEELzAx7WMncWa6eB9zImeIJ6mjyEbNx7E+7pbirhvczqeFAt1/F5rFtb8KobV6ELQEQ2myfFhqA0v4rkqPfuY3oMheNdcdw3UvvXdJ6CWFkJCGz0TR7OLY0Hr4D1WEArBcybOhdJarivcTzopXHuEAW7X7uL7razgemliAu+xzDEM+ilt4DxXauI6JVPDz80k44u8iYlJ2Ga4iL/rHXM47+/Yheub4ydPQm1tFed+KWDINP/9f9fIv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVhCE28QyFBt/pFDb5nRjDZr1zQpiMJoSVBEK/3b3XXB37eWoSm4SmMkIIjRC4kxLCDswUNkPudjGwYfEcNlzevRubs2o67l8ii81DrSx+riE0AF26eBZqbgubpy4ex6aoRhD/XczOJWGb1RP4XlfvwgbJJy/g+3/l69jstlwVwmoCbOYeRkK3fRpImhBMY0fY1NgKhOCYCGue0MC4vILn6p5ZnJeu3TYS+znh4b6tCSFVw0kM2lpr4Tm+EGG4yrTw/SMb56+cgfNy6okXoXZmZRVqtQM4B7WuxxCtoILHKSphMM2sjQ2XgygeDGEb+P1DTWgqr+P3klqvhy6+dijAY5cL8NhlhWbVNJg8D8+3hhBWs7Z6Gmqbmxg444d4zUskt0MtncM5wknFr41zOzFkb3gYG5J7Jp7jjonXbSeFIS9DE9iQ/KnjJ6CmBzjGvQbOtxfPLELNFtYyvnDJd6ZxXC4Kc3VvMI1SSuWd+NjXheuDY+LvJpPF9zq3gOubyMT1rZXAtWE2i8fY17a83KYrXHESx31+As/BpWO4bvGauHauV/HquLiOYRRnV3DArWrx+46JIq4LDk7j3JVM4VzQ2liD2vAs3v/oCRxH7TVcB1Xqwv2ZEOJQHBOCBzN4b5NKpKCmKZxvSiUMfwmTuC9BEF9/LC/gdeRsEo/T/h14fzorzA+5Ms7pJ0v4XV0f5/nNYYbV0A/VQzwX8gU871dLOAa9Doa77duN90nnL+IaYn6lDrVELn6u6glcF+ghzg+h8HdzSScDtUYdPzMSnl85No4Zy8bnN9JzibYQprO2hvdEk1N4nHbtwfXcGSEkZrGE65Tpsfj3nSlgsF8g7G+lhr/DoWEMeZ6awnl+ehIDd06dqkAtnfj330/xLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy92zkw42DxXDX4TGo9PbilCrV7HZZ7WOgQq3HtqH7ze+M/bz8Bg2Q14vYUPjMMDvkEtjE9NOF7+X0rDZ69AYfi9XYYPkrtDYtLp+BmqVGgYvGCY2Xi2tX4Ta7Cw2TM8l8P38np6l1eULsI0uBPg8/jQG2Pw/X8PG/RsV/P1nM9jEtIM5AEph/2YaUJUIG3xnXRyrMwrHqtHBRuOFAE+4IIvNimcNnDdu8OKvrRzDxsLXuEID+Ys4PlYaOAeNb8cGyb9w9RzUisvPQC3oVqA2bWBDdqOE+9cRpn9vGhsTezoOzGQbj2fCx/mmrcUbJ4dCIJkUUhYF+F6hEGwhXsAiPCfKm3ht+fZD34baG/9f/7v0jnSF6w0dUEqpzU0Mo1sVQlNaLZyrNBvH+WROCDUZxebgMzPx0IqdI3hNHcrhnNHovbgrpUwf58y0EGBTSGDNFgJ3lDAGcwZ+15TC4D1daphv4XrJEgZ6s4Hfo9XE/SstnYv9fO74E7BN4OL1YWIC572TZzF4Y2J2P9TSefwOkxNTUKs2cN1GgymxA9fE1Qu49ugqnFtsIegl4eAc0XXxtX6E80ZtI35/MjqE9ytCnpxqtHA/9AIGIOQtHLtWEueHsiUEVAhhdJ0ajt9KCe+TWm38HgkHx2oygeuFbhd/F/lJDBOKNuKf667h3HXuLP4eOl3ct5kx/N1MF3BeukkIwhqqYLDW6ZTwS6OBdHYVw7HSQyNQS3TwXC3VcV2RSOI9htLx3L94AQNsRqfiASvFIXyO0m7htd0Q3t8X1jeZDAbYeEJYpZ0UntV08fvrQijz8DAeu1IJ14vnzy9AbWYG13wZYW24torrjzCM/x7TKRz30u/m2Cm8Z7XP43pkxw4MKhsewUCcCwv4WtvEOX2r+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+WwGl3DTTtCY1NL6Ff5xJPYsLNQwOboh245ALXi2F6o1dvxpsYpoWn5aDEPNT3EZqKtOtaOP4f7m0ridx0qYPPi2iZuNz+Pn7FtewFqG1X8HmPj2KB1+wQ2ffe72Dw0VcAGrXpuV+zn5YvYsPWpoxiy8c3vPge1ktBA3hAa1xshblcoYGPmSOH3osGUFM6j2QD/3STdwnPmWhvH/nQTt7OEUJPEGo7V9PJm7OdtVWz8bAuN4XUhuMoWGi4bVdyPoadxPCdDnINXhYbkto+N1pNZbI6vpXD/yjVsTD1nYyPlyW27oOafwUCrhhZ/v0gMpMLfjRhqIwRlCLFiyjfwOL1wEps1//3v/H+gNs+wmoGUsHEsRMLySNO2ds3zhBO9HeD7bTbwDD720CPxfesIDc+HCsJ7YWCDE0gBMdjMfK2O4Ql6G+cWy8X9zWj4XdMaru+iQJgjW/i59Y1NqGWFwJ5WA+fh8vpS7OfS2jnYJmXjOqtRxvAtVwjkatQwrMiw8RgPFzBQ4sKZZ6BGAypdgFKnsg61yXGcl1SI43JsN463pI7j3FqoQM2ux187mcbPzGL+g6ps4vjLjGC4SlLHOcMT1kuJNN48uiaG7KUTuB7plnBx0O0KAX1C/tZGu4KfIdzvOkmc5+1CfF3V1fF7NWq4b0vrOJ+VhDn47CqGfUxMV6A2PIzHJFnn/RT90DMn8H4i5+A80hSuqd5SBWptITi0URPWH0Lw7fpSzz2WhtfKnPBsxTZxneG7eK8jZGsqUxjPmnBD4aTwPkk3hXAwIRAmEu5ZPA8DZ+bn56E2MzMDtZFRnEtLq/FrxPkLeM0oFjH8Rzfx9+WWy1ATlnLqwiJ+h7U1/F2nU9Ld2NbwLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1zQ42BbVs7GyZsLCxZ7mCr92zE7sf50xslFrfxJCU7PCO+Db1Kdhm5cKzUGu3MUzBCLF7cUpoRBoIzZXXLmKzT2Vh0+iZGWz+rOkYCjFUkBod16A238JaLosBHZqGv4uLK8djPz/w9fOwzbPP4fcKhCbMhWFs7Bp0hUQJ4dg5aTx3DB+PHQ2mrMLzQ1/H89LZxIbkmoP/vpIoYfBALsTXOglsmK6H8SbE7aYQAmXiuRsKISzTOjYNTuNUoLw6NgPuCE3kNzScv6aEJsyBMFbLITZHL9fw/YoBHpP2CDZHV+PjUPKW4+EOtnTJEcKsdKGmhHAhPYHv52cxCKsZYGPuNeF8osG0f88+qJXKOD5CFwdru43XN2EYKUMIunG7GH7SG8FUq+P1fjXAD1hdx+2SeNqrpoPjoxvhnGFJ4XERfq4urA08H+fbwMWd8Rr4GQeuwyCsro3rxU4b98XvWWsEHm7TEo65kEOh3Db+riMf5+WsMwq119x1D9RGkltebtMVzj2LY3V4VDgJhZI0ZeQDHL/DwhqqnsOxWu3Gx6AnhBhcsxPH5HkXg1TOr+M9VlQsQM0VQhFCIdjCtHDDbhvvJxNDOD9YAa7JukK4RdfHdWBTCOqqCvNwKhPf5317RmCb9WWcR5bP47y0KcxnayH+vi62cA7Kr+D3OhkJkz8NJiFFuOvj85aVVRz7G5t4LZ/bNQ213TN47us4tNTzJ+PzRhDgut5xcOwmbJwMN5s4GSZsIQhXw3VGTXi2kssXoBYEuG7rCM/Dcjm8J5Jeu7yMc+TaKgbCTG/fDrV6Lf47WxHWfI8eeR5qTlYIehWCeRYWMPymUcX5KyGsIa+6eg/Utop/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hdb7p4t5B+opI0NRVtNbPA+M40hC4cP3wi1IbFRKDbwHUnHP6NSfgG2WV3D5p/jwzuh1sSeo2q9chGLHjYFLRawkbJmCUERSmh22sTv1e5g89hSGRuFTk7OQG1sYhvUfvCdY1B7+DtnYz8fO4eNYjtd3DdPaFJvJfA5diGDDVBzBQzSuW4fhgOkDeEko4HU0fG8VKMFKJWFf0ox5zA0pXYW54Oqi+Nt2zgGDxi1SuznYTUE23hrq1BLukLwiycEVhg4ZpYn8DOyqSy+dnkBah2hSbkmNELPJfBzJ8bwc6edItRCoYm+vms31Jql+DH2NGHO9IUADKGBtS40fg6kpvcJvC4Np/A7/PLhQ/hiGkgHduL1qFzFJu3jRbwet1p4/lYbODFF1jDUChNYe+zJU7Gfj59agm3aJWF+1HA8n1/GQIlQGEemiQPaEIIHM1kMhVht4/45CWzc3vbw+p7QcL598UwJansmcV8qNdyu0xMk5nr4uqSOjdbDUAgUDPH6YAjrwIyBjfC9Nk5MU0WcH2kwVedx/Np4iVLFGbxFayzidr6P1/xuDs/B9QxeG1O747WzRzdhm0O1a6E2WsAxvpLE+WwjxH2zhFDAZAbXHs0ahmd0fAxwsYRwu0jDe1Fd4WvTQjBGK4H7bLo4l0QqPm+srWM6R9LEfUtl8HdTGMb13bb9OKc36nhd0oSwxFJdSEyjgaRFeA5qwr1TUgjbTZk4V+2bmYCaY+L5ZrgFqJWq8bAlI4HjSnreZAvresPC+THwhXsHAz/DFe7PVlfwPi5SuDO6sF4aGsL5KyUEwkihNtWqEEi4jvesuaH4a6WAq46wNDR8PE61lQrUhDxQFQnz9+REAWqhEMa4VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyWE3GwWbeuvAc0zKxCfHeHdNQy2UnoRbZGGqiAmzM6+TjDTtzw9hhcyR3DmqGhs3HV2v4HdzUGNQyDu5bvboBtcb6OtQunMEGyZsVbGrccbE2OjoLtbt+5U6oqQADdpZXsFnzQk8vVs/FRqymgcfEd7HWEZoh+4bQPFZo9mp4eExmxrARPg0mWwo9mpqC2vK5eag5szi3rLhCI919N0PJFZqIV154IvbzXL0O24wI6S1J3Ey5VWz8+3QBmzCfzOI4esUozqN6G+fHbgWbzadrON5GDZyr/QDHaiqJ+1cP8P0SQkPolhXfrqlLYT1QUotCw+lQ2G48EBrhr+EcbM1gI+n/3x/8Ib4hDSg8x90uji1dx+1Gx0egVq5igEt+SAhosDHoxIjiYyYpjD+/hWuFlLBGs4RG8J0OjsGW8F2zFoYnVIWAmKoQKDE5uR1qQ6NY89o437TaFahlHEwVzAkhEydX4vsSajhPeQrnlkAI0RJyxVRxGMM43vLLb4JaqYJrr9IKNp+nwZQw8bo1JoTgNc/h+Zv0cKxmduPauWzia6MSjrew55rvjeKJf9HDULxtGfzMiQIGBY5M7oKa0vH7BxX8XmtnT0AtWsd9MXy8t7OTeM+WcHBOawn3YvrCBaj5G/gZ3Uq8VjXxPsnegXPGgb24b1oXg9C6qzjfhqu4v2Yef6/DNh5jGkw5C8/LegvXHmPjOH4jD58tRF0cC6aOa41iDu9jXn1zPFj3+IUKbON7+GzBjXD9pAuBem4DX9v18XpsmbhvoRCE5blCsJjw7KtZr0Kt1RIC74TnK6k0BuhVq/h+wyPxuSRXxPmsXqlAzXJxreT5uObRheC9oRH8jEQKj93FRZwzt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtRGj6zDDRsgDk2gk14ay1sxPnMMyehNjWBzdY1E5uUq058u/HRUdhkaBgbJDe6NailIww2SAfYfN3vYmPPZHof1EJ1BmqPHTkGtXOL2HA4ITRw/m+/djV+bgKP01M/eBZqzzyLzUM3NuNNjaMIm7NmHGwKm0rgqSI1NnVdrL3yxj1Qm8U8ILV797VYpIGUbWLD9JMLOI7CTRzTURmbnmsNrBWTOdzOxObCjhtvdOxvYuhAQmikHAY47x3LpaD2j1YFahcXV6H2/AVMv3njXgyAyHTwuzaEECkniftsHcOQr41FDOXqzGBw0ISHY99Z6Gks72CDey+FTfofa1agttbFptFvv/4GqN160wTUSsLnZq2tX/7oyvY/PvslqLWEUJdcAYNpCkN4Mfv2g9+HWqmGa5lAw3OwUIyvoVK4zFJDRQxAiCJs3C4Fz5lCoEIUYc0QtrNs3JnZWQzU04Xvdd21+/H99CLUjjz9PNQcAxu333HHK6BW2zga+7ndwtAzFQjN4vM4B80mcC07uxPXMoaF67ELi7gOVEJQBg2m/Ha8Z1EFPFfHhRClyK9ALbkX56BUBq/HpaO4djn98ErsZ3sHjoU1ITihGOG+ucEK1ILCDNSchDCpObhecqbxPi4xgnOGreH3ymTxfspbxUCY6im8F60s4D1gtYzzdypfiP08e3AnbJPMYJBMbQNDaDpruJZtb2LIRqOD92xKuE2u5vh3RvRDpdVlqLlCuExHuE/w8fRVrS6ecLaB66UoxOccQ9n4fcdQGj9zuSXcwzSE0FsL55GWj2PcF8IvIw3fr9PB/Y0i3C4KcW7RcLpVbgePUyj8/V8kPF+zTfxujWp8jkin8H4y6eB1pNPF76UJa7SWcNxNA++Jtw3h9Sv08LhvFWcqIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23K3/qkpbLS9vlGB2vI6NrZcry5B7cRZbB56263Y1PjAPmxM3GrGGwkvtjdhm66PjX+rdXzuOjKJ75+yMcShWcPmxWaITYOnJoUG6nVsdnry/34aanYGwzMOHpyDWnUdmyuvr2HzYysjNGDf/f9v78+DLUvL+873XXsez9lnnnIeqiqzBqqgBlWBGCUVsiQLWhKY9m1fQlyFQq3r0OUGVljua4EdRNgOG5lQyCERJiRhy90guYWEhJiaQSCGGqgxq7Kycjp58uSZh332PKzh/gFUeO3fI+kAtYumzvcTwR/5sIe11l7vu961Muv5xRuZLl/R3yYMtOlszgh2iFxPaq+8Y0Fqr3+1Npwey+pv0c5ooAQOphFjDC5tXpNav6YNclerOlYzSW3MnPmGBjzdawS4TEXx72iWtBnwjhE01TfmlpW2bsdaTRut+0bT6I0dbXz8lK9j8NhhDbBJH9Vay9dtzm9pc/TxEd3f+bMa1JU5pvP38VvioTZpzdtxX93QMJxrf/YxqWV9bY5fOHun1G77h6+T2lcefUxqN/b0umFECOAAaBjhWH1dorgnnnhOau3eM1IrFPRalvC0EXino+ul3c2BcW4EXHmh1rpdY3BZHdSdjvsw1J3tdHRuPX78uNTSab2W93raHL3V0Xn52GENvcqk9b21zWWpFTP6veNj8TXPiR//SXmNtf8TRghRKqHN4re2dB++8dCjUrPCfy5cWjS2BQfRu/6nX5BaUNBwpOeufl1qT1+5IbW+r2Om3NU5aPrIjNQ698TnpStf1nlkPKHzyNFX6rqg3tI12oVnNQBv94bOe7lx3f/Zm2+S2ui0hkN1nYbptG7oumr9rzVEqnpBtyXo6fidNdZQM7fG569sXt+3Zuz/1tWq1CIj6DNrhIR280ZQhq/vXasZKSM4kBoNvW6FaZ0fCiV9zlMY0Vp5QueRiZLe2zR3NXQzn4m/bnZcP3+vr2PSM0J6QyNwJV3QdVbY0jHTNcIvEwkjHCzSsdU3FoeJhI63Xl+fESVTepxCT7cvm9J963Ti92dtI1xmbEzvO7e29B7L7+k+jI7pM6NsWrfNuBy4m4z5cb/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTUjRX2p72mTUa+uTZNLRhPTfEobj27VtVHoyo42AJ0dide6PW2qvrl+SWr9rgY7uJ42XC4WdF/7oW7btQ0j7KCqjZ5nxzWEZmFWm83v7Glj0/reFanNTOixO3TkmNTOntEAm0tX402d9zZ1X3s93Y5MRhuWvuLWo1J785teL7WpSW1I/9QT35SaG7kupdv1VTgAckkNCqhMa5TIutE0d7OmjcvbfR37NzIaUHE80LF6ohEfD4mqNlJupbTxb2p+QmpbRiCVv6bvLRmNlHtpnUeXA33d0X/401IbP6Jj8NENbSzfshpC+zofnKxUpDZ/6JDUDp+Ih9osfV5DY57ceFZqk+VpqR1L6fXms5/6nNTGP/sVqa15eh0ZTesxcW94UGt42Ssa4TKtjjEujWbubSO0L2uMo2JR1xqNhs5V6Wwx9mejV7rrdHRM9o05rlQqSi2KrLAaoyF5Qv+e2tqWWl2DAY23unpD10tZXQa5171OA/+OnjwhtfVlbcB+ZD4ejJcr6/6PjOhvnTSaxY+U9XWTU3oNymX1OzJp/f0/9scflxoOpuLOOanlmxr0uLSt162+00C9ZE2D7OrXdJ3SaeqcVpyMBxSEnt7D+KGO8d2mvq5u3FJeW9ZwnWee1fCM0bTOj7NLGnZx6IiuocpZnUeDVZ1v3HUjZCKrc/r42Vn93sO6JqltxEO01lY0/LO1q98ZGWEXPWMt50KdRzzPCNFq6X33tT29L8bBlCvqNWpjR4MpPSPIrVLR925ua0jKkSkNsisbIbfjpfg57aX0OcX1Xd22jtO50DfWLZ4R8FRIGIF/TufMTFq/o9PRsWWtg/pdfV3KCKYxP8+4P3EpY9/C+Bf3jM9qtHTezxvrwPq2zo+JjG6HlzPCwSJ9Xd5YG+8X/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zm+oo2vh2b0Aago0Zow9628d4TFamVxrWx541do+HwQNDNXadulpd4vjY7bbbWpBYE2vS9WtMQi2pNGzNnPGP/k+NS290zmoIazU53qnqcrl7dlNotp7QpbDLSBqW1DW0Sfe1i/HWpjJ4ClTFtbHpifFRq99x2VmpRXxusJo3PO3nHSal5JQ2/wcFU62gz5H5CG+SOzGlT8XZBx2WxoA3eM1kd+648KaWd3fjYLxkNnU/PayPztZR+58WnL0htKqPNgO8Z0897NqWTxlpd57mdjIYsTGV0/Gam9dj1zuoYnDECGjyjCfWFz39Vap/54z+Nf2db/+7rSlLnvR89eZPUpjsaGPbFlaeldtFoVj1yVMMupm8+JTUcTKdPHJHa9o5e80fLOo5mp3SstgNdQ0Sero0qZR1vrWZ8TEeerosiT8/xTEbnh/l5DWTa2dHm8JHRfX2vqgEQyaRui+8bixljgbNwaE5quZyOaevvx+dnda5qGU3ZpwfmqsjTz0+Exj6E+lk7WxqGkzFC1J698ITU5mZm9HuNUEUcTM9d0bX51KjOD62Gnr+5pM43nrFe6uV1ndK+ruNydyDA8ubDul6/yekaxTdqe0bI3m5bv7Pm61quYYRtLT2joaM7G7q+u31O11q5thEgmNXjeehmPZ5TMxqIs3ttWWpbF+O1blN/h44RLuQbc1wqpXN60ggWa+mSz11u6X7VnTW34iBKpjVIZGZW1zLdtvGcw7g/2d3TtcHSqj5fOWsEdo4W49+by+l1MQz13iw0Ap4yOb3X6Sb0+h46nYMyeQ3H6hiDK5/TcVnMG6GexjIo8HWbc8b9iW88iuv29L3ZZHxMt42AnHZD92F6VtcjubTOQVvGmmc8rfd/7Z6xvvWNMOh94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfVNHraPHRuTBv63n67BqmYjZQjbVbc9bQBZs/X7+0OvGyrps1Ot1aNpsHhmNTGRnU7csZ2NFvanDRb1qbOVaNB8tKqfl7DaOo8MqLNhS89r/u28wp9b3NXX9dtdqQ2NRr/jsJYRV6TNHoczx1bkNqxO18rtZGiHqf1pUel1g/097ntljv1i3EgPb9yXWq9ljEHzR+W2i133CG19XUNfSq09RwsntKQlDf/8jvjr8lrs/S0Eeb05S/+tdRa594vtfsmNcThrpx+Xr6sY+svl7SZ+3NL2lR9ZkGPU9WYgxp5DWOYuk3DwOZPHJOa98wVqTWz8WbrnYzOt5HRlPn0dEVqY219b3NFGyRv3anb9hPv+n9J7eSrH5AaDqY7bzsttU5Hr9uh00boK2s6t2w19Nqbympogefr6y5fjI+jp85flde4pI6FbE7HbsK4lieMv35ud3Q7rPemjQCulBHg0mxXpZbPaXP4trE27HQ1oKHW1Cb6U1PaCH9paTX25wsXNBzs1Cnjt+5Wpba8tCi1WSO469mnz0ntnKe/T3V9SWo4mJY2NBwpU9LzuZ3RwVq/ouGXU/M6L3UCTU/Y6WiQQasTv3c4NqaBm2NOx26tq591bXVXPz/Q8Tw2rfdOmaIGT2zf0PCEmYqug6amNIxjd1MDNSbndK01fUgDCusXdM7dW65KrdaIrz/aRgiPS2ut7+kx8XytpYw1z1UjCG3L+DdFY8f0mOBgsv7F2cKCjoVMTsPzrNC60On1eKehIXguYQRdDpzSa0Z4XscYC0kjWLfZ0PVD4Ov46BtzYWi8Lp3RRU8pp2uedssInsvofeFIWZ+RNep67Pod3V85UM45NxDYarzCBcb9VGtPrzflMZ1vDx3W+8R5496xt61ha+mQsBoAAAAAAAAA/zfGg0gAAAAAAAAAQ8eDSAAAAAAAAABDt+8ekSNl/e/kg1D/C/WVmv534jnjdelA/5v1KNT/Pr+c115p4VYt/p1N7QN0fVO3d0tbHbhsTp/F3nWL9moJ0rodlSnth5krGP+d/Kr2kDp5c0U/b2RWah2jj9sXvnpearMjur9nTul/2/+a++Zjf97saO+EZkt/m7Ex/Q39UHsdJMKu1MpJPc1297SXTH3tsr739Jukhpe/w2dOSS2X0N5As+M6Zvo97bexdPma1Dyn881aQ/tQXtuMzze9zrq8ZvXGmtSefOoZqfkt7at0dmJeajfPzkgtYXQE+Upax1bC6HOyXdLXjTid046VpqW2+NTzUnvoy1+RWsXoTbJxMr5vW7WavGbxmh7PC6t6PI8YPbRGyhX9zqUN/Y7z2kszmdC+V69+8Kelhpe/uUntp5VI6flRHtV+YpVR7Xf28DN6vqWMHo6urfPN1Hi8R1shp2OhY6ypikX9/JbRy6jX12t0va7jMp3WvnPJhK4zckbvx05Hv3d5eUVq28aibGdP1xXX1rTv7cK89rjqDfS6XFrUef/Jx3XueuD+H5HayWO6fvrj//3/kNripYtSO31c14ZT43qccDDVtnXc17U1owsy+rr5Ke07linoNT/Y1jFdzuh6fzqMj/PxhjGPFLS2tleVWj+lc0ZUNPrh57U/24jRA/vk1BGpnS3rvhacvrc+ottczFaktvW0zksba9qbsrqrfXR7/YH7x7TRp9do/5YM9XeohXovumJkM2zpIXZjhzX/oLSg34GD6dC8rp2TKaN364jRuzWha41OV9cBtaZey7eMfohHBnqy7hlZFkGgn58xniOMjupgkDHpnIuMsdWs6baNFI3vTel80+rp/FWZPqTvNQI39pr6jCiZNJ6beTp+i4X475NK6n7t7lal1jF6A3v6CMZli3qMVzd17eV2dX70x/RefL/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTXptDYs3d5clVp1T5v15rLasPOQ0UjYedp49OT0gtQyvXhjz77TBqNlo0FyOqXNP/sto1n6pjZxTZa1mX2vro3QQ0+bJhdGtbn0ycmC1CZGtBH+letGI+W2hskUxjTcYrW+LbUbnVb8O40G6rVtbR47NqK/zeULj0mtO6Kf94pX/6zUZjxtwtzZ1e3FwXT2zjuklvd0nBfTOo6efORxqc0f0WCDJ67o+E1fXJLab/x//rfYn/eMxsKNlo4Z3wi+aTe1gXzVCOHpzUxJLVsqac3oR764fEVq5z+lY2tv8YbUalcXpXZ9U+egutPAi2PTOgcFjfhxWWvq3JXM6LXg0av6nRfK+t7Mgjazd2N6PJ9a1d+6Z8xVr9ZPwwFw8uhJqZVGNQAgSuh1cHZW55bylI6Fx57W8KpOoONoemDs/+hrNEhleX1HaovXNFSq29XP9/u6vikVKlJLG+PSOZ1wwlDXWp6n68VmQ8dv3wi4Mnrju8aeBvZ0K7p9/sD+fv1vPqvf2dW5ulHVz7/9Nr0Gba1fl1rQb0mtkNelte+0wT0OpvU1XQfk0novkj2pgXLFsgZKVFf0vemanpe3jlekVrtUjf257+n9WjPSc/fqigYg3NAlmstM6DgtG0EMga/jciSjCT75MV0H7S3pesFVdW65vrUotd6u/hYtY05rhzqmvUT8WHmBMRcagRVBWtcoqw39vdbT+m+Fxo7re6dv1lpxlnAsfMuUMe4jY5x7xiUqa7wundfzrdbW+eCxZ/ReJD0QOrNrBRwX9HlLrqD3eg0jjC9lbG9kjMFi3gqW0vFrPZeantPnUp2+7sduXddf1bpuszPem04Za4ggvi1NY/8jY53R941jbIR1urYG+ETdqtSmS/pbjFb0Odd+8S8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNq/L428czktOFws67NLqfK2sRyalqbMHf6Gu7Q7evnBal4w87Ryqy85lhBG3Y2axtSKyS0ienatu6X1cT0wrMa9vCqV8xLbWNZG6FXKtqM9c7bNKCiMqnbcmVxS2rPX9J9m53V43LxUnybTx27VV6TPaoBEDs761Ir5zalNnL0AaltLmkT/amb79bvHTc6XeNAGi1oQ/Z0QqertDF+X/36+6VWM5oBf3HxWal99uFzUhsMx6pn9e9vsiPGHJfUffCNEIdNI8zriXUdb9uRzkH1qgZAfPJzn5Jas6vvzfaM8C6nrzN6tLtkRvdj64bOQdOFidifb5k7Ia/x0toMulrT5vsLJ3ReevM/eqvURkb0eJZyOrdkjKAfHEzFgobLpFJ6zviRnjTptIa/3HbmJqmNjekc8fyFS1Lb3oqf+6WyNjyfnda1wuxMRWp7NZ0fuh1dG3U7Ou59X/e10diV2taWjvtkUueHXFaPpxWmMz87LbVTx7U5/PychgSNDMzDS8+dl9c88sjDUmvu6j6M5HWev+fu26V25fJlqV03wrHSxjyHg8nIrHO1Pb3mHU7qfcJ6TUNdDrd1bE2Geo/VXddAiSt+PCSl5nTd0lg1Avr2dDvKhzXEIFnUUISoZyRSBXqv53V0/uoF+h3djM7BfkrnuXbXCMlJ6/Z1ukawlpHk4ffjtV5Pt8PLG8czr7/XSkqDJ8ojGsyTL2vIRnJEj+eR03qNwMGU8vRali/oeiSX11qzrpNVvaXhl6mMnudr2xpo/PyVeNBeq6vbVhw1wmqKGpCztaXbUa8a48gIUhkt6jjqt3Rft3Y0RKrv9FqeDnWOTGWN+1gjOCeb1XHuIp1LGo34HNnr6RyczegNWyKpx7gT6HtPGOHFdy3o2nhkVPcrbwVQ7xP/IhIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0O07rKZS1gabXkabBnf62nA56evzzlJRm11O5rQBaN5osnnhWrxh525DG42fuvkWqWVL2vxzY6kqtXRWmxLPT1WkVk7sSG15XZuzHp3XZp+Vin7H1rY2Xg0CPe55TxsuT1W0kWuppL/PicPxpqjlojZYbbe0iWm7ptt275nTUqu29ffa2TXCehaWpVaYOSs1HEzT5YrUvJSOhcjoeb50fUlqj5/TEBq3azRHN2bEaKBYNoJPUkYQQdeaXTPahPnxTQ192juqY/fixStSW21oU/VcQY/TdE7n29mMNkieOamBMAu36Tg/PK2BElYoWWks/r1jed2vvhEE1nc6x5XSOsf5aSPAKNSTwmvpdzinczAOptBYZ1hnhzUHecbf5yZCXWscOnRIajPTGriyMhD6dPnyorym3tCG7LkRYz3W1et7q6W1Zl2v+bu72ri919daOqP7n07puMwZAQ2bRtDN8pKGv5x73AgIM8JvCoV4s/VmUxvNz89roOD9998rtbe//eekFhq/69qarm/OPa3Xm+1tDRnEwbS1qfdJmZyuDSb0dHNRX8fC7qoR2lDTsRrUdewnwvg1entHv3T9ut7ruIRuR66t4z5T1xCDelXXXv6e1raM0JiU0+NUnD2pr/N0XPZbGgLoBzrTpyPdt62+vm7Djx+rnhHiF+Z1bm0Z8/fEIQ2XseKt6tsaOJSv6Vx48fyi8W4cRJtbOn7Hx3WsppK6xm739Fzdaes5uL2hc8v07JjWjozH/rxuJHeVSrodzgj6DIwQ5Y1Nvc5uGPs/Oa73K9NTWksbqZaNvarUQmcFcOl78wmtZQs6ftMZHf3ZdrzW8/WYj5T0vi4yggc7xu86WtTf69RhDT3udXVd9f1kf/IvIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DaiZGtXFms6eNQu84MSm1Q+PaiHMmo19dHh2X2vrWitRGC/EGwaWS0bB0VRueLxw6LLVOUhubZka1WXM3qc05/ay+7uplbYY8WdBmzZXbdV9rOzekNjGl4RHrgR67x89dlNr8YW1ketPp+O+TSFeN92kQRTbU339xaVFqS2vPSa04epvUbr/vdqlFPW1MjYPJC7X1bRQa8RFGyERxxAhmmZyQ2pkZbcK7kdWxurIWD6DqtvU8bRlN1V1RwyPKJW20fq2mjZSvnq9KLTCm64VjGrzwxte/WmqvPKXhXfNlnYPKU9qsOCzq/J1NGKEdSaOpsxefN1OdrrwmGepvWDAa4ac7+vt3ejove309TmGg14iQsBp8h7EeidLWOa61REKblOeM8zcIdL2QTunrTp2KzxFTU3o9rhkhVVtVnUdWVzWwwQqhaZd1XI6M6Ljvdnal1mpqLWnMy92WNkf3jDl9YlznoFxaj3HGCAjL5uJN7icmdI7L5jTY4tTpY1JL66XATUxooMTCIQ0jvP2OM1LrGA3+cTD5fStESsdgbV3njJ1Iw0+icQ13CLo6tnpNHUetTj/250ZSt2P6Fg1xCJu6D+u+jvFgQ7c3NAIxUx2dW/eaui3eJb0nnN4zArj6OkdeXtG5r+UbIRNG9ELb0/mmFsV/n5mjev87cVonkqVv6r1er6v7Gkb6+0dG+GtrQ39rL92XGg6mZkfXv3ljDupsadjuXl2fkXgpI5xztyq1o2f0ejkzEAhz8ZKO+7QR6LJb03VGP9QxM2s8v/AiHYNNIxxr6Zqul8ZGdG4tGqmmvpGc2m3rMe51tGZFaeYGgvecc67vx8d0aVTvMYt5I3BoR8PRxozgvaJx//vMihEsbIQRHskvSG2/+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E145WK1ObS2nTz8Ig2MS0VtPbkijYcPpHRJptLq9rUd2tvoAmv0VR+fEwbnvuRNi9OGc05mz1tuNxpaaPxWl2DEra39JhMzer3ri3r9x65RcN0QqPhdNTWpqgJXz+v1dLnzKPleCPXtKdtUttGw+nbX/caqT37yBNSu+uwNkDNFXR7N5aWpBZeW9Tv/clbpYaXPy+rc4Zn9BQPjbCD6TENKJi+7z6p3X/v/VKr1bWB8fnnzsf+vL21La9JGiEW4+O6HYGv4+3xxx6XWsWYb0/fdJPU7rhDQ58mJjSYxxlhLZ7TAxo4o8F5V9/bM34MbS/tXHKg2XoUWSEe+k7faKTcNsI+usa2+X2dq0Mj/KjX00bXOKCMNYRVi4xx7hnBLAmnr0sZrzNOcxcOFKemdDxPTWsowuFIm4WfPHFUaptb2ny+uqvNzKvVqtTKRnCV0bfctVu6Nsqkdf8PHZqTWtKY51NG8/pcTrclPRBgY82F09PazH5yqiQ1L6E/ThDonBEYP6IVYFQq6/oWB1PBuNcJu3rdynh6jvdSOrcUb9HQgvQrKvreZWPsfyM+9nvGvNc27uvaK7r2SmV1Mpid0aCb+jVjDRVogE3+iI7fipExt7asIROXq/p51ZQxjyxogGCU1P3wmsbaaDM+p61c13nPZfV3zef1fs0K65ya0HkpMIJjGx0N4XFVPXdwMM3NajCntW6pN/U82tipSi0I9fxNZvV822voeHvsqcXYn3dqek1te/oMomasKSpGkF/JuHfqdXXsbq/p/vcbet0uGM+IekbwXNpYG3Z8I5jG123J9ozwH6f7Gw0sjkoFDWZN9PV4Hp/T52G3TOn9aSfS9z67qgFG+aQG6WSy+h37xb+IBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0+w6rqWhvStfY1ea6iYw2zyznteHwTEabmLbr2sA4ndFNDMJ4s8/aujZY7XS0yW+3q5/vktrQOJ3R5uNeS7djZVkbqh45ok1hy0ZYy+Lz16R2xytvltpuTZvIt/Y0oOEnflzDZJ567mmpzU7H9+Obj2po0PrartSOLmxI7f43vE5quxtXpZbOaIPsZF8bsSYjbRqNg6nZ1HFZKBiTkBF+YgVAREYxaTRlL5d13njg/nioTb+vzYYHQxKccy6X04b0fk/f+7rXvnZfn2cF4kSR7pdvbF9ohdUYgTP7rbmEHvco0jl9sGa+xgiSscNldL/aRtPoXk8bRFtJR9Y5gYMpNE5x6/zwjBASa1y60Pg7XqNmDCOXGkh/scZ4aNTSkW7bxPio1CYnKvqlRtRUt6uNy1dv1jXK6VMnpLaxvi61dkfHahBo8kQ2o83hyyVdVxaLWhsbCCk8dEgDAMfG9JikMkYgV0/XKNYxsebHTEYb93tWmhcOpPnbb5FawrjX6c/quTWS03VQ1NZztV7XOaKxo9fG9Xr8PmZ0ekpe013S95VbekKnk/qdM77Oj+mcjt3ri3o/ubqt92wjRd3/lY6uF3ezOqanZ/R7C0U9xv2+vreW1+8YPx1fL/oNI3ijqp9fzOp2dFp6H9swwhhHR/SiUfL0ddsXNXgRB9POuobD7jX1etw31udhpPci23XjfiLS9Xm0adQGQqmyRvhWu6rjPmuE64wYoSl5I/QqXdS5deqwhqs09NGHSxlrrV5Wj1PHyLLKF3QtE0R67DLGMcgWNICs7cfHedDSeTkbae3MzYekNmqE8Fzd0Dk4ndWwMd8IY7y+p8/D9ot/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6PYfVjM+J7WpioaLjBpNLAt5bQ4+NaINUOtG4/JjM9o4eau6FvtzN6eNQw+NaefQmWltxLld00akxw/pfq0sayPhibLu60hJ97W2ZzRhrmlT406gz4U7LW0AemXxhtQWThyX2mvv1YbYzXo8/Ob6Df0sf0ubqa488ozURl6nIUSdlobrjE9rM3uX0EapzTU9TjiYzj/7vNSmpvR8G61oI10rcCaZ1KnOCk5JGOkR4UBohRVYYHyUGcTQbWsj5UqlIjUrEMeqWax9MANnDIP7+rex9s16r3WM9/Oa/W6vxdoO69j5vs5zOKCM09ScH4zzMuGMgCfj73iTSV3zRNE+xpGn57ORmeOcsfYKjJAq8/OMv5LOZ3V7jx5ZkNrEmDZ9t+ZIawxa4T+FvDagtwJsskYY2CDrNwyNAIjQac26ZmSzeqAyxrZZAUOBEYCBg6mb1fFRGDFCU9JVqQVdDSEJVnRsVesaWrCzru8dLcTnjWTHuDepGeFxWWMSyuqYuXpuTWrtvn6HP6bjKG3MD9s9HVu5Y/re2aSGPYS+MS5zus25ipRcKqnbMlqOz1UTuUl5zca6hoKsXNrR7ejpMd41AkXazggOmjeuLaP7vr3Hy1whreM+zOlYaPf1+lYpVaQWOX0ucXRB1wFjOQ1tC5rVgYKe46m0hjmlEnqOF9L6+c64vgfGGi1t3Cf6ZZ1HnHEt7xjX8qVdPcZbTT1OUd8IHfV1m/tt472d+LbkEvpZt57QgL6jk/rb7DZ1e8cm9HnbRF5/i6qxbdni378e+9vwLyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADJ0X7SdNAAAAAAAAAAC+D/yLSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg8jv0uLiovM8z/2H//AfXrTP/NKXvuQ8z3Nf+tKXXrTPBPDDj/kGwEuF+QbAS4X5BsBLhfnm/54OxIPIP/zDP3Se57lHH330B70pQ/PRj37UvfKVr3S5XM5NTU25d73rXW5ra+sHvVnAgcN8A+ClchDmG+ec+9jHPubuv/9+VywWXaVScQ888ID7whe+8IPeLOBAYb4B8FI5CPPNQb+fOhAPIl/ufvd3f9e94x3vcOPj4+63fuu33C/90i+5j370o+5Nb3qT63Q6P+jNA/AywnwD4KX0vve9z73jHe9whw8fdr/1W7/l3v/+97s77rjD3bhx4we9aQBeZphvALwUuJ9yLvWD3gB8f3q9nvsX/+JfuNe+9rXuc5/7nPM8zznn3AMPPOB+5md+xv3n//yf3T/9p//0B7yVAF4OmG8AvJS+8Y1vuH/9r/+1+8AHPuDe/e53/6A3B8DLGPMNgJcC91Pfwr+I/LZer+d+8zd/073qVa9yo6Ojrlgsuh/90R91X/ziF//W9/zH//gf3dGjR10+n3eve93r3Llz5+Q1zz33nPv5n/95Nz4+7nK5nLv77rvdJz7xib93e1qtlnvuuef+3n+ee+7cOVetVt3b3/72F05i55z76Z/+aVcqldxHP/rRv/e7ALy0mG8AvFR+WOcb55z74Ac/6GZnZ92v/dqvuSiKXKPR+HvfA+AHh/kGwEvlh3W+4X7qW3gQ+W21Ws19+MMfdq9//evdv/t3/869733vc5ubm+7BBx90TzzxhLz+v/yX/+J++7d/2/3qr/6q+43f+A137tw598Y3vtGtr6+/8JpnnnnG/ciP/Ig7f/68++f//J+7D3zgA65YLLq3vOUt7uMf//jfuT0PP/ywO3PmjPud3/mdv/N13W7XOedcPp+X/y+fz7vHH3/chWG4jyMA4KXCfAPgpfLDOt8459znP/95d88997jf/u3fdlNTU65cLru5ubl9vRfAS4/5BsBL5Yd1vuF+6tuiA+AP/uAPIudc9Mgjj/ytr/F9P+p2u7Ha7u5uNDMzE/3iL/7iC7WrV69Gzrkon89Hy8vLL9QfeuihyDkXvfvd736h9qY3vSm6/fbbo06n80ItDMPogQceiE6fPv1C7Ytf/GLknIu++MUvSu29733v37lvm5ubked50bve9a5Y/bnnnoucc5FzLtra2vo7PwPAi4f5hvkGeKm8nOebnZ2dyDkXTUxMRKVSKfr3//7fRx/72MeiN7/5zZFzLvq93/u9v/P9AF5czDcAXiov5/mG+6lv4V9EflsymXSZTMY551wYhm5nZ8f5vu/uvvtu99hjj8nr3/KWt7iFhYUX/nzvvfe6++67z/3VX/2Vc865nZ0d94UvfMG97W1vc/V63W1tbbmtrS23vb3tHnzwQXfx4sW/s/Hx61//ehdFkXvf+973d2735OSke9vb3uY+8pGPuA984APuypUr7itf+Yp7+9vf7tLptHPOuXa7/d0eDgBDxHwD4KXywzrffOc/i9ze3nYf/vCH3Xve8x73tre9zX3yk590Z8+ede9///u/20MBYMiYbwC8VH5Y5xvup76FB5H/g4985CPujjvucLlczk1MTLipqSn3yU9+0u3t7clrT58+LbWbbrrJLS4uOuecu3TpkouiyP3Lf/kv3dTUVOx/733ve51zzm1sbLwo2/2hD33I/YN/8A/ce97zHnfy5En32te+1t1+++3uZ37mZ5xzzpVKpRflewC8eJhvALxUfhjnm+/8J0vpdNr9/M///Av1RCLh3v72t7vl5WW3tLT0fX8PgBcX8w2Al8oP43zjHPdTzpGa/YI/+qM/cu985zvdW97yFvfP/tk/c9PT0y6ZTLp/82/+jbt8+fJ3/Xnf+e/63/Oe97gHH3zQfM2pU6e+r23+jtHRUffnf/7nbmlpyS0uLrqjR4+6o0ePugceeMBNTU25SqXyonwPgBcH8w2Al8oP63zznSbxlUrFJZPJ2P83PT3tnHNud3fXHTly5Pv+LgAvDuYbAC+VH9b5xjnup5zjQeQL/vt//+/uxIkT7k//9E9j6UXfefo96OLFi1J7/vnn3bFjx5xzzp04ccI5962/WfuxH/uxF3+DDUeOHHnhAlmtVt03v/lN93M/93MvyXcD2D/mGwAvlR/W+SaRSLg777zTPfLII67X673wn18559zKyopzzrmpqamhfT+A7x7zDYCXyg/rfPM/Osj3U/yn2d/2nb/9iqLohdpDDz3kvv71r5uv/7M/+7NYj4CHH37YPfTQQ+4nf/InnXPf+tuz17/+9e5DH/qQW11dlfdvbm7+nduz3/j3v81v/MZvON/33bvf/e7v6f0Ahof5BsBL5Yd5vnn729/ugiBwH/nIR16odTod99/+239zZ8+edfPz83/vZwB46TDfAHip/DDPN5aDdj91oP5F5O///u+7T3/601L/tV/7NffTP/3T7k//9E/dW9/6VvdTP/VT7urVq+73fu/33NmzZ19oYPw/OnXqlHvNa17jfuVXfsV1u133wQ9+0E1MTLhf//Vff+E1/+k//Sf3mte8xt1+++3ul37pl9yJEyfc+vq6+/rXv+6Wl5fdk08++bdu68MPP+ze8IY3uPe+971/b8PTf/tv/607d+6cu++++1wqlXJ/9md/5j772c+697///e6ee+7Z/wEC8KJhvgHwUnm5zje//Mu/7D784Q+7X/3VX3XPP/+8O3LkiPuv//W/umvXrrm/+Iu/2P8BAvCiYb4B8FJ5uc433E8dsAeRv/u7v2vW3/nOd7p3vvOdbm1tzX3oQx9yn/nMZ9zZs2fdH/3RH7k/+ZM/cV/60pfkPf/kn/wTl0gk3Ac/+EG3sbHh7r33Xvc7v/M7bm5u7oXXnD171j366KPuX/2rf+X+8A//0G1vb7vp6Wl31113ud/8zd980fbr9ttvdx//+MfdJz7xCRcEgbvjjjvcH//xH7tf+IVfeNG+A8B3h/kGwEvl5Trf5PN594UvfMH9+q//uvv93/9912w23Z133uk++clP/q39mwAMF/MNgJfKy3W+4X7KOS/6H/8tKwAAAAAAAAAMAT0iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAxdar8v/He/+zV9cyoptUTCerbpGZXIeF1ofJ5+RzqdGvhz2niN1pJJ/axUSrc3Y9Z0HzJJrSWT+l5rH7JZ3b5sTn+OpPEdkXGcXKjfmzR+C2/g48JIPysMjZr1cxnPscNAX9jrB1rr+lLzje/98R+dtb4YL3OX/n//X6lFSR0f/UDPraTxOj/Qc8s6pT1jrmqH8XO1cs+r5DXZY7dKbWu5IbVrm1tS22npWOimRqTWK85JLTWmtVyhIDUv0mPihTovuVCP58q1Z6RW3V2VWmm0JLV0Jj5HjI7oawq5nNQmxnX/xyu6X4Ws7kMxrb9hIWNcq4Ke1BYWRqWGl7+7XjsttaCZldrm9brUMuaaR+ebsTE9p2dmJ6V2Yy0+R2ztNeU1oyP6ncW8jq1OW8/xINnWWqBjptXQucBzGa0ldF89T99byOo479R17kvk9LgHTl+Xzxnrr0J8W7qR7qvr68wftPR4dvu6X9b67q6bTunrSvre88+uSO3C+XXdPrzsPfjjd0ktNNb667s7UvONuaWQ03E5WxmT2kylIrVcLn4v0ui15DWdhs57QaTjKJnU7RjL67yX0unBhUn9vERar9utps6HobEtqZSuebrGfJjP5aWWTut+NJu6nqvX49uSy+i+jo3p7zA3p+s2q5bO6JzZ7+nBC3xjDdnW4/T//t/+jdTw8vffH9FalNCxYDxZcKFnXPON8ZaIjGu58brAmOe+V5Hx+UZJnns4Zz2Vcs4z3mvfJ74EIv2WhDe4/tjflnjGjtnvNB/0GB+o83JkbO/P6a2yiX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WYwaYGAEpVgdMqylmZDXFtLqMGu1Tw4HkFLs5qRUaY4W3WFunr4sCI5jFacNOz/iOyPi8fmS81ze22Xhv2mgInUzoftihMwPHzuhO6xuBM74RCmIF3fi+1no9bWJrNVy2wmpwMHnZotQSkRFMY7zXOn9TxitTRniVMYxccmDs54zkppxurjtyZkprp7XW3O1IbW1Lm8PfqGqwwdaNG1JrZ8tSK48dklqxrAEdYUbnlkJewyNc7qiUOkl9XTEfH9PTE9p8fayoB2+krK9Lp/S4FzI6P46kjSb6YVdqflePsXOE1RxEVqBcq6PnTNIIQOj1dPyOj+t5lDKClfxIG8a3/XjAipfR87nb7+vnhxoyEfWMZvHGqi9lhDOkk8Y131gHJYy5tW9sX9dpLWMERXQ7ug7o9zV0JmUs/LoDc39khAy6jhFmZgQTJY1EDS+hv/XG5obU5kcmpJbO8ff++JbEPiMQRkoa0Na3AiZ9HVtJ495mtKSBVpmB4MzAGUkyGZ0Lm20dk+mchnBai6rAuE8IjECFbMYI2fP1OxrVqm5Lyggx9fTzMsaaxwq6saQHwnQ6vT15zfUb21Lb3VuT2ubWdall8/r7l0t6bRkb1UCcQl7nVhxMXsIIKzGun2FDQyizns4tUXFGaoHTucXz9HqZkGcf33v0ix2tst/EGSNE2Xp+ZT6X2ifrA/f5eXbAzsB795muY4VDW8Gs5nM5k/WsZn/P0iysjAAAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DajodbTpqNfRNWgEQZkiM8SVGE2YrTCYYCE6xQlkioyFoxmh8bIW8+EbQjVkz9tXr6+cljIbpaV+3pWs2SDaCF4zjmbJSNoxjEATxYxVawTRGI2k/1AbWgfF7Bf7+Pi8KjUapPBbHt20VtPFxwtdgh3SkQUhZ4xw08h6cZ4TfREYt3Y5/b+/xi/KaXqDbkTmkDZ2LeW0qXhnT183MaqjNbX2dg3d2tBH68mZDakurj0ltd0Xnm+zcEamNFYwALl+bqHcSGjqTHnhvIqHHyYX6u7rAmFuNxsxeqPsQetqkvtvTxvr1qobVzOuW4AAoFDQcqepr8ECpOCK1TlLHR72lY7VlnIN7Df2OYOC6nckaATGBXj9rdT2fy3ndXiutptc35kJjqFq90e0G71rzQ216b4b7+Xrsbr9Jg7Xmj+m+XV7Ziv15Y1s/q93XHTNysFxkHOMg0lqjpUEeG1s7+nmsb/Btga/nTNcIcLTOGWPISICnc86ljACukZIG2UUDwQP5rM6FGeM+xAr4Shd0DWDNI7mCBqn0jLVBs6NzZrdnrAPzus0JY6x6xphutYyQL+PeyboHzmbjQTeJpN7rJKx7wqTua3VvU7ejpu9dWdVty2d0PTY2omtIHEwJI0Mq6up8s3fjKamNu0WplY/eLbVWUWs9KzBKvtaOM/6eGeN+v6x1i/2war8faNT2vX3G/DVYMz9qf8dzv7tlZusYz5ui7+O4szQCAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHT7DqvxfaPjsMEKjrECZ6xGmVbeihV0M6jfN5qgmyE3ug+eGQaj35G2Qm162nB6feOG1LL5jNTm5uakVioZjeWNRqFWIFBkNnfVbR7MnAm0X60LjYbOvtFxOjCCPTzj2XZoBNOYXbi/j/60eHlZymrTc+f0vO/UalKrGN11R5J6DuaMRsq5tI7VpBefJv0tDYhJPdnUbbuyKLUgrSE87tC4fufopNSyYzpnzB89LrWF0zovHbl4QWqXvvms1GrnNYhnO9RG6JnyYamVC9ocvZSL11JRVl5js5orGw2SjVo3NMJD2jp/Wa/DwVQq6znuJXRuqe1pLZXUeaQfGOeWcRnsBxq8kC/EP29kVOeMZl1DHEKdulyUMq7HbR1bVlBGwriWG5l95iIiawQDzh3WwJnl1TWpFYs6Vn/sDSf0a9MaMnF1LV5Lp3VfK/O6bRmn61bn6fVmfVPnr35fD0qtYfw+kfED4UBKGEGPCeMcDIz7Lt94bzqh51YxZwTCdHVtMBjQFxhhMM4KnAy01mxoUF5lRAP6Cnld33Xqu1JLGROO3u3ZoZvWPVFoXPOtucq6j91POGu7o8cuZczBVjha1/ht0mm9tnSM7+h0dS7c2VmXGg4oT0dNFGj4UmNnUWqF1FWpjdQqUsunbtLvTevrBi+rnhly8n0ExFj2+WzBeh6076/Y71v3uWsSTOOcBN3sN6vGOsTW/dR+g26s+67vB3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1YagNKwOjSbnV5DeR0KbfViCMlWnyvYqMzqHWdqTTRqBLqI1d17dWpPbM049L7dJFDYA4c8vNUku5V0lt4uazun0pbY4eebpvbeO3MPo3u1Qm3iQ5aZwCVoCNM7KKPKO/u3WeOKMJt983zh1rg3EgZeY1nKBd00CYbrIutZWuNmFeNUIhEoE2B/daWnONeEDF4UAbsh/uGPNjSuebZl23I6pe1680AqOSIxr20D6uDaLLCxNaa+9J7WxK99U3giKqoe7vjeY5qa3sGPN8Px6mk8rqHBflNZjHN7ore0ZzfNfV4xkYIWKe8ftHfeO3xoFU39I5I+wbgUnGJSowwkoSSb2u9n39jnRaAyUGm5SnksZ2JIyxkNIxU2/pdyaN0K+RUQ2PqNc0cCWRsLZF54x5Yw7KF/Q4HT6iQTyHxzS8qxdoqM31GxoMOFWKH/es8XftC0dGpXb0qH7n2oruv/+EBpV1jfSMvrGG3NnWORgHUz6r4TK9jgaO9I21TN8IqykaYVvjYxoSE/SN0MkwXssYIX4ZI8Sv0dbtbbW0NjqqY8uYvVy3qeu7bEa/d6qin1c3Qgv3rGCxrM63ViCMxTeOXWZg+zJ9vV+zQiGM22TX6+nn931jXWnUJsc16LRc1HMCB1OvYdw7VfVa1mnqmKkXjPPNWIun2stSyxbKUuun4mMmaTyrGQzQ+lZRx1HCMx5hWZ9nLdyMYJbIfNBhfYUR5Gd8Q8JM9zO+19g88xnWQMnI2TKDoPtWmJd1PK3EaM96IGQEgX0fAUP8i0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ7fvsBqrcaYdTGM08TR6WFrBMamUvtdqJKzNf3Xbkkaz+FRKa72uNld+/uKTUrtw/jGprSxf1m0LNQDh2OEHpFbI6rEbKVr7r8epYzQ13qpXpVZvaqPrXDbeHD6T1mbxmYw2OU5n9HdIG41Yu0bn9iDQ7Y2MBqh932qKioPo/vt+RGpt43zudvR8q3X0dbW6Bq609qpaa2j4zfXHvhL780JLvzPK6Fi4KhXnqiltvj7mG83Se7odIzsa2ND2db/8G9rMPRXoNudCbWCdShmNqfMaZFFK6lidM+a+C8vxUJtrXQ2AOPKKH5Va0mlTeT+tc2Y2rXN6qajv7eQ1rKavpwkOqBsXd6QW+FZzdOPvbs18Nh1vnmeEEXSM1AJv4JpvXI9TOePau6drGecb4QxZ3eDRMQ1ZqNd1fkga4X4LhzUoYWJCPy90Oj+cPKzBMXnjOLWNoJ8jC3NSu3kgJOfKos43z165JrXAaOZ+43rVeJ3+XmMT2pB/fdMI4+uxvsG3FIxrar2t52ponG8dI8AmKujr0gm9NmaMMIJkciA8Iqv3HKGvY7JU0nEfZXS+6RuBcnvGWMgZ81zPCJ5r+DoveYNzpnMuawSB+Uaw1PaOBnQ4IxCoZYTz5DoD6zkjZCM0PqvX11oQ6nsLBd2HwNiJ0Lg/z2T3fXuPl7kd497B6+v5nDDCcbMZI3Cma4ReeRromxrX0NEwGf+OpLGA6jaNbTOeGXlZK5DJCHmxHkIZ4Sqe8W/zPGPOjEJ9nTVHNutGYJYRYprN6X1hOmPs78BNS31bf9dWW+fHickF/c6ChplZIaGRGUJjHbvvHf8iEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQfRfdbK2O7Nqe0gqESVnBMUYISyatDTsLeW1Gmhx4fJo0mn8afU3djeXnpfbXX/6S1K5d02bmkdEs3WlvUlcytnd0tCK1XF6bwiaNzIpcXo9x32iEnzQawfttDbzYrcWbwOaMEIdsVncsaYRCJJLGtvWtEBqjSb/RwLrbNzpJ40CaHtVm7lExJ7XQ6JBr9AF3ga/zV2C80Mjfchcy8S/xHv6qvCZnjPGx40el1vU0HGprd1tqfmtPam0r4MnT/ZrJ63eMFnRure9tSS005oxWTeeW9d1Nqc2nde6LGvHGyeer5+Q1U2fvllohpQ2yE3n9e7OsEWaWyei502lrqE8mq8cEB1PPuLx7RjBNZDTzTiW1sXrGCN4LA72GZnN6/vrp+HXQSxhBcUkNMQh7eo4nAp0zJqd1fvACDcrIpfS6PVbR7z12VOdlI4vDeZ6ONy/SAx8Y60Vr/Zkz5v6ri/F589lLOnctreq+bm3rfDs9o2EcC0e1trSsDenDUPd1fGxCajiYskaoSyLUmxa/pwsS31j0pI0bHt9YT+/1dN09Nho/pwtpHbzrjarUWm0dk5GxbdY9QWTcO3iRjvt2R7e3Z6TMZTN6PxUEOm/2jZAc6/6x39d5o9nWbdnZjc8bWeP+N22ExiRSRmhQRl8XGMETRePc8X3dtlZLrwc4mEpjRoBj0wiWTRjBNEZgVMcIBC3kdRwljXEeevE5zXiJyxqheDkjRCtI7+/f0hmZX871df5qVDW0sFrdlVq7rfPI5g19brS2vCy1iekpqc1OV6R2aEFfd+6xh2J/vvzcU/KanjHvT8wekdoDr/8JqS2cOCO1KKFzqxX6ZT8j3B/+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE3S00ahZgiNkbhiBdgkEkazYqNpaWgEs2SS8W1pNTRg4dy5x6X2yEOfk9runjYpTxphBwlP9ysKtWGpkcvirAyWntGEereq21KrayN0IyPI5YwwmXJBm8hvbsUbGKeKVvN9bTra62rD2p7R+No3DoD1+6eTRsBQ4rvITsLLW2Q0QjeCFwIjrMWFRrBByhi/1vxlNAL38vFx9MjaurzmkNENuW2EU0SZMamdvfdmqe0Z88gnP6shOZurGnTzrn98l9SOvepWqTV2tQlzZIzzh//yL6X28b/8vNTe+oYfk9pGJ/5bnHjFHfKadFGDHawG1lZD/rYxV2UT+luk9NRxib7xJTiQPKfnlmf8PW0Q6sDMVPT8zRd0HmnV9CTMGCFSXhBfMCR6GobTb2qz+JwRgDC3MC61V7/aCNHq6dqjuqON63MFHVuZsm5LJqtrjyg0ru9GgE02q83RW1Wd59Jd/bxzz8dDtJ5f1N8w4fS3GR3ToK3Z+WmpnX/+stTWNnSBN1aZkZpx+cIB1WxpYFLKWP+mjHWLM+ag0LjmNfv6HWnj/my3Hh+/axt6z7G2pcF2XWP9H/j7O8nHx3VeyhsJV72uXt+7PeOanzHWd5ER7tfTsZrL6dhPGyF4CeOf7TQH1pDpwSRV51xobIcVVhNY95Md43pj3It3nP7+xTxhfPiWkbxeyyPjGUTKuD8JPD0Hi+MapJItjOp3JHSsJqP4GIyMIBkv0PuQ+uaG1Kot3bYbN9aktrOj65ueMQfvbGjgTK2m90l+X8d5v62vy6Z0LZNLnpXaE1eelNrzWZ0jRovxtUvaSI3pG0FCl849KrXq0kWp3Xb7q6R2/J5XS23m0EmppdO65jMfVhn4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu3035UkaDjKTR1NGsGZ/nGT0tvIT2yOgZfU6Wr6/G/vzYIw/La1auL0otn9R+AqNGf5BOqPvQN7Y3NPofeEbfuXyuJDUX6VHpGz0bvIx+XmA0G2o3tafC4lXtd3B18Xrsz6Njk/Ka2bkFqZVKI1KzetqkjUfb7WZValavlkbL6IfptGcBXv58X8eC0TbS9UOjz4nVYNDp2Pc8a2zpOLq2Fu858nRNz9OdUWN8GP1nF2a1B8vIxITUfF93dq2mvXBH5nWsZufnpPbhT3xSt2XhmNT6xve2RualduyVb5DaRlb7PgX9+PG8qaz7WjTm0aIxj2SNE6Cf1N8/SBs9mayexPw9HL7NmFpcFOk1Kmn0JJ1dOC619e1VqaXy2lOt2WlK7fTh+Dg6e0r7MV1b3pFaY1bXGZPTOt/4kb43ndM+lFPzRp80Y7xFRv9sz2l/svKozg9bW1Xdvp6u+aanDkvt2QvaN3J5c+C9CV3f+UYfO2Nqdc+d155U64Of75wbn9I5uLGnfZo6LaNZOA6kjtHHK2H0FyyXdExXd3Ss1jp6Ate6OrfkM9rHbXMlfp7vbFblNT1re617QqP3u7Wve1UdR+Wy9rELjX7f1rXc6uGfSRv9Z41au6HHKYqM9aLRh3O8Ep9fR8rG72X0mEtk9Nj1jLWnHxj9+YraSzM0evPX9nS/cDAl+jpnWB1ECzkdv72Gjt9e1zinAz33U6VNqeUnj8T+7BvPW3aNdcFf/clHpLa0tCg16zlKNqvbljfyADptXRtZc0E6rWMw2dP7wnxen6+Ujf7h1TX9fULjWdrU0Xjv6c6efla5rGueUlp/1+DCBak1jV7AXzyveSuzd90rtXseeKPU3EldG1u4EwMAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kZzS6dkQmRdNoI3Aqw8TxtAFrf00ahVxevSO38M0/H/tyra6PmqbI28cwlslJb36lKLTJCESIjAMP3dF8D45AmEtoW1sjYcNWq7ke3q41i19fXpLa2qk1hF69pWM3axnrsz8m0bm9lrCK1Qk6bs1bK2vjaaqS8vaO/69qq7sPq2g2pve+f/89Sw8tfs63n/e62nkef/MynpXbmzGmp3X+fNte9snhValtVDZjZGAidKR3VBryrxvyQTGsD9eO33iS1zISGUfRWdCz8L2//B1I7fcxoBmyEcnlGGke7pQ3jb6xoQMOhkgbM3HLna6W2tr4itXw9HtpR/9zX5TW1i8tSax4+IrXpcd2OwjGtJWe0Vm81pOZZBwUHkmesW0KjSXlpRK9vnV29bpciDQq4804d566ra5ITs/FQl0JGP9+f1HN3u6f70I90XbChJZcr6N9Jj4xog/fIWPQVMnpMchkjmGZdG9znjbDAU7MzUruyrI3gv/Gs7kiYih/PdFJ/h9CYq1strTWbGi40MaXzUqGgIRu72zqnMd3gO0olHTMNIzQl7BkBbX0NPao1NOzgxpqOj5TT76jvxtcBhYyO+2xa76fyuZzUQuPeaaSsNztWgI0VRphIGKGexv5XjXVboaBzy2hR9yMywjJ8IyTHCoRxLj7fjI7qPVGro2uPZld/LyvAJpvU60OxZARwdfWYhMb1AAdTf0/D8/o94zrYXpdaffu61MpZHZezE/qcw2sZQZzdeMBToVSR12wa42NzRbcj62nA0/S0rj1OH9fr9okTJ6S2vaX3P4tXL0vt+g19XdsI8IlCnQ8iIxpxzljz3HJa14uJgUDn0Tv0XjfwdS64+I0npVbf02NcammtfEi349Llp6X2pW09Jj91329IzcK/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOqxkpaSPSREKfY6ZS+pEtowHm6o0lqV24fE5q14zXJV28+XExp985XtBGypGvDZKTRuNQF2pT4sgI3Ikiq8G91qpVbWJaq2tz5Xq9KrV2W49draaN25t1bYhcKmsTdRfFG5neMI7vteu6/4lIf+u0pw1rMxltrpxK6euspta1WlVqOJiyRiP0YkmbqN985mapjRphS8mMft6Fq4tS++wXvyQ1L4iP6cee1sa/K7vaBH5mRpshX21r43bf14bLf/UXH5faxIg2Ka+89S1S+8o3HpZaIm00Pc9qrWCEkqXzeuyu3diWWlTUxsxT6fjcN/PoRXnNzrMaqnVjQZtcr3Z0bq0c1ybP2UNa6x+eltqxV+i5g4MpawQW9I2QuU5fx29lT5t0/+xPzEltdEzPwaUlvZYXyvFrea2la4V+Tq+fhaIxZxrzaDah+7C1o2ujrR0NsyqMadhDcUzXGRsbul+1us6Rrziqc+TSqoaS/fknn5FaOzTmtHR8fTM9o9s7OqnN7J89p+F5Qajvbbf1uHe7ur0ZY23UDbWJPA4m6z4pbYTb+Q1di4eBEabp63uDrq7Z+30d54mBf49SNoJ0IiMAIZ3Sz08k9bwfKY9Ird7QAK6xMX1d0vi868saWrG3p3NkFOoxCQOd05Oe7odnfG/eCL8pFuJzRNcI4TGDeYz7zl5Xw7FyOWN7jfvuwLg/HRvTeQ4H07VLev3sRjoHbW7qWqaY1fO+09FnGt3QCJhZ1dA2V4uvPzI5vc4uX3xOagszs/pZxn1NFOmYOTSvYTUP3K8Bpp22zkte+Gqp/dknPim1x57Q+8KpqUn9PE/XX4WCzlW3nFiQWmpgzk0l9DfsVPXe7PnPfVlqUUnXbXuNLam9ItK58I77fkRqi9/H8xv+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM3RI9p0s93SZubb29ooc+XGVa2taBPThtFwOGOEJ+Sz8eamBaOB/IQR1NLzdXdTu9p01RmNmRORNgNORPq9UaDNpXd3tQFo1mhCPDKiYRxz81NSW76uzZo3VrWWy+mxy2XjtWLBaPbqac0Z4TJ+X/fVS+kx6QV6PPt9rYWRfh4Opn6owSSpjI6ZyWkNJpmb06AIL63vzY9WpBYZYUuVgTCG1HUdpwueBrW8+Q0/I7XL3arUWk1tkHx15YbUvv7YitTuulsbLn/kjzXopjxSkdqP3Kdz3xe/8HmpvfMf/6LUCtMaJjMxOSa1owPz4exzOu97ef37sNW8zg8dI2wsbwR5FC/oe6duOi21UlF/RxxMfWMp5CX0enRkXNcB//j1t0rt1CkNXvjY556W2m5bz9WRw/Gx5WU1cCZtBJ+kjKbiUUdf1zPCaqy1gt/TObjX0Yb01RUdl2lPj92hGQ1PeOZRnQ8efuKC1LqRHoOMEZaRSsa3eXZOrw+bWxqk4/d1feNp/3jXbOh7R4razD+b0utNzzgmOKCMjExjie2aTR1vWSN4b6ys9wmJQNcyQU/HamFgXdUyQjNHR/V+KpnUubDT1XvC3aqGsBjZKi5vBDZYAT7pjI77TEY/MJm07ll0W/pGSEzSuDOeHK9IbTCcZntH7/WqxvFMZfULMsa9mGccqHRa3+v39hdqhIPp0ce/LrWE9fjHuA6OVHS+8et6z+I8vT9Zbej6/OpGPDjHy+jawxnr+rCmoXCNvs4P1ZquW04dPSS156+uS+1vvvIFqY3l9TidOn5Sahvrm1ILjDmy2zECcTydl7vGXBoF8bkvmdZgsWZNP6vW0lrfuNeNjh+X2s6ly1KbO3tWaqfvuV1q+8W/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kb+SWXLmoTy42NDal1O02pTY5ruEOrra/rO208mh8Iesk5I1zG16arfaNRcdIIw/HaRnPlUD/P6IXsQuM78gVtXH7bbdrss+/re32/K7WrV5+X2rVrF6XW7mhj9eRAaEcyoc+iEyk9LUIjmCdhHLtcThvbRsax6/Z0X7vGscPB1DZCEbY3tRH4H/yXP5LaT/3Eg1J73RtfL7WnLmgoQkdPc5cqxMOxjOHhxhI6FgId9q6+oQExlRENUkkWdBylnDZmLqTzUstmNIQlCHWjWx0db7WWzsHFrO5IMqvbYjWw/uZ2vIH1fEp/19kJDZRYKBvzyIy+Lml0lS+1jVAyozl+ir+Hw7e1M3rOHNFsFffzrz8stROHdAx+5TFdB13da0jt9EkNeMp58fCTwFgDzZQ0IKXR1ObmqbyOo55xza9uazhWKqnfkU/r3HLTIT1Q1xc1tPCrX9DQwqUb2pR+dF6/I9HVNUQiYaz7BgJsFq/pNWNzXec4zwjoi4w1j/O01u3pdmSzRnCQ8XE4mNodHdPXVjSMYXNLz9VSWeeblHG/EwYaUJBL6Xk5PR6fg9odnUcKBf3OTkfvTVpN3V4rmca6T9jc0DnDOR00gTHe8lbwghEcGhrXfC+hx86KeanVdf7uDITV+L5+Z7+r+2Dd61aMhWXO+K09I4Qm7el+7VX1fMLBtLaqoXB5Yx1QyOm1fM9YJjf6utYvjRrhxXs6HjIT87E/33HvXfq+RX3Gsfz0E1I7UtFg0vYFXcvkizrfbO3ovdiTT+s9Yd7T+6T52VmphYHO6fWmzml7dT1OlZJunwv1wIcDgYRrNZ2Tnrm+JLW+8bytYDyX2zDmuEJW56+ttUWpveqo3nfvF3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1m0ZQxI0bRoPztAYbjIwZXd9DbYDprWizT+e02WnCi292ynicmor0s8oZDVjIZ4ym4p42QzabHFthNaFur9Ef2qWtjY6M5qSBNno2chdcJ9DG0XtNbQQ/NR1v7po2fodkUo9Tp6efHxn7b/SldoHRpT0K9YWJhJHugQNptKyBBXkjNOV//dVfkZrX1xMz6Bvj0hhJJWP+2rq2Gvtza1MbNY+lJqS2vqLhDP0dDbFot7Wp/N71TalVIt02K+ApNOabrDEJFdLa4H22NCm1nKff2+rqHOm1tAnzjY212J97TsNqjp05IrUpq1Fzymjo7Ol+ZctaaxtN9KO+zmk4mJJZXS+cOaphLbcd17XM//FX56X2hcd1jjh7V1FqR0c1jKC3HT8v0+Mj8pq8sZZJBXred4ywu76n4/TIIR2Dm2s6Zz77xLrUnn/WWBuuVaW229TPy06XpeYZjdvDtq5lxkb090kMLEBWrhnBNM6YRyyetR5VVghNv2+sb425CgfT1Wt67/Tc1RWppbN6izZe1utx1lh4p41AuUJBx0wqGb/W5o0gmUZDr9vNptaKRZ2rxsY0kCtlBLNYQS/JhO5XyjPC6IzbqcBYG6Uyum/j4zqnD4bQOOfc3p7OQeVyJf75RnieZ4SC1Ft6fbDCKVLW+iapv3/CuJNP6OUGB1TSeLbQbeg6IAg0XCXV13GeTeq1sdrStUajp/cYx286Ffvz3MkT8pqNGxq4sm4Efba7xjooadzXlXQ7Uim9T0wZ90mT43pPlEjpGOwYIVqD6xHnnGs2NUQq6+n97nZNj/vKRnyttb6ua6+V5WtSa/V0X0eMxy3RhhFgM6KTS/7ys1Kb/fLXpHb0+E36JQb+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE29ro0zI6MBatIIe4iMhrt+oI09Ox1tlNk3mq13uvFGqZWsduWtjFWk1u3p5xda2sQ03NFGrEY/cudFZjKLlKJAmzBHRkhMKmE0M0/p9o2UtCF0JqOv63T12J255Uzsz76v27GzrU1h61bYg6fv9Y3QHCvUJ1vU36zfsY4yDqJ6VRuD93rafPzzn/mc1E6dOCW1nBF0k+zo51WMrt+NgRCIs7e/Sl4zUdDQBSMHy80fmtHXtRpSu+P4gtRmShWpLRiBDW+884zUillthnz7zdpI+LARYFPM63fsGNeDkZQRBjb4Z0+vGaMjo1LbvKGhPjkjHctqPh8ldP4uGGFbyVCvQTiYRvM6F9xzQseqkX/gHr2gwQblgobQ3HpEA6221mtSW74RP1cPn9BzfG5c57OJypTUNvd0HE2Nz0rt+Ys6B33tq89JLVXQMV4uathD5bCO6Yyvx2lHp3m3s6tN9FO6hHIFIxhitxp/b0JmIOecsW5xxpwRGas+z5i/rL/P941wNCuMEAdTGOn5MVrRNXFkJCGVjMAZa/0/atwneFb4y0BAQ9sIaul2deIrGmv4hQVdtxSLuvZwzrhPMmou1HHpG/c1kRES2m3rGiVtBN4VjPtHzwiOqYUaMFMaWPcFxn1tqaRrw65xXxsZ6xsrEKhnHM8o1Pf6/f2FbeHlL2Hc5wehsZgxwlq6TT1Xx2Y0gCqX12t+sq6ft7O0GPvzjbyuKTIdHUc3H9X7um6g43R6TOfHE0eP6nbUNOhlrKLvnZjU9U2tqXOBFeibN+ZqZxz3Vkufr3zjiXNSu7K4HPvziDHEM7u6qJooGXNwyngeltbj2avqemxtd1lq5z76x1J74P/5Tv1eAysjAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEO377Aav68NjDtdbaTbtxqgGg2Sq9vbUqvXtAFoq6ffEfjxRu07gX5+2FuRWrutDdm32tqwM3D6eZEVTGM0CLaaBq+trRmfp68LAu08agV01Pe0wf2JOW0SvVfX47m3tRP7c6GsjZQt2Zw2w/YSug/ttjaZ9Y1DVzIaXe8ZTVZxQBnNx5PGeZRLa6PjotEg+LGHH5Hapae1GfD4aEVq5YFTurujzXszOT3v7x/XsIvpnIZMtJ54Wmr/ONSpuVQ3Gpz/lYb1/OyGjvus0/nbbT0qpRkjMGutcF3fOzmt22IENKQGAiW8LaPJ80MXpFZbXZdapqjN9/2S/tZJo/m11TO6uqu/j3Ma9IOXv5+454jUbjp5SGqf/vIlqfXbeh388ddqIMyCZtW48w29rkYD12QvbUx8Ts9x32jcvnBYm7Q/d17XXl/58rNSmzpUkdqcEZzTDXVe2tk1gl46utZoJXVNVm1XpXazEUBWMgI6rl0e+H0SekwizwgPNAJsCkUNugmMMMJOQ9dogwEgzjnnzKAbHESeced1622npba+otdB674jaZxbpbIGFOzs7Egtm42Po4kJnahSDb1PShnhdNa9TsIYg2lj3WbV+j1dt3hG0GdghZq29N6xUtZ9u35Ngxd2dzWws1jQe5bpqfg6qOXrOjCf0zkzZ9xPNTo6FwaBvrde19dZ4ae+bwRm4UA6lNH7jvnpeam1y7rG7qd08XzrrTpXzR7SNdQ9ns5BhYH1+dh4RV5TMQI381kjkNcItYlCXS9NTet3rK7qeH7HL7xVavNzupZbvrEktdJTul4wHvOYAVztlt5T7hqhwYko/t6+8Yynf+OG1MYqGi5kBWaNGGueateYb+q6D8GmzqP7xcoIAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zmyhUNFFhf0xCDfqANcgOjY2ejqk02rRCWnqdNMf2BIIvarjZgTvpGM00rDEYqzjmjCbPn6z4Y/c1daDQNthSNsJaM0VDWavR89JAG09xx8rjUrKCbmcPxhrLFMW1iWjMapz70yENS+5uvfElqfaMBamD8FieP3SQ1v2v+GjiAJsfHpWaNrXf+L/8PqXlJHb9//if/p9SuPve81C47PVddLz7266tb8pJ5I0nnJw7dqtvmawP1qKXBWiM9HUfZtjGn5bWRdFanUZfL6XzTm9BG0gkj6MUb0e9IzU5JzXf6+/RT8Tmtl9aG0/6oNsjOzU9KzS1ouExmYlRq3kVt1pwxGl07K1ACB9LpaQ0F+PTD2nz7k9/QsX9iXN87Oa5Lq16g17dyXt/rufiYyST1fY2uhkLMHjkptXPPrkrt//obDce6+W5tNJ8paiP4WrMqtZaRg1Xb0202cl5cp6PrxUJex2omr9uytW0ENIQDgTjGsbNyB6NI11nZrDZuN/Jx3HpPw39Sxgt7XatzPQ6ijq+DJoz0mn/k8JzUenv6Os+zAjb1fMvl9ZzOD9RSRmjM1KSuAfZqutDY3NiQmjO2LZnUa6+1D/2uHqfJcb1nKRuhdWnj3mlsVAOzttZ1Lt3b1TE9P6sBfRNj8fVHyggW6xhBr05zKFwqpdeMkRHd3lxGf8NWU8OEcjkjoQ8H0l0zx6R2/MQJqdUWNJglN6Vr8ZGirrvLJb3HOH5M56/x0fh9h/WMw5oz9sua91ZWdC03O6fjeX5eA3xKJb1PGjfuOz71qU9JbXtLn03tN6i4mNXjcuhUfJ3W2dGJJLICPI3gqowxB6eM4x6Udb4pN/XY9dPf+/Mb/kUkAAAAAAAAgKHjQSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHbd1jNN77+Zam1O0bDZaPHaBBpU3HPeGGvqw01o7Q+K+0NNPYMA21knvL0fWFCvzM0+odHRuBOOqGNPaOk7pfVdHRiYkJqJ09qY/luV5tQDzaSds65hHE8Lz35hG6fEe4xORFvPDsxq81pm8Z2PPzQ16W2sa6N8INQf4t+T49J2mjMPD2pxwl4gXHeh30dq8mE0Wx9QsNV5o1zf3lTmxrX0/F5LjurARPFXW0WHl65IrXyhDYf7/S1ya9fNhq8G3NLuKnNkHuVQ/p5I9pIOkjpd/hOx+/68lWp1eb0eE6WdfymJ+Pzzcydd8prcjed0u2oaMPlT517TGp7G7oPs4vawPmNr7lXaiPT2nAZB9Mjz+o587UnNIzvyJw2bv/xe7Qhe5TQMb2zWpVawum6oujF56+opdfK4oKO0+cv6Xzz+c9o7cTtur1BqAF121UN1moa/cgbNd0WK5il3dbP63eMEEBfg17OP6OBEv2mHrswqgxUjL9rN0JBrLCanW0NVExn9BqUyeh7M1ljfWuEB+JgihJ63nd6DanljeC9iYoG+Vn3CcbU4kpGSOag3R1dUzQ7xny2W5XawiFde8wa66yLFy9KbWtLg8AmjGAa636q29G5ZdQIeikW9XiePav3YqdPaXjX/LzOm8mBcBorY2N3V68tW9u6r3OH9ThVKrr/KZ1uXT+t62DPfe+BH3h5aa/omF48fFpqS9c1bCq8tq61vo6jm07o2D9+VAMmEwMhKVZ4izNz3ayi3hNt7+jYahghexMTOrayWZ0frZBUMxzMeJjUbutaI5PR+8dcTo/nA/e+SmpjlXhwTscI+O3VdS2329iTWrVWldrerr6u29JjUt/W1wVZ3Yf94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfV+H1tBry9pU1M+6E2D/WS2jU5ZTRhtpJuMlFGX5eINw/1jIalvtFg1EXGd0b6nZ7VEzVhPbM1wjOcEbhjNGNtNjXcotPRJqOBsR+dpja19o2N7oe6LYvXFmN/zpW1obN17Not3V7PaB7rGYEiCWPbImPbIuO9wAs8nUe6fT1ndrc3pTY6pY3Ax+a0IfnipgZUZAaCr44dOS6vOR5qcFP5um5H2hhvqa6GM/Tq21Jzob7Onz0qtQuT2iA6KGj4y5236X5Mjer27Z0/L7X11RtSmxzTJvoT5Ur8zz295ATG79VyRqiPMd/e2K1JrVTR5sregjaa7wf8PRy+5fHLeu3t+BoAcddNel7eepO+bruqc1XWuA5mslorlOLjvG1cK2t9Pce/8PnnpHb6jJ73aaOp+PqejqOWsW7ZrhuBKz1dQwU9I2Swa4y3rrF2C3SO8EINRpwcMRZqAyFBW3X9/CDU7YhCI9nDeF3oaVJEIqnb4ftGk3ojwAYHU9/XMe0boXV7HQ06mZjVwKxMVtcGrbZxj2EEUVar1dif02mdH7ykjkkj+9PNGAFwt916q9SCvo6jbEa/97WvebXUVm/o2uOZZ7SWN0KkEp7O1aeMYJqsESixs6NrsquLl2N/3t7T++Rnn39eav1A57OTN2lojt835se2Ec5q3E8njftuHFDH9J7gohEet7Ot841nBP/2jUDQiXEdW4H/99/TW8Evf8srpWKFzJVLJal1jDAr6/OsbbFqBeN+qlQakVo2q6EuRSMwzAqyu3RVgwY7nficXm/oHN9o6POhRlP3v5jTOS5h3GPvNjS0rzhekVreuC/eL+7EAAAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqEp42zQ1DbXzcMkJYAqPpecpoiGw1CDZ6OrvAjzf2DCN9USplNVfWZqqe0+acvq/NgLtGP9XQCojp6nsXFxelNjo6KrWs0XC639d9aza1eWiqqPuWS2pj/Xwp3ig1ZTSh7na1sWmvo82Vw8D4cYxACSuspt3ShqqtpgYG4ICyxpvRHb1rNPPeMhouJ9M6tyRLGq6yW9PzspKPj5mFW++S14wWdKz1Qm1ovHdiQWqZvL5utKLjqDx9QmpPtHS++T8feVRqya6O1VuOz0vNyvjKj0xIzWq4HDndltZmvMH7xacv6Psm9djtHjFCNlIaXJZP6byXnteG+a0JnW9bqztSO3tGG8bj5W9nT9cy02W9Hh+fp27i9QAAISNJREFU0/MonTGWUZFeQ48uTEmt19H1Ur0VD15I5LT5+mc+pQFPhXFjTTGi2/aNRy5KrTSh47ljhAc221pLBMYaqqsTSWSEQxlLSOeH2rj9+Jxu3y+/4xVS63Xj65Q/+OjT8pqlbd1eax2YMGpJq5m9EdrXM9Ztuaxeg3AwZVN6/5MO9fpWKeq1d2HhsNQaRjDNdlWvb1bwQm/gJitrhBiMj49JLWPcY/WMUMuN5WWpFYwglTNHdb+mRnTuy3gaPJjP6eeFoa5HSll9nRUIurikoYXPP3dJasur8cDW5R0Np2i19L7mtltPSa2Y1X0NOsa9rRGcWrLWY8Z9Nw6mhfteJbWlSxqw2TPC2DLG9T00rtGR04t50ni+IJ9lnKZWfo0VaRMab67u6RjMGPd/6bSu75w1ZowvtsJqcvn9Xd+t4BwrvPhrDz8ktVotHioYGftfLutc0Gzq85u7br9TaofmdG69ek1Dc04e02CahVmdv/eLfxEJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj2HVYTGYEw5ZI27Eyn9dlmu6uNMr2ENkDNZKym59oANRHGAyoGw2ucc843Um48/XiXTGrT6H5fG7YmUkajdf04sxn0U09rw/StrS2pZYywmmxGa4mk0TA9oVsTBhrkceJEvEly1Qjn2N2tSm1l5YbUPKOxq9kg2WgGfX3pstTaLaNzPQ4mI+DIOO2dC7Txb9DSZsVLq4tS297ckNrUpIakTEwMhEzkR+Q1R372Qamd+V/1s/ptHW/JtE5Mqbbu15bTMIonvvyI1JZ9bY6eGWhy7JxzX/jIH0rt3r42zL/5dT8mtSOvMAJ7JjR0ppuOh8lcNQJtvlrX4I3Hv/k1qZ04q+EU3V39rWfveaXUWsY1yBnzIw6mXELPywdu02CpnBGot1vTZVQY6pjerValNjM+KbXB9cylVR27tZ6e92Fd12PdGzrf9I3Qvk5P10Gdro6PbtNYZ4T6Os8IukkatVRorL98nfunR3XOfdPd2ljd68bDsW5cOSKv+chnNYjCCpeJjLCaKND9TyV0jWYFZViBODiYRkoaTNJv6zk4Pq/zwz/82bdILfD0vPzEX3xCaovXFqU2NhYP7bPW8HtGAERkXD/XVlek5vn6uoIR7FAs6Dja3liTmkvpOJqZ0YC6dlfXQZub+nnnntcwhuXldamt3ND1Yq0RX6f5xv3fqZPHpHbmllukljRCrwLjPjaV0+Nk3e9aga04mKodHYPFjK4D6jldQzjjup0O9JmLdXVbM55zRGF8LV4x5sJE3jjHjcDNv/jLv5DaZz7zaamNGWFbv/jOd0ntljNnpGY96YmM8RYaIcfLy4tSKxZ17ssk9b4rnTDCkDvxoOKdXQ25SYQaitgxti0wnhnlyvr7j4zpfWe5qL9ZKm3doO8P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtv5utp81OJya0iWUUaVNxq5Fus6WNhLttDSvp9LUpaq8Tb3YaGGEogdFAPZnR5p/jk9p000rF8Iykm0KhKLUTx09KbWdnR2pXjabRvZ4RuhPosUsYDZEzWW126hsNSp89fyH254WFQ/v6/K1Nbd7szGAaPU5epJ/XMcI4+sZvjYOpZzRCD/oaOFLd1fPy8nMaDlUe1WCD173mfqldPaTN4bc3q/HtWNPwiEZRmytf3q1LLfXEeamF169KrfLMstSeOXmr1FZndA5+44++SWpXHn9MasvPPSG1ubQ2K860dH9Lgc4tF557Rmrf+NKXYn9+8qnH5TX9vP59WL+lv3V2Sq8tKesSFuo8UjfCemYnZ/S9OJCOHJ2QWs9Y89Rqet3Kp3T90dPljWs19HX9voZAjI3Ez/OFMb1+3nOHjo8vftMIZ9jRZuajU9osvdPRMdNqGM3HAx2rRs9zM5glMtZpzgpo8KzAQ/0t2nu6b8cq8c/7n+4/Lq954mldjz18RUN9oowxtxjhaM7pnBn1jEbzgRGYhQOpmNOgiJqxJl44pIFZp2+5WWrlsYrUxqY0tOBrX/2q1J566qnYn61gyvpeVWqjRsiEFUy5saEhL9mMEVJV0bC7TE7va7Z2dfzu1nUe3Wvo8bx8XcN01je3pdYygjNDI6hqdCR+DI4t6Jri0JzWMkbgjt8z1jzGcbLuu6yAIcJq8B1t4znCkSM6t8xMj0ut2zXuy43nK6Mj+jzk8195WGpjqfjnvWFet232Vg2mfHJD1wWf+tSnpFav61r/4sWLUpua0Hu9Yl7nm5UVnTOWljTwbntT56V8TtdajbquNfb2tJbJGM9NBkI3fWNOMp7KuISxpkomjJoxZ+Syeq1aOKzPjb4f/ItIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEP3XXSzNZqKGw1QPSPoJJ/Xhp2FvDbA7Hf181JJfVba6cSDIUKjQXK3q82GXUob/06Oj0lte3tXasWiNlIOfG3YOlLWxuW9rjaR397Sbc6kjSbtRmiDFWDT7+m+pYz93d2JN2bOZTVkw/q9At9qPq/bGwTadNXajqSnjW3TCT3GOJiuXLkitdDXMd1s6PhotLRJeSKtDYyTaT0v02mdEv2BNIYRIzQl7OlccP2cNkie/eYFqXmrl6W2t6v7cH1KmyvvasndOv0j+rrxValdzj4lteWuNm5PP/V1/ZLrGgh0fvF5qfV68d9sdFTnx1njeBayumNTRshGPq8N87dXtbl0ypirkkagBg6mdFbPjyevaGjDVFmbdB+b1TCCYlE/by+roQ03VrZ0W7x4yEQxr9foY9PTum2jOsb3VnXtsberIS9BX+evqKdrI6sTesJZIXNGE3UrZMHIw0mltLi8rGuyx57Q2sT98W0uF3UeffBePXZL23p9WO1oIFcqr2uUdsdYa/ra9D4grAbflkoY4ZdFXRMfP6Xhl9mC3jtFxuedvuWs1GbmNKAiV4hfQ7/0pS/Ka0ZLum0zRhhOY0/H0fK1JalZwS8pcz2mtc3NTak99pSuZTZ29F6k2tXvNXJIXbGgc+7RQ0ekNjcTPwY5Yz5LRPqdOSuExpj3PCsQ1AiesOZWKyQWB5MVwtLpapim8QjChaFe3zxjvsnldMxsrWuIlOfH54h6UueMwpSG5lx8Ttctd999t36+sUh59tlnpfbkk09IrdPW76hWdfus+86EMZFMjet9zNWGfl7beF6Vyui9jZeMzxujFT3m2aLeY7V3da1kTFUundbzpGoE6UTGwi2b0fuz/eJfRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYun2H1QSBNjPvdPbXfNsKkykZjZmzJW2yWShoA8wwjG9Lv69NxXtGrWu9rqPNSb1QXzdZGZXa0vVlqZ1/RkMcWkZ4Rq2ujWKLRpNRv6fN5stlbZh++qabpLZsbF9+ICRoYkz3K5nUpqspI4RofEIbm6Yy2nS1XK5ILePNSu38+atSw8EUdjUAoWaOIx2rV65raEP76qLU0jmdW8p5nZcKhfjf1/gF3bYLW+tSa1zRYJr7RvU7FyZvldqlrO7XJ68sSq29rg3JdzZ13DeMxtRrkc4tyZJeEsK2hmxkOnqMp419q4zHgzyKxnxeMYLLRko6LxXGNDyjaYQEpXt6THp1bbjcM+YlHExJ4+9k620d55sNvb5dXdWAp3xRr6F33HlKal3j/N3ejs9zvTFt3N5o6tidm9Lr8U5N58xcsSK19Q0NzfF9I9jB0++IPJ2rrLCa/Uqn9L21lh6nv/zqdX1dIj7P7W5r4NBNJ05I7Vf/0R1S++unNBTjqes6j2xsGCE8kTaRd8nv/Zjg5SWX0XGUN9YjR48fk1pkBHhaASaeEZ4wPqlBTW/48Qdjf97a3pHXXDqv9zV14x5mfX1NatVqVWqzRtiWdU9ofcfGpq5HusZ6MZvRMbhQ0Xus8YmK1MbGNEBvcmpCav1u/B44aOs98dSkhvqEvs6ZuYyuvYzbLhcaQRFhaIXJ6pyJg2nxigZnPve8hkta913FvI6ZdFbnqtEJHR+5gr43NXCaX0tqgNYzz+o8cv2q1qZm5qXW7uja6PjRo1Kr1zQ0ZmPLCOtM6TyyU9XwF7+v9x2BEbBqhfpMTuoaL2sECbsofjw9zwizinQ70oMH3Tm3sa73rEGgc0u7rfvw2JMa/pNK6vb+2E89KDUL/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ7btH5H4lElavEv3vzvs97UXQD7W/Riqtmzj437tnM9qHIHL63853uvrfulere/r5xuPZleVFqdWN9zbq+uYg0m2x9r+X0uOUSOh7iyXtqTY/pz0Xq7vaxyCTjfemOXLkkLxmY0N7I/VTul9zM9rX4Mwdk1Kzfp9rF7V/yeJVoycCDqSi0atxY0fH28aW1hIF7e8zP1GSWqGo59tIRsdWbSXeZ+zLX/trec3Dz5zX9y0tSe3qPfdK7Sfue4PUeqNpqW1f1d6PnaUVqX2tqNtXq+lxGi3r/s+OG/2MCnpMPKfzVyGhPamymXgtmdL9KuX095oe0flsr6nfGWrJ7dW0h1S9rn1jMuM6V+FgSqb13M0bvZg7kfZG8oy+yMlURWrnzmvvnrlDp6W2W3sy9ufFVV0XXVvRc3xsSq/Rd5/RcRQZvXxGi9qz7NJV7Z/tG/2HjKWWWbPWgZYoq70Uo7zOEV+9of2clh6Nr13Snv42o/P6W99/i37+TWO6Rnl8Udejf/Il49ht6nGKki/6chs/pDLGufCKV75KakeOHZOa1Wk0MsaWZ/QF8wN99+xcvM/aL/yjd8hrPv3n+llf/NxnpWb16z9+/LjUJif03sFL6D5Y65ZcTtcjZ8/eIrWxce1Zl05Y9xjG/Zmv64VuS3vKdQa2L5/Xa0Yhr9eMbEbXQcYlyPWM+0SX0P6iCaOvPz0i8R2XLmo/yO1N7fOeM+alblv7IgeRziM3Vq5ILWv0f08O9CF89HEd9x3j8286elJqlTEdHxNGT21rLORy+lxid1f3NZnUdVB1T/voZowxfffdd0ptelrnJb9rjFWjx69z8XVFFOj++5HxDM7ptvX7Ou9V93Rf08bzm41tnZeNqX/f+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu392zrSbEVjCNVbMahfpGgEvGaFZstetMDzTmtRr/esZ25DO6u+WCNi8OjH7stZo2Mc2n9Xu7vh6nZlcbH3ecfkm/p6/zPD12CaNd9fqaNp7ttFu6fZ34dzTrdXlNu6UNS7u9qtSabd3/889oE1PrV2zWjFMvqduCg6naNcZRW4MHmnUNLDh+7LDURic0mGRlRcNk/uaxh6QWNKqxP2+vrclrVpcWpdb2dYx/7qnHpfb08lWp3XXXnVIbndRG6CuX16UWGU2j56fGpDY2PiO1nKeN0Asjo1LzjLkvndL3un78Nyul9TXlvH5+5On8XTPms05HmzUHXSPgq6jhR/7+sjNwAPjGX8nWWzoHXbumQW5vPHNMaqvrGhT3hW9ow/g3P3iX1DJj8bnqsUcuyWtGijqOijmdH7ORtfbS1911dk5qezWdH1e29L0JY85w7nsfXEkjoC9nhHfVOsY6qBP/IXMJDd965FldZ82Fuh65ZVL366fu0euI39P3/u5fabBYzRHGh2+ZmtJr7y1nz0rNCnAJjTFtvi60AhB0ohscRdMD4TXOOffWn/9HUpsx9uGhv/kbqWVTuv4PA51bGx1d/69XdX0XeDo/TE/ruJyd0TmtVzcCS3c1eCLy9XVzk7qGWpiJB09sbmugTc8ISS0ZATbW72qF+1k137g/H6/ougoH09qqrkf8vq6nU1m95mWzGlaSMJ7fJJLGIsq4B6o14+F7KeN6n8rotdIPrQQ8nVsuXdb7n/GJitTSWb1uNzd1Djp6WAN9p8d1bE1OagjNzWdukpr1vCphrZeMfRuc5j0jaKtnHHPjsZRLJnU7rO/s+zovBYEV8GWlFu4P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6wmn89LLQy1WbgVVpNMagPMrFXbZ/hNcqCxp2c0+kxZ7zMCFjyj0brf1/3KGNtbLmgTVz/S93b62qy40dRAmEZDA3FqNQ1/6Xb0vTtb2kS/Yby3WIiHNuxsb+nnt7WZe884Jteu6HvbRsPpvNGYOZ3S8Agj0wgHVKPVkVrBGG/Hjmkj4a7ml7haVZs1d43x5owm6ovLi7E/b1V1rI2N6LbNlUaklsvpWBgvaWPmybzWRhZ0rkpkdFyOjuj3lvM692US+t6op7W00Ue5WNZmzbl8SWr9ZvwYp4ym6ilj/rbm/bJxDZoYqUitu2PMQQV9rzOa3uNg2tzRa2XSaNy9uaXnViIcl9posSq1s7dpM/NHnnxOaqVS/No4PaOfnwo0FGEko+Not6rjbWSsIrW0Md+k07o89IygvMj8+2xjbBkN7s1Im44RxpHVNUnG6evCVnye22vqaz5/XsN/Rv1TUku/Sue4lK/XkTtv1XCPE0/p7/P0Dd0HHEwjFR3T4+M6P/h9XczU9vQcTBshcNb1WNIOnHNBFK+FxjgdnZiV2pve/DO6HUaQyt98/rNSa7d1Hr20puFY129o6NORQwtSyxiho76xlusbtU5P15qlsq7nSiMaFjg4z01E1pypx7zV0rmgXNbP94zfwgqmsWbgY0eOGFUcRIV8RWqtUMfgxsaG1NJpvWfJZnW8eZ6e55mMFWQX50dGSLHxbCkIdC608mvqTb2vm5zWudW4xXCnTh+V2pmbbpZawZhvS0YgZiKp84Hf0zVJZDw3skb14H1RZMwPVjh0FOox9szPN0Kkk8YqzXgelk5+7w9w+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1WaNxud1q3GhI7hnBMVanUOPjEkajzEQy/l6jR6pLGE2ZE8YLrWaf1l5ljP1Pp7TW6BhN1T1t4Dye0Uboo0Yz5HGjsXy9pk1m93a3pdbvGg2Rpydjfw59bQDbbGjj/qbRXLnb0/da4T9eVpu4utBodqqHCQdU2PelZo3LvNE0OemMQJSynpetPf3E8ZK+rjkVH6vFnDYWPnRIm7lPjU/pthnzXiatc1Ai0P3PGPPNTYe1cXs6o82lXahj1W/pPGI1Vh+zwm/GK/p5uskuGpiHMxndh7EJ/SwrACPy9bj7vjZIzleM7Z3QcIBchgkH31LfbknNCtnrG2uZzz2+KLW3/rg2OD99dkZqTz6rwVePPBYPbbj7dg0dmB3TMIXl6ytS263rmNkI9PoeNHW/msaATib1dX6gtTDScZkw1lpWzUU6B7ebRjP3tBFQMbAfka9BgUGg4/6vH7kqtaNHNMBm8bwGhWy1q1LrBRqAkfeMFDUcSGMVXf9b9xjWPUvLCNnLZXU+yOd13W0FjOoNlH6nFcKZK+l3nn3FK6T2yb/4U6k98vA3dDvyOt9Oz+gaygrA6Bv3It2EjsGUcYxnZqelljPC/fpGcFAqFd/mUkkDggJjjWJdW6ywD+vn6nb18zJWEGtC50ccTF5Cz7dkUs8PKzPFCtHtG4FJaeMctEInB+cgaywUjeAXa/w5Y50RGfdO3bau70pFDbCcmpnU2pTeO3iBHqjQSM4JjbFvsca5tdYanJutZ2vWo7XIekj2fYiM53x24M7+8C8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqrBdazTQ9M4xBm5ia7zUaYFpCF28A6gdG40xPG2cm9tlL02q6mkrp9qZS+rpMThvA1lva7LVR15pvNFy2QoIyRoBNMa+Nmf0xK/wm3kzZahRbyOl3Wo1tk0ltKJtOayNps4mtEUL0/TQ7xcuL1aQ9MDr6dnsaRuAbIU1Ws+JGdUNqzT0NjygMNC5PJIwm8F1t3pzo63ZYASlp4++DrCbPXlLnOd+Y5zLG3Jo05qp2R49x0WhAn9pnw/yM1TA/F58Pysb8GHm6X829mtR6TT2e+Zw2nC6PjUkt0GnOeeH+Gknj5a9Z1/GbzRpzkHHKXDPmm69eWpPafYf1vDw5bgTZPXAi9uevPPy8vKZ9RBuor9U1pOrx68tSO3WiIrV6Rxu8d4zAsK4RTOOZ121rLWc0c3d6QNPW/JXRWsdoXh9149tizbfWqN9p6Gc9cVmDaTJpDc+4ePGK1EpjGpiVIKwG33b8qAZQGUtiZ9x2uNAYR72Orv/7HT3fkhm9/g4Ge5oBE7oZrhfonLm8dkNq11a01uzp9p65+RapFYu6poj6OoILWV0HZI2x74V6kAtGqI8VqtfrW8FX8W3pdfWYl0p6H2aF2lgBIM2Grlu7ff39682m1D7xl5+W2s/9yq9LDS9/gRH0mDLu6UtlvW7t7Wm4ncU6p61gKSsgWLbNCOa0grZCYw46e0bnEWfcY4wZ1+jyqI7VyAimsYKlBkOUnXMuMuYb65mLFa7sefq6waWW9cwkldR5zzeCB819MOZ+a3vNn/D7CMThX0QCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGLp9h9UUC9o02Gp2abFeZwaTGB9nvdcbeGFkNG8ebCLsnHNGr1MzFMNqimo14vR9bZRq7UMuqw1bXaTHs93SN1thHEGgjUeLRW3WnMtp8/p8Pv691k+YyxkN3o1jYtXMhrLW8bR+s9BIlMCBVK/VtRjqed9uaKhJs64hA8vL16S2samBEmGoYzocGOeh2fjZavKrgytrjK1CVptGGxk0rmc0Tc6XtNF6vqhNmFuNqtQyRhBWOqVjsNnQ38IMeomMubQTD/Lo1nQ7UimdH0Nf54e8FYZT0Hlvr6HNtbNGSI4eORxUkxNzUmsZ4UguoWEEtT2dlx5+TIOwqosa8HT/nRo6ky/Fx9bclDaBr+7q+Nvt6fg7e89pqZ2Y1M97dnFdam0j4Cs0rtFJo3O5Z8VbGA3jMzkd+15aX9f39bfIGiF46VR8nLfrug9BaIRxRFr7ymMrUivldDtSCZ1bGh29jvhG43ocTIfndb4JjbCSwAhkyhrhKoHx3n5X7x2sa200MFatwFHzPkkqzk1MTEjtla+8S2qTE7pGSRshmbW9qtTGyqNSKxd1TrOOp2cklrbaOi93uzrPDd47OedcNHBcjIwNlzXWdyMjuv/ValVqOeO+u1DU0LPQmIOLZT0mOJgCI9A36YygWmNuSRtBl77xDMJ6VmPd+1uBKIOsQBvruUetpmv9+blZqTWNwODRUR2DhYLuv288S7KefSQ8K1lM98MOhNGJwzfCAgcPi2d8p/XsyzqedmiOEbhjJ9Poe6393yf+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM1+Gox+NyKjiaf1WNT63sGa2fzTqFkBEFYjzpTRcdj6jv2GsKSNUIhk0mhCbAQvWN/RNZpQ93ra1LpvNGvuduPN1otFI+wir02OA+P36hmf325rM3drHwIjeMM6JXAwNWoaQpM2AmG67Y7U1tY0hGZza0tq1viwzlVvIIQln9Gxm0lb85R+VmTsQ69nbEdfGw7ni2WpjYxq43Jtcexczzea3hsBLrmMBlz5CZ1v+sY8FxkBNn4//l7PCPhKJXR+zBf1GCeNRvtrO5tSsxK4EqMVqfW6eu7goNJx2W7rmBmp6PjYW9O5alMzUtzWqJ6/9aKOh2MDvdaPHZ2U1wR9XSs8/7Wnpdaq67ZNG8F2q6v6urBnhFlF2rg+Ycw4gwEYzjmXSOkxLo3qnLa9p0E/WSPwL53U+atdix/PwLcasuv8EBhBW7W2bu9eQ3/YpBGilkjqnOk5wiPwLXkjpKnR0nPGN8IqzUAFX6+9PWNtlDUC36KBUD3remzlEETGWunQjIbw/OSPPSi1z37mL6VWbValFhpro4Rxn1AyQl1Gyzq39H09JjVjrdlq6dyfy+l3JBLx+WXHWI+ExrrICvbwfZ1HrPs6YxlknhOjCd1/HEyJhHWvY6zhjYHuGQGWCSN4rmsEa3l9Pc/TA89XrLFQr2tA5uD7nHNub0/H7pUrV6Q2Na1rqMgIXOkb86i1XjCfEXl6nELj86zj7hkPp6xAnMGQGM+4D0sY95hmoLMVOLrPPL3ICt7bZ3i1hX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WY4U4WEEvnhUuYzSxNJt9Jo2QgX2E5CSS2iQ0adQi32j+aYVTWGEH+w3rMTope8Z+OaOxqdX82Q7T0W1JGWEZ/Z7RPHXgO/p9bYYdBNrY1jMaWJvNbq1zwmiAmzCOk9+3YjZwEFnnUWDU+kbD3ZLRpHw6nJLa3t6O1HZ3jfCTKH5ehkbQUt/pWCvmNdgiERnj1GhSbmQ92B3jrYbLRghLZGxzxgjHSiStYC1jf41wByv8Jwjiv0/WaKTsjLm1H+gxaXT18ztGUESxPKLbYZwnnVZDtwUHUq1W3dfrgkCvl8m8jo9UQcfHbqTn29PLek6v1+MhLLsTGsoyktbzOZXTMJSNG9tS+/Luc1Lb2TOu+b4GIKSNJuWhMVmFOh26pDH2q8ZxTxvBNMmUhuQ09nSeS/jxOddqIB8YQTJRZIWU6XE3l4EJfV1ovS7g7/3xLd2OhjqmjHPcGedlaFwbPWP9YQVHlkd1DZUcWFdYkQODgX3OORcFRlCCcQ9z+sQJqS2dvklqDz/+iNQKeV2j9Fo67q37yelpXfNt7WiQ4UR6Qmvj+nnF4qjU0un4b9Yy1hTdroZ4NBr6Ouse27ouJbLGGi1rhIJkmW/wLa++/xVSazSbUusZ4Vi9nga09YznBtb5a90rDT7nsJ8Z6PlcMO6nrJCm2bl5qU1O6hjvGwGeXePeKZcz7uOsZ0TGxGllulhBfr5xnBJGSNBg5owZrmpsW9KYHwfvzZyzA3Ksz7Nq+w26sTBTAQAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6L7I6hQIAAAAAAADAi4h/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj+/3m5SdhyMQ74AAAAAElFTkSuQmCC\n", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
propertyscore
0dark_score0.000
1light_score0.180
2low_information_score0.015
3odd_aspect_ratio_score0.500
4odd_size_score0.500
5grayscale_score0.500
6blurry_score0.015
\n", + "
" + ], "text/plain": [ - "
" + " property score\n", + "0 dark_score 0.000\n", + "1 light_score 0.180\n", + "2 low_information_score 0.015\n", + "3 odd_aspect_ratio_score 0.500\n", + "4 odd_size_score 0.500\n", + "5 grayscale_score 0.500\n", + "6 blurry_score 0.015" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Image-specific issues:\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edBkZ33mfd5nyf3Zq55apSqpVEJCRrJYhEBgLBv3C7bBg9sY9bwx3a1oxq+jzfTLEEF7Gk/Y0A5muju6cWMHDkOYoKHt7gHbAxi/eIEG0WAbbYAEJbRLpVKp1mdfcj3L/CHQOPO6gMQoC6ue7yfCf9TPJ/OcPHnuO+9z9PC7orIsywAAAAAAAAAAExT/sA8AAAAAAAAAwMWPB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeR36fjx4+HKIrCf/pP/+lZe88vfOELIYqi8IUvfOFZe08Az33MNwAuFOYbABcK8w2AC4X55h+mHfEg8sMf/nCIoijcfffdP+xDmaiPfexj4eUvf3lotVphbm4u3HTTTeHzn//8D/uwgB2F+QbAhcJ8A+BC2QnzzUc/+tHwohe9KNTr9bC4uBje/OY3h6WlpR/2YQE7DvPNxS/9YR8Anh3vete7wm/+5m+GN77xjeHWW28Ng8EgHDt2LDz11FM/7EMDcJFhvgFwoTDfALgQfu/3fi/8yq/8Snj1q18dfuu3fiucPHky/PZv/3a4++67wx133BHq9foP+xABXCSYb3gQeVG4/fbbw2/+5m+G97znPeFtb3vbD/twAFzEmG8AXCjMNwAuhH6/H37t134tvOpVrwqf/exnQxRFIYQQbrrppvD6178+/P7v/374V//qX/2QjxLAxYD55mk74n+aPY5+vx9+4zd+I7z4xS8Os7OzodVqhR/7sR8Lt91223d8zX/+z/85HD58ODQajfDjP/7j4dixY7LNAw88EN74xjeGhYWFUK/Xw0te8pLwqU996nseT7vdDg888MBYf5773ve+N+zbty+89a1vDWVZhq2tre/5GgA/PMw3AC4U5hsAF8pzdb45duxYWFtbC7fccsszDwVCCOF1r3tdmJqaCh/96Ee/574AXFjMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4zDcALhTmGwAXynN1vun1eiGEEBqNhvz/Go1G+NrXvhaKohjjDAC4UJhvnuPKHeC//Jf/UoYQyrvuuus7bpNlWdnr9YZqq6ur5d69e8t/8S/+xTO1xx9/vAwhlI1Gozx58uQz9TvuuKMMIZRve9vbnqm9+tWvLq+99tqy2+0+UyuKorzpppvKK6+88pnabbfdVoYQyttuu01q73znO7/rZ1tZWSlDCOWuXbvKqamp8j/+x/9YfuxjHytf+9rXliGE8v3vf/93fT2AZxfzDYALhfkGwIVyMc8358+fL6MoKt/85jcP1R944IEyhFCGEMqlpaXv+h4Anj3MNxf/fMNfRH5LkiShWq2GEEIoiiKsrKyELMvCS17ykvDVr35Vtn/DG94QDh48+My/X/rSl4Ybb7wx/Pmf/3kIIYSVlZXw+c9/PrzpTW8Km5ubYWlpKSwtLYXl5eXwmte8Jjz88MPftdH6zTffHMqyDO9617u+63F/+3+mtLy8HD74wQ+Gt7/97eFNb3pT+PSnPx2uueaa8O53v/v7PRUAJoz5BsCFwnwD4EJ5rs43u3fvDm9605vCRz7ykfCe97wnPPbYY+FLX/pSuOWWW0KlUgkhhNDpdL7f0wFggphvntt4EPl3fOQjHwnXXXddqNfrYdeuXWFxcTF8+tOfDuvr67LtlVdeKbXnPe954fjx4yGEEB555JFQlmX49V//9bC4uDj0f+985ztDCCGcO3fuBz7mb/9Jb6VSCW984xufqcdxHG655ZZw8uTJcOLEiR94PwCeXcw3AC4U5hsAF8pzcb4JIYQPfOAD4Wd+5mfC29/+9nDFFVeEV73qVeHaa68Nr3/960MIIUxNTT0r+wHw7GG+ee4iNftb/vAP/zDceuut4Q1veEP41//6X4c9e/aEJEnCv/t3/y48+uij3/f7fft/1//2t789vOY1r7HbHD169Ac65hDCM01U5+bmQpIkQ/+/PXv2hBBCWF1dDYcOHfqB9wXg2cF8A+BCYb4BcKE8V+ebEEKYnZ0Nf/qnfxpOnDgRjh8/Hg4fPhwOHz4cbrrpprC4uBjm5uaelf0AeHYw3zy38SDyW/7kT/4kHDlyJHz84x8fSi/69tPvUQ8//LDUHnrooXDZZZeFEEI4cuRICOHp/5L/Uz/1U8/+AX9LHMfh+uuvD3fddVfo9/vP/HlyCCGcOnUqhBDC4uLixPYP4PvHfAPgQmG+AXChPFfnm7/r0KFDz/wHjrW1tfCVr3wl/MIv/MIF2TeA8THfPLfxP83+lm//1/ayLJ+p3XHHHeHLX/6y3f6Tn/zkUI+AO++8M9xxxx3hp3/6p0MIT//X+ptvvjl84AMfCKdPn5bXnz9//rsez7jx7yGEcMstt4Q8z8NHPvKRZ2rdbjf8t//238I111wTDhw48D3fA8CFw3wD4EJhvgFwoTyX5xvnHe94R8iyLLztbW/7e70ewOQw3zy37ai/iPzQhz4U/vIv/1Lqb33rW8PrXve68PGPfzz8/M//fPjZn/3Z8Pjjj4f3v//94ZprrnmmYfrfdfTo0fDKV74y/Mt/+S9Dr9cL733ve8OuXbvCr/7qrz6zze/+7u+GV77yleHaa68Nv/RLvxSOHDkSzp49G7785S+HkydPhnvvvfc7Huudd94ZfuInfiK8853v/J4NT3/5l385fPCDHwxvectbwkMPPRQOHToU/uAP/iA88cQT4c/+7M/GP0EAnjXMNwAuFOYbABfKxTrf/Pt//+/DsWPHwo033hjSNA2f/OQnw2c+85nw7ne/O9xwww3jnyAAzxrmm4vXjnoQ+Xu/93u2fuutt4Zbb701nDlzJnzgAx8If/VXfxWuueaa8Id/+Ifhj//4j8MXvvAFec0/+2f/LMRxHN773veGc+fOhZe+9KXhfe97X9i/f/8z21xzzTXh7rvvDv/23/7b8OEPfzgsLy+HPXv2hBe+8IXhN37jN561z9VoNMLnP//58Ku/+qvhQx/6UNje3g7XX399+PSnP/0d+xsAmCzmGwAXCvMNgAvlYp1vrr322vCJT3wifOpTnwp5nofrrrsu/NEf/VH4xV/8xWdtHwC+P8w3F6+o/Lt/ywoAAAAAAAAAE0CPSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATl4674e7FOanFqb68N+hLbdDPpJZnudSqdX2/qFLVg4mj73CU/39lXkqts76p75/qs9hGq2Z2afZZaq0stFap6T7qTfO57D70c0Rmu2yg2/V7PakVI8c8Pzel+ywKKZ0/vyK1erMutSTSz9rt6nFEcSK11FxP559a0uPDRe+lR/dLbaunc8vKxrbUkkSvrblWQ2qVYMZvrvNSOTIG3Zzhx6TOe3Hi/tuPvnZgjiMz47I04y1OdW4Z5PranpkfQqHzSBrp+XTKoK/NyuH9uu+mMPt0815i5oxapSK1jvlcmZtHda/hjPmNwMVv/6UHxtvQXEej80MIfj5w11tsx9bIlpF7fx3PcaK13Ix7t0YpTC2UOrcUpb5fUbo50+zXDHPLbFeMed7LkbnEHe/oNt/pvewBm9Pk5q/SzdXm/XpmbYSdwNwTFd977RFCCG6oOrG7fO1lPlw0tzX+/WOdH8afC81Oxtyv5T6XKxru+J7Fw7Brqvvv/YbUltf0Hutlr3yF1KpVXd+Nf951vYSL3x1/9DqpLZ86JbX5fbukNuiZ3/wtnb+yoim1zW293rKpq4f+XWkelG1edNPLpBZXZ6X2tbu+LrV/9Lqfl1qlqs8W3O92bu67/PrG3U+Y8ebuC82aLMvMOc71frddDIb+PVOfkW2aDX0uM/bay3CvLcz6xmk0x/tbR/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4wIa4qo2Ik1NE8tBNJBataa7rpnwk4ELMpBm7toQNO/rPl2D0TTVZvFV09g0Ms9ss8w0KQ/a2DStmoAG12jdBOy44JjYHLPr9OyasUYj4RbVin7WPNNz58KF+l1tpuoaWEem+3ViQiYK9/mxI8WpuT46HanNTmmD5Iq5plPXj9yMXx+iNFwrx2xeHCfjBVaUpkl9xYwj1wk9N/NDZBouB1NzmV/mlcG1JR73v2DFI584c/OyeV3FhNokY4SUhRBCYgKBXJP+79BaHjuQHZd2w/EC5Xx38DEDGuRiNY3MC20W797LTSNuznBKO/Ldbm0Mj6n9APu159htVowW7B7Gen+fgCGiMUNtYhMshp0pM7/5eaZj+qH7H5Ta7j2LWtu7R2oDExx6z+13Sq07sq562Y+/SrZJzZpqYI43Ndd4YYK17JrChau4WyI7M48XHuGUdl4eMzj0exZCiEwQxRP3PyS1Rx97TGovetmNUktMqOe4oaY2KxEXvZZmmoR+V0OP3E/U5oau2RNzo5CkOt9M19tS62x9dejfq6f+Vra5Y/1uqeXNo1KrNi+V2sNPaAiPmzMq5h6z2+tK7fip81Lr9E2oTTFeEOlWT89nu2fuz/JVPb7t4fP5iuuvkW1e+sJrpZa7ZytjhnTZUMCx029MKLPBtAQAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4r6PsBrd1AWTuEa6idmu1tBGoYkJYclMU9BIQgu06WZpwhlcb87EhPC4Rpyu8XFhmjXnpQljKLRhZ2GaVfd7+n76WUOomiAH12S2ME2SR4NzYvP+pQv/yfW9XMPamgkwis01UZjz2Wtro1jsTK6BeLWi46hW05oLf3Fj1TWMd2E1o7OBmx/cHOcaqI/b5Nd9BhdRZRu8mw7vJi8q9F3DfDOmIxO64+Z+F8aQjhxfYeYu/xnGaxbv5lHbgtk2c3cbYifyWUZjjlX7UvN76eYWs102Mle5qSWKXYCNmTPMb29a0Qs/M2F0uVk/2IWGm1zGzH5xaRSlC9PxJ9nUvndYjQuXcfONCyh06zH7n/NtLhETDp7mZxa9PpZOn5FaLdExvWefhtU8eeJxqT341a9ILRl5v/UXvEC2mZqf1deZcNGNcytSqzZ1jZaa17p7gmTczC8zfvtdDTcMJsCz0myZY3H3gGb9IXOkueeq6Ly/sKDn89yT+r1urWtgRbNxQGp2XUkWH76lnzWkFptQ3qp5LrP3oAlcWdmW2vaqCeWN9L4rHnlwsG+/bBIe6mi6zsnTOk4v2afrlrv+QoNu+mYsuOcoZdDnN+vbOo9kA/PcyExMfRPO2TfrqoELAx7oa+eqw7Xrr9aAILemKkzAqlu4uDXK+ME0f3/8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rKZSrUkty7RRpgucSSu6m4oJmbC90U0T4jga3kfpQiFMw3MbimD22e+Zpu+mQXKRayNWJ3EhDqaJfGmavttezWMGObjNRkMm3HslpolrvaHNpet1bYBbb+h1kpvj6HY0mCYvtDkrdqbChDjUanptJTZsycwH7iI02yVmoJcjDcjHGVch+CAK9+LYhFhkZm6JzWTgAmJGwy5CCCE1n1WCHUIImQmlct3h3X/BcudgVMXMLS7oxzVIdvP8wHzW0jWkN/Mt4RF4NrjfUDv0zWsLs07p9YabozdNsEOaukA5F+akv6mpCbtItUe9b3pu5qW8cA3O9e3K0gXdjJlqY7azc1Dyvdc3dj6zYTU2FWOsY7sQDd7x3OXWNzZM06wNVpfOS+3JB/R6++Kn/kxq60+dktrug8PhJ1/98t/INs3Zaand8KpXSu1vb/u81I5edZXUrrr+WqkNXKCCWd91tzUoo1rV+8lHH35Eai4Q84abXqHbmaCIqpk3T509OfTvpeVl2ebIVVdI7ez501I7/8SjUvvKZ/9Kaj/5xn8iNReymCQmTNYlHuKit3ZWx0ynq7WkptdMZ9uE6OqtWJhb1Nf2O2atMRIQ3BnouP/6SV2QnOuY8KlIX3vb109KrTQLnJp5bQg9qWRmHWCmBwn9CiGE3KyXBpnO1e6+q23uba6+ZGHo37fffo/uc6Cf4aU3XCe1RrWprzVppePc1/2g+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3dlhNbJoGp6a7sguUGOQaauOaEBcmrcaFMYxWTDaBbQLv2ocP+tp11AXuFCYpolLRBqhJasIjzJ7zQpuClqa5sPtwhWnuak6Tfcw8GkQTB/2scVVrUzNT+mauSb/Zpw3EMd//7PyMvhg7lButenG5sJLIzS3m7VxIigurkfcvXcdvF3yj29nACtO4PjbBVYUNktH9Vitmv2Y+bNY1BKNf6FxduJPnmICGLBueq0rzGWITZmYDQMwuXciEzZgwr7U5FtiRLkS4iBvnhQ2ZG74wR8OyQtBxFcJ3CHsz482HDOpcaEO5kvHmZTPdhNhsZ8MIE11Xuawt99pxAqhc6FU07n+Ttzk6Zo3mvms7f2MnclepC1nLuho88KXP3Sa1aRM2VR9s6fttr0ntsYc2hv69+qQGqVRnWlK76loNoSm3zT67bakNejpX9VwglTlR9997j9RmpvTeobel+21vakBH3tNzXLjjM/eFWxubw++/sinbnH70hNTuu/N2qe024RlPffVufe2Ry6V26MrnS21mZk5qwYWS4aLXaphrPNaLoTDpvVtrGvBUmrGQmzFTN89I6iP3WO6e68nlc1I7vaRzy77WgtSeOKGvbU3p84taqfeO/Z7OGZm5F4taGt5VM+G9ZukWChvupxsOBnp8o6E2xx45Ltvcd/83pfb4kzoH/dzPvVZqc+Y8ZSYE0d47/QDLG/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1MI3TTuLvT6ehOTChE3tdGnGVhgmlMCks+eiwu5MU0/7TN10035GrDhdDoqXI114XaHIoNbXCynjaWz0zAztScNpOu1r53Z+LYfDcV91mrWstNc2nXCL6S6nFUGk2pZbleE9iZYhP04gIQeqahb91c9+79bD6FDUX47v9+uujmIJdsMN64j2PTDNqcABd61ahW9fDcHGkCKgrz36b6Zr5x+3DBMf2ReT42E6Rr0l+acDB34hNznuzPgZZ80A12JBtW42o2CGm8YKU817Hq9lEZCZvKcx1/ZTAhXabRvE15GffYTPdxN2IS0/Q+rrn5wcxLNsDGhckoN2+MBtjY0EIXEGSOw72/C6EpzT4KMy+7Y8HOdNe990nt1ImnpDY4dVJqq489LLWZPfNS27VLgweSKQ2oO7sxHEbR3tRQiMLMaLf9yaek1nnqvNRWz2h4xDfu/rrUMjsudZ47deJRqTVN4N20CbDZ7ur7PfXQQ7pfEwZWmdF7lu2t4fCb7aVV2cbdJs7kep+8Z0EDMAYmwPXYZ/5SamdPnpLaq37m9VJrmDwNXPzShvl9N0GfIehv9NyC/r4PBhp+s9XX7TpmHysrw3NQpaXjdCHReWrXpfukVq/r7/bctH6GRkMHYRw0WDmtaq1IzAA2zzR6JgSw09ZaadYa1aq+n1vj5fnweU+aZkCbe9G//B8ajvXE6bNS+/mf/V+kdtWVR6WWmBVZ9gOk1fAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGtPM3LVBb29sSK3e0MajaaohAxVTK02P1cFgpGgbiOvRJabpaHNWm31Wm9o4dLQJ+reKUuq1tbF8d6srNRfgMj2tzYrXNrWp8cAE/aSJOWaphFCMnBcbwhObmgn7cA1L3UVRrWjz2I3NdaltmybZ2JmSVK+ZbrstNTPMbdCLCxQIZr5x1285Mr/EJg3FNSCOXOCKad6cmuMNpQnAMJv1g843AzMfupCYignqmmvqeR+YUBsb9GOmg3zkHNi8BjOP5qZZvJuD3bzk3m/M6Rs7lVtDuO1c8NyY4SrZ6LolhNDva9P30WVKxTRkL2M3kNxxjBdW4+ZHF+aUjhkMGMf6WdPEBQjq+DVD3wfMmEMZZ0i7vLDcff9mny6Exv62uLDEMb8LXPz+4ra/ldrSWQ16eV5Vf9+v3q3BlNM1M456utZoVTSMYb42fE0/2dE5qZvpYFu/9xtSc2OrvqWhOc1t3UdeaLBDyPT+Z8oENFQLfb+yo8ExW5t6TjZGAmdCCKG3qbX5S/dLbffexaF/H3/0Edmmbj7X4X0LUls356Rm7uuSNQ3/OVEek1r/J/+R1ILmgmAHOHNSr62z5/QaP3y1PoM4s3lQaktdDW7qZYtSa2c6VqN4uLY30fns6IFlrR09ILUHntLnCC96yRGpFea33AX1lmYFkUf6mz892JRaZu7tzm7o/H36qeNSW1s9IbXCrA3zxSuH/r1d0XlkrqHzbS3oPPK1bzyu+xz8udR+8edeI7VzK3rep2Z1cnn1y14oNYe/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1eQmrKYwzbddLa1rAEJSugCEv1/D9H5fG4IWpoF4c1obrDZnNEincB3pTRf0rKv73V41TUwH2sQ0mTJhFGa/lao2lzbxDCE2ndsLs2G1MXLuCv0MqQmwSU0oRGS+Q5di4RpYt7e0CXWvbZpVY0dyzYU7Hb1mGk0d00XughyUDzZwIVfD135kQl5cOJb7rzyRG6fmSFxQQmqaKxd2NnDJLPpad3wueKFqAiraXW2kHJlQm9FDKWyIgx6vC0dzzaVdzXH7IDoC3+bG2w/0fja/xCZhSWl0rRUX5to1DdRNZo6d41xoiguzCokLozOBUS5sygQ09E3yYJJoM/sQmeA9l0llPm8+GF7PmGyZENy6xTLnySVcud8Dc55sshp2pCceOS61lY01qR1a1OCBPWYtvl3VNXu0a7fUEhPMUhtZG+xd0ACE1ry+V2t6TvdZ1fupSks/w8FLLpFava73OtlA5xEXUBeZe6dBT197tRmXdv3V17E6SM2arBxeB5184CE9to0lqfXMFLQe61p2pqpzYSvV0Maob+bbLRP+uUdLuPglkY6P2YY+l/jre/TCvPuEhpD0Ew21KSMNKs6LNakdPTwcJhOlemyPr+v1PG2CgE+cf0pqTRPI5J4HFfl4oZZu3RZl+lnTSOe+qw7pPHfNJbrmuecunSPu+vJfSy05tHe40NR5eWCOt2/mm3pzVmpT01orBnqv91dfuENqu3bp5EJYDQAAAAAAAIB/MHgQCQAAAAAAAGDieBAJAAAAAAAAYOLG7hGZpNqXIzd9KWp1/d/JN1ra+6ISa++LTlt7X3Tb2heuMtIPxfUHKWr60RpT2oPEPop1vQNMe5/2Wldf2temRFMzLa3Na9+UXkffz7Vdm5rT14bU9G6qaG/O0V5Leal9F3oD24VS38v1UzA9WLJMv5++uXae5TZdeA7rmLFQq+nc4nqguX62tt2ZueBcD7DR7Vy/Qdd3rchMn0N3jZseY7npaeKO140Z1/MoM+832ms3BH+eEtOHsWJ6FyWmT1UehueXQa7zjftc7v1/kH6QwLMhMvOD7V1qBlKjYXqg9fU3enN7bejf4/avTBLT2zl2SzzXi1u3cqOoME0XI7M4iuyEq/vNc13fxbH2rrJ9HU3f22hkgjWbhKjU9U1szrHrd17azrLm85vrJIrdugo70dkTJ6X2+BPHpXbp0X1SO7yo/dnq09oYrbKwV7e7xNyfNYbvT/K69gkrzUDKzVBwa4V+T+/r4or+vlcbep84Paf9KlNzL+r7YmvJrQ3dPJeWOm8OEv3A6yM96nZN671Ztn1WanGuc1zFrG9dP8zUZQ5srkjt0a/dLrUDR66SGi5+9abpIZrpc4n7v6n9AJPyf0ptrxnnT53RfWwOdK665Iajw8dR6D7rTR2Vg1THbq2p42OuZZ7LmHVLYRpPl2YtE5v+mkVP123nlvSY+2uPSu3QAZ1fr7zyeVK7/xs6fttbwxkklRmdC8q6zl121WLWQZF5Lje3e5fUEvOO62trZi/j4S8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc+GE1Fd00Mk1zXWiDa5juwm+aUy7ARRuZ9nrDTVFrJtFlZkabpDZMkI7r4lmYhqXbG9tS65tjqzW1iakLpkkrJvwn11rFnKe4pg1FI9NM2jVb720PnzsX4GMb0rsT5fZpmrT3e9o8dmDCamLTPBY7lQkiMNdgPtDwk6pphO7CGFx4gt3HSINzN65Sc90nqc57hQlFyEwQQ2H+E1FZmEbKqX5Wt12W63grzPxdM8c8dkCHCWNI0uFjyYMeR2LmER9MY4KEbFCEvtKdE/e5sDOlJuglMWFOqRkfqRmDLlChYtZQG2urUos7w9elm7tKG5hlQqXMsUXmDWNTc+uAfKBrntKE37h51AXHlK6JvAvTCaaxuqnpOtWcJ5OyYfrRh8TOD+Odd7uwJIwP3/LkiRNS63U1uOmeJ5+S2qHLb5Ta9ddrrbq4X2pds17a6A+P6ayrY7zIdYBkmb5XasJVykLXGS48b319Q2qnTj0gtYH5DP2+HvPs7JzUWi0N6Fg+f1730TPrQBMIuqsxXFvb3JRtor6+13RVP0O9WJNa3Ne5JavrnB5M+M2Xv/Qlqf3YL/xzfS0uektLeg9+8pRbr2tg1KWLWtu9oOO33ddaPWjY1u59B4b+/dDDGugy1dLnEoO+XuMu4Mrl2mUuWMsFQbl1oPl975c630SRjunpOX2/H3vp1VJ7uPmk1P7UBHtudraG/j1l5lbHLLNCYYKFN9v6HW60zWc1J9l9P+PiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATNzYYTU2nMD14zahAKUJaDA9v21z+Na0NhdeW14b+vdWVxuxzixoWI0LoYkyPZCqacSZBW0QPGXCdaotDauJTVPU0QCMEEKoNUzIhgu1MY3Vq4l+ju0NbTLaHQnYWZjS8+Q6t/s+63r5lKU2WHUN6d0lAXxb3zQk73XaUpsx84MLPylLvQYTF4hitpOACheuYgIWXKjNwFz3ffN+kWuabGbrak2bOrsm8rkZg1lftxuY+duFR7hQqiLT7QYjk1V/oMdRr5j51syP7nfE/S5FrmaOl6gafNv0lJlHzIBzYQyxWbfYICQz3QxMYFQYaSLurvHMjNN+pmOmkuqYdOGBbsy4kJw8d8k5JkTKJ0bpfs2aLJj5xq0r89itU4a3iyL9rC5UK7W/BeOFY7m1jJur3GuxM/VMWGNpfrf3X/YCqcWXaNjBdm1WallH3297S0M3s5FQhPkFfS8XBuPCCTJzjRdm3AczBj/zl38ltb/+ogauTM/MSa3b0/P5ipteIbVrrrlGan/7N7dLbbun586FO7zqhmuH/r3/0CWyTdrUNVqzofPSqrl3Sgd67qrtLal1M/38K3//7AhcZBpTeu0OzLqlTBpai/Ta6pkQpaSi1/m+PYd0u5Fw4fUNvZ4P7N4rNRcEVXNrNLNGKVyCjUvPM+uW3IxLd6/TMSFf87Gek8X53VJbntdzEEX6PGg0Zy+3z9ukZOeuMjL3hOa+a2NTv//MhuTos69x8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaWtDmwm2XmuKadI8ZYBOZ7uj1VlNr7c7Qv3t9E2JQ1+Ptl9pgs2bSI9JSm4RWTZP61i5tOlqt62sHue43Nw1gcxOUEXdN59HRjqUhhCw2rzVxDM2Z4YCdpKqXgAsKyQt9rzTVWmyaz5scHdcTNmTmPGFnOr+0IrW6CW6qjAbJhBD6pnF5num11Whoc10XRjGqNI1/+6bRvO2PXK3rcdRmpJabZsjdbQ3rKTIzf7lAjVRrpQm3KE3zZzPd2Dl9YM7B5sgx2/fSkmfmjML9jphjc3OQ+RqxQ9VM6FM8ZjNz91vmrlWb2Wf2UYxcv5FZe6VmreTWD+MGBfZNeIYL4Qkm1KU0gzqy/43bnRQ9Znfa3SThAv/KkYHuAhXduig2jeHd8bq534Uglva1Zr2Mncn89tYbGhTxoy95sdRmZ3S90G3r2qAyrUGU7h4r7w8fy1NPndJtzFibNmGdLigwMWuPs2fPSu2LX/yi1G684aVSu/zIFVJbXtH14r59GnixZ6/es73yJ2+WWloxQRGFCf4amSPzbFG3OfQ8qRWxvn+adaSWP/WE1Dpn3feja6/zK+tSw86UFTo/tEsNpWoPNHBlLtcxnZtgllpjQV+7+1KppSNrklZD115zszrHnTt5TmoLU3NSc0GBpXlWVZrx7O4nysTc25l7rG5/vN/30twYdjp6fxpHel6KbPi1pXku44JJR9eUIYQQmUVVc0qPrWKe8wzMZ+3nGho9Lv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1M4IppYOz6kQ9M+Ilrol4zTUsj0xx9en64kelM0TLHYRqR9k1YjXkUm7j0hIF+1l57W3cbaRhFGmlj06g0gRKm12ls9hvHJoinp+e4aYInijDaXFl36hroZ7k2sy+CvtYFithgItNQtmnCQ7AzbXb0eqs3tLmyC6uJTChAYkKvUtNEPTOBK8VIo+PSNPntm6bBSazHVkt1jktT0xh9oM2lIzOnbaxrQ/L+QM9ds65jqzDBC7EZl/Y89fU8DVx2mQRt6Lnrmsb9FdNU3wXOWGZOd5kdLnAHO5P7PbLbmZq7jgpznburrVbXgIpoc2P4dWaZVTW/lXHNhPalOhjceC6C7sQ1PbeN4F1AhQljcM3h3bgMZv6OXPiLOebRfaRmDeQmqsLsMzbzt+MyaArzWTOX1IUdaWBCIXbvPSi1tKLrha4JlnLBMT6oSsfR0khwzNI5DZIJ5p7j6JVHpZaadVYS62f46l33SK3T1s+1d/8lUvvS39wuta/f83Wp/fRP/7TU2iac9ORZDcFwk7UbvfnI2nDg7mur+vl3tfT7mmrqfDPf0jXvSRPGWO1qLU25n8LT1jf0N/rsirk+MhP0mWsITTvR3/fWoo7VmTl97WiQW90E5iZmvolKPd6oZu7/zHOe2IzLfq5zcGyeN0VmHdAxYS2JCQxub6xJ7eSTT0nNPV9xwWIzjeHzbh6ZhZ5b35ggYBeeNzWj53h6ygTzdPR8tn+AsGH+IhIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxI0dVhMl+syy5gIQXENy08zdNS4fuCa8DQ1/qVSH95ua4ISiq41IXXhEEWmDUddovlbX19rPZfZr+pqG0oVCmMbqqWkK6wJ8quaZcmqanfZHgoOKjp67YAJnEtfE1aVHmMb1LhOiOaVNrRvmu8bOVKuaMAbTwLhnGhO7QImaCbUpbFKCXr/xyNzX6+kYd8Ev9apez+4zDLodfb++7qNixttUS4O6Nrb0c1Vq440tN39HiQu30Lk6y10IxPd+f/eNmewf+1/NXHhG4eZlG5hl3hA7kr0sTRibY0Mh3HamVq3o73uzPvzb2O5syTYuvKXWMGsFMy+5A6mYtUe/0Dko8idKucFl1galmQ/tifJF3WqkAbtr+G5yAkNmQvsS872aKS7kZr5xc6ENd8SO5H4HFxcXpTYwIZTplP7mV816yd6LmeuyHJmDmrvmZZtmReeHiqmVkQkcLXXcr61qyJ4LV9nc0Lnv8ccel9r6yoru13z+Ws2sK836ZmlpVWrb2xpO2u11h/5dbWj42B5zPnfv0RCa3XMaYNPr6Dl+cF3XvIsmZKSxa6/UsDNFNRN6lc9IbcrcJ9V2HZba8u6rpVY9q2M6Ns9DTpw9P/Tvx08tyzYL83rtbm7q+9eaOhYa5r4rrZtnJo3xnkGYpUFYNyE0U+5+z8y3d999p75hocc36Gtg6WAkQNCF5pRmnZGZQNBQ6rk7fUKDdM4+75DUtvpdqQ1+gPBP/iISAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMSNHVYTmwCTuK/PMZPUbGcahruQgUFXG2BWTZPV0f7rhekmWgxMw87SBDGYEJZKaj6XOd6kps3hcxfY4Dqcm0boWa7NQzOT2hCZpu8hMuc91eNrjDSmHm3uHkII7S39HiqmyXNhzknmwi5MY313TZRjNqTHxW9hWhuyp6ap+LppZj7V0obhLpjGhU25Bu+jATOxa+hsaqOhWt/p/TMTVlOauaBS0ferNvWzVus6Z6Zm/h4MtBF+bOZDFyLmAmbcXDq6mft9cMz0EFLzWhcU4WaRws39NtYIO5H77XXcNTPuVeSGR2Lmjfn5ueFtTFBg34RZba5rc/OkakK0TPBenJhRU+oayq3b3JzhQmLcCYjd0siGTblm61oarbnvNY7Nus00bk/M2qswTeVdI3gbyjVmqBEufvW6BhtcfuRyqcUmoM4t/4tCr8HRkL2ni3oNHmoM12aiTdnGhYt2Sg1c2Q7TUkvMQN23f7/UHnjwQam5Qb69qcdXZLpdf6Drls01DbxYW9nQY3ngEam59VJv5J41rurcsr2o5+nolK5ltiOdg9q5vl9W6jqw21+T2srKWalhZzp3VueHk+2DUutnOmeceUiv1aklvWdZmNd7tqn6nNQ6veHQp1e++EWyjQt7a9X0vTbW9dg2zaKiVTcBni64y/xGDwZaa7d1DbWxbeaqwtyL1nScl+cflVpi7nfbI/uYd/eTpc5THRNKHCc6j9x+u87Bjz9yRmpbuvwMM3M694+Lv4gEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFjh9XkuTY7dY09f5BaZJpz5plpIp5+7/CI2V27pLa2ro2KV0zz4pkpbbpaq+g+sr4eW2q2a9S0MXVumqj3TTNkG3QT6bnr9TVgJkm10XWjNTX8Vvl4DdTbA+1OGlXM5zLBQe1tbaLf3taQkXpzYaxjwcWvWdVx1DWhKS4TwP33FRtM4gIVcq2Njsu0og3EXQiLC29JTdhDtaHjqN8z483Mj7aZvdnOzbcVM2+6MIrcNL2vmWMeFCYsY+RYXLhM4QIlzDl2Df5dUESnazopGzFhNfiWMowbZmTWLTbAZbyxWpp11Wiw1O7d+ru4taW/n0srK/r+JoMnjbVJudvQBXy5oIzEhdWY+dBltZg8GBssVYwZnDP6/bh1a2TmvcJ8/3lmQrpK99tiAg/NnGkPFzuSC2vcvXtOanv37ZbaVlvDVUKkr83MmClKvaanV54Y+nfjibtlm4G55+hcvyi1fnVKasloumgI4YEHTRiMuXdIqjqO3FjNzK3sqaVzUquZQIXzS6tSW11b0/0OdI6MRtYzkbmH26zquVte1fdf2jDf64x+/4kLI+zrOT6/qesx7EzLZ3TMnF7T5xwrPa01Tms41M9epgFMTTNWF+Z1u5ANrz8a0+b+p6vXc+vq50vttntPSe2bj+g4qkU6FiqxrqHimh5vnup6ydz+hEap+5jdf0Rqlx/ZI7X7zmogzOWXaZjQZmgO/bvWaso2JrfMrlsG5t65m+v7DZ7SZ2TN6RmtNXReGhd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOq3GhKaNBBCGEUJpm7qZPZkhMw3D3fq7D+Wipm2mD4Fai7z83rY1I19e1EasLVIhjc7wu7MJ0JO+a8ATXrLrRbOj7mUbPsdlH3QQ+9Mx+tzeHG7ROuaajpuF0f1Xfa9A3AUamwf/AfD+VijaAbTa1US52Jjcx1c2c0TMNzl1AQWFSbWx4ghn7g5EG5C7soGLmm8QEVmSmmXkcmaAbUyvNsQUT7GDnTPdaM1e7NIqaCY5x5y43wTGj30XPfn6dM9xvQWxCMeoNnUc6fd3H6HcYQgjVlP8Oh6e5HBH3++6uwcSMmci81gVGuYC60eC5aROeVzeNwfcuarCBu+4Te93r/DUYdKRWuiAZF+BjU8TGHG821GW8tdZoJTfn3IXhmOnWTo8Vsw6M3Ec18637XcLO5MKsWi1dd8/O6vp8q6NhDIW7ttz4cMNoJMAm62roVVI19yZm/R+b9KnSBN20Oxrs0De/20mqa4+FPRqS097QY6mYOWOrva21joZWzMy4wFI9lkZ1eB5u9/U+aWpa3+vUpt6vlS6Qq78sta2Ozsv7zXlP9HRihyoTXS8crOo8Uje/2wde8CNS27ugoSaf+ewXdMfdfVI6ceLk0L8vu+wy2abT03GaDzRo66du/CmpPfzUg1I7t2EGQ6brkayt83Ia61idSzXAZfeMCdGqmtDNpt6zZB2dNxZaGqxVHQnO2TWj83LHrEenTChx38zfeU0/ayXT441NgM90Qz/ruLgTAwAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fVRKZzd2ICGtKq1grXhNc0c+93u1JLqtoUc9Ab3s41i1/d0gbECzNzUtu3T5updk0zYNdo3gXY2J7qpuGya/reMw1LI9PU2gVURKaJfq2uDWoHg+FmpP2envPtTBuW1mvanLbb04bTpWmE35jShqrtTX1tr6vNaLEzmf7moZLotRUnOrYqdryZxu1mDqqYhuSd3vC4HJhgqCkTYLO5oc2g+z29xqdNk/oo0vfLTLPmXqZhWy5wJjXnyYUnuHkuMw2st00QVtvMm92R+caFAaXme7VpOIYLD0nNb0bHnPfYhOtgZ0pTE47kQmjMD3xkEiDca2Ozj9TMG/nG8Jip1PR6dgEIWxs6F9TMWNja1kbwzaauFWIzCXcz85svlRBKM2fYAB/zWreI8usgUxo9ZnMcLqzGreWixHyvbp8myLHf0/kxM+sq7EzPv+aw1KpV89trrlV3v1MWJmTAJDBl5vrt14dDPBt7r5Btcrd+MClNZTA1Mz/Wavp+bog3GnWp/dSrb5baictOSm2qpfcdJ548JbUnHn9Sj89MLllVj2VjZJ3S39Y5eKOu67tT8WmpuazWRkOLV7Z0Tk9NwOhMi/kGT/vrb5jredoF6+rzAHO5hbU1DWvJ+vrMpWPCoVbOnR/699FLD8k2J44fl9q5s+el9oqXvExqNz5fx8Kn79SwmoWmjo+D1cek9mBb5+p2ouuvtY5+1pktPZ9r5plLO+j668llPb7nPX94vwcW9bnM2XU9jtmaziOVKZ3Pwty8lMpM91E1a9LvtJobB38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6rSUwnXZcnUK2YJpauYXihQQE90yi14pqDl8NNPJOaCWUxjdZXNrTB6t7di7oDc7yu6Wpiuivn5qTUTWPP2DRud83MXRiDO/E9E2RRmmbro99jboI3ShNisWw+f9u8Nk11n2lFz5MLsKma7xE7U2Kue9cKd+ACACIz3kwohJu/XLBWMTIfdLZ1npqZ1jfLB3psVXMc1aoJyGlr8Mu6Cb9JTdP3gQlmqdW0MXHfhLV0+trUeWDmg64JlirMdvK74QKCzDlxX07FzCPBBN1UTECH+64HJggAO1Nsgh3cHJSagL6qCbiq1fX3rWLWRon5vRxtBL61reO+boLoKmYecWuUTRPk58ZHYsJ1otwEzpgXm2ywMG4zcxdqE8rx1kHlyLrS5HrYoEAXMpib35ayr7VioO+Xm/Ut8G0H92oAwExVr6NKZgIsTeJMb6C/2y4kxt1jrLcODP17+fLdehzmfqo0gQ3V2MxBib52ZmZaanv26L3YwoKGJ8xOzUgt77t1m56Tm6+8UWpXXqqfN2kvS63e2CW1rLkw9O9+0HVRasITF6f1+1+IdM1XNUuekyY84qt//T+k1nH3jtiR2rmOmedfdZXUDuzX7foDHVtfe0jHR1rXi7VW1/XSy1/6wqF/753XMf7AA7rPekWv56fOaejTiSd1juv19P0GsXnOs6FzRhFprTWv91OVvn7WmVzvFae39DnU4QOzUovaC1KbagzPpYf36znZO6/zcjAhoQNzr7e1aQKjzXnPzOfa2tb5a1zMVAAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGhf24Dp8mwbJ3Y42tixNE17X4LxnXttoDjdqHw2TCCGEqmnmvrWqTULT5RWpzUxrs08X6hKZxvWNitaKXJuCuowNF/Tjzkm3qw2sbe6CqY22LHWN5mMTctPpmabZJhSibxqglpnWZhe0EWutSlgNnha5RusmDGVgmrRXCxMy4HaSaBPx2Ow3HQmjOHtW54xWc8rUdB4pzVzgPsOgr03PK6bp+cK8NnjvtjWMYmtLw6a6Jnhh2wTdFGaeL83EVKvo+B0Nq+lm+v6JSZRw/4XMfDUhNSE81cIcr3k/dz1hZ3Jj1f0eVc1vngsjiExQQJHrD7K7pmdn54b+3e7o2N00Y9zk3oQk1eONzO971/y+1+pmXJrXZi7pxvCbaTFy84ELy7BBhiPn2Jxgt+ZxQVs2AKNv1ktmLozMDOYDfLATNef0d2t2VkNIpqc19Gp5Te8xerlel/2O/ta6tUYUDc9fWaTvr3dh/rqP22tSS806a2GXBr/MzGhQxr59+6TWauj77V7UsIel5SWpXX7ZYand8AIN7Wg//A2pJbO6j9OV4dCdhx9/QrZxoYWFmZc3zL1u6GsARGd7U2r79+2R2qAx3ryMi9/lh3W8TU3rQ5iDCzr2nzyr19vJVV0vXLGga6gTJx6XWjUeXledPHVStikrOrdMTen4++t7ntRjO69BWK+7QQOpqmZ9t7ym+1hbNesA8+QsMvcdq2d0DlqtmkCYUs/nxpKel7NPPjL072N33y7bdDvmWY25h4tN0OeMCQfr9XT+qjd0/mqYeXlc/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6wmTrWxaVZoM9y2CUXIByagIBkvmCUvTKDASCP4dlsb+mapabA5o81Uzy5p8ERmwi7mprUBamE+f2IagEaRftbMNI12oTtxouc9irSWJOZYTNP3YqRRe2FSbka3CSGERlMbaWfm/V0/9kpNP//odxhCCL1CrxPsTC7EIYn1um/Utel7PMZ1H4K/Vl2QwWh4Qqer1+kTTz4ltb17tEF01YR+JUHnuKyr80PIdKxmpsF53TRC7yUm4CozzdFNaEPFhUi5z2F6o4+GTERmzsxMcldZdfOefq+pmW/rDT3eSlUbKfdNQAd2prk5DU+LzW+U4+aRzITbra3qWqOMdTxURq79gfldHAxMuIwJhRiYsRWlus/chGjlJlHQNj13gTA2mGW88AQbVGX26/L5xtmlm+Pdm6VmnVVELuDKhdW4QxnriLEDTB89JLWe+Z1dPW3CDjY1PGJ96bjUWlVdGzVbeg9UGfm9TM16PY7N772ZH/11b4LtzD7OnTsvtS9+8W+ldtnhvVJLq/q5mk39/Ov33yW1T/7NMamd2NI5d2ttTWor68OhYRttvf8tzG9BaWa5GROGMz+lYUVXmBCaH33tDVJLF8x9F3akvKLX86e/fFpq/+Nvzkmt0jSjujYnpTnNOQlhS+eqz3/xzqF/b2xo8N4rf+xGqR3Yp8GcDyyZ4K5Sx/11V2lYzf6WjssNM+5Xb9f7pDMDnasLsw5KKvqbX2voHPHQfY9J7at3fU1qlx+5ZOjfa+t67k6fW5ba/Nyc1KZn9ZnWjz7vaqltrOh3OGOC1U4+8YjUxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuPHDakxQQN7TJp4dE1YzPTcltcg09sxMD/HEhCIU+XAD0GpVm/J2Om2p1U3j36Zp2Lltwm+aTfPahtaKTJuZu97o1Zo2VO11db9hoA1VY9OBPTc7GfS1AX08Gu7gDs7U4kS/LxdCVDfnqTGtjU27A/2seU4zdzwtNsE07j+b5GZ8uFppQliKoONjYAJMOiOBMC5Ip2/2efqMNl9PKzqf1So6f1XNTiL3Wc3nSk0wS881TI9NAIQZ+26cu5NgvrFQqwwfS7XithovXCgzYT01FxhmPlelqufdfdfYmcYNprHMWHAhe8trOh+40Jm4Mvx+ealj14XiFZkJnCm0lpUmCCvScdTrm7WMGW+ypgj+v3CXZh8u1SZySTfmfOYmVHB03nDH6zJjYhdWU9F5NDPHlps1n/uosU/wwQ5UmmvLhUP1zU3RmadOSe1//vlfSa1irje3/ojrw+uP1ozeE83NzkltYUEDvvbt0yAZF5Bzz113S23TBC9M1TQUYmNW7zHyrSeltuugBgLVVleltvzIN6W2kmi4RW7m6noyfD6ndunrEnfOXdCPqaVmskojnff6mR5bWuo1hp3pNT/1GqnNP6DzzfKWC9E1a5lTD0mts6LX5ZlTZ6QWD4av6Za513vkoeNSe8HzrpJabdncE5nf4//+lw9KbcqE9lVqeixLbZ2D4pZuN9/Q8ZaahdDW5obUrrjyMqn9yI/+iNS2N9aG/r1oAlEb5jmXC1ZuTetzudSE8U1PmdDCUufq+AcI4+MvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNZkJSshMc/TUhJpENvxE91Gt6HPRrmmYnhfDTTEbLW3O6QIbtrc1SGeqoY2Uo0gPrii1EacLiqiYz5+Z15amlqR6zH3TIDkfmPNuQn2S1AVDDH8XlUS3yVxzfPdZTXPlSk2DN/qFhl24Bvyh5Lk4nuYad4dCx8xocFUIPlgr65vrreICUXRs9UdCTaabGjRVMYEzHROG0jcBUp1cg5uKRMdz1ZyT3ASzbHU1qGu7ZwJnzCScuZwIc95NXlbou+9nZO6vmyb9LrjMZWi1TYiYC/2KTIfoipkLmW3wbeZy89u5MKdM55aOuVZdMEsc6zgf3SozYVGDvtYKE0xTBhOk4oKwzFIw75nxbD5rvWnCGMzosmE1rr+5+zLMeY/MPJ+OzJFu3Vbm7jjGC+irmnVl16yN3HXizjt2pooJBUgSrS3Ma3BMt6Nzy+wuDY4ZbOl2W5saMhCNrA0efehR2aZhgjkr5rfcBcUlqdY2zXHkhW53/uxZqe1r/ITUjkzr+mtzbVlqPTMH18w9S9VE70UVDd0cDYFw801w944DrWUDE6iYm/Xi4VmpnTf3iWFNw2SxM9304hul9vIX6fW20dXrbWV1XWpr53XMnDiuwTTVFz5PayNhMu2RAJYQQjh2Ut/r8RNPSa2/pq+dKzUwapAdldrpnpkzTOCOebQSZqdMSGap463oaG11Rc/x7l0aiHPoisul9s17vzH074MHD8o2sZmDv/GN+6WWuHAs87tUVvX96ubeMXXPdMbEvRgAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rCbPTYCJaYq5sKiNQqemtMlvp6/BMZ3MBLNsm7CakebgmWk0Xku0kfKg1AbvrnnzwvSM1KqmY6lrIu9CK1yz4oEJ2dA29V7igmlM6Ixroj/6nRWmgXweu7Aa3a5Z1wbW/ch8VnOe4kSfgReuiTx2JNfsf2ACs1Jz3bsQg8wEPLk8HKfZGA5Eael0Fnpdc42bcTpd1abELsPAhVlVTJhVz4TrbHZ0Hu1kLlBBX+tCglz4T2Tmqsx8Z9lIqEZm5r2aCYVI6hpCY4N+tnT+bpjfGxeSs014BL4lK3Ru6ZuAp3ZHg6A6JjzCzTdJomuD2IRSjSa4JKYJ+JYJwyljHfdRbEJYIhOEZebRqlnLbPd03ba5qQ3ZK3UzLyemwbtrmB7rWLWhPmb+LouRec4FbZk5KCr1eG2goGvSbub5gfn+x49EwsUuLnUeObvymNSinq4X5qb0t3Fufl5qm2acl5GOrenWcGDn2tqGbOP+ZiU36/WtLZ0fYnPdu/EczBy0tqnn6U/+8stSm3NzwayGuhzep+dpdaD7Xd9elZq7Z+uPBMzkdt1qQmPMvFQx99PPv1pDNg5fe4XUlvprUsuYb/AtffP8pmJCHVuJ/m4NanodzR+5VGp/9qefk1pk5pv52eHnBot79JnRm2/9J1KrVXWcbpkA4n6un2tzy4WESil0BrrmOfaYhvV8+WENznn8/Dmp7WnqmmxxQZ8vJbnOEXX3LGlk0TMwz3hqJpizmup7uTXqnsVdUls3a0337G9q9mGpjYu/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFj94is1L53b5EQQpgx/bkqVd1NWtH/jXmsLZmCayXS7w33LChND6WO6ZOWmn5MsenZ5vopNFwvOtOCQ3oUhRBK16fIPAN2ve1i04stN+9Xb+jn0DMQQjbSU8D1xjItN0OeabFfaO+AYM6n64cSm353wfSzws7UN31FXd+tRk37lKamH2BnoKOh39Ox2mjqnFZtDu+j39G+hN0tPd5GavpBmvHs+m2UhenBaPo8un5nrk9tHsw4NwO9cHOVmw9ML6TS9Vwc6QHXz/Uz1Ez/EjcX9nv6HW4W+l3EpudkzZyTlmv2iR3p9JkzUnPXW25+3934cN1HS9NTzfXezkd+k6NI1x6Nqs5T7f547+/6M6em/1JkPlitbnpv6y5s/0bXk9f2pDVrreD63QWzrhgZ+6ZldRiYNU9p5sK81O86SvWbrVT1nBSmv2Tu5m/sSFdNHdCi68M+p30Ou6e0b2L9R14gtW8+8JDuYt79No6MrYcekG1G7xtCCCEyv/fudztxk4GZ02ZnFqRWNeu75WXt2XY+Mj26z69JrVboGvKNb/x5qb3/Ax+W2smnTkutGLmPq5s1xZVXaZ/H0b7jIYTw4De/KbXl1WWprazskVpFT1NIXZta7EjHvv5VqV16YJ9u2DXZHR0dWwefd0Rqr/ypV0rtscfOSm1jbXjNfvypJdlmzVz3Ry47KLUo6D3W4SNXSq3sbUotdT0Yc32m0axo/8bb79NaN9MxnWU6V8+2dL8vuu75UlvZuF1qo/dsJ544Kdu4dVZu1iPrm9oLuNWaltrZlTWpDcy6cqqln39c/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMKEInVwbdhalNnhvNLWBb6NqwgPqU1JzDZHjaLgLrwtd6JjG4Fmmn2Gmpft0YQeDvjZsrZmGy52ebtc1IRuuWXOzpo1XU9u43QXY6DmIzHPm0eb17tzVTMjGZqZNbDf72oi12dBLKjHdU+311DHhN9iRXKhL3cwZsUkjyDPTuNyMmUFfx2Uv6DUYjwRBpTVtytuc1eOoVnQcDbo6P/ZMM+jEzA8u36lmpoeQmzAKcz4HpoGxC5Nxc4sLoArm/eKRz+GCMkozP3RNc/y+mUddDFixrgE2jaZ2c280TId37EibGxqAYMMYzGsLE9xUmPWHC63z65vhfydmm0pV56DEhPENTEiXmzPdeHYBVy48MHH/Pdsk+UUmlCs2Y9+FjUWx1rJc581iZH2TmPmmaoL9srZZo9nAGT0nFfO7VDGfITNzK3amq2b2Sq1r1gadtt5jpf1VqR3Ye0hq92nmTLj8isuk1hoJIr39S1+SbXKzXnehUi5c04VtVUyoZZrqWL38iH4u96v/jW9+XWr1Uo+lt63n+Ng3H5badlvvbVwqWTkSfhOXOo9MmUVabu4nSxMI+rU775Xalgnhedtbf1lqrdbYt/e4yL3vvb8vtUsP7Jba/r1zUnO/ZXsf0MnlsssPS+3gi3T8Vkbunw4cuFS2aZkw4811DWaJzFyQ9zXMadDV8ZzF81IrTQhLr63PPmZMeHNlTgME48E5qSVmbeSCY9y6slodPi9PPWnOSWyeLbX0Xqff13N3/LEnpDZtUq+Sms5fC7uvkNq4+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3djfbvglhKU0zza0tDXto9rTh8vz8nNSqFT2cRtUFCgw37OyacIrGlDZD7nW16eZ2e01qFRMykZq8hqzQxqYucGW7rbWqadZcdY3VK64Rup6nTk/3kZr3G208G5km1P1Mz9PANHEdmMbtrp1/bq6T3rY2gE3MOQa+rTShDS6sxKmapJck1aa+XdNEfHVleGzNzs/qcZiG7Oubm1JzoTGF+Vz1mo57F1oRZdp83YmqOmekJoSmYs5J6ca0C7UxtdGwLRfOUZT6OhdmVa3qd9gwwUHVus6tW+a7qJkm3NiZShvSpNdg4UKajNgFs5gQPLNZCCO/l4U5NlcrzXh2v6nZwPyWx/q5kqoJozCBEqY3esjNzFya/+5tlgYhinQ7F3QTTPZLMbJfN7eYfJwQm3kvDEwIkQmwycw6yAV5pCZMCDtTx1wzm+beYXVNg2mCuVTvP6ZhLY8/9KDUKqmuK+ZmZ4b+nZugLTdNuQDAYMauu090L52e1rCHdluD5y6//DKpnT61ILUzJ09J7cF1DYU49vAjUnPj181fo+uZ7rauH+/68lellud6jzU7NyO1n/jJV0jtuh99gdT2HtbAD6YbfFsl0TXx2SUN6Nvs6n15tarX/T0P6txy5rQGwiRmATI3Pz3070v375NtDu7ZJbWpKR2Ti3s1cOf8ss6jM01d68/u1n1MN/U8leaecKHUeWlxrz7nam/pRNdq6Ty3uaX3J7kJGhydIuau1jmj0TDrNvObUa1oUHM9WZPa3l1zZh/6GVwo2bj4i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2O9vchAeMBhGEEEKvrY09O21tupmZhsijTUxD0HCVEEKojwTYpIlu0xlo49Syrsebx3ocWa7NTkvzWV1US2FCIaJIA3cG5vOXriN00Gavrtl81YRb5KYhtgTMmK7RLrBjfVvPZ3W2KTXXU76zpU1cXZBONHb0CC52hW1wbsJlzFhw/3WlacJqIhOUkLgkg5Ht2iaQq2LGXzczYQdmfNgQGjPu3fFWzDkZmIAGN1dXTPCE40JoChO84X5O0nS45sIpchP6ZT6+DbpJzXGkZjv7vY4ZPIKL38D85rmLMDZhDLG5tlxYjft9K826qhhZG+RmjstNeJwbH1WzfnJrmTzT48jN/BWbSSg2ITk2d868X27mqm6h64XEBPS5QJzRMKHIHZs5uNgUSzc/mHPs1lnu87twNOxMmz29jja6etV0ChPQ1tCAgsUpHTMvvOKg1E6dPi61h+4bDnBxv/fOYOACTHW72ATkuF/eqSkNTzh+/HGpdbp6LzIzNye15fNLUmvOarjd3n17pbaxoaE2Z86cNccyet7dfY2ZbwsNq7nkkv1Se/Mv/XOp1RsaqJGZ8JsxcwyxA1xyWINZCvM7G5v7iU5HA2wqFd2uX+i8sbGs+zj+5NrQv++6+2HZJk1NeJ7ZZ2p+U+em9TnSwqzOLYvzOo8uzGkQ6WpHP9eZs2tS22iZsOUpDXXZOqDfRVqZk1oS67pidmr4d2N2VsN6Fhf0/ZNEn0G16nqedpn3c8+l8tyEko33s2HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7ssJrENDgPpWk5bJoV93ra1HjpzIoeTKpdMVsz2uwziYYPu26aIbum6mWpjVMj7V0c4kI/q2tcXsZaq1X1Daul1vK+aS5s9pGYRui52S4yDfNTUxuMdJNudzV4Y6utzWmD+f5rdW2AurG8JrVds9oAdm7XvNSWl87rfrEjJbFeb4UJCuib0KeKCYpwY2aQ6Rh0wQPV0WvfdGRvb5qGzuYzNGpmLjCNxt3cWgb9XLE5JxUzVhMbnuGCF/R8uv9aFZl9uICO0d+NwoVHmLAxF/ZQmvPuGuu3NzelVqvqb0TTBAxhZzLDKEQumMZtZ8ZqMTABT6aZuwuiKUfnIBfcZTqIu0AX98HcOHXhcW4OLnsmWMqMQRe2VZr9ujmt3zPrtKqZ00zYlsyHpW5TmIAgN+8lZnkbm+MtzVrTfa9RMvZyGxe5wlxH7vqITa3Z0JDIAwc16GRhQdfYh1f0vuvcueWhf69dtk+26XT0PqFvAr62TahlZ6DjY+BS+0zawdXPv0Zqqxv6+/7UaQ2S6ZtAr5985U1SO3xIQ31WV5al1jahq3fd9ZWhfz9x/KRsUwb9XLWGrj1e8IKrpZb39bxvmPCQ1MzVqfn9ws7UaupY6Jnf8s0NvbbWNsyY7uhrExPfuzDr1vbD136Z6TOedk/H2sq2HlvPBGZtbutzhJNnNbjKBQ+68JumWWfUa/q5VlINkVrYpc8+nj+4Smr9bRPe3NJjaV02EkSTmnVLXeeWWlV/MyomvLlbrEot65ig5oFZe1X//vMNMxUAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e3ZktnRZNXHFBDRUNKChu6UNyVfOb0gtMc1Dk+nh56dpqaEp1VSbc04n2sSz09cGqFlumo+bhvGDgTZUzQptnpqbprBJbpqol9oAdZDofuNYvwwX5NAdaAhGd6SBs+k5Gkpzzmsm+Kbf1kbKkQmjaLT0eKNIj61iQiuwM/VMs+I41euoZhoJu2ASFzblggcqLlBgJAAhNuPDtF63zZBjG8Pi6HZmurWBM7EJnnCTdWECGkoTPJHaJvrmWFwwxkgtMcdWuCAwc0KLMcNqKia0o1rRuSUxcxp2psSM1XLMMeMCrkoTlODe7zukMg39080t7vfebWdyVOxO3ViIzLh0nz8yH8uG1Zh1VWz2W7iT0jXn08wl5cj3GJnzFMznCpmZb+2E675DPY7czdalCfrBjlQ1AzNLzO+nCR6YSqekFhV6j5WZEIh9u2eklh8ZDmvp93Rd78Kc+iYootPR+7r2tr7f2tqW1L7+6DmpbW3pvV2/p2NrY21dau5e5Gt3f1Vq37znG1JrtnS/rSk9n/WRtUY1dcFierxXHr5Uanvm9P1PP/GIHltTt2vWXeoq4Vh4WqNift/dM4ia+U2dNvddJucxCuamwOyjM/Jbu9ozITSFziOpudcrchPa54LtzFohdjcZZrlQNe83NaXPl2bM/LBrYU5q+UDDf1Izfy/o24V4enHo3x1zn9wvtZb313S7Qr/XSk0/Vz/Tz5+bNU+lomE94+JODAAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd/NttRmxYOB1rpdbWA8Na+NfwvTuHzQ12bey+fX9FBGGj2XLX2vWqoNgqsV0/i5Nq3HYZrP93L9XK4he2Iathaxvt/2+qbuo69NRmt17Vg6aGuz08KENrj29Ult+CtvTGvj60pDv6+8MI3WTThFtbYgtTLR78Kd44FpiI2dKUl0HKWm4XBqtotNksrABDeNBqmEEELkQitGx7lpPl41ASnu/WMXHmFyDXIzt/RNAIYLVEhj3a8NtzD/GSqOXAqNKbkXu7SM0fd3ARPunLh9mvPurhP3Yvdf3PyciZ0oM02/czfezO+WG4RmCIbEzAfuN9RlpIySOek7HIcLn4pMUIYLmsrMnOmDaUzNbJe4k+K4nBc3f+UmTGdknWpDxEzV5FrYfbrt3If1GTmE1eBpjaABLpWKuT5MyEQwwQZuXnJr7Gygv5dZPrx2GdTdb6ryc4Y5jp7OI+0tDahoNTUo4Z6HTpr30/ufvS0TlGDuWcttDbXRO7sQ8k39bJ2Ku98Z/n6uu2KvbDPT0nusvXt2SS0dmGsi03uxRqT3sXUTTFNz1w52pNnmotSm67rmCXPuOY8J4M11TG9ua9hwp6fvd/LMyBiMdex2+ubezATfVMz9Sm7mJZeDW5qgmzTWDVvmecjuRRNMs0uDwGabOlYbkc5BvU0N78rM85BKOjz31yqzss18S/eZlfp9ra3qHNwZ6OfPzDl2a9RWVZ+ljYuZCgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4xoOb61rs8vCNBCPTHhEta5NMUvz2u62NkpdPTfcFDXer01HB1U93srANPStadPRSqrNPl02Q2KanlcTfW2tqZ+/acItllfXpNbOtKFsP+vqfiva8LVumqw2GsPNTus1bXzdN03q87Fa6IeQpvq95qVpwl3qOanVXSd47EQu1CRN9ZqxDdNNKEDHNm7XWjXVcTm6XxfE0Mt0nkrMZ3D/5ScqTXiCC7Eww8M1pA9mv0lsjsXMyy4Dw4VyxS4QR18qoTY22MIUCxdMYz6Dq9kgD8fsAztTt6NBAe76cL/57sp3gSgu/MReqyMvNdODfy9zvG7s5ibUJjFzgZuXSpeOZdOmDJsIoyV3zH5IuxPzvV9XugnHfQZTciFi/ooY49iwYyXm8khrLlHBvNiMIxeDlLrfxooJIxgJ5RqY+yQb4ud+P2sm4KmuoQuzJiRztwlwecHzL5Pa5oYGO3R7LlBD95tlem+TmdBVt65MU7P+GFlrVat6/5eYc16v6/1araa1ZlPvT+umVjWvdceCnWnvJYellnX02ULkZhKXl2XG/qC3IrV+pmP1wCXDY3+rrWNy1YRF9TomVso8H3FhNbWafoiaec6TmGCWvh5emJnT8daaNvtNNVgrNpP6wATxxJGGd43+IJgpPgz6Zn2X6ns1GmbNZ95w0DGfwZynsmvW0GPiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATFxUuq7nAAAAAAAAAPAs4i8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIr9Px48fD1EUhf/0n/7Ts/aeX/jCF0IUReELX/jCs/aeAJ77mG8AXCjMNwAuFOYbABcK880/TDviQeSHP/zhEEVRuPvuu3/YhzJRH/vYx8LLX/7y0Gq1wtzcXLjpppvC5z//+R/2YQE7yk6Ybz760Y+GF73oRaFer4fFxcXw5je/OSwtLf2wDwvYcZhvAFwoO2G+CYH7KeAfAuabi1/6wz4APDve9a53hd/8zd8Mb3zjG8Ott94aBoNBOHbsWHjqqad+2IcG4CLye7/3e+FXfuVXwqtf/erwW7/1W+HkyZPht3/7t8Pdd98d7rjjjlCv13/YhwjgIsF8A+BC4n4KwIWy0+cbHkReBG6//fbwm7/5m+E973lPeNvb3vbDPhwAF6l+vx9+7dd+LbzqVa8Kn/3sZ0MURSGEEG666abw+te/Pvz+7/9++Ff/6l/9kI8SwMWA+QbAhcT9FIALhflmh/xPs8fR7/fDb/zGb4QXv/jFYXZ2NrRarfBjP/Zj4bbbbvuOr/nP//k/h8OHD4dGoxF+/Md/PBw7dky2eeCBB8Ib3/jGsLCwEOr1enjJS14SPvWpT33P42m32+GBBx4Y639+9N73vjfs27cvvPWtbw1lWYatra3v+RoAPzzP1fnm2LFjYW1tLdxyyy3PPBQIIYTXve51YWpqKnz0ox/9nvsCcGEx3wC4UJ6r800I3E8BzzXMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4z9X5ptfrhRBCaDQa8v9rNBrha1/7WiiKYowzAOBCYb4BcKE8V+ebELifAp5rmG+e48od4L/8l/9ShhDKu+666ztuk2VZ2ev1hmqrq6vl3r17y3/xL/7FM7XHH3+8DCGUjUajPHny5DP1O+64owwhlG9729ueqb361a8ur7322rLb7T5TK4qivOmmm8orr7zymdptt91WhhDK2267TWrvfOc7v+tnW1lZKUMI5a5du8qpqanyP/7H/1h+7GMfK1/72teWIYTy/e9//3d9PYBn18U835w/f76Moqh885vfPFR/4IEHyhBCGUIol5aWvut7AHj2MN8w3wAXysU833A/BfzDwnxz8eMvIr8lSZJQrVZDCCEURRFWVlZClmXhJS95SfjqV78q27/hDW8IBw8efObfL33pS8ONN94Y/vzP/zyEEMLKykr4/Oc/H970pjeFzc3NsLS0FJaWlsLy8nJ4zWteEx5++OHv2oj05ptvDmVZhne9613f9bi//We8y8vL4YMf/GB4+9vfHt70pjeFT3/60+Gaa64J7373u7/fUwFgwp6r883u3bvDm970pvCRj3wkvOc97wmPPfZY+NKXvhRuueWWUKlUQgghdDqd7/d0AJgg5hsAF8pzdb7hfgp47mG+eW7jQeTf8ZGPfCRcd911oV6vh127doXFxcXw6U9/Oqyvr8u2V155pdSe97znhePHj4cQQnjkkUdCWZbh13/918Pi4uLQ/73zne8MIYRw7ty5H/iYv/0/WapUKuGNb3zjM/U4jsMtt9wSTp48GU6cOPED7wfAs+u5ON+EEMIHPvCB8DM/8zPh7W9/e7jiiivCq171qnDttdeG17/+9SGEEKampp6V/QB49jDfALhQnovzDfdTwHMT881zF6nZ3/KHf/iH4dZbbw1veMMbwr/+1/867NmzJyRJEv7dv/t34dFHH/2+3+/bfYve/va3h9e85jV2m6NHj/5AxxxCeKaJ6tzcXEiSZOj/t2fPnhBCCKurq+HQoUM/8L4APDueq/NNCCHMzs6GP/3TPw0nTpwIx48fD4cPHw6HDx8ON910U1hcXAxzc3PPyn4APDuYbwBcKM/V+Yb7KeC5h/nmuY0Hkd/yJ3/yJ+HIkSPh4x//+FA647effo96+OGHpfbQQw+Fyy67LIQQwpEjR0IITz/p/qmf+qln/4C/JY7jcP3114e77ror9Pv9Z/48OYQQTp06FUIIYXFxcWL7B/D9e67ON3/XoUOHnvmBXFtbC1/5ylfCL/zCL1yQfQMYH/MNgAvluTrfcD8FPPcw3zy38T/N/pZvP40uy/KZ2h133BG+/OUv2+0/+clPDvUIuPPOO8Mdd9wRfvqnfzqE8PTT7Jtvvjl84AMfCKdPn5bXnz9//rsez/cT/37LLbeEPM/DRz7ykWdq3W43/Lf/9t/CNddcEw4cOPA93wPAhfNcnm+cd7zjHSHLsvC2t73t7/V6AJPDfAPgQnkuzzfcTwHPLcw3z2076i8iP/ShD4W//Mu/lPpb3/rW8LrXvS58/OMfDz//8z8ffvZnfzY8/vjj4f3vf3+45pprnmko+ncdPXo0vPKVrwz/8l/+y9Dr9cJ73/vesGvXrvCrv/qrz2zzu7/7u+GVr3xluPbaa8Mv/dIvhSNHjoSzZ8+GL3/5y+HkyZPh3nvv/Y7Heuedd4af+ImfCO985zu/Z8PTX/7lXw4f/OAHw1ve8pbw0EMPhUOHDoU/+IM/CE888UT4sz/7s/FPEIBnzcU63/z7f//vw7Fjx8KNN94Y0jQNn/zkJ8NnPvOZ8O53vzvccMMN458gAM8a5hsAF8rFOt9wPwX8w8N8c/HaUQ8if+/3fs/Wb7311nDrrbeGM2fOhA984APhr/7qr8I111wT/vAP/zD88R//cfjCF74gr/ln/+yfhTiOw3vf+95w7ty58NKXvjS8733vC/v3739mm2uuuSbcfffd4d/+238bPvzhD4fl5eWwZ8+e8MIXvjD8xm/8xrP2uRqNRvj85z8ffvVXfzV86EMfCtvb2+H6668Pn/70p79jfwMAk3WxzjfXXntt+MQnPhE+9alPhTzPw3XXXRf+6I/+KPziL/7is7YPAN8f5hsAF8rFOt9wPwX8w8N8c/GKyr/7t6wAAAAAAAAAMAH0iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcem4G85PzUitLMZ8ceRqpZai8Z6LFsXwjqNS3ytOdKdRZA5EXyrv/51qSaLHWxTmWGLdb6Wqr43N54/iRGtSCWEwGOixlLrl6NGVuX6uSkWPo2aOtzRHEpnP2kz1M+TmO3PPxR8+edZsh4vdG/7XX5JauXlOanG1LrUkrUgtNVNLN9drMI/0/fqD4Renib5/MWjr63pbUotbDanNTE1JrR7puNw7rft99N4vS22wsSq12d1XSe303sv1+PZdJrVobVNqzUTH9Eq7I7VkZJz3tzdkmz3zLalNV/W7Kcz53FpfkVo5yKR29Cr9/Hv2HZTar739f5caLn6/9r//U6ldcul+qWUDHZe7du2T2vSCXtNb3TWpzc7vklq9NT30794gl21C0Lng8iPXSy0pdbs9u/dI7cknH5Paww/eK7XHHv6GHkqh421qWteLlbqek0pV577W9LzUNtbWpLZ7dlpqCwvDr929/5Bs05jXzz89p8cRSv3ReOxhPU/v/93fltqJJ++TWq+r89cXbrtH94uL3sGr9Not9Cc1VJt6ixaZOSjr6mtLs4aoJub9RqaXIuh8U8bmfs3cXwwynQvc/U9i7jFy87mKgdku1+OrtapSc/NS0dPXmtMUKnWdN+OG1gb5yH1Xpm8WxeYzdMz6xtwT1+d1PVqYc5z3db/ufJ58WOcgXPwWmnoNVut6L1KtmnubTMdMv2PW+uZ5SKOq47IcuSfIRsdQCKE0D5cS8ywkMfchsXvOY2ppqnNhYp5VuMdcbg5KzH2he+bkXpuZ2jgfY+xnVebcxeb7MlNV6PX6Uttqay3E+vnPr+t9scNfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDakoTwlKYwJHEdLt0jYkL04y0tI03v3f4S1rRRpypaWK6vd2TmgurcU1XS7Nhbo7XBc64eBnz0lCYfbiQDdNvOtRNQEee6347neFz4Bopx+b5dMOEggzM99/vaxPTvmnC3Kjrh3DXGHamKNMmt3FsmrSbhuQ905C8ZZqPb2ye1+1m9+rBjDQh7uR6jTeb+v6lCTvwHYi15Fokd9vaaHymqQ2neyY4ZzvXkJh6UxtJb26brvdb+nmnppp6LKb5dRyGv5/1bdMIf6DzclLV+Xt+VsMuXnLtUaldfkhDRo5ccUT3YeZM7Eyz83rt9jMNaWq3dXyYPuBheUvH4PnVJ6VWbeo42rU4PAe1uzr+5uY0IOdHXnCDvn+q798388PmpgZcnT13Smq5mfsGppn5oSueL7VQ0UCY5Q09n2Wma4Nqa05qC/v0HKwuLw8XmjpnLjQWpNbMdS4c9LSJfqOun2F7W/eRZfraWo35Bk+LTCBMo6a/b9W4JrXMrI1KE1bZMPdAaV/XJKNL9n6hv8eFyXKKTbBFpMuxUJrg0NLcw7iQudLcw8Tmpsjddrnbibhqdmz2kfXMvVhwAQ3D67TUhHPkff1uQuLCLsx9Yt/cs5r7RHtOKsw3eFpq7vNrFR0LLujE3bIk5pmLyaQKwY39kYGZxiZAy7xZ6tbrbpCbZ0suCLlixqpLa3GhNgMzV0Xmc9hzEptJ0mzogm70mZuZR9xxuOdy5rtxslKPt2/mTLcOHBd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOqylKbYrpGmDGqWm66d5voO8XmZCY1DThjUe2M4dhg3RK08TUhdXEpslzUZgAG9co1Xz+QW4am0Z66hOTQlNmesx98zHyXM9n1TSUrdeGa0miDWCrJiiibz5rluk+gwmmKSPdbmvbNNduaGAAdqYkaIhBWtGxtd0x4SqpNiHe7mjT705fwygqxYzUusXw9evG31RLu7n3Orrdwsy81CIzZ2xt6LEVAw1FSM0UVKtrQEU2ZcZWRc9TPdLm+Gldx29va01q5qXSEPnoZRow8aJrr5LaFZfskdr+Rf1uquYEDPp6ns6ffUJq2yb859prXyo1XPweePgbUpuZ1TGzuFvDrBYWp6XW6evY+sZ9D0qt1tSxv7a2NLyNGc97FuekliQ6MT366P1Sm5/VOag/2Jba0vJpqdVNyEK3q3Pr+WWdv1q75qSWpTqm+2YiufSSRak1zJx2dmlt6N9FrN9DN3eBHfo91Cr6/r5xvf4GtV2w2DTrGzytWui6ez7REKW0NEEq5l6sqOl16W7u+m29F8k2h8dvZtbwSdOEHZibJxc3WQxMMKm5K3QBGFFmQkJNkJ8Lh4pMME1k7qfynruhMuegbz7dyNdobjtDaoIScxOo6MJa+21z32nuYxOzDjK3dtihkshd4yZQzQTCuPt8+0zDPDfJzXaVkZAcH5liAo5NzT1vKsxcEMyc2c903VKa+TbJTSiXS/AxwanZmME51ZqueQrzTCeM1FzgZmK+h9FnZk+/lQl6NcFaWaGftVLTtUzH3HeNi7+IBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fV1Ora9NspctOY2AXCxNpQ023nmhrno019S32e6nqJNhr6GSLTIDhx6TemeXFmWjMnVX1tPdFGpKVp4FyY5rG5OSlpva7Hp6czROZzVKvD5yAyzVQrLqxm0Nf3d681n9V91y54pNKalRp2pqoJRSgKMz7M+C0z01jdvF9Fe/WGlgmRqlWHwyKSakuPzTQfryc6TuO6vjbEZm4xncYrdR0fsTkncVUbCa+3tTFzU4d0SM15qsa64f5LNJznyNFLpfa8K48O/Xvvbg3KSIN+huUzJ6R27uyS1KJgmr6beW92Xs/drkUNB8DONDWrY7Xe0rnA1bJSU6nm5zXUZvfCIanlZn2ztT0cftJo6FirV/V6fuLko1I7feaM1PpdDaZ55NFvSm1947zud5fud3Z+TmqVmh7zbV+8U2rLLrSuacJqdum8uTinIUHzI8eSV/R1+ap+XxsLGq5z+IB+h6YPfEgrOt/MzOixbWys6ouxI8Vm7dFf3ZBaFps5yAQPmIwFew8Uaib8ZXt4DRWbe7jWQNcjdp9m3dIzoQguwCapm5CFqgl7MOPNBWUkJhTChaSaW5bgck0Lc96jxvCLC3PS3RolMoFZuQnSGQ37CyGENDb3kyZgqBiYiww7UrNmnt+YayZk5qYg0+vIDJkQuYBgc00P8pF9mDFjpoeQmbWSC3kpzXxTN6HHhQnhcfnDmQlwsZOrm2/Ndu55SKXU78cFELtjFiaky3yFNmRwY1vXRvloIlfw91g2vHlM/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6zGccE0kWkQXBbaYDN2zS5N81TXADNOhxuADvquKa82Ca2bEJZaTRtx9k1D4yg2jVIrJoTlB2jiWZjwG1drVPVYSpdWY/Y7+jki87osMyE8JngjxKZxqmlY696v3tBAjTg1+8COlEQ6t3T72ly3NP8tJTLhL3m/K7WZil6DUcdc09FwbXFeA1e2trek1s3aUut0tPFxVtHjrTSaUsuDNpIuKrpdzYTpTKd6Pi87eInUDl95jdSuuFQDKg7t1+bKnfaa1NJ0eH49d0YDNVIz78/N6fs36vp9uQbv7YHOaedX1qX25JMaiPOiF79Warj4ZYXOLVPTM1JrTutvVLurY39tQ4Mn6i0dv8tra1LbHgmT2d/Q4yhjDVc5dfpxqd1591ekNjul79ft6PFGsc5VHRN0U6/puPziF/9Gao+d0tde+YIfldoNN1wvtVaqa7w9C/o5GiNBftt9nR/uuf9hqf0f9/6Z1C7Zr2FWt/7zfyy1vft2SW1j87TUamb+ws6UmaSXfKBrlG5bx2DP3GNVZ/Q3P66YoAgTRjGaLxMl5p7LHG/ZN0GahbkXM/dOfZOdkZuQCReAkcQmdNQERRQmZKJw4aQNc89mloHxwNzHjdwrmtzUEFITOGOCeSrmpFTMG5YmSWfgglNTc0+IHWnarGVKE4aSZTpmKub6jc2zhX6h222bEM/Rigu96ptnS3Gqz2rynh5vZF47bUJCa2Z8uPkhM8+vXIiwe62tmePr93RedqE2o7XSjPu+eR7W6+v793q6Xdesl0LsPoO+n7tOxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDajITCmB6EIfIBa6YHr+u4a5rvOm6EGf9keahpnFommijT39spnlxappBm6CbwnywbtcF56hGXRuvlqbJaJqYRrHmvGemAWpuGkfH+fDnqFT0EkhGu1eHECLzzDofmH2aJqaR+Q57JnhkkK9KDTtTMXCNy/U6GpiG5Ilpmtyo6nU+MCExnULfb7s/HHTSKExT+Uiv536k79UwYzLv6JgpQ0dqUy1tZr738GVS+9Hna+DMgcOXS23PQX1taRpCnzz5DamdPaVhGbMtDc6J8uF547EH7pVtrr76KqmdP69zwf0PfFNqjzx6XF+7oud9Y10DRXLTrPst/9v/Q2q4+O1a3C21Sr0mtSgxa4OKbldr6DivT+n4qJgAm3R1+Po9c/5B2WZl8yl9/7p+hmP36dhdXFiU2pVHD0stN2uK0gSBbWxrKNfJJ09Jbff8ZVLbZc7Ja1/941JbMCFBadBzvLU1PC+dXdV5amVT59aZms6tg96a1O77pob/DDJ9v40NDceq1PQ6wc4UaXZCCB1do8zNa21zRYOlVs7rWKjNm8A3EwwXj9w/RRVzb2JeF0wwZzDhOokJbKhNmRAWc9/VN4GY+bZZG5r7vbih60AzfYdg1ovBBGwGc78zGmSYmPup2ISa5pF+rsIEhfQz81qznfuTojgirAZPc5d46u79zcOFstTt3Putb+jv4Ka5PxsdhC7geDTkMoRg55u+e38z36ys6xql1dB9NBs6Z1arZu2R6m956Z5VmQCuYJ45uech7v5kNIO5MM+++pkJoTGhPi6U2T3Tyk3AmcnRCfEP8HeN/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMI3LI5eaYroBu7CSyDTZNK05Q24ab46qmSCK1HyySkWPo1ozDUZNU+JuW48uMZ/VNTstTFP10nzaWkMP2vRxDVGk71dN9ZirpgH71MzM0L9bzWnZptfVMI7VFQ2PqMSmQXbFhNrkJhSkp81Zs7YGSmBnarf1GhyYuaCSmObCpglzVJqAmdKEOZlAgc729tC/86CNjxstvcY3TUDKTDEltYOX7pfa5Ucv0e0O7JHa4tyC1ELm5iqtbZx/XGrVpnYh/tTHPyS13rY2pv7nb/rnUtu3d3bo34f3H5Rt5qb1Mzz48HGptft6bD9y3Y1S2794yByHnuPp2XmpYWdygXq5KZrNQm7WMrVUf1cPH/oRqb3gR3Q+6I40EV9b18CVpZUlqW20V3Sfhw9Ird/VxuXLK2elVhbbUnNzcMh1vt01r8E5U1P6WWtmHVT2dL9ZzQUS6qG0N9eG/p2YgLOaCcV40Yv0u+l2zkvts5/5hNSaLW16X6s1pLa8viY17EyRCcrb3tI1Sr2iY2Z+j/5erp7Usb+xrO83P2WCKEeGYKtmAlfMzOeCAiVNIYRQuOCXTR33UU9fW5/VQT5wQS9mnEcVHYMh0WMuzb2duz8N5v4xGQkxLc3nd/eTkUn7KFJzP90wk1xmXtvR+6kwGuqKHavd1eujbkKpGiZYyYWE9k1u08CFOcUuDHd4H5lZUwzMPUxqxl/N3K/1zGfdNmEtPROs62oLszrf1lO973Rhy7F5RpaZsCkXEpSbgOjR8JvMBNr0zblza1kXdJOYcOSa+T0wj/TGelb3nfAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywmtg04XVK1+TXtXg3bxebpqixaSxeGWmompomv66xaWq6m1er2rC1KLXZaW+gTUyLvjbnnJ4yn8E87h2YRqRzLf06ZmdM+Euh29Ub2tS6WmtKLa22hv5dccEehX7Wel2bwraadanVanqO29vaNLtY1Vqw1w52orZpvu0a5FZqZvyaBr55VwMQjrR0zLSq2uD8bDzcXPjAlr7Xxuo5qb18v4bLvOgVL5fa0RdcKbXMNFUfFDrfPPzAfVL7+tfvldo//b+8TmpN03A5MaEQP3K1hr/86Z98Xmr/r3f+ltT27B7ex649i7LNvkOX6+sOa+2Vr3qF1Pbv0zCOBdOEO010nisT3Q4703Zbx3Rqgtf6fa3Nzu6SWtbV38tLD7xMalc+7xrdx0hD8sQk73UHGpjV7p6Q2kf/6L9LbWNDw29Onjguta11PSeRyU6YndLPP93SefTQQZ0Pk9gEOQx0bZCUOlZLE6C4uHu4sfyJMxrqk8T6+5AVus9GU8/7/n0acFWaBvcnd+t2Gz0N+MLOVCZmILW0tNHWa2bPnP6Gzs7pNb32lIYtLZnQhvmRNXtkluGluV8JA12PJJGOmczc7JUmSCUy2TepuSdMGjoHdwZmTA90DVlb0Hm5iPSz5SZEK66a72zknqUwn8ucuWA+lv2zoNi8uijNnGl+IyIXfoMdqTDPYNbMOiBM6e92q2HWyWY+yAsTrmKCquKRByKxSeTNzT1cZq57N49WzPo/N2GdRaG1ra4Z97GGjrrwrlC6cCgTEmPOU2k+b2LmpXJkPojM/ODeqzT7TMyzNadpvn93L97r/f2f3/AXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7sHpHukaVr6ZeZ3gGuR6L7X5Mn5n93XqvrIVaq0cg22iegyM1OTf+SotCd9ruup6XWXG/KyPQ8ShLX51L7K7aa+n5TU9rHLU61t11S0X6QRaH7GPSH99Hvag+anulz0nL99Kb0c1UrpiOKuVA2t7SvUr/vuqlgR9L2QyE3PTOSVBsLVc3sstCak1prS9+vf+6s1K7evW/o37UN7c/Wf/Ipqc3XtbfG9oPflFp7e01qM0e0D9Su52mvxqVF7enyvKOX6LFMa2+keKBjPy31xL/0hVdLbXVd56onv7kqtc7qcN+6J544Ldvc9+CTUtvO/qfUilg/Q2p6/O6f0XNy2aV67v63t71Navukgp0givS6jxP9/WzUL5Vava59SjtBew4OzJqkq1NJyEeapWWmv0+1Oi21jTU93nvveVRqC7u1p2Nr6rDUDl9yo9TSyoLUTj55UmqD/uNS29rUOXJ2XvtG9ruuR6SO/dws05La8NifmtfzVMT6XXdMP7nplp7Po4cOSu0Ln/tLqbW3tDdlrTr+chsXt8z0NCxS16tQr9WNDe1ZNjM/I7V929rjtb+l66VipI9bp6Pb1HQohFpdf2dL0++tMDeA/baOt7LQAT1omz6UfV171Mw+ItNDtmrGYBnrh8sjvT/pmT7j2cj6M6qZNYq5ec7NfXJpGq8l5nMN+qaZ5sD00DX3k9iZKqnpm1gx9+Vt/e2tVfT5SmzapaZmu4rrkThSq5rXFeZZQGHGsxtHFX1kYvtGmha3Nl9gw8yjpekvOd00PfftEDQ9Xs3zJTOVhmi0uaxpS+merUWxHohbP7mMF9fTMjXPtBKzj3HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7s7tmlaVgZmW6aZenCSsZrbJmYBqiuYWeSDm8Ym4a+LqymUjHHm2tT4qppGl1f0FM1Na0NUFNzLO6zNpoaLpOahrJxxYRMJC2pRYk2So3Mc+bRcJo80+akTdN0NTbN/Dtb2sR1YBrPdrqmiakpdXumeyx2JNODOJQmCKrsbEpta2VDak+ZBuxn23rtl5legz992XDQycpJDWJomFCpe8+fktr88SektnlOQ2MqV++W2tF//BNSy6e0Yfwl83NSO/7AOalNl2tSi05ruMVdX79Xal87rq/NOrNSq5bD531uWpvqHz2iETHVqs6P3Z5+hyfP6+dKGjqPvviGl0mt3KVBFtiZTE5AiGP9zW809PotS73etjY1rCTP9PpdX9fgiZX14VCXSkN/xxs1DY357Gf/Wmrb61IKy6vndbttnVsP7NMxuLKmc1qvozvZXNLt3Jonqmlz/LUtre3K56QWEv1+etnIFxmbQI2gc3VeaG1qWoN05hY0mCgz3//U3LzUVrsrUsMOles6w4V/DkxtfVPXPFGq6+65eb0G13o69gcjIRDttt4TFcEEVpj1mPvLlopZ7JfmeDOz9gqj4QwhBDONhiQ2YQ+Fvt9gSc/daMBVCCFUajofVFNd3/Sy4dCdngmxyKp6bJk5topJ2ShjnVtCVfeRm3CPSKdR7FTmfqpufo/bW5qet7KutdlpfW0lNcHC5nnQYGQAl+b5kHuv3ITVuDnTpbUMBjqnuecthVkI9nr62rVtHVz9gU5MLRNYWjPPoVwYcmHCu/KR53CZOSeFOSkuCCs28/Los7UQ/Hl3wUH+yxgPfxEJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOLGDquJTLNLF0zjtzONhE2AS1xxoS4a1pKONNR0zZUr1brU8rwntWpV97k4O6evzXQffROekDb1lNZM4+PcNDgPQRvh1xL9/C4kyDUKTVzoTnMk6CfR46iYq2JrTZs8r65pw+VqXYM3pqf18586o+ezN9AmzNiZyjltIJ6bBt9bG9pI+eRZDU8ozHW+VjUN41MdR18/f3ro3xsrOhaqAzPWWjoHzUc6Z3TXtIF8/rePSG3wDQ2SyWomAOJnf0xqp6o6Zxxur0lt+st3S622qed4V0fPXWPhsO63HD5Xj6+uyjaPm4b0VdNAvtWaklqo6/y458AlUvtHL75Bal030WFHSsz8EMfauHttTeeWyASinD+rIUoujMFk24VzZ4fng6kpvU4/e8cXpPbpv/is1JZXNSBl04TCpQ0Nx3r85GNSO33+Saldcam+9srLnie1PNb5cMuELJw4q0E/jVkNlirMf0fv9obXEG2zRotjXWdtbOjao93Ra6LeOii1XqnhgZs9c97bujbCzpT1TIhDV2smSzN03DXd1uDI+WkNq6nP6Hoh3xj+jc5HA59CCJG7XzH3If2OSUjJzb1JVefWxIRHuOxTF5RQuDBVc48ZReYcdzQwrLelr63UdP6amRuel7JS59Z2V8d935y7IugcVJT6Xbvw03hKz2dB+Ce+ZXtbr/FKQ3+3XABcp2PCq0ygnAsYdWue0SAaN3YrVX1mYB5nSPBNCCEkZlGV5Tq2uj39DNWq3k+45zcD87nafa1l5rPVzdxXMyG/kUndyUcCbFw8jAtvTsx8E5v51qUIZyboJzNha26/4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3Pjd+k2ggG2VGWktNgE2rq9lvaGHUzHNQwfd4SajSapv1tD+8aFa0easSaIbNsxxFIUG3aSJNjut1fR4q3Vtjp6ZhsuJ9isNZWEaHZvmz9Wqfo4o6LHUp4Ybr7rGz4O+7nN1Q5vCDgo94KlEgy3OndVG2pub2jw2stcYdiIXDuX+u0k301pl9wGp1eo69qdSDZ3Z2tBaPjJGkqYGJyyd1xCL2WltDL+QmnHa0H2muY7BxTVzTmKdq9br2lT9R2/8Ean1b/+q7ndbGxjvXdd9vNjst2ICrQ5lw58jqelcWJhxXxT6vUbbOldtmyb9/ewpqd3/538htR/5pf+z1LAzbW3qdVSt6Rgs8g2pzc7ukdrUlAYrVU0D9uaUzkvRyELg9i//rWzzxKOnpHblkSNS29/VufChx/W15zZ1bJ3fNA3pSx331ZrOh7/wi/9UaqdOnpDaI49pIM5f3/4V3W+ic1qzqed4fW34e+yZwIZKRddFpqd8+MpXH5bazJTOVe1Mj+2RJ85Ibbut8yN2pv62XkeddRNWYq7LqKbr/465P6l3tdaa09/fZCQoYX1Zgy0yEyQZmfCpxMxxbRNsUXb0/Zp1s6ao6XnKTTBgZnIuTdaYvd+JTEBDXOobbpugsnIktGJ2l67vpk1QxoYJJupWzLHNmHsiE1aTmXkuM/vAzrRrflZqq2Zc1hp6z9Ko65heXVmTWs8MwsgGmAxfv6P3VyGEUPb0XidNdX5wgS5mONvjKAY6ZrpdPSduv+45T24m674Leunos5S+OZZGzYTJuPSuETMzuh6r13Ve6o35+fPczI/Bhev8/Z/f8BeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaYowmmSGEUJbaPDStaBPLtGpCJlJtfpxn2lCzHAnEqabaOLTZ1Peq17W5uen7G4rc7NM0Iq1V9cVRqc0++6ZpcNWEZ2S5fh1pRT+HC/BxwUGDvjar3l4fDpMpTfBNxXyuWkUb9zdqep565rMuLZtmtOY6cX1nsTPV+tr42DUNXh2Yxr+mx2+1ajqXb+l1Xh3odunIHFQNJsRisCS1maaO8WbfjHszt7R2a1P5bqZBUHMVPd6nHntC93vZXqmdMvNDp6En75JUj2Wv2S46fV5q0yPzTTfTfZauq3xifppM6Nl8VbdbWV+V2rm77pLatf/8H+s+sCN1Ovq7vb2l462a6I/U6qqGGCybZu7/309qYFKjqYFRS8vD4/f0E/fJNi994Q1SG5i1TKej421uYV5qX3v4tNRObWi4TF66Buda++9/8MdSW13RObI1rU3UZxYXpXZ6Sb+fA/v0c1Sqw43a01h/H7odDSZyzeyzQueWtS39XWrNHjTb6XnPg0nUwM5k1rqxCd0Mmdmwb4JuMr3Oi6r+DhYzOt6qI+uqhgnZ623r+CvMoSWprgvSqglx6GiIg6vlJhAzMWM1NefO5mSY+9iyNK817xeZuX9r5LzkpX6G2WmdR+bMGrVvgl47JoyxV9FaaUIxIrJq8C21mgbOVLt6zZTm2Ue9pfPBtAlE6S6vSS02oZb5yMRhsmps8EtZ6hwXmQc4LpCqMM8bEpMOXJqJOS/0d7vb0/mwbgJsIhe23DdznwsvzrSWjhyyDUd2oYhN/Q6bJlxma3QHIYR+z9yzueeB0d//7xr5i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2WI3rrlyaZpdJos82azXdjQuTsWElpgH71PRwo1TXJDRJTRNT02AzMUEJ7jMUpnF5p61NR1stF7Kgxxen2jS64hokm4CGbleb6Be5Nk/tbpkGxuVIY+qGfn7XmHq6pce21dHzeea8NpQdDFzjWVOTCnaqyATTVM01U8lNcEyptYEJo1g9oyETVx7W4IHrLtk99O/aQI/tXH5KarvqW7pdW8fziVKbyh80n7+saiPpmUQbKTfv/qbUHj1zVmob1xyWWvv6K6SWr+l5Klc0mOZwVcd+Xg4HQ1QTMy+bruplrJ/LzQ9FX187b0K/ZkwT7ummzsHYmQYDvd62TFjNubOPSG15WQNnskJ/e2v1S6XWmtE5otEcbg5+2ZHnyTa7du2S2iDVa7yRauPyRlNDXub3nZHaVx94UGpxbn7ft3S+ferRk1KrmvVNZtZ3jYM6Lk+auXo0mCaEEGYbw2M/Nr8PjVS/m9E1ZQghPH5Cw3VKE8ZRqWmY1/S0nuMs+j6W27ioVU3QY8XcJ3VNOFJhQgxMpmfomlCEtuYOhN5IyECtYsIpds1JLTHhLbkJwKs2TYiDWQfkPTO3mAkid+tAk9/pAmeSqkmJMX+PM+ibwFITjDEautntmLDWWGtTTX2vhrnZTQf62tiseQoTuDPQqR87VGZDhE0wSV/HYGnCWqbM85tOV3+32ybILh4JW4pshpsJZDJbpSYMJ3MBx+bVsUmzis3zIHvfYcJlej235tPz1GxpYGl7WwP0uua5SX1kDdEwE5/LAR4MzO+NCdKp1/U7rNd1u+1tvU4Sl/w8Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd092zX2HG3UG4JvWFmva9fczDTiHGTa6Hh+bkrfrzbcTLlqwmp65v2TUo+t4houF6bbZ6S1Sk0/V2Ge7Ra5dmPNetoIf5DpPqJIm4z2+xq80WzoV2l6NYdy5FCynr5XZL7DtXXd7vQ5bbDaH5iGy6k2gDWnxAYTYWdaK7UZ7nRfL5pDQcdH0t2Q2lyu4y2f1vF7ONHr/IWD4deu3f+QbPMC06R98ykNtjizpc3S916qzYv/0Y9cJrWF0/dILe+tSe1gos3mkxU9vq6Z/gcH92jNNHCud/R81kwT/c5I2FZhfjMiUytNM+jCzA/2B6zUa2J1WcN6Pnfb56T22v/T/+reERe53Fxvy8srUjtrQlPabZ2rIhOKsH/GhJosaoDNoUPDwSlHdusP+fyMzhlbmf4ep5nOmS0TYDNn1jJVE7jjfqNnEv2szWAC+sy6araizdwrZqBvm9CO9rYe38qpx4f+/fgDd8s2eV9/H/bt03nvocfO6XaHr5Zaa1Y/w/59B6S2vvWU1LAzxU39TR10TDDNmCELJl8z5O53Neh+s97w3Fer6HGY25+Q5TpOIxOeYHJDQ2Q+wyAyH8LMGbkJo3BhDLm5yYiT8QJLi8IE4tTNamMk1Kbo6Ydtt81axnyuRs2ssyo6L8+a+bsy0Llw231p2JHa5t4pMddWbNZBAzPeXKiL0+2a8KpyeL8VcxxuPWZye+39RGqCPt12bh51497tuFLVYx6YMdjpmLC8hgbCJOaY+z09d+XIvU2SmOC9ln43WyYMJzIBrk0T4Fk1n7XT0eON3fw9Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1WE5mGnZlrKGp6fa6va8POSkXfb3ZuWreraVP2LB9+fpqY46hVzEczARh5ps0+tzb1eJPYhNWYfbgQHtfMvtHQ/fYHuo+q9n4ODVMrCm08mlRMMEQ6HGTR7eqz6PVNbWx6flkbvA9yF67jEnLGO3fBNObGzlQ3AQiHc722Wm29Zq6rzkrt4La5Bk2oSe2cBlS0Ti8P/fuS9S3ZptrXMR4HDTGomiCoZF2PY/5rGmxQL3TMnG3qfFPNdC6oT2sT4qipx7e6oWP/sqqGbOy/5AqpZY+eltpWNPx+pe1xrd+NDbUxzar1zIWQJXqe7ntIA4b+4Ff+b1I7TljNjlSr6lgozfIoikzTdzNXDcyF3sn1/Za39Aq+/7YvDx9b94Rsc2h+zrzXptQa5jd6tqJhVufMmifumMCGvh7vVKSftRVpg/MyN3NkW/e7ubQstWkT2NPe0nl49fypoX+vnHtctmlWzZpvVcO3+iaQa2tDw4qSqp7jXXPzUnvy0Xukhh3KzBmFCeusVcf7W5GqSatJXEhMxwRPZMMb1sx7mSyFMDBzQZrq/VpibgrLUmux2W9pXpvGejBmarHBEy6Lol+YwEOTyhWbtVttJBE0N2uZ3CxSun19r4EJ+2ubwIpaXd+wWjXhEboMxA61saUXQ+qCek0wTdE1QVBmfZ6bwKjELNr7vZHB6kIozfOB2LxXWZjUWzfv+aLuI9G1jAvW8mE95j7GBP512rqucAE27uFPfyQUtePCgExQoksbKwcmZNGcE7ePfs981y4xbUz8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rMYF07jmva42MAEuraY21KxE2gAz62sD9rQ63Gw9y7SpZ6+j4Sp5rk03o6DHlphGpKXpctzrmg7JJqyl0dCaa3pfMeEyeab7aJvux5XUNCg13Vi7veEG72fPabP4jU3dZ2nOU6XqzpM5jEI/V2I6aUclz8XxtOmg11Z8flVqjWUzps14q61og+CZQl/bqOlcEo9cv51t0/A91XCGwjQvPhjruG9pPkwYbOq8121poMZSpM2QD5iOw/kubYa8WujYX93Q91vI9Zx0dmuATdi7V0qD08PhDlX3k2MaTseuCbUJF4prJjBsWhvmb5vfr3PmesLOdPWVV0ltZVXHR9HXwdrp6O+lGUYhMb/5/Z6Gn4xGMG1s6lrmbK47OHtet6ub3+Ptho6PXqlzRsWFx5W63zjWzz/IdL7N+3owgy3dxzU/qkFYveqU1LodPZZsJDQsH+g2bXPO62b51O/od11mOi9PNxal9uNveJPUdtfHXm7jIle0zRreBdOY8IAic8F7ul3VvDhLdQ4aFMPbuRCD6abOGR3zG93payhGWTHBPFIJIZh7x8jcixW5CQwz4RYuEMcF2AQTsmGWCyHrm/2mw8fcauk6sN/T1/Xa5rfABPP0zJnqmvVnavZh8hmxU5nnEoUJaeqOBsmEEPrmum+ae5FWQ699N9A3t4fvu0oTfJPYZ0v6Gfrm+Uia2kRMkZlgntQ8R3HHV5i5z79W99vr6hzZM6FUdRNgM3rMPRMas7qqaxST3xkSE8zT6ehxZJm5PzOvnTL3XePiyQ8AAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e7bJPwixaYCam8aWjbo2tpyfn5VaxTQ1dg2Hq8nwPrKBNufs9bRJeW0k5CaEEMzhhnygzURdUEKl4k6KloJp+p5l+rly0zx2MNADrNe0iWm1ps1jV5e3pLa8PNxEfqvtGrGaJs/me4gz0+DeNIpNzfc609Lm8ya/BjtUN9axEBbnpLRqxlt6mYambDx2TmrrfR0fl+zV4IFkY23o37vCvGwzOHdWavW+CX4x47mf6Hg+vU/3Md2c1teePiG1rhmrkQl2mDHzyL49ut+DjQWpFSbcIb7iqNS2V4bP8SDS+SHKTACGCeSKTZP63PSlLmraNHtXUz/Dz910g74YO9I1RzSsZnVdA1f2LmiASbut1+/6lk5MZWWX1Ob2ae3Orzw89O8HHj4l23RWzPwY6Xh+4vQZqbmwB9doPTG/21PT+rt9tqPH16hpmFVnoD/wtUjn228+uiK1K/frsaxt6HajQQ79gb6uHmtT9aLQ9VNU6O9DMtBAoKlE11CDjk5MBxZ0fsTONOiY9bT5Ta2a4L3c3Z6YVIQ81df2TC1pDde2N3U+m810PFfN/NAzH8LkdoU40eOIzRzkwjpz81ljUyuDubkz92KJOZY81u0is105csPXN4FccWT2mepcmFb1drwxpft04REujGRg7jGxU5nUFHO/nZhAmMSMhamG/l7GJmwpKnVMD0YCVyITTOOOzYXVuNe6udA9mHHPOVxojBOZ8eaeX7m5JTXBWgMTmNUz94+jr+3bZzVSCpEJI8xMMJE9daZWMyGhwcxz4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNa6JaeQ7ikqp1dTGpmlaM6813ZpLbcybjDTsrFS1SWY11UbzUTANQU0KT1HqsSWJnqrchCxkJiSnu60NRfuD8QJhqlVtQD+3Xxu8h1I7WHd7eu46I71YbWNTLdnvOjfNkBNzPl0L08h81oZrgIodqTql1/3MgQNSO/34cak1Du+X2pm+afB91Uuk1J/SkIG1++4e+vdlmxqOtdukt9R1s9Bf1+v+a3MarvLQtI6Fly0elFrc0Xmut7YstdaGNiZeTHSey3Idv826Ht9mru9XS/QctCvD223HLqxHSuFkpnN1Ybbbm+v5rJw7r7VDGsLz//61X9c3xA6l13i/p2MrjnW7xb27pba6rgEus/M63upm7ZKUw2OmbsZf1tam6k3TQL5S0zHZ7eoYbJvPOl3RcKx1ExCzvrEqtf37L5Xa/KLWBh2db9qdNalNNXR9M9Mw8+aZ4WMpIp2nBmYdmJsQLZMrFhZ2abjQ63/uZ6W2stbR2hkNTMPO5PIZasGEtbRN+IkJKEhaJgDBhQfocJAFeqnDKnQLvZ4bqe6zVtM5rlrXcCh3V1CaEJbetgZGhb4ei7tPjGM9vtjdx5l7sdDRfZRmDVmMhEwMzBdba+oJnTLfVyjM+5v7ydAzoSCpvrZiQkawM5mMKhvUW62a5zKF/vaWJlg3Ntd+xYQyLcwOr1O2uiY0xTyYKEwonAuNKcw9QVHqPmL77MeF95r9mrGVmWCtyNxPuWcpSaLrj2yg71epDs8lLvgmN6+LzM1TYQJsXCh1paqvdSE8XTNnjou/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwceOng9gQEn2OWavqW2a5Nrvc2NiWWr1mnotGppFwPryda5BcqWiD5LzQJp5J0GbAo83iQwihLPTzx8mUeT9t+r62pqkV7a5pQi2VEA5eog3j41jP5/rKhtQ2NrTJbH/ko5UmNCY1jVNL01w6cg2nzdc1P6vfhekzH1ot/azYmaa3tZPyQyful1qxrNd9uWqCqra0tlCf0e1SbY7eGGmOni1r6EDNBFwVuV739880pfbHlTWpPXXyrNS+8aTOI699ngZATHX1s26ZJu2Nupk3739caksnl6TWPaTBQfsGOh80TpwYKeicOWhqkMyd22tSO9fTBtlvuf6FUrvxxfuktmL2O20aPWNn+u8f/aTU2ibUZWZOg2nm5vdI7XOf/2uprZjf4zzSa3BuYXbo3ybrIMwvaGhKWWrYRWqaiqemc31Zai0x2402Sw8hhMOHD0stNp/rR6+7Wt8vXpDaHV/7htQaybrUbr75ZVLbWDo29O9OW0PPRtePIYTQnNU56HBtVmtHrpRaUtGQoCdPPqr7bbC+wdMqJoAqVHTdXXP3Xe4+Zkrfzyzjw2BT73e2l4fnpbip80jfBDFUTehCUWqIVpnrGHThp8Hc1yQNXUPFZg6KI92vydIJhVlDZNt6L5p1TMiVCbVJKsPnqjmt6zuTmROy0RuxEELRNyFafd1nZsKKgillJigEO9Ogp+OjcOPXhb+Y98vNNejCX9wDgcrIuqJi1ii9XNdeuQ6PEJl5JDdBly78pjTHm5ugG6c0oTaxO5/mPPkIKRMcM8ZncyE3sam543D7zM15j0zoWb1iQo3yv384Fn8RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixu7WX6/ppn3TcLdrGu72BtqkfautjS0X5rSp8fSUNk7OR5pidk1j4aIwTYm1D2eo1kyTZ9MkNDPNmiPTsLRem9PXah/0sPWUNl+PTXflaRNukfU0UMN9F1Gq567RGv5snW3TXNo1Yo1d42PdbnZGG7fvWtCG0xXzCLxwXZ2xI81UtRnuifNPSG1gQq9Or61KrZroWKjefq/UXmoCXBbL4X1sT+k8tRJrM+DBfg1iONXR4zizoeE3mQmXObei8+jXM20+f9mlGmBTOay1dqbH3FjqSG1hRj/vgWuuklr1skNSu/zq4VCbiubthL85p2E4T3zyY1KrZdqEuXnN9VJ7wc/9uNS+dPdXpfbU+rLUFvXwsANsmXCsgWmOfs89D0it079Pas2mhiPFkYZIdbv6W756fmScmzVAVGit1zODyzQad+3n3Xqp29W59fLLL5daxfyY9/u6rmh3dV6+7FINvapW9LUb509KrVXV/S7MDy+2jvyjn5Zt3OffZUKI0ljXhktL+hluv+NuqbnwnwcfOW6OBTvRof163ZfmN3+rrdfbRlvXATZ0stD3q5qUyHxueO7bXta5sBLpOqMxq7/HWa7rhy0TFDjo6D4SE3Ram9J7h7RqwhhKE/TS1Xmkt2yOZcuFW+j9Tq2h66Da9PB6MU70db1N3Wff3LO6oM/E3HcV7l7MvNbk8mCHcs8vbDiUuX4TE+qYVnQeqZpwu3ygYzAeeb5SN++fmfVIcAFXJlwnsmG7Ot+4AJvIhYOZ5yGuVpj3cyExLoTGhQEnNkxn+HOYR1qhUjFhY32dv4M53tS81k037mlQy8yP4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjpIGlqmnhG5uUmACE1DVBj0yi1n+l23YFpGpwON9l0jdb7fW20XuSmo28xXsPWstRa2zQArVX0WGqmGWu9pvsdmHOXDbTRcc00aW+YRqHTU9qgdrs9XBu479U0WHV9YmdMaMeeRW36XjXBI5vrGtYTUm10jZ2pnmgz5Lk9GiVy1mQxnN/Qa6sz0LH6VFVb/V6ez0jtyNbwmInXNGCineq4Tw/sktrSlL5/dkZfO2U6jfdNI+GTuW53+OdeJ7WFQ9oc/+5zGv7TrmnYVGEaXV8xNye1A5dcIrVLjwyH2pz4nIbG3Hvum1LbPb1Hapel01L7zF98VmoLn/mS1M6Yxs+zFT0n4SdeozVc9FomXKbdNeNySq/BztKa1GpmHLVa+nu5taVzVaU2HNBg+qKHblfH5MDMcVMm7MEFW7im6qNN5b/TsWxsbpjX6nabWxoOVdPMnfDjP/4yqR2+4ojUzp7UkKtDB64Y+nd9Wj//zIx+10mkn39mWrfbvai/QfWa7qNa0e//Y3/0CalhZ0oGOmaSXK+ZjskYKN3fjwzcvYMGRYwGfYYQQlodWVdEJrzFhMEMzNojMzEGnY6G62xu6fxVifSeqNbRz1BvmPCM2Bxz15y8rgmoMCGZ1Wm9Z6mbIMOsP3zP0t0059x8Ny4owwVg5Cb0yk2ufXNv2+65KAvsRIkJcOmZ6zIEHUeV1DyrGei11ajp+EjNunv0/SIThNUx71+YuSU3YyYy6SpJ0M8QuQAbE37j1kZuHVQU+n6Re7/cjcsxQ6lGj8O8V+4+v/kOMxdwbF7ramb6smHL4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjdJbtdbYpZqWoDzEqkXSwHrrFpU4MX0qoJqzGBMGGkAehsS5uKB9M4NI+0kbBrEDzI3GfQJq6xaa6cRhqyMcj0M7g2pO48tdt6zFMt0+G91NdmPW0S3dke/hyxa2xqQjGaow2tQwhzpum762IambCe5ow2eA+pNvPHzrTR1ZCmgblWZ/bvk1qnqeOj1dRGytWaNusN0xq2tLK6OfTvqaDNi688oOEqZ1Ld58PfeFBqi1VtUn/DvL7fN1MdW2c2NeBpparjcrE6K7XqHj13/WsOS22vCWhwY/rBz/2N1P7qjz4+vM+O/revxxINFvuxK54ntT1dnW9vO/UNqT1c02ObOaxhF3uuOio17ExXHjkkteWVTanNTus42reoY7VjmoiXJgRiblrHW3t7eEyXkf72uqDAalXnhwMHNJBpZWVF38+sg9bXNEgnSfRYMrNeCrHWDl6yX2r1uo5p99/HD+zTuard1tCwPSNzVWnWaHFhPkOh77WypGE4VROi9s0H75Ha/r17db8mQBE709a2rs2rFRNWkpugT3OP4e53ykTfrzBhLYORAMuWGZMtMyZLEwCRmdAUc1sTssIET5h1VWdTx0yrp/udruvxxSaYx93v1Kd0nVar6vw66Ohaqz/yPbogityeOxMKYW4K3X2iCxxqm+vEBQdhZ3KBTLWaCSExAVQutM49D+l09VnFdF3nqkoyfCw9FzRl5gIXshebz+VCbUJwoTY6j7jwFzdnpIkL8jPvZ9ZVpQt/cWE15llKMvLa3My3uQk9rpmgrcR8/33zvK1S1e8wd2k15vsZF38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6ryQrTALOiDTCnp03giGukXJrmnCbopjDNPkf7ZPZNN+R+zzQNLrVJeaViwlpMY9M8N82QU21OOjCNhDvalzpkptlnmuqxtLf1cwxmzfGZ5rGucXJ1ZB8umMY1Ta43NVCjObNLaq6Ja6+jTe9LE64zPTWjO8aO9NCpJ6XWb2u4zP4Dl0rt6uuuk9rZs+el1uxoIE7rqIakvPaXbx3epqFhOJUFDbH44m3/U2rtY++W2o27NcThhXV9v8a0jsH/48QjUnvgxEmp7T2o52mtp3PGVkMbEy++4CqpHThymdSi+x6T2nZt+HejawLJyr4ex5V75qQ239HXbp/S5spL1+ux/S9v/r9K7YpX3CQ17EzXv+BKqbmAviLo7+WpMzq3LG3pj35a0/VSlOl2jz48PI6+fv/jsk1IdCzUTGN40489mN7zodPV43CvrZgArtQEuGx31qTWqOvasGNCybo9XWtubGtw0OKirj9OnDg99O8HH9RwsKNHzXfdW5PayRPHpbbPBHd98xvHpHbMLKLWzp6QGnamTt+EIpgwutwEG2Tbug6q1XW7gckT6Ltwg2L493e+YgImzN+sZOb+ot3TY8vN/VSlZkKkEq31u/r7Xq3odlUXLtPXY0lruoZy82a2ZcISu/p+2UgwhLn9s3/uU5pz4kqRC6Zx36sJu6g0x769xw7UMAEmUaK/0dlAr/sk6Jp9kJvwTxesNXKp9sz7m8dNITLPFnIXCugCYtxwM0Ub3mv3q58/uPDiVMdgnplnNS7nxWZNfe8AKhfq454PpSZwtN7Q779e1zmz6Ot6MSKsBgAAAAAAAMA/ZDyIBAAAAAAAADBxPIgEAAAAAAAAMHFjN5FIU31m6f53991Mi4npBxmV5n9jb/7372mshzjaU6ybb8k2nZ4er2lFZnsCzE5pX4MyNv0la9orLknM/06+15NSa8q8n+m/lJtekksr+nlr5vuZaun/3n9hbvh/72/aMdn+B6aVZCjNdxiZZ9up6Zc0MH0hst627gQ70qXPPyq1eqy9KvYt7JPaoK8X9YlHn5BaFLSnx5ktvS6fOL8x9O9+96xsc/qpM1K79+v3SS1rd6R2za4DUrtq316pxWZ+/JLp8xFX9XMtT+l2M0H7UF42tUdqx7/+kNTu+OKXpDZnJthzVwx/tqWNDdnm+BN6Ph88refz0JT2hJuZntN9njin+7hfe2kmsc6Pr3jN66SGi9/+3dNSi1O9PqZnd0ttbrYltTvv0+stNb3IQkfnm8WFhaF/N+s6FrqFzgWtlr5/u62/qf2Brkc2N3VcVsyPfhLrGqVuej92u7rfkydPSW15SftHr6xrP8gnzmjf24MHtLduf6TX5YnjOu/f+zWdu256+cukdsVl2lf3j/77/0dqxx95WGpXXn651BYXTP907EiZWaNkbo0d63b1mvnNNz1jS7PGTmO9n6iVw2v2Sqbvlbve75m+f+kazJvXuuOomJ77zZqZg81nTcxaLjM99939ZH9D+531etqbMjNZBMXovW1kG0KOxdw6h665ye6bU1xp6OdKdbmMHarh1h4mk6NqxqD7a7XCjOnMPDfoZzpmRo9l4Po8mr3GZm5xmRSxed7kxqDr1Wjfz+zXPZepmLnKvTYzfXoj812YFt0hSYbHuZtuB6YfZG5yWoJp6el+R7qmH2To6/xYmsyYcfEXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywGpPpEvp9bXo+yLSJZWJeXDfhKu65aLOmTVbjkUahrrFpmmrzT/cZilw7dg76prNpqqeqyNpSK02L0cS8tmkCJaqpaTbfMY2UTVPYxDQK7WYajNEdaQxbNcfhGmlXTOPn7W1tNJ+bZrezCxq8UTPdY4uBXjvYma65/jqpNSK9xlsVDYy6966vSe3AIQ02uOcxDTKoPHxCau/4v/8/h/69nuh1utXWcZqZ4JvOtoZCrJkQnv7eRanVpqa0Zqaq4ycfk9r9f7EstfXjT0lt4/HjUnvyvIZMbAad+y/bo+M83xo+L2e2NWgrqeq8d/fjus8Hp/W11YOHpBbm9Xx+/bR+1/0ZE1aj74Yd4IrDV0htanZeai60bt8+nVumF3UsfPUbGl7VzXUc7RkZ+z/2Sg1SOXl2RWrHn9BQqZ4JyssG+vs+1ZyTWsWMS9f1vShMaJ3por69peN3YAKu3Dpta10De3pzenzZyOf98l9/RvfZ07l6a03f/9oX6G/Q0tknpZYPdB3YNOERWTAN47Ej9Xrmuo91vRA3TWCUWWNnXTMGTVDEtAmgyraH91uatf7AjPt2V+eRrrmti6suXMYFSujxViId44m7Z+noPBfMPNfp6z1R4cIdSn1t4Y55tGbCZdxcGCL9DD0T2tE3r6009SRXp8w9cM3FXWAnqppQSxcO7EJdXOBKnJgxaEJY1jc1tG50PAwG5llN4gK5dJ+5GTN+vGkpMcE09gSYAKpaTe8x3JwxyFzNrAPMa2Oz33Jku8wG/ehnKAuTSmzOZzBrudDT36Wa+Q2q2GtsPPxFJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJG7u7ZGGa8Lqm4rlpxFmraYPkalVrhWsQXJrmmSPNSNOKNg5tJnq8mQvSMY1NeyasJjKff3tTm57Pzuix9LraSNk19mxMaxhHxfSLb3f0c2xv6z5qNX2/7e3hY241p2WbuKkhDoOBvn8a63FUGtrgv9fRhrW11pzut8JzcTxtttmSWiXWMVOJtWnuK25+udQ2TBDSbce/KbXP3HlMatX+8Gs3a6Z58cyM1BYT/QyZmW/Om6bi95w9K7VlMxdurmkAxKc/+xdS2zbN8WtmnhsE3a4wvxKJaUC/9NQ5qe1p7hr699X7j8g2kWmgv7ahQVgHj2gwzWv/yc9LbWZGz+dUXefCqulLjZ2p1dRwmTTVayYz64BKRdctL3j+86Q2P69zxEMPPiK15aXha39qWn979+3RMKt9e+ektr6h80Ovq2u0ngm7yDL9rFtbq1JbWtJxnyQmoNCsR1yYzoF9e6R29PKDut1+DQmaGZmHTzxwv2xz1113Sm17VT/DTEPn+Rtecq3UHnv0Uak9acKxKmaew85k8iZDZkJTGpH++PZMCEu9MAEmwdxj9XTst0dCYjJzW5iZOSMbaC1t6G9vZEIRzK1eKE1YjQtPKEp9vyIyAQ3u/rRw2+m5y808b0MgRrYrzPu7UIjM1LqxftbUBJ3GJug1MgFDjZYLG8NOFJm0liTR+cGFxOSZWRvkej8VmXuxngm+3d4efq3JuAmpeT7irvt+X48jM8+g3DiqmPcrzMTs9lGYv+GLg34Qd05s+I+5t3XBOdnI8bkQmtg8mHMBPi5cp1kxYcPm3ik127nvZ1w8+QEAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1VRMM1zXiLMwDZdNH+GQpqbZpWnY6cJktjrD+0hM49TW1JS+v/m0vc7AHIcecM2E62SRvrbT0wCbpm32qftwTVFL02TWPT2umuahiTnHzZFm0mmiDUvzXJu95iboZ25OwzgGuR5v3wTdVOodqSU1Dc7BzrRnek5qkbmeXUPyE0+ekNrXjmkITVjdNPvQzcqR4rQdzzo/9NzsWtVr/Gvnz0tt/XBTag8//JjUTm9pGEW9qedpT13H6r6qzpF7r9BAmIMvuFJql+7RQInFaQ3jmJof3u98Qz/XwDSkH5hGzVMmlCwzTa0rhfmtapt0gGCa42NHKhITWGC2c3NQ5BqXmybil1xyidT27tHAlVMjoU+PPnpcttnc0gC4+oyOrW5Pf7fbbRN2Z4L3Vlc3pNYfaK1S1c9fMc3h6w2dN8+boJuTJzT85djXTECYCb9pjgTtbW+3ZZsDBw5I7eUvf6nUbrnlF6RWmO/1zJkzUjv2Df29WV5ekhp2pn5P7x0ic4PiAtVMjkoYdPX9skxrpQmgisrh/fYHuk2vq3NGcPcmZv0fZzp2XTBPaUIxTNZFiMxta1LT9U0U6ZxWtPVexJ1Pd4/VNcfSHw2rMS8s3T2WCdSomnWlWd6GrK+vTcw53trSeyzsTP2+zgUVEzhZccFNbn1unhH0zWCtmqDiWmM4RKlnAmISsx5zo2E0LCqEEPpmzeOerVTNPVu1qnNLZJ4HFWZudcxLbchzbD5vHJvayHl3Ac8VEzjkzlNRmFAfE2DUNOu20rz2B8n+5C8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc2GE11dQ0MTUNMGeaVanVK6bRuOnYmVb0tb2+NhwezWVJE9OwtGuaudcbUisibWIamyCZIjLNOU0n0s62vl9uGpFOzehnzQbms1bNMZuEjvVNbUxcr2sj09bUyH5jbbrqmsrHpX6GdkcbwXd6Gp6RphrQMTNngmlMU1zsTFGhY8s1yA1mbLVmTDDL7l1Se/7efVI7V9NxeerM6aF/9zp6jbfNdR9aGh4xPaXX/RMbK1J7/P41qeVmuj54mQYv/OTNr5Dai45eLbUD0wt6fIvzUitaOh/UTFBZZObhrWh4jki72iw+MR3em6ZRc6Wr33+3r3NQNNDzVJiG2AVhNfg206S8NAFwUeJC9vT3uG6u3zw3jcXNuuro0eE5YnFRg6E2TEjV0prOI6dPa5CKC6HpTOu4nJnRcd/rrkqtva0112y+19Y1WWTm9F0LOgfVK3qOXbP5Wn040GrXLp3javUrpHb0ysukZpajYdeuRakdvGSv1K697vlS63YIj8DTCnPv5OaHgcmIGZiAgoEJjCoL8zto7mPykQCmzGxTm9KxFjI9jl5p7pN6JuXFfNbIhMxlJhQjbOt9Um1gAmHMsWz3dB2Qm/266IXcBHlkI9/jaBBHCCHUWvq6zroJ0jFzoTuy4E5nz0RFRGZD7EiZCVlzgXqFed4yMEG1kVnfuKBied4QQqjVhuelpG0CrsyF746jNHOhG4Pub+5yc7ydjgnWNWu0xAXnmL0WZp5zgXfutaWpjn5eF/rs1l55Xz+rmdFDmphw6K5eEy5EulHXMNFx8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAADw/2vvzmMuues73//qVJ392Z9+ene33V7AJjYmGBs8hDU3ZJKgIUqCxZ07c1FQNMqgUcQVE4XRncCMkGaiGTIoSkTQoAQyjESWCYTEIQQBnjATsA1esI2Xtt3d7r2ffTtb1am6f9hYOefzMT7YPs11P++XlD/6mzp1qupU/epX5YfvBwAAjB0vIgEAAAAAAACM3chhNeWyLlo1YS31xITQmAaYG6YBZsM0A26b5XrDTZJN48yyaWSeB23Y6ZquZiY0pW+aJmeZ1no9bURaqely3bZ+R33CNPs0oR0uYyEyATb9vjku8WAD+pLpfNw3TZOnTNP3zTVtej9d1+0tmd+/6xq308wdz4iqev2ay9w2+N49q+fq7ltukdobbn6D1DY2N6X28CMPD/x7eWlZlolNiMXcnG5HP9Pr/t577pXazMyM1K6+5hqp3XDD9VKbn9dgnmDCWiLTcLkfNLwqmAbvPfNjuIbL8VBz5cKEXvX7+knXXLttGj93zbZlqY4juRlHez1tTI0dygTTuFphrvPINAcvBV0uMcuZ01yamS8s6PW8sHuX1C4rDkjtyiOHpba4tCS1tdV1ra2tSW3SBFclZhbZbmmIVMWEFh48uE9qZroQEjPXrNV0W4bnfW4s3L1bw392LUxILSqZuVFfx4zhsI8QfIDRxOQLb+aOS0tsnjuCmcuUzN+K5C7os27GpSnzDNTWwId0bfCeX5jnsL4LKzX3VDenGA6nCCGEvtkOF34TVzR4wmSJhq4Jwds2ATapGVvimhnnzfwmMvOUMPS1HROoF8w4UjL3Avf7Vypm2+xvYYI+U/7OCE+rVc29x1wLmXlO6JlQl8K8b7DvUsxpub4xODfomes0Nu9qXHBV2YSLxokZ98xYlZZ0zMjNBsdmQlKYZxF3QPvm/Urhxs3IBCTbFz2D35G4+aiZjzRqekwmKu4dmX52s+vCasz3llz8zWgYqQAAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACM3ehhNaaXe980MY1ME8sk1oaiVfMKtJ9pUEJkGjMXQ309s55uR57rruW5CWKITINos22RCX5xjYnrddPM3Ry79rYGKkxNa8P01ByTfqaNTRd2aTDGxpYGb1Srg/uxvqZNo7td/c56XRu7zprvTLu6X1FJvyMq9NhFxcinIy5x29smzKpR1wVN+IkLgChMMTaD2uSkXoO3vmEw1CZN9fpw4Vi1mjaIznr62Te/6U0jrc8F4hSF7ldmti93YTWuIfuINTdIFsMDs6nZZUzzZh8uo/vVNgFXvZ5phO/CddyJgh0pN6e4Oz/cfMRdlyF3YQQm1MYslgylv7hrPDe1smkgPz83LbVd8zP6pSZqqtvVe/7ZV7xCaldfdURqF86fl1q7o9eqCwGsmoCKyYmm1JpNrc3Ozg78++DBy8wyekySimnS39PAHXdM3PhYqeg80PSjxw5VM/MM+6yjp1FIRgy6cUERfRMM0R0K3Syb6y9v6+cSE97ipgpVMy6lJZ3rt014XNfcy11AQ8eER6Qm4Kpa1c/a4dvMU7KSCZOZGNyP3ATumKlXSEr6pX2zoMnGCkniBhITxrFtvhg7knsuT829155Z5vrtmXcQNkXXhPcOz2dKZtDom2cYMzyGxIQCDgdkhhBCZEKUqyZcxbxuCZEZC+z0zjxO2LmhOcr2Ect8dvixqDBjcMls70TNhH6Z+0irZ97LmLE6N8E8HRPePCr+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0eVlPW4IVKWT+emCaWsWl2WTHNQzPTZLNR1SabvXSwg6/p+xtqZe0cWq2ahuSm6Wqjptvb6ehnK7Huw3Cj+RBCyFJt4tkxTY1ddEJuGsq2WhrkUWs0pDY/ow2xhwOB2h1dV9HTY9JZ0+CbZN40te5rt9dqVbfNvQPvd2mujKc9/L3HpLawMC+16ZkpqbnAmTjW69IFp5RMA998qAuxCywwq7JBDN22Xm8zMzNSc4E4rua4fbCBM8bwvj4Xt2/us+4Yj7LMqNvruO1wxy5z3fyxM5nT1I4P5rwsmTlPZO5vcazN0QsT2ibnb6Tns2vcHkzjdheAYNdn/pN0varbe/jQAanNDwXEhODHSHcNuoCORl1DyVyATdWEgQ1zv2Fugj1y02jf3TOqJmWxYrbNBQy5cEfsTHnJheeZuUfJ3PPN+Vt0zD3PPGOkZo5dHnqOicz9Mzenbu4GIVNrb+pY0HdzhYqZt+g3uPyLEDdMEJibQ7iwvNiM1WY8tGEZQ0mklZKOBV0TANHZ1t/VDBk2UKS/bZ47ayboqPzC51C4tMQlvYDdvbFvgmncOw0XTFOv6XyhbC6kYnhO4oJrTeixu55js5ybzLmnkMg9EybmwndzCFNrm/t7zwS4uPAft4FunjJ8qMwrqDDZ0HlRo6K/TWrmhuWyjl8VE5rjxqWSO3Yj4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIxdVIySJgAAAAAAAAAALwJ/EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBH5Qzp+/HiIoij85//8n1+ydd5xxx0hiqJwxx13vGTrBPDyx3gD4GJhvAFwsTDeALhYGG/+/2lHvIj89Kc/HaIoCt/+9rd/1JsyNp/73OfCj//4j4darRYWFhbC+973vrC0tPSj3ixgx2G8AXCx7ITxJoQQ/viP/zi84Q1vCM1mM8zMzIRbb701fO1rX/tRbxawozDeALhYdsJ4s9Ofp3bEi8hL3Sc+8Ynwnve8J8zNzYXf/u3fDr/yK78SPve5z4W3v/3todPp/Kg3D8AlhPEGwMX0kY98JLznPe8Jl112Wfjt3/7t8NGPfjTccMMN4fTp0z/qTQNwiWG8AXAx8DwVQvKj3gC8OL1eL/ybf/Nvwpve9Kbwla98JURRFEII4dZbbw3vfOc7w3/9r/81/Kt/9a9+xFsJ4FLAeAPgYvrWt74V/v2///fhYx/7WPjABz7wo94cAJcwxhsAFwPPU0/jLyKf0ev1wm/+5m+G1772tWF6ejo0m83wEz/xE+HrX//6c37mv/yX/xIOHz4c6vV6ePOb3xwefPBBWeaRRx4Jv/iLvxjm5uZCrVYLN910U/jiF7/4vNvTarXCI4888rx/nvvggw+GtbW1cNtttz17EocQws/93M+FiYmJ8LnPfe55vwvAxcV4A+BiebmONyGE8PGPfzzs3bs3/Nqv/VooiiJsbW0972cA/Ogw3gC4WF6u4w3PU0/jReQzNjY2wqc+9anwlre8JfzWb/1W+MhHPhIWFxfDO97xjnDffffJ8n/0R38Ufud3fie8//3vDx/60IfCgw8+GN72treF8+fPP7vMQw89FF7/+teHhx9+OPzGb/xG+NjHPhaazWZ417veFT7/+c//wO256667wrXXXht+93d/9wcu1+12Qwgh1Ot1+f/V6/Vw7733hjzPRzgCAC4WxhsAF8vLdbwJIYSvfvWr4XWve134nd/5nbCwsBAmJyfDvn37RvosgIuP8QbAxfJyHW94nnpGsQP84R/+YRFCKO6+++7nXCbLsqLb7Q7UVldXiz179hS//Mu//Gzt2LFjRQihqNfrxalTp56t33nnnUUIofjABz7wbO3tb397cf311xedTufZWp7nxa233lpcffXVz9a+/vWvFyGE4utf/7rUPvzhD//AfVtcXCyiKCre9773DdQfeeSRIoRQhBCKpaWlH7gOAC8dxhvGG+BiuZTHm5WVlSKEUMzPzxcTExPFf/pP/6n44z/+4+Knf/qnixBC8fu///s/8PMAXlqMNwAulkt5vOF56mn8ReQz4jgOlUolhBBCnudhZWUlZFkWbrrppnDPPffI8u9617vCgQMHnv33zTffHG655Zbw13/91yGEEFZWVsLXvva18O53vztsbm6GpaWlsLS0FJaXl8M73vGOcPTo0R/Y+Pgtb3lLKIoifOQjH/mB271r167w7ne/O3zmM58JH/vYx8KTTz4ZvvGNb4TbbrstlMvlEEII7Xb7hz0cAMaI8QbAxfJyHW++/z+LXF5eDp/61KfCBz/4wfDud7873H777eG6664LH/3oR3/YQwFgzBhvAFwsL9fxhuepp/Ei8h/4zGc+E2644YZQq9XC/Px8WFhYCLfffntYX1+XZa+++mqpXXPNNeH48eMhhBAef/zxUBRF+Lf/9t+GhYWFgf/78Ic/HEII4cKFCy/Jdn/yk58MP/MzPxM++MEPhiuvvDK86U1vCtdff3145zvfGUIIYWJi4iX5HgAvHcYbABfLy3G8+f7/ZKlcLodf/MVffLZeKpXCbbfdFk6dOhWeeuqpF/09AF5ajDcALpaX43gTAs9TIZCa/azPfvaz4b3vfW9417veFf71v/7XYffu3SGO4/Af/sN/CE888cQPvb7v/+/6P/jBD4Z3vOMddpmrrrrqRW3z901PT4e/+Iu/CE899VQ4fvx4OHz4cDh8+HC49dZbw8LCQpiZmXlJvgfAS4PxBsDF8nIdb77fJH5mZibEcTzw/9u9e3cIIYTV1dVw6NChF/1dAF4ajDcALpaX63gTAs9TIfAi8ll/9md/Fo4cORL+/M//fCC96Ptvv4cdPXpUao899li4/PLLQwghHDlyJITw9H9Z+8mf/MmXfoONQ4cOPXuDXFtbC9/5znfCL/zCL1yU7wYwOsYbABfLy3W8KZVK4cYbbwx333136PV6z/7Pr0II4cyZMyGEEBYWFsb2/QB+eIw3AC6Wl+t48w/t5Ocp/qfZz/j+f/0qiuLZ2p133hm++c1v2uW/8IUvDPQIuOuuu8Kdd94Z/vE//schhKf/69lb3vKW8MlPfjKcPXtWPr+4uPgDt2fU+Pfn8qEPfShkWRY+8IEPvKDPAxgfxhsAF8vLeby57bbbQr/fD5/5zGeerXU6nfDf//t/D9ddd13Yv3//864DwMXDeAPgYnk5jzfOTnue2lF/EfkHf/AH4W/+5m+k/mu/9mvh537u58Kf//mfh5//+Z8PP/uzPxuOHTsWfv/3fz9cd911zzYw/oeuuuqq8MY3vjH86q/+auh2u+HjH/94mJ+fD7/+67/+7DK/93u/F974xjeG66+/PvzKr/xKOHLkSDh//nz45je/GU6dOhXuv//+59zWu+66K7z1rW8NH/7wh5+34el//I//MTz44IPhlltuCUmShC984Qvhb//2b8NHP/rR8LrXvW70AwTgJcN4A+BiuVTHm3/xL/5F+NSnPhXe//73h8ceeywcOnQo/Lf/9t/CiRMnwl/+5V+OfoAAvGQYbwBcLJfqeMPz1A57EfmJT3zC1t/73veG9773veHcuXPhk5/8ZPjyl78crrvuuvDZz342/Omf/mm444475DP//J//81AqlcLHP/7xcOHChXDzzTeH3/3d3w379u17dpnrrrsufPvb3w7/7t/9u/DpT386LC8vh927d4fXvOY14Td/8zdfsv26/vrrw+c///nwxS9+MfT7/XDDDTeEP/mTPwm/9Eu/9JJ9B4AfDuMNgIvlUh1v6vV6+NrXvhZ+/dd/PfzBH/xB2N7eDjfeeGO4/fbbn7N/E4DxYrwBcLFcquMNz1MhRMU//FtWAAAAAAAAABgDekQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGLtk1AV/6xN/rx9OYqmVSu7dZmQqhVkuN+vT7yiXk6F/l80yWotjXVeS6PZWbE33oRJrLY71s24fqlXdvmpNf47YfEdhjlPI9Xtj81tEQ6vLC11Xnpua+7nMe+y8rwv20r7WupnUMvO9/8dP7HVfjEvc4//v/yO1ItbrI+3ruRWb5bK+nlvulI7MWNXOB8/Vmde9VpapXv4qqS2d2pLaicUlqa209FroJlNS6zX3SS2Z1Vqt0ZBaVOgxiXIdl0Kux/PMiYektrZ6VmoT0xNSK1cGx4jpKV2mUatJbX5O939uRverUdV9aJb1N2xUzL2q35PagQPTUsOlb3q+KrWir/e3Xluv1ZIZM9zoUq7oNVitVqTW7g6el+7+WTbzETe/yd24F5maGQz75l7u7vl2LhdpLTbzoDwznzXzFjfncXOjKB5cX17osXObW/R1XbmZ9ETDE6gQwtRE83m3I4QQtrY6Wtvs6sbgkrd7Qe8zhRlGummqy5kT2M31q+YZyNVKpcEv7ps5QN/MswozaESRbkfZzMdK7ho0+x+VtNjPzLaYY+KuVfd84p7Z3H64Y5Blg/eDuKT7Wi7rGF+t6f2mVtV5UOTGQjMuud8iN9v7wCNHpYZL35/drbWipPNf82Yh5JGev5E530qFmRuZ5frmvv1CufPezWXMUGBnbWba8hzPiReBGRBLMi6NtiWR2TH/Sfuix6xQ53KF2d5f0Edli7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fV2AATE5DiOmD6Vu6uK+hoATbDTcR9c1IXGuOaErutMw2CTeP6PGjDTttc2KwvLcxnM7PN5rPlWJvHxqapsw+dGTp2pjttZho6Z6bxsQu6yTKt9XraxDbtmcbPZnuxM0VVDQAomeABE7diz9/ELJmYcAdzGYV46NqvmWbhNd3ccOjaBa1drbXtVQ0xOLe0KbXTa+eltnT6tNTa1UmpTc4elFpzcrfU8oqOLY26NlYPtcNS6sS6XLM+eE3vnteG7LNNPXhTk7pcOdHj3qjo+DhVNg3pcw2FyLp6jEMgrGYnciFVfRP0YgMQzH3LBdO44IVRwuLMVMZ+LjK5LK77vA+FMHMP0+DczrVcaJ0JvMjNxkQuwMaFMbi5jJ1DysYpF0xj5nd2amgOcq+rY0utaRr8u5sL8Ax3drg5int2ssExdn0mOGbovLRxBW6ub+ZZNqzUXEg2ZMJ8rX0+M9fRcGjM04uN9rw36nOheQQyQT8mhLOjgUNppnO+Xq9t1u8CVk04q6m58DLsTJFJh3KBM/mWhlBWIxOY1dwjtX7QIMoo0vO8JO8+Xvh90UerjJo4Y8Lu3NzIvpcakVvhiOvzATtDnx0xXccFCro5r30vZ7l3NaO9S3P4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWE2no01Hk0Q/7hrk+mbA5ktcA3bbNHiwa7BrFu+aIVdMA3kX8pKZJse2ZvY1Sk0z5ERr5Uy3pWuOp+s8GpvjmbhG6OYYDDfgz10wjQmcyUzz+b75vfrZaOsrctMoldfieMZSQxsfl7Ke1MqFNgevmnOw4hr4mvCbwtTK7cHv7d17VJbp9XU7Kge1oXOzPiu1mVldbs9eDbX5sVTH4JWVZamdWtyS2lNn75Ha6hkdb6r7DklttmECuLKG1DolDZ0pD322VNLjFHL9XUPfjK2mMXOU6z7kkTZu75pG8JtrGlazX7cEO0Acu0A5PVdjE/aQmwCTzATd9M08JTUhC8MNw4cDEZ5ZSL/TrCspmTmFSatx8wAXZGeN2GvezclC5NJ09HhOTmgQVq2u+9bqDI4l3dT8DmY73NTDba4P99Nit2fGNLJq8IzChlTZlIFRV6gfNc9O5cSF3wyKzUS8ZB8V9TotuYAUs1tuORdm1XehV+bYuVAXmzVltmX4eTIEf+27AC55tjXjWeF+V3NQ0tSMGUanq3OZ2Ox/OdHALOxMJZ0Sh6Kr5/P66e9KbS4cl9rk4Zuk1mpqreeCleRrfZzxC+bS+Ebkxgf/smrUFZrayNtnwnSGa3ZVox3PUXfLZuuYOWnxIo47r34AAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTWuEbrjgmNc02TXKNP1ZHdBN8PSNB3pO/smUCKyYTD6HWUXatPrSu38hdNSq9a1afC+ffukNjExpV9sGoW6QKDhBvdPc03pB/9t+jSHvG/21TTu75um8pF5t52bYBqbTPMi+tPi0vJUVYNPQtDzvrOxIbUZ0113KtZzsGYaKdfKeq3G0eAwmS1pQExy/7Zu25PHpdYvawhPODin3zm9S2rVWR0z9h++QmoHrtZx6dDRR6X2+He+J7WNhzWIZznXYJrK5GVSm2xowM5EbbCWFBo64Y3WfL8wtW6uY8tmW8cvtxx2ptiEOIRIz5ksNXMId166xt3ulueCF4bGqrIJscvMjdtmIrim4iaYxgVlSGP0p4vKhb+Y763V9NrvdDWAK451fQvzOgYVJT0GraEG/G6eWauZQEFdLLid7fbM3MsGB7kQHtJq8LTIhcuYe15ulnOhT5EJ03QBJu75bPheW7hlRstbsc9YiZlnuW0bDtIM4TnGIMcdJ7ucufbdg6fhn2MHa4XbB7N69wznwnAi8/zrvsMF7oRc54HYoSJ9R1L09d67tXJcao3kmNSmNmakVk+u0e8t63LR0Kkf2fviS3yvHPHdghuDR/6KUT864q7ZsW/oWI2aVeMOsRvPRg26cc9dLwZPYgAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGbuSwGtfM3DXIdc2QS6YxsQuEcZkmL5Rr6Oy2o1w2gS65NnY9v3RGag89cK/UHj+qARDXvvIVUkvCa6U2/4rrdPsSbfBeRLpvbfNbmJ70IanUBv4dm1PA9T0OJqsoMj2t3XkSgi6YpebccRuMHamy/4jU2hsaCNONN6V2xgQgnO33pFbqazPvqGUafG8NBuJc1t+SRS7rmPHRBGBsb+p2FGsn9StNYFQ8tVtq7Su0QfTkgXmttdeldl2i+5o19UJfy3V/T28/KLUzK2acTwfDdJKqjnFFXYN5MtNdOTJN2kNXj2ffhIhF5vcvUpq542lZT88tkyNj2WAa1zDcrNCFTAw3KXd9wX2TchMyN2IARLlsAnHMPdp/r459tZoJqDB5QLW6fm+9bALvCr1W2y0d5yvJ4BaWzBa772yYQMFO18xR1nUccVMeFx7YM0FH2Jli8wCUm4l34Z6xzPrKZq5RKes1WJiTdfhcdQGh7i9W3POfC9FKEr227FNCpp91QTIVs75+ps9sqQlYjcwzoB2D7fj9/CFBo4SrPhcXTOTmPC4Uo2LG78QFsGFH6m2ZZ6c1Dd3sbGv452ZDT7hd5rxM2qekVm1MSi0dun5jG8hlXkK4oKnIvMJy6zNzFDebKeyLDvcVbt6mSmZssd/r5hDuHdZQqWJ2341dqXm34uatNrgrci+ETLDaiwgY4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIzdyGE1rnGmD6YZrfGvC45JEv1s2TRcjmSFum1x7Jr3aq3XbUntsaP3S+3Rh++R2plTT+i25dpU/fLLbpVao6rHbqrp9l+PU6enDVWXNtektrmtzdxr1YmBf1fKE7JMpdLQ7ajo71A2jVi7XW0a3e/r9hamAWpqmlVjZ3rDLa+XWtucz92Onm8bHV1uY1MDV1rra1rb0vCbk/d8Y+DfB1r6nUVFr4VjUglhzTRan8302go93Y6plXNSa2e6X9npOaklfd3mWq4NrJPENKauN6U2Eeu1us+MfY+eGgy1OdFtyzKHXv0TUotDXWpZWcfMqmnSPtHUz3bqGjKR6mmCHaqzbcKMXGDSqCt03cfNPMXNq/pD85uyC1gwOQR55tLjzHws1u9MTEBMZsIegmlmXjfhL2WzPhez0TCfjc1x6pugn3pNg/wmaoPja6ut49RmS8cg93N12macN8u5OVq3Zxa0QX7YiWJzTbugFxvq4tIk41Gek0IomdpwJYpNmII5d2PzPFWY8aYwz4mZW585JnnuQjhd6JPbV12fCyBLc7e+0cJZ9Xn3+cOAQniOgCszuMQu4cvshI3icMET2JFWzLNDlOq7j5IJx61WTOBMV6+ZfqSBvsmcho7m8eB3uPt9d9tsm5sHVfVdhbsa3LjnxozI/G2eu47cOJeb+dL2pob/uBCpak2fC8sVs79DDy2by/q7ttr6XDe/64B+Z2NWai4ktLCz3hcxNzb4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM1ztMPVFZoGxokLjjENvitlbdjZqGsz0njo9Wlsmn+avqbh9KnHpPY//+4OqZ04cUJqRWaSDUyP4wmzvdPTM1Kr1bUprOk3HWp1PcZprk3U46BBEVlbAy9WNwabwNZMiEO1qjsWm1CIkmlqnaYuhEbXl3b1e7up7hd2pt3TGpBSNGtSy02H3NQ0JO9npvm4WdD0VQ+PVga/JLrrf8syNXONz15xWGrdSMOhllaXpZa11qXWdgFPke7Xnrp+x3RDx9bN9SWp5WbMaG3o2HJ+dVFq+8s69hVbg42TH157UJZZuO4mqTUSbZBdqut/N6uaMLNKRc+dTltDfSpVPSbYmdx175pvu8bdJXNd2t7ophF4yTVCH76mbcCEC2Iw22ECECpmjhYKE8RgxhYXQlM316XLWHD/3TsyATaFP3j6Hea3aLUH5xqb27r+dkf3tWcCAKtVPU71htbabTMRNL912cxvsTO54AV3zriQmNwFBZhrxn02Ndd5eWg8SEzIS9c8c7jMHDdq5mYM8vEHWu2bCZ4LSY1NSKoLG7PjvPlzHHfssr6ZL6aD174LxXBjfIh0XTZcxozpsdngwgTYuHAd7EwTsybAcdtc0yUTTNPT+X/HBII26jpuxOYdQT507ptFQrWsxVpV19+3oXjKXLohpHqNb62tSG1tbVVqbROCt3ha3xudO3VKavO7F6S2d/eM1A4e0OUevOfOgX8/8ch3ZZmeeY8yv/eQ1G59y09J7cCRa6VWlPRdVWZf1bzwMD7+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVhObBsY2hMYkrrgAG9fA1/Uoz02T5MpQJ/TWlgYsPPjgvVK7+86vSG11XUMhYhN2UIp0v1xzeJPLElwGS6+n3VNX13RbNjY39MPmONVMmMxkQ8M9FpcGQxuSpgkcirXpaK+rDWt7PQ2cycwBcL9/2XSzL5V+iOwkXNpMg/PCNN/um0CFYBqN1xJz/brxq6JNnaP64HV097nzssxB0w253df1F5VZqV138yuktm7Gkdv/VkNyFs9q0M37/ulrpHb5a18lta1VbcJcmOv8rr/6K6l9/q++KrWff+tPSu1CZ/C3OPLqG2SZclNDHFwD67Jp8N82Y1W1pL9FYvq2l1LXMh87kQtKsDdaF7xgGqbHw4l6IYS+aY5eMsvlQyl4kZlnFGa8sU3fa3ptzc3pGJfnJlCu5wLqzD4kui0lEx7hIyp0OffZfmrmGma5za3BJvpb7dGCfkxv/FCtaZP2ra2W1DpmLldO9LMvopc7LjGZmcu4wJnIJqm4EBITxmeWc+tLs8Hzt9vTIIqumeu70JjCjI+OC26KzTNB7sJ6TPCEDasxx6QwxySOzHOHGZfd8NUfet5xv6G98N3Paj7pAmciN9C7+4HbB+xIU3UNoSnMfSsxzyf9SOcGzTkNUqk2pvU7SiZkrhh8IWJylkLU1+eQzcULUltr6badPn1Oaisr+m6l12rrchc0cGZjQ5+TstSMo21drmrmAbX4Oqnd9+T9Unusqtf5dHNw7lY2qTGpCRJ6/MFvS23tqaNS+7HrXyu1K173j6S25+CVUiuX9X2Tn/MpRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clO+xPTgiE0/DFsz64uCNgaIStoPo5fq/47/1MmzA/++5+67ZJkzJ49LrR5rP4HpWkNqnVz3ITXbm5v+B5HpO1evTUgtFHpUUtOzIaro+lzfkPa29lQ4fkz7HRw7fnLg39Ozu2SZvfsOSG1iYkpqienpaNplhfb2mtTSnvY22GqZfphBexbg0pdlrv+QLpeahkGJ66ET9NqPTG+gvulNcuLcYM+RBzb0PF2ZNteH6T97YK/2YJman5dalunOntvQXrhT+/Vare7fJ7VPffF23ZYDl0stNd/bmtovtct//K1Su1Cdk1o/HTye10zqvjbNONo040jVnABprL9/v6zjo+1JzH+HwzN8ZzNzP3b9mc0cwvVZi8y5mpn+j836YD/byab2GWq3Tc/Eqs4pKlXTG7fQe6+be1Vqo/XxLkwfIHdtJaZPb6+n43Jujkm1qn0tN7f0GLR7w5/VY+L62KWmJ+/Wlt4Lul1znKraGylLzXzR9HHDzuT6K7r+gkninhNMb3rT49WNLe4+2OsMXkdubm7PXdvTUmu5eV5JzfXhesnbSZ/73uD21fSfNT0yh/s8PvPF5nu1Ntzr0v1emenj5vYhN/ebwjTQS0wvTTemZanrJYqdqJRqb2Pt0hpCo6bnVm9L5zK9rvZDLPX1PUcysSi1+q5DA//OzPuW1aU1qf31n35Gak89dVxq7j1KtarbVjd5AJ32itSKQseHcllzROKePhfW6/p+ZbKh37t2Tn+f3IwRC4f3DPy7s67rmpzU+ehEWX/X/qOPSm17aUlqX39Y81b2vuZmqb3u1rdJLVx5hdYMnsQAAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTU10+zS9CgPsWka7AJsokgbgG6ua6PQY8eflNrDDz0w8O/epoY4LExqE89aSZu+n19Zk5pr/FuYAIws0n3tm0NaKmlbWNOrOqyt6X50u9oo9vz5c1I7d1abwh4/oWE15y6cH/h3XNbtnZmdkVqjps1ZZyanpdZs6nLLK/q7njur+3D23GmpfeQ3/k+p4dK33dbzfnVZz6Pbv/w3Urv22qul9oZbtLnuk8ePSW1pTQNmLgyFzkwc1ga8Z834EJc1nOGKV10jtcr8gtR6Z/Ra+Ge3/YzUrr7cNAM2oVymz3potzQI7PSZC1I7OKEBM6+88U1SO3f+jNTqm4PBYptf+aYss3H0lNS2Lzsktd1zuh2Ny7UW79HaZmtLapE7KNiRIhNOUJhabMII+ibpxM2DpqdNe/i+/rfgRm1wudjMlQqzKtOjPRRBA126WgolM70rm3CZwgQqxCVdrmRqva6GNpRM8EKzqvO0Vkc/u7ppdiQaXF/JzNEKM2/t97XYb+u+VkyD+9gEFKY9HVuB73OBI5kJdTFZJTbAxIUtdcyF7kJdhkNN4ki3zYWwlNyg4UJezDjiAjdtYph5dixyEzZlwnpic4zLiY63LmzLPQMG873Df8rjxky3r30TJGRydEJkiu4eVJgHSnecsDOl62e11tPzvtU+L7XN5ZNSmzTBeHvndVIStUwQZ3cwsLMxMSPLLHY1vGXxjG5HNdJAud27NTTz6iv0eeLIkSNSW17S55/jx56Q2snTulzbBPgUub4jcfPKfXv3SO2VV+tzYWkoVHD6Bn3W7ZtwrKPful9qm+t6jCdaWps8qNvx+BMPSO2OZT0mP3vLh6Tm8BeRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMZu5LCaqQltRFoq6XvMJNFVtkwDzLOnn5Lao088KLUTZrl4qGF6s6bfOdeoSa3INAAjdh2STePjwjVNLrThcG5qa2vaxHRjU0MxNjfXpNZu67Hb2NiQ2vamhjFMTE5KLRSDjUxPm+N74qTuf6nQ37psmlpXKtpo3jW6zk0z6I2NNalhZ6rW9PptTkxI7RXXvkJq0yZsKa7o+h49dlxqf/v1O6QWDTUbv+cBbfx7ZnVbanv2aDPkYyYAIcu04fJf/+XnpTY/1ZDazM+/S2rf+NZdUiuV9bp0oRANE0pWruuxO3F6WWpFUxszL5QHx7493z4qy6x8T0O1Th/QJtdnOzq2zlyhTZ6rB7WWXrZbape/Ws8d7Ewlk2CSm3u+6/8fpXr97l0w90FzDbbbJmQhGaxlfW0+npuciDg2wQauph8NvVSvrV5qgmnK7jt0/tXr6X6lJrRhuqFjWtuE2pw7r0F+udmTOBrc5oppql+uaKDE5qb+hkVhgolMeEjecaEgIwZgYEeKbIDnaOeMPY3M/NwF3eQmJGWYe4ZzATklE/rkwlXc+rJMx4eyCfczhyS0O/ocl6U6Zrg01cKM8+Yr7G9RMkE0ydD46o6vP+b6I+bm5uKesd32usAddzyxM514/CGpdQu9LhcXNXCkWdV7dKej7zS6uQmYOatBlGFj6B5d0wC4U0cfkdqBPXt1XWZOVZgkv4P7Nazm1jdogGmnrfOMKP9HUvvCF2+X2j336XPhwsIuXV+kY2mjodfqK48ckFoyFLaVlPQ37Kzps9ljX/k7qRUT+n5ofWtJaq8286Abbnm91I6/iPc3/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOazm8CFtutlutaW2vKyNMs+cPqa1M9rEdGtdA1wqJjyhXh1sbtowTdXnTVBLL9PdTVa16WrItPGxa2ZfMg2ci742YV5d1Qag1Zo2VJ2a0jCOffsXpHbq5EmpXTirtVpNj11tqHl7s2GavUZacx2ys1T3NUr0mPRMs/3UNJfOC10fdqbUNPhOKnrN7NqtwST79u2TWlTWz9anZ6RWmLClmdnBsSQ5qdfpgUiDWn76re+U2hPdNam1trVB8rEzp6X2zXvOSO01N2nD5c/8iQbdTE7NSO31t+jY9/WvfVVq7/2nvyy1xm4Nk5nfNSu1w0Pj4d5HdNyP6vrfw87WdXzomLCxekvvGc1H9bML11wttYmm/o7YmXLT7D8ygQJ10///wLzONZpNnWucWdTrvJfr/bI83Gy9pPdxN/ewMQZ9E4oQuVAEF8zjAhV0XE5NeETJfEfdhcSs6WdXNzR4Lzf/zdwFWURD31ur6XjeNUE6NgDEHU4zN0xiF5pjwkPC8weFAP9Q3wQ8uQCTcqLzGxdgE8x4Ew+tz57jZR3PXGiKHR/M85kTx2YMNvtqSiEy45cbHwoTCJObY+I+WzHHIB9Kr+r1NLgqNcfT7pcJFrNjnAuwMSGpLocVO9O37/2m1Eru9U+qJ83UjIZVZps6lwmRPp+c3dL5+bELg8E5UcXE55l5fb6xIrWtVOcUaxt6LVx1+KDUHjt2Xmr/6xtfk9psXY/TVVdcKbUL5xel1jdjWrdjAnEinQd1u/p+regPXvtxuSnLbG/oujZaWkvNs25xxRVSW3n8Cantu+46qV39uuulNir+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlM3+SWPH9UmlhcuXJBat7MttV1zGu7QautyqWnwXR8KeqkFEy6TadPVNNVGwrEJw4naulxkmhzHphlwbr6j3tBG0j/2Y9rsM830s1nWldqxY49J7cSJo1JrdzakFg+Fdgw3qg4hhFJimjKb5vglc+xqNW1s6xpEd01T5645dtiZ2p2W1JYXNfTpD//os1L72Z96h9Te/La3SO27jz4qtY7pq540BsOxzOURZk2gRN/0j9+8oAExM1MapBI39DpKgjZmbpTrUqtWNISln+tGtzp6vW20dAxuVnVH4qpui2tg/Z3lwQbW+xP9XffOa+DQgUkzjuzR5eJY92uibULJTNP3hP8Oh2fkJuzABdPsm9frrVHXa395Xa+tVqYhKc2GfkkpDK6vMKkD1US/M8t0rhSZAITCJCCkPRc4Y0JyInO9meC9tplDrSzrtd/u6DEpV/V7TZ5ECCYQJxrat1ZLt6NnwmpCMA3zR+RCfUrmGJMdge/rmzlxu6PPMd2eCe1LXFiJ+RJz0bjzsloeHIP6JnAmNoFMuQnSceE6Tsmszz0TOO55wj3HFOa6LKLRgmkcN74OHyu3bS5XrJ+bca9k7gVmvI3MfkUmOsg972JnOndWQyLr5ppp1Oaktm6myVupzvUnpk148bqe55X5/QP/vuHm1+jnjus7jlMP3Ce1QzMaTNp+VIM+6019nlha0Wex+x/QZ8J6pNfR/r17pebGw81tDW9e39TjNDOh2xdyPfB5MThunjPBfg+dfEpqqXnf1jDv5S5s6voaVR3Als4dl9prD+tz96h4EgMAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiOH1SyaoIjTp7UpaFLWxuVTs9oA1TVSjs64Rsfa7HS4ga/p3RySQtc1WdFmwPWKNk0uIm0anZt3tq5BdG6aEJu+8qHsNrowzUn72oTY9Vbu9DXUZn17XWoLuwebu5bN7xDHepw6PV2/6ZlsGz/3TbfmItcFSyWT7oEdaXpSA1fqJjTlX77/V6UWpXpi9lNzXZoracKMX0snzg78u7WojZpnk3mpnT9zTGrpioZ5tdsaFLF+clFqM4Vumwt4ys1448ItGmVNINs7sUtqtUi/t9XVMTJqaRPm0xfODfy7FzSw4vJrD0ltwTVqTkxDZxOoUZ3UWntbGzMXqY5p2KFKOmZMNPQ8mjThMqcvaIPvJdOkfXJa11c3gW95Oni/LJV1muZCJ8ylEHJzf+8HrdVrGsLT6+ox2drQa2Z7U8egjhkf0r4JdamYKaiZGxU9XV/FBF6EaPCz3dZowTRuTuVCgp5jQZGb0AoXKIGdqdXSe/6WmQdELkzSPIu4vygpmQAuFzozHPAUu+A9E9SSmXAGFx5XLuuY6farcM+EZpwrmeQ599xh12f2zW2fGzezVMegJBn8rL3GU61lfTMu2ecps/+R+bVdCI978MSOFJt3C90tna/3+xqukqQ6Z6/Geu2vtXRusNXTZ4wrrrlq4N/7rjwiy1w4rYEr503QZ7ur124Sm+e6Cd2OJNELLjHXzK45fSYqJfpM1DFzFDdP295ekVo10ufd5Q097mcuDL6HO39e38udOXVCaq2e7uuUed1SXDABNlM6ptef+J7U9v7d30vt8BXX6JcY/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOaxmc1MbZxamAWpswh4K00U962tjz05HG2WmmTZA7XQHG6XOVJuyzMzsjNS6PV1/o6VNTPMVbcSqrYBDiAqbzCKlwjQmdo2UE9NIOSS6fVMTU1KrVHS5TleP3bWvvHbg31mm27GyrE1hN13Yg2mQnJnQHBfqU23qb5Z23FHGTrS5pkFLvZ6GInz1y1+R2lVHrpJazQTdxB1d30xJh8St/uB1ed31r5Vl5huTUjM5WGH/wT26XEvDLm644oDU9kzMSO3AVENqb7vxWqk1q9oM+fpXaCPhy0yATbOu37Fi7gdTiQkDG/63abQ+PTUttcXTGupTM+lYSUUDbIqSjt8NE7YV53oPws5UjvXeM9MwcwNzi1rfMvdyEwoxWdcxqNfVuUFn6D5Ya+g1UzMBNhVz7XbN/Klu5mhb27odKys6LkWmEXxS0fWVNfsmlExonenvHtJUr18z1QixGUtSCdUYNbDBTFJsbcS1uSQ/wmrwLBeU4B7HdDkXOFMy4S9luz4VDYXa5CaYxoW3uDGuVtP7sQuwGf3aMs9TJo3PXW+5CdNxx8mF87jQmcwEpyZD++a2w/2uuRkLHRcSlLvjaQ5nYQKzsDOVzHN+P9fnH5es293WOcTsnlmp1eo6j483dX0rTx0f+Pfpuj43VDo6MXjFYX2u6/b1et49q88rRw4f1u3Y0KCX2Rn97PwuDVve2NbAUhfoW2/o+oI57q2Wvl/51n0PSu3J46cG/j1l8p0rq/rsPD+hz38hMe/Dyno8e2saanRu9ZTUHvzcn0jt1v/7vfq9Bn8RCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rydKO1DpdDSxIXQPUkjb+XVteltrmhjYAbfX0O/rZYHP0lb6uP++dkVq7rc3Xl9rasLNvGhUXLpjGNAN2DYLPnTtn1qfL9U1zZRfQsbm+IbUj+zTcYn1Tj+f60srAvxuTGrLhVGvaCD8q6T6029pkNjOHbsKE1aybJqvYoXJtDG5yEkKtrI2Om6ZB8D133S21xx/QZsBz0zNSmxw6pbsr2ry3UtPz/g1zGkyzu6bBDq37HpDaP811aJ7Y1GbIxV9rWM8/uaDXfTXo+B2Wvi2lPaZx+7nGSf3srt26LenzN3OPlkyT5zsfldrG2fNSqzQ1pCub0N86Ns2vXc/otVX9fULQoB9c+hZmNF2l2dDa4orOF3ITULcwr6EN5tIPWy39b8HFULhBZDNOzJzHZBPUaroPW1s6Vq0smzHDXEdVE5zjghfS1GyMCZmII53zpCbcb7Kh84XEBE+0pem7C6sxQRHmGMex+W3cbpnfP/I/GvA0c3pMTuk53u3oPd8Fk7hwFRcSk6b6PFEauueXTfhUZEJT3DneNQGZIWjNhca49RUu1MVchG45F1aTJLpv7ZbOjdJUx0gXElQZOlZ5rt8Z24AcrWVmzlu45TJdzh8TwmrwtIPmmt6/e7/U2pM6x04TnTy/6lVXS23vwUNSe12kISmNoXnF7NyMLDNjAjfrVRPIa0JtilzHkYXd+h1nz+p4+55f+nmp7d+3V2qnTj8ltYnv6lzLXoJmjGi39Jly1YQGl4rBz6bmHU96+rTUZmc0XMgFGU41dR/WuvrerNjUfegvaoDNqPiLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjN3JYzZNPaqDA+XMaYuAajfdNx86tNW2y6UJYeqaZ+XBT343VFVkmNs2VbRiMVEIIiTZpjzLTkNz0Uc5zUzSaJqxluPFxCL6p8+GDGkxzw5VXSM0F3ey5bLChbHNWm5humMapd959p9T+1zfukFpqGqD2zW9x5eXXSC3r2l8DO9CuuTmpuWvrvf/s/5JaFOv1+xd/+j+kduyRx6T2RNBzNfQGr/3Ns0uyyH6TpPNTB1+l25Zp+FbR0mCtqZ5eR9W2GdPq2ki6qsNoqNV0vOnNayPpkgmoiKb0O5K9C1LLTAhEOtQcvlfWhtPZtDbIru3fJbVwQMNlKvPTUouOarPmiml0HRIXZIGdqFnRc2FxTe+D51f1HtWo6D26UnZhMnp9JCYQZfi/D0eRzj2y3IwPZb3GN7d0ucUVHSAmTFhPKdbvTfvaHL5vpjxppkXXuL1vEnZcSEwp1vX1evrZvBia0pZGm4+5AJDhEI+nt0OX65p5SxTp1NoFGWJn6puxoGxqdRMSWZhry4XfuJO6ZAJXhq+3KDLjmRkfXWiKDasx2+bCdVwqV2GCHSomoDAx9/KS+Y5Kotdlz2yzC/WpVXW+NLwtmQlm7Zt9CDqM2rCepKzbW4p0X92zbcneW7ATvWbP5VK74sgRqW0c0GCW2oLOxaeaOu+enND5xxWX75Pa3PTgdeTecTxHQt9IXEjTmTMapLJ3nwZu7t+vAT4TE3rdz5nnji996UtSW17Sd1OjBhU3q3pcDl41+P6ms6KBNoUL8DRjdcXcCxJz3PuTOjec3NZjl5Zf+PsbRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM23vvl3Umt3OlLLTY9R15g5Mgv2utpQsyjru9LeUGPP3DRQT0zD5dw0Enb9wwsTuFM2XcoL00DdNR2dn5+X2pVXXik11+i5XjdN5M3xfPz++3T7TLjHrvnBxrPze7U57bbZjrvu/KbULpw/K7V+rr9F2tNjUjZNo3fv0uMEPMuc93mq12pc0mbmC/MarrLfnPunFrWp8WZ5cJyr7q3JMs3Vbd22J5+U2uT8pNQ6pjF6NqljVWzGlnxRmyH3Zg7q+qa0kXQ/0e/ITBf186eOSW1jnx7PXZN6/ZZ3DY43e268UZapXXOVbseMNlz+0oP3SG39gu7D3uPawPltb7xZalO7teEydqa1LT3vV9c1rKZe00C5hWkThGQCZtKOjlVOPDx36ZsQg5quf7ulY9DSBQ3Hak7p+FWYsbWXmnAsM1/KUhMaY4P8dH2FyXEoCp27bW3qnCQ3xyUEHfv1C0yQjgm2SM29pWS2t2QavLtQGxfaiB3KjA/93JxvJnivXNYxKLaBD1pKTEDBMBfU4kKleqmOmTXzvFIzQXFb2zpWuXBNF0zjQj1zMzdyQS+xmfNMmnCHiabuR9Xshzxmulwac5zcvlbruv6yC051z6yMLfgB2mf0OeH4ZVdL7amTF6SWnzivtVTPy2uO6HPHFYc1YHI4MMueu/Z0dkW94JZXNEx0a3tNavPzGtRbrepzkgtJdcFSLoyu3dZ5S6Wi869aTY/nrTe/VmqzM4PBOR0TlNfb1Hnr6ta61NY21qS2vqrLdVsmBHFZl+tXR5h7PQf+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOl2vR8eUmbmKamIXlkGiQnpgmzS7qpFNqYOJQGm4dGpmFp5rqlF+Y7C/1O1ww4uGbQwYRnBBO4Y5qxbptmzZ2ONhntm/3obG9JLXPN8U3z6+Mnjg/8uzap4Rnu2LVNI/zINI+NTCP4ktm2wmyba5gPPCvScaSb6jmzurwotekFDaaZ3XdIascXT0qtMtSR/PJDV8gyV+Qa3DR5UrejbK63pKtNynuby1ILuS6X7T0stUd3aYPofkMbst/4Y7ofC9O6fesPPyy182dPS23X7JzU5idnBv/d01tO3/xerWBCfcx4e3p1Q2oTM9pcOTqwT2ppn/8Oh6etb7tgFh1vppp6/k5O6HI9My6VzHTLTSviZLDoQk4yM29ZWtR5QXNSG6NHJrSvm2mggsldCGnmUmhc43YTDOhu76bBe2H2zX20kpiJWjS4ZC8z6zcpHpH5Tsc1pDe5iDYo0C2Hnck9E7j5b2aCTipVfSYqxXpyueBM9zwx/B2RO1FNOIO7YqomSGbSzHnc9RGbcWluTucU3baGpG52dR5QMutzf3vTNME0JZM25UJ8Wq3B5+Jepsd8c0vH5cKMaA0TmmNzPPpmbHFjmvnNsENdrs8ER9v6TmdlWYMe3XiQmkDQ+Tm9jvpuviDrH/U8NfMME2w3OTEhtU5H99Wtz22LqzXM89TExJTUqlUNdWk29fnEhVc9fkzDTjudwfcwm1v6XmbLjDdb2ya0sKZzw5J5xl7d2tTPzs1IrW6ei0fF1AgAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlOKtAlvnnel1jIhLK7ZelLWZqfVijbPzDTTJPSzwcaeeaELJYlpDB9pM9UoaHPOzDRu75p+qrkLiOnqZ48fPy616elpqVWrGkaRprpv29vaPDQxDZdrsTaJrk8MNkpNYj1O3a42Nu11tEF03jc/jmnC7MJq2i1tqNra1rAe7FDuenMhC6mOS0um4XJc1rElntBG6Ksbel7O1AevmQOveo0sM93Qa62Xa0Pj9SMHpFap63LTM3odTe4+IrX7Wjre/I+7vy21uKvX6iuv2C81FyhRn5qXmmu4XATdltbiYOjO0Qce1c/t0mO3ekjDZcqJNsKvJzrulffv1u2Y1/G2dXZFatdde6XUcOlzISzVRP87baOq90sX/hJMkFu9pvf33IS2Zf2he21Jv/PCBf1cXNE5VSnRbVtd0zlaUtF5UN8EuGR9F1phmsj3XeKfC7XRpWyQQ1W37/ABbQ6fDw1gJ09riEU7db/XaDW3rza00Mx5Yxt4iJ2oZAIgSiZ4oRzrPa9WM6EQJiS0Z4JunOFzNTHjWdmNLWa53ATkdNs6r49NAMREXferkuh1X6rrOFqK9f7uBhcXiONGqpbZ5m0TDNHpDj4Dt3s6LrvQoMlJnT/FZpy3wTTm2CUmENbtF3amA7e8VmpPPa4Bm73IhGP19dzKcw1XKYK+D4rN+wVZl8ucM7dZe+c1H15b14CYinn+K5d1HLHpUOaLXVhNra7f4bjgHBde/Pd33Sm1jY3B+YwLz3Njy/a2vr95zfU3Su3gPg11PXZCQ3OuvFyDaQ7svUxqo2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rKUwgzOSENuwsl/XdZrurjTKjkjZArZiG6VlXG6CWhhozD4fXhBBCZlJuIl19iGNtwpyaJs8l07je9Fm3jYS/+8ADUltaWpJaxYTVVCuuMbNpol4yDdNNk+QjR64a+PeaCedYXV2T2pkzp/U7TWPXwjV7NQkYJ596Qmrtlv7W2KFMwJE57UPoa+PffkubFT919rjUlhcvSG1hl4akzM8vDBbqGpJw6J+8Q2rX/ktdV9rW6y0u68CUtHW/loI2ZL/v7+6W2qlMG61XNjS04Wuf+bTUbk61Of4r3vyTUjv0ahPYM6+hM93yYAP6YybQ5n9vLkrt3u/8vdSOXPdqXf+q/tZ7X/fjUmuZe1Aw4yN2ppK5m89O6vwmNvOWNDX/PdcEvaQmBK9a1utt+B7aMgF4WW6CKDLTVL6j86DCBPT1czO/MY3QcxdC41IRRuv5HiLz38ILM1+olHWqumvaNJsfaqLf2dYAjJOLOj7mZoPNLciKTPCITeGxRwA7kQsXcddbuabjw969GihQmPP33PnzUmubeUXZBIcOy0xoppvrd92zngtuivWacWFOqXn+c0kW1aoep+Hgqufavs1tPSadjn5vp621bGgOUZhrvNHU+8jkxITUfOSZGZfM/rvfwi2HnWmto3PdZkXvjZs1PVdDbsKr+vrOxbxeCefMe44iH7wGZ8y14AKpMhO4+Zd/9ZdS+/KX/0Zqs3OzUvvl975Paq+89lqpuTc9hXm/lJv53alTx6XWbGqoTcWEkpVLJgy5MxhUvLKqITelfEFqHbNtffPOqGbmvFOz+tw52dTfLCm/8PGGv4gEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHYjh9WESJudzs9rE8ui0CAHFxyz3dKG4V3TDLiTalPUXmew2WnfNCXu57q9cUWbf87t0qabLhUjMkk3jUZTakeuuFJqKysrUjt24rjUej0TutPXY1cyTYgrpllzZhqUfu/hRwf+feDAwZHWv7Soja+DDabR4xSZxv0d0zQ7Nb81dqaeCRLpp9pofG1Vz8snHtFwqMlpbfD+5je+QWrHDu6S2vLi2uB2nNPgl62mNld+YnVTasl9D0stP3lMajMPnZLaQ1e+Smpn9+gY/LafeLvUnrz3HqmdeuQ+qe0ra7PiSkv3d6KvY8ujjzwktW/dccfAv+//7r2yTFo3Tepb+ltXF/TekrhbWK7jyKYJ69m7a49+FjtSvWHCDkxaSZbpuFQyy5npR+iboJfchM5UksFzumayJGamdM6zvK5f2k21Vq6YYJq+mUNlpvm4uZc7kYtesOEvJvDOzD9cSE7f/BaNoWO1d07Hs/VNPeZrLZ1nBRNMFIJZzrXpN1k1uQ2wwU4Um7CazAwatboGGzRNuENiwpzKJvzSPYsM3xs7Hb33ZuZ+n8Tu8dEF2JjAURNM4wKp3HI9EybqgsBSM4dsmWfMrnnu6pvx0AXClIfG6npNj3nd/A42cMb8/u5ZzHGhNiUXooUdqW3eIxw6dEBqe3bPSa3bNc/l5lydntL3IV/9xl1Sm00G1/fW/bpte1+lwZT3X9Dz+Utf+pLUNjd1rn/06FGpLczrs16zrvPAM2fOSO2pp05KbXlRx9Z6TcfvrU0NLF1f11qlYt6bDIVtZW6ckoofC1w4WJzoGFyraqjRgcv0vdGLwUgFAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOxGD6sxLTD7pgGqa8JbNw2XG3VtgJl2dX1JrO9KO53B5r+5CatxDZJDol3fd83NSm15eVVqzeak1Fyz9KlJbY7e62owz/KSbnOlrPvaNqENLsAm7em+JWZ/V1eWB/5dM42U3e/Vz7S5dpHr9vb72nTVbUccaWPbckmPMXamJ598Ump5ptf09pZeH1stDUIqlbWBcVzW87JsGqZnpcFrdcqEpuQ9HQtOPqgNkvd+51GpRWefkNr6qu7DyQVtrryqpfCq3a/X5ebOSu2J6neldqq7LLXyd7+pX3JSA4EePv6Y1Hq9wd9selrHx73meDaqumMLCzou1evauH/5rDaXTsxYFbuQCexIpZLOWza2TWBSbM5Bcw81Pb9DmmnT905Ha6WhoJfYzIEa5js3E93etKvjUpqaBue5C54zKTlG5JJZXAjNSGsLweUztDsaRrG+boJ+5ga3OYl1/3fPaEP6dk/X1TXzysgEdLj5pw31IawGz3BhTi7AptHQ+2XJjAcu4MmF2lSrOn4Nf+/yss4BkkS3rVrRMahvQmPaJpjUBV1GZgyOTKCCC5dZN2F0vdQ8J5kQMZer5Z476w19Zq0NhYT6v+zRfY3NvgYTiPpiuHAd7EwuhKXT1TBN8woi5Lk+d0UmyK1mgpqWzq/rZ7PBa3Uz1mu3saChOUcf2ZbaTTfdpOs319v3vvc9qd1//31S67T1O9bWdPvcc2fJXL8Lc/occ2xL19c276uSio7fUTw4v5me0WNebeo9o72q77RcDFa5rOfJmgnSKcz8plrRe8uo+ItIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clhNv69dfjsdbdjpuGbeE00NK6lOaJPNRkMbYOb54LakqTZI7pla1y3X0eakUa7L7ZqZltpTJ09J7eGHNMShZcIzNja1UWzTNBnNetroeXJSQ12uvuYaqZ0y21cfCgman9X9ck2zE9MMe25eG5smFW26Ojk5I7VKtFdqDz98TGrYmfKuNiTfsNeRXqtPntRglvax41Ir13RsmazruNRoDP73mqyh2/bo0nmpbT2pwTS3TOt3Htj1Kqk9XtX9uv3J41Jrn9eG7CuLet1vmcbU5wodW+IJE8bQviC1SkeP8W6zbzNzewb+3TTj+YwJLpua0HGpMavBYtsmJKjc02PS29SGyz0zLmFnco27MxeC19day4xVcaxrnJrS+3tuQmJ6Q+d0EjQ0JjNBedWq/nflnlkujnV93b7ugw07iExQhj16LzwowYXVZH1d3/lVHb+yaPDaT3s6R22aAJDLD2hg1vKGHpPNto4t3Z7Z18JMrd1hwo4UmxAWF0pVN+eqC6Zx4TfuhCtXdM4+v7B74N89E9y0vaXzhywz14IJXUjNcjWzHYkJgnLf0TPf4Z4xS2asqlX12aZSGS20sGK2efh7i9yMy+Zzbmy1ATaGHVndEERYDZ5x/EkNznzkMQ2XdM9dzbqOQWUTejU9Py+1mhm/hoP8TsQHZJmHvndOaiePaW1hz36ptTs6L7ji8GGpbZqAqwtLJqwz0UCYlTUNf8lMOFbfBKy6UJ9duzScp2oCCUMxeDyjyF34uh1lk5544bw+s/b7Oga127oP99yv4T9JrNv7kz/7Dt0+g7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiP3iBxVyfQ+iUxPk7SnvQjSXPv5JKZXx/D/3r1aMX1UTNOMjuktsra2rus3r2fPnDoutU3z2a1N/XDf9Opw+99L9DiVSvrZ5oT2VNu/T3surq1qH4NKdbBfyaFDB2WZCxcWpZYmul/79mhfg2tv2CU19/ucOKq9VI4fMz0RsCM1Ta/GCyt6vV1Y0lqpof2+9s9PSK3R1PNtqqLX1saZ0wP//ru//5+yzF0PPayfe+opqR173c1S+6lb3iq13rT2LVo+pr0fO0+dkdrfN3X7Njb0OE1P6v7vnVuQWt7QYxIFHb8aJe2/VK0M1uJE92uipr/X7ikdz9a39TtzLYX1De1pubmpfWMqczpWYWdyc5TY9NXJg57jUUn7k0WRnuebW3ovr9Z0nEuzwd5F7a7pS9nRE7+srcjCzIS5p5reaUlivqOl9+j8RfQdG7VFYmHmPMH0j1sxx6C9NlgrRbpfSU23ZNb0xp0o63ast/SzZ5d1ue2efq/vpYmdqGTGm6lp7YvsekSOzHyHu3yrQ/3e9h3Qnm2L53SesbSozwmF6XnbMPOHihusDNcjsmR62E9O6PzO9cMs2b+90W3OC71+875uS54N9tMsmXHK9dwvmX6Qrjeu631p/37IfZgekXjG40e1H+TyovZ5r5nzt9vW/up9c32cPvOk1Kqm/3s81Ifw2/fqudsx67/m8JVSm5nVOcD8rL6XcBkntZqOrauruq9xrDkia+srUnO9Zm+66Uap7d6tvTSzrm5fiHTcCGFwDCpMb++sMO/gTJ/xNNXxYW1d97Vs3t9cWNbnSRPBMjL+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOaTpQumMbVXKPQzDTSrZgGvq5dZ3mo+W/VNAmNzHbUK7q7kw1t5m56EoeNDW1iWi/r93YzPU7bXQ1K6AT9krSny0WRHrtS0Eau589p49lOu6Xb1xn8ju3NTVmm3dKGpd3emtS227r/Dz+kTUzdr7i9YU69WLcFO9Na11xHbQ2b2t5cltoVl18mtel5DSY5c0bDZP7XPXdKrb+1NvDv5XPnZJmzTx2XWts0Wv/Kd++V2gOnjkntNa+5UWrTuyalduaJ81IrTNPo/QuzUpud2yO1WqQN3htT2kQ/MmNfOTEN6NPB32zCNKmfrOv6CxOosWHGs44JrOh3TcBXU0NBMrIj8IzCnAtZX8+jdkvHoF0T2sy7Y8avJdMIffeCnvuloWtkfU3vx0msG5zELiDFBDGY+cP0RE1qWWrmLSaEJXqJ/3u2y12ITVhemuvcaDjXJzbj2dqWaVxvgmQmKvqde2Z0fUWunz1+QYMXM/67P55Rqehzx8Sk3t/dLcpd0z4HyS33/De94fCaEELYu08DbKpmH1ZXNMTBBfO4bcvMg1c31fu72/9qVbfF1fJMx6/MpSyYsAz3nFmrDtZ6qQm0MYEzsQkFceEykZkHuVphtjcxczTsTOfOanBtlup8Oqnq/a1a1flNyZyrpdjc38wz0Mb24L0xMeF0iRlbMhOE5QJdHn9Cn3/m5mekVq7qNbi9qO8gDl+mgb6753TetmuXhtC84tprpObGkZIbwM2+Db8ii8xY2DPH3LyWCnFsxgfznWmm86W+mRun2QsPx2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rqdfrUnNNeF1YTRxrA8yqq40YfhMPNfaMTKPPxH3ONO+NTDPzLNX9qpjtnWxoE9fMNA3upNrgfmtbG9BvbWkz+40NDX/pdvSzK0uLuj7z2WZjMLRhZXlJ19/WJvU9c0xOPKmfbXe02Wu9rs2vy4mGR5hMI+xQWy1t9t8w19vll2sj4a72Nw8ba9qsuWuut9DXrr7HTx0f+PfSml5rs1O6bfsmpqRWq+m1MDehjZl31bU2dUDHqlLFBE9M6fdO1nXsq5RMuIUJoyibPsrNSW3WXKtPSC3dHjzGiWkMn5jx2437k+YeND81I7XuihmDGvrZEL3w5sq4tHR72uDbRSy45UJhgptiXW5y0gSnmBC8JBmca1SqZt5S6PoTEwqRmgbvZTcPMo3mIxMe6I5K8RyRGqOw0RmmEXooudA+s1x/cD9Ss66lTZ0/lXOdj0Qz5jjlOn5NTeqY3tw0TfrbTHDwNBckUjZBbrl5nnDhKiUXamKeWZxRrlQXHrFrt4bduSAV92zSz/X6aHX0uaNtau55wgVlFCZQw9X6JvRqeAwOIYSk7B6XB9dXNn/b48Y4F+CamAAbO7K6UBuzXMPMl7AzNeozUmvlOk++cOGC1Mplvd5cEFRk5h+VigmwHJKZpMDYvFvq9/XBzuXXbG7rnGrXbg2SMY8Y4aqrD0vt2mteIbWGGasnTCBmyVzTWU+vfRc25f5OcPi5yI5nZmxxgXouZLBkgoMqJhgxmHtLOX7h8xv+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlO1jXpHa1LuGhjHrlOoWV3JNMocbkxseqSGkmm0XjILjtr4t2L2v5xobcs0V65E2ph6rqJhD9NTk7rc7IzUNje0yez66rLU0q5uy+TuXQP/zjNtALu9pSE32y1dV7enn3XhP1FVm7iG3DQ71cOEHSpPRwuPqJumyXEwgSgmKKK1rmucm9DlthcGr9VmTRsLHzy4V2oLcwu6bWbcq5R1DCr1df8rZry55rIDUitXtLl0yPVazVo6jrjgr1kXfjM3o+tzOR5D43ClovswO6/rKsx/Iysy07g/0wbJ9RmzvfNzUqtVGHDwtCzV88g1Xy9MbWlD7417d+k9r2nGoI1NvS7X1gfXNz2loQO1st4/220NxUszHVu6JuimMH3G+25uZOdQ+lkXgGGDadyHzXzRBtmZ5fL+0LeYJvBFoZ9bXmtJrV7X37C1pb9XzwScuZCRmHAsPMMFRrlnFh90otdvlul44AI2X6jCXNElF+A5rffeC+fPSm3NhAcG86xXMfM7F2TnglPzyIzp5hi74A333FmYZIzh4dCF3PjPmV/W1cz4mJv1uWdbNz5iZ4pKel7GsZ73LjPFheimJjDLj2nPf626MOOmCX5JU5NCaiYuhRkfu229v080dV61sGeX1hb02SHqm/HGXJe5eT5xzPAVYhPANXxHcO/W3Ks1N299Mdz9wAfujIaRCgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDYjRxW4xZ0zTQjG8agTUztZ22Lc5WHwQagWd80zoy0cWZpxF6arulqkuj2JokuV6lpA9jNljZ73drUWmbCX1xIUMUE2DTrHV3frAu/mRj4t2sU26jpd7rGtnGsDWXLZW3Ib5vYumbQL6LZKS4trvl233T07fY0oCEzIU2uWfHW2gWpba8vSq1RHzx/SyU97/OuNm8upbodLiClbP57kGvyHMU6zmVmnKuYsTU2Y1W7o8e4OdGQWmJ+i5ZpYF2p6mfrtcHxYNKMj4UJcdhe35Bab1uPZ72mDacnZ2el1jd9+6N8tEbSuPT1TRCSuwZdtkrLJKmsbOu4NFvXa7BR0e8ozw1eRyur27JMbtbVyXRd622dFzQbZhwxcygbAFG4puejNkI38zQXgmHGG9dr3YXphKGG8SXTzN3NMnum+fxGS8f0qKTj1/a23lsSG+7I/AZPa9T1vmWvrBEvrcLcywpzTrvnMxucMrwus3W5OZ/bHR1vWl3zbGLGlsmJCam55xM3CMcmjMNd+05sAmbcGOQCqIbDTguzX3GsY0Figgfd+t19yYViuON5/rzOb7EzufMoMc/0E5MaNrW+ruG1zoS5fisVfR/gAoJl29z14eYjJijuumtfqSs0zxizsybUclrfmdhx1IwPwyHKIYRQ5LqcG9NsUFnkgq+G/m3GjCTWuWFmkkTtPpj7g9te+xO+iEAc/iISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNiNHFbTbGgQwShNvRanKwAABtFJREFUjp9rORtMYlbnPhsNLeganvdNA3nT69Q3JXYLmuWyTBulun2oVbVhayj0eLZb+mEXxtHva+PRZlObX9dqNanV64Pf637CWk2bnbqgEFezDWXd8XS/WW4aU2NH2tzY1GKu5317S0NNtjdXpXbq1AmpXVg8p1+R6zWdD13nuW387Jr86sVVNddWo6pNo00GjQ1UqE9ocE69qU2YW1trUquYQIWyady+vaW/hQ16MUEWeWcwYKa7oduRJDo+5pmOD3UXhtPQcW99S5trV01Ijh457FSVit4r+5k5x82FmZlzdW1dg+fStq5vdsoF+Q2ur1rV6zRN9TtNKUzO6FneqOg1vtky8wwb5uTmfPrFowYPugbv7ivyQrfFhVEM19w80AVvuNryuoZsJCVdX2S2w4VHjNCjHztE3YW2uXPGBJP4UITRwqZiE0YgJ+aIYVHufK6YML7p6Wldzsw9XIBlluqcr2yCLBIzbxkOrnqae1bU78jNeGCDc4a5Mcn8Xi6MI01N4KH5zmpsAkDMfmUpz1N4Wt+E0cXBBNXWTQCtCbrMzDXj3tW4McgFogxzgTbuOt3Y0Ln+/n17pbZtAoOnp/U5qdHQ/c/MHMK9+7DhWG78toEwOh64sU+Hal2XnfO4gC8bmuMCGm0yjX52xHAwh7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fVjNJg9Ifhmiu716Lue4drtvmnqbkACNeI0zUSdt8xaghL2TRmjmMNXmiY4AX3Hd2uNpbv9UxzfNP8uNsdDI9oNk3YRX1Can3ze/XM+tvtttTcPvRN8IbtLY0daWtDQ2jKpul3t62BAufOaQjN4tKS1Nz14c7VaCiEpV7Ra7dSduOUaT5v9qHXM9uRasPhenNSalPTs1LTFsch9DIdH1yAS82EdmQlHW9SM84VJtwiSwc/G5mAr6Sk42O9qcc4NqE251YWpeY665emZ6TW6+q5A3yfa0juwpyyrl5xPZPz0uuaMIZYv6MxdFk26iacoNBxZGtFQ6X6mW5bJdZ5RtfsQ5E/f1Dg0zUzFkjFB164uZYbq0ql0Zqj94eCg/w+KBdWk/VdQKEJq3F7ayab0ejTbVzi3PNJZubEhQlpikzIhHuOceE3bpI9nDFnQ0jdKW5qtarOH3bvWpDa4qJuW2rmBkU82kNBYoIXEhPy5Y5JZsZI93zigmOGx8NeqmOXHwzNYqP+huY52YVdhIjxBk8rldyzjhsLzHsTM+cpmYu/a879KNUTfThsyo03m5s6l3EhVevr+pz45JNPSm1h9y6puXt+au7vbu5h3xFFepxysz533CMzX3Dzz+GBw809bJiZDQd2YYzmKw03r7ITvBHxF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxm7kbrYuxME1141cuIxpYmmbfcamIfkIITmuiXBsakXmmjebpuIu7GDUsJ6SOSZmv4JpbOoaE/swHd2WxIRlpD3TPHXoO9JUgyj6fW1sG5lACdvs1p0TpgFuyRynLHUxG9iJ3HnUN7XUNNydmNRQl925NkxfX1+R2uqqCT8pBs/L3DQyT00D+WZdG7eXTMhEapqlB9un2I1BpuGyCWEpzDZXTDhWyTQ9j02gRjrc4T748J9+f/D3qZpGysGMrWlfj8lWV9ffyXW55uSUboc5TzqtLd0W7EiZOXcdFx7h7/m6WFrodbTZMcFz2eD1kFbM/d58gZsHtdu6Xyupnve91OxDYcIZzHXvGqG7vuVuXuUCKlxzeDeHyMx8LhoaXyPz39oL0xje3W/cf6d/Ef3YbWYFdiZ3P3LPTvakseeqnpjD994QQkiSsn4yGg5AGI2d65tas6HBc+2mBmKura9JzT3H5Wa/3NhSrWjIV88875RLekzK5igk8fMfu76Zt9iwThNi4X5VNzeM3Pjowrz4MyM84x+94dVS29rellqv54JwW1oz15E7z92z0vB7Dv/OQM/nhnmeajQ0bHfvvv1S27VrXmqpCcXrmmenWs08x7l3RGbgdJkuhXm4c0FlJRMSNDxI2HBVs22xed/m7g8uIMetzwaavYi5EUMVAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLGLCt+lGwAAAAAAAABeMvxFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAsfv/AJY9ImxcxnAkAAAAAElFTkSuQmCC\n", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_dark_issuedark_score
0True0.237196
1True0.197229
2True0.254188
3True0.229170
4True0.208907
.........
195False0.793840
196False1.000000
197False0.971560
198False0.862236
199False0.973533
\n", + "

200 rows × 2 columns

\n", + "
" + ], "text/plain": [ - "
" + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", + "\n", + "[200 rows x 2 columns]" ] }, "metadata": {}, @@ -4272,47 +4166,51 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "from IPython.display import display\n", + "\n", + "# Get the correlation scores for image properties\n", + "correlation_scores = lab._correlations_df\n", + "print(\"Correlation scores for image properties:\")\n", + "display(correlation_scores)\n", + "\n", + "# Get image-specific issues\n", + "issue_name = \"dark\"\n", + "image_issues = lab.get_issues(issue_name)\n", + "print(\"\\nImage-specific issues:\")\n", + "display(image_issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "\n", - "def plot_images(dataset_dict):\n", - " \"\"\"Plots the first 15 images from the dataset dictionary.\"\"\"\n", - " images = dataset_dict['image']\n", - " labels = dataset_dict['label']\n", - " \n", - " # Define the number of images to plot\n", - " num_images_to_plot = 15\n", - " num_cols = 5 # Number of columns in the plot grid\n", - " num_rows = (num_images_to_plot + num_cols - 1) // num_cols # Calculate rows needed\n", - " \n", - " # Create a figure\n", - " fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))\n", - " axes = axes.flatten()\n", - " \n", - " # Plot each image\n", - " for i in range(num_images_to_plot):\n", - " img = images[i]\n", - " label = labels[i]\n", - " axes[i].imshow(img)\n", - " axes[i].set_title(f'Label: {label}')\n", - " axes[i].axis('off')\n", - " \n", - " # Hide any remaining empty subplots\n", - " for i in range(num_images_to_plot, len(axes)):\n", - " axes[i].axis('off')\n", - " \n", - " # Show the plot\n", - " plt.tight_layout()\n", - " plt.show()\n", + "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", + "\n", + "Interpreting the results:\n", + "\n", + "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", + "\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", "\n", - "plot_images(dataset_dict)\n", - "plot_images(transformed_dataset_dict)" + "For real-world datasets, pay attention to:\n", + "\n", + "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Prevalent issues in the image_issues DataFrame\n", + "\n", + "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", + "\n", + "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 5. Finding image-specific property scores" + "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", + "\n", + "To understand the impact of spurious correlations, it can be helpful to compare our results with a dataset that doesn't have artificially introduced biases. In this case, we'll use the original CIFAR-10 subset." ] }, { @@ -4320,10 +4218,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:44.590173Z", - "iopub.status.busy": "2024-07-18T04:06:44.589828Z", - "iopub.status.idle": "2024-07-18T04:06:45.471688Z", - "shell.execute_reply": "2024-07-18T04:06:45.471060Z" + "iopub.execute_input": "2024-07-30T16:36:38.512133Z", + "iopub.status.busy": "2024-07-30T16:36:38.511200Z", + "iopub.status.idle": "2024-07-30T16:36:39.047457Z", + "shell.execute_reply": "2024-07-30T16:36:39.046797Z" } }, "outputs": [ @@ -4338,7 +4236,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1ba93e19df2346d8bc2249fbbe28c2da", + "model_id": "5704008e778b464799f617edec73de43", "version_major": 2, "version_minor": 0 }, @@ -4355,45 +4253,9 @@ "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n", - "Finding class_imbalance issues ...\n", - "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d35057cc20b446b2915fc9ff955d81f2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/200 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -4423,7 +4285,7 @@ " \n", " 0\n", " dark_score\n", - " 0.295\n", + " 0.300\n", " \n", " \n", " 1\n", @@ -4453,7 +4315,7 @@ " \n", " 6\n", " blurry_score\n", - " 0.325\n", + " 0.335\n", " \n", " \n", "\n", @@ -4461,29 +4323,25 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.295\n", + "0 dark_score 0.300\n", "1 light_score 0.415\n", "2 low_information_score 0.325\n", "3 odd_aspect_ratio_score 0.500\n", "4 odd_size_score 0.500\n", "5 grayscale_score 0.500\n", - "6 blurry_score 0.325" + "6 blurry_score 0.335" ] }, "metadata": {}, "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "### Image-specific property scores in the transformed dataset" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Image-specific issues in original dataset:\n" + ] }, { "data": { @@ -4506,59 +4364,86 @@ " \n", " \n", " \n", - " property\n", - " score\n", + " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " dark_score\n", - " 0.000\n", + " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.185\n", + " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " low_information_score\n", - " 0.015\n", + " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " odd_size_score\n", - " 0.500\n", + " False\n", + " 0.699518\n", " \n", " \n", - " 5\n", - " grayscale_score\n", - " 0.500\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 6\n", - " blurry_score\n", - " 0.015\n", + " 195\n", + " False\n", + " 0.793840\n", + " \n", + " \n", + " 196\n", + " False\n", + " 1.000000\n", + " \n", + " \n", + " 197\n", + " False\n", + " 0.971560\n", + " \n", + " \n", + " 198\n", + " False\n", + " 0.862236\n", + " \n", + " \n", + " 199\n", + " False\n", + " 0.973533\n", " \n", " \n", "\n", + "

200 rows × 2 columns

\n", "" ], "text/plain": [ - " property score\n", - "0 dark_score 0.000\n", - "1 light_score 0.185\n", - "2 low_information_score 0.015\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", - "6 blurry_score 0.015" + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", + "\n", + "[200 rows x 2 columns]" ] }, "metadata": {}, @@ -4566,28 +4451,35 @@ } ], "source": [ - "# Function to find image-specific property scores given the dataset object\n", - "def get_property_scores(dataset):\n", - " lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", - " lab.find_issues()\n", - " return lab._spurious_correlation()\n", - "\n", - "# Finds specific property score in the dataframe containing property scores \n", - "def get_specific_property_score(property_scores_df, property_name):\n", - " return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]\n", - "\n", - "# Finding scores in original and transformed dataset\n", - "standard_property_scores = get_property_scores(dataset)\n", - "transformed_property_scores = get_property_scores(transformed_dataset)\n", - "\n", - "# Displaying the scores dataframe\n", - "display(Markdown(\"### Image-specific property scores in the original dataset\"))\n", - "display(standard_property_scores)\n", - "display(Markdown(\"### Image-specific property scores in the transformed dataset\"))\n", - "display(transformed_property_scores)\n", - "\n", - "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n", - "assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')" + "# Load the original dataset\n", + "original_data_dir = \"CIFAR-10-subset/original_images\"\n", + "original_dataset = load_image_dataset(original_data_dir)\n", + "\n", + "# Create a new Datalab instance and run analysis\n", + "original_lab = Datalab(data=original_dataset, label_name=\"label\", image_key=\"image\")\n", + "original_lab.find_issues()\n", + "\n", + "# Compare correlation scores\n", + "original_scores = original_lab._correlations_df\n", + "print(\"Correlation scores for original dataset:\")\n", + "display(original_scores)\n", + "\n", + "# Compare image-specific issues\n", + "original_issues = original_lab.get_issues(\"dark\")\n", + "print(\"\\nImage-specific issues in original dataset:\")\n", + "display(original_issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When comparing the results:\n", + "\n", + "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "2. Compare the number and types of image-specific issues detected.\n", + "\n", + "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] } ], @@ -4612,7 +4504,125 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "082f92a4818742ecbc4d1f4857988df5": { + "0a74b29d3db14bd1b43bfa76b01669f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d5b18ce4d00414fa7849f07f919f0c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "23ab6deed4f548d781711f2b69e1626d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7913d94eed4408cb306a3e2b47761cb", + "placeholder": "​", + "style": "IPY_MODEL_872924f1144146c999720f92d3ee8e2b", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "2ed4efbeb1874db0a5e2316cc6fdcc53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4d36e246db746c4acbc8f4787f82381", + "IPY_MODEL_357fb341466f4d6da6ea707fd3c1d55b", + "IPY_MODEL_5360fa3a0eed4207b44167db7bcfd0fa" + ], + "layout": "IPY_MODEL_f59fcaa8e8d04931980396c1bdc42425", + "tabbable": null, + "tooltip": null + } + }, + "357fb341466f4d6da6ea707fd3c1d55b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4628,94 +4638,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_32918bfba49c4b3b9416a88ed2da11e2", + "layout": "IPY_MODEL_f2cb72313c294a56bc0221871a2d5717", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8c33c90c192140fcb39f8e0fb7da534c", + "style": "IPY_MODEL_df924bb590a44f27a4f68916d0e77c53", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "19e7b8a023924ce1bdaa09961f57d5eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1ba93e19df2346d8bc2249fbbe28c2da": { + "489ca8ef4e094a6182021355bf8ff0e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23585f5daef7407391eadac7dbad07dc", - "IPY_MODEL_fdefd9edead8430e994cc0b608b54228", - "IPY_MODEL_b5a2e16c332146b09a0dd2087d5d539c" - ], - "layout": "IPY_MODEL_83981ca81e904c5da7185a278ae24f01", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a74b29d3db14bd1b43bfa76b01669f5", + "placeholder": "​", + "style": "IPY_MODEL_a8c94e907c12444e8d0364601f96e159", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 703.72it/s]" } }, - "23585f5daef7407391eadac7dbad07dc": { + "5360fa3a0eed4207b44167db7bcfd0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4730,15 +4686,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df3530bc714a437eb8417ba37251ba85", + "layout": "IPY_MODEL_845e948b5a894d6e94a4e04bf148519c", "placeholder": "​", - "style": "IPY_MODEL_347a7b0a267544dc826ad2b3d5f1049c", + "style": "IPY_MODEL_0d5b18ce4d00414fa7849f07f919f0c2", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 768.56it/s]" + } + }, + "5704008e778b464799f617edec73de43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_23ab6deed4f548d781711f2b69e1626d", + "IPY_MODEL_91b05b3271df489f93fcfc926fa4996d", + "IPY_MODEL_489ca8ef4e094a6182021355bf8ff0e0" + ], + "layout": "IPY_MODEL_bd875ac3a62042068a132488eecbb1c4", + "tabbable": null, + "tooltip": null } }, - "32918bfba49c4b3b9416a88ed2da11e2": { + "5bed25780c8d4b9c990b530de43dde8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4791,7 +4771,7 @@ "width": null } }, - "347a7b0a267544dc826ad2b3d5f1049c": { + "72b98c9996864aa9abad1934ce4b27c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4809,25 +4789,23 @@ "text_color": null } }, - "4239c58acfb54ff6adf6796d156be031": { + "7b2d92c1f6624498af65bda8fd36806a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5ba7f559a9da406493cf8689d8496a25": { + "845e948b5a894d6e94a4e04bf148519c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4880,7 +4858,7 @@ "width": null } }, - "756f2e8b41ae4894b44c354d6b8cc1f3": { + "872924f1144146c999720f92d3ee8e2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4898,7 +4876,33 @@ "text_color": null } }, - "83981ca81e904c5da7185a278ae24f01": { + "91b05b3271df489f93fcfc926fa4996d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bed25780c8d4b9c990b530de43dde8e", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b2d92c1f6624498af65bda8fd36806a", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "9ab790ab579f415bbc804c1f992660a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4951,23 +4955,25 @@ "width": null } }, - "8c33c90c192140fcb39f8e0fb7da534c": { + "a8c94e907c12444e8d0364601f96e159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93a20e1de6f0471daf520d49388c326d": { + "b7913d94eed4408cb306a3e2b47761cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5020,88 +5026,7 @@ "width": null } }, - "b5a2e16c332146b09a0dd2087d5d539c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ba7f559a9da406493cf8689d8496a25", - "placeholder": "​", - "style": "IPY_MODEL_4239c58acfb54ff6adf6796d156be031", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 681.35it/s]" - } - }, - "bf6016b0169f460290ed5938134db880": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c8838ce4540a48b487ecdf51e26a4c5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d35057cc20b446b2915fc9ff955d81f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dff6d70ab4ed4762bc4586d001f53274", - "IPY_MODEL_082f92a4818742ecbc4d1f4857988df5", - "IPY_MODEL_ff9de7e97a1047acabe0749ea6273a26" - ], - "layout": "IPY_MODEL_fb7e314d793f46dcbea0cef7c9a2f60f", - "tabbable": null, - "tooltip": null - } - }, - "df3530bc714a437eb8417ba37251ba85": { + "bd875ac3a62042068a132488eecbb1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5154,7 +5079,7 @@ "width": null } }, - "dff6d70ab4ed4762bc4586d001f53274": { + "d4d36e246db746c4acbc8f4787f82381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5169,15 +5094,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2a6647ccce04986a5bc483752fbbb50", + "layout": "IPY_MODEL_9ab790ab579f415bbc804c1f992660a0", "placeholder": "​", - "style": "IPY_MODEL_756f2e8b41ae4894b44c354d6b8cc1f3", + "style": "IPY_MODEL_72b98c9996864aa9abad1934ce4b27c3", "tabbable": null, "tooltip": null, "value": "100%" } }, - "e2a6647ccce04986a5bc483752fbbb50": { + "df924bb590a44f27a4f68916d0e77c53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f2cb72313c294a56bc0221871a2d5717": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5230,7 +5171,7 @@ "width": null } }, - "fb7e314d793f46dcbea0cef7c9a2f60f": { + "f59fcaa8e8d04931980396c1bdc42425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5282,55 +5223,6 @@ "visibility": null, "width": null } - }, - "fdefd9edead8430e994cc0b608b54228": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93a20e1de6f0471daf520d49388c326d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c8838ce4540a48b487ecdf51e26a4c5f", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ff9de7e97a1047acabe0749ea6273a26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19e7b8a023924ce1bdaa09961f57d5eb", - "placeholder": "​", - "style": "IPY_MODEL_bf6016b0169f460290ed5938134db880", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 672.89it/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 35668b032..b41d28ba4 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:49.364909Z", - "iopub.status.busy": "2024-07-18T04:06:49.364426Z", - "iopub.status.idle": "2024-07-18T04:06:50.490342Z", - "shell.execute_reply": "2024-07-18T04:06:50.489718Z" + "iopub.execute_input": "2024-07-30T16:36:43.263935Z", + "iopub.status.busy": "2024-07-30T16:36:43.263754Z", + "iopub.status.idle": "2024-07-30T16:36:44.677036Z", + "shell.execute_reply": "2024-07-30T16:36:44.676454Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.492975Z", - "iopub.status.busy": "2024-07-18T04:06:50.492531Z", - "iopub.status.idle": "2024-07-18T04:06:50.495387Z", - "shell.execute_reply": "2024-07-18T04:06:50.494931Z" + "iopub.execute_input": "2024-07-30T16:36:44.679704Z", + "iopub.status.busy": "2024-07-30T16:36:44.679219Z", + "iopub.status.idle": "2024-07-30T16:36:44.681960Z", + "shell.execute_reply": "2024-07-30T16:36:44.681516Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.497498Z", - "iopub.status.busy": "2024-07-18T04:06:50.497161Z", - "iopub.status.idle": "2024-07-18T04:06:50.508789Z", - "shell.execute_reply": "2024-07-18T04:06:50.508333Z" + "iopub.execute_input": "2024-07-30T16:36:44.684134Z", + "iopub.status.busy": "2024-07-30T16:36:44.683779Z", + "iopub.status.idle": "2024-07-30T16:36:44.695519Z", + "shell.execute_reply": "2024-07-30T16:36:44.695059Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.510953Z", - "iopub.status.busy": "2024-07-18T04:06:50.510604Z", - "iopub.status.idle": "2024-07-18T04:06:55.636999Z", - "shell.execute_reply": "2024-07-18T04:06:55.636495Z" + "iopub.execute_input": "2024-07-30T16:36:44.697494Z", + "iopub.status.busy": "2024-07-30T16:36:44.697321Z", + "iopub.status.idle": "2024-07-30T16:36:50.818481Z", + "shell.execute_reply": "2024-07-30T16:36:50.817920Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 908e32eaa..0e282dd07 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:57.905922Z", - "iopub.status.busy": "2024-07-18T04:06:57.905505Z", - "iopub.status.idle": "2024-07-18T04:06:59.031674Z", - "shell.execute_reply": "2024-07-18T04:06:59.031132Z" + "iopub.execute_input": "2024-07-30T16:36:53.364898Z", + "iopub.status.busy": "2024-07-30T16:36:53.364365Z", + "iopub.status.idle": "2024-07-30T16:36:54.816084Z", + "shell.execute_reply": "2024-07-30T16:36:54.815502Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:59.034547Z", - "iopub.status.busy": "2024-07-18T04:06:59.034090Z", - "iopub.status.idle": "2024-07-18T04:06:59.037514Z", - "shell.execute_reply": "2024-07-18T04:06:59.037039Z" + "iopub.execute_input": "2024-07-30T16:36:54.819086Z", + "iopub.status.busy": "2024-07-30T16:36:54.818586Z", + "iopub.status.idle": "2024-07-30T16:36:54.821882Z", + "shell.execute_reply": "2024-07-30T16:36:54.821439Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:59.039633Z", - "iopub.status.busy": "2024-07-18T04:06:59.039294Z", - "iopub.status.idle": "2024-07-18T04:07:02.365487Z", - "shell.execute_reply": "2024-07-18T04:07:02.364710Z" + "iopub.execute_input": "2024-07-30T16:36:54.824015Z", + "iopub.status.busy": "2024-07-30T16:36:54.823672Z", + "iopub.status.idle": "2024-07-30T16:36:58.536010Z", + "shell.execute_reply": "2024-07-30T16:36:58.535180Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.368915Z", - "iopub.status.busy": "2024-07-18T04:07:02.368093Z", - "iopub.status.idle": "2024-07-18T04:07:02.410734Z", - "shell.execute_reply": "2024-07-18T04:07:02.410117Z" + "iopub.execute_input": "2024-07-30T16:36:58.539755Z", + "iopub.status.busy": "2024-07-30T16:36:58.538755Z", + "iopub.status.idle": "2024-07-30T16:36:58.591095Z", + "shell.execute_reply": "2024-07-30T16:36:58.590433Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.413396Z", - "iopub.status.busy": "2024-07-18T04:07:02.413137Z", - "iopub.status.idle": "2024-07-18T04:07:02.451147Z", - "shell.execute_reply": "2024-07-18T04:07:02.450498Z" + "iopub.execute_input": "2024-07-30T16:36:58.593884Z", + "iopub.status.busy": "2024-07-30T16:36:58.593478Z", + "iopub.status.idle": "2024-07-30T16:36:58.639623Z", + "shell.execute_reply": "2024-07-30T16:36:58.638845Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.453755Z", - "iopub.status.busy": "2024-07-18T04:07:02.453375Z", - "iopub.status.idle": "2024-07-18T04:07:02.456615Z", - "shell.execute_reply": "2024-07-18T04:07:02.456146Z" + "iopub.execute_input": "2024-07-30T16:36:58.642513Z", + "iopub.status.busy": "2024-07-30T16:36:58.642101Z", + "iopub.status.idle": "2024-07-30T16:36:58.645752Z", + "shell.execute_reply": "2024-07-30T16:36:58.645291Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.458726Z", - "iopub.status.busy": "2024-07-18T04:07:02.458390Z", - "iopub.status.idle": "2024-07-18T04:07:02.460984Z", - "shell.execute_reply": "2024-07-18T04:07:02.460533Z" + "iopub.execute_input": "2024-07-30T16:36:58.647868Z", + "iopub.status.busy": "2024-07-30T16:36:58.647530Z", + "iopub.status.idle": "2024-07-30T16:36:58.650324Z", + "shell.execute_reply": "2024-07-30T16:36:58.649625Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.463310Z", - "iopub.status.busy": "2024-07-18T04:07:02.462737Z", - "iopub.status.idle": "2024-07-18T04:07:02.489598Z", - "shell.execute_reply": "2024-07-18T04:07:02.489036Z" + "iopub.execute_input": "2024-07-30T16:36:58.652675Z", + "iopub.status.busy": "2024-07-30T16:36:58.652185Z", + "iopub.status.idle": "2024-07-30T16:36:58.676038Z", + "shell.execute_reply": "2024-07-30T16:36:58.675495Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d7a01475effc42c7a0d0df5831be2afd", + "model_id": "57581a07cda143f5ae3947a8ceb2effa", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2060b8b81e144c6a49a7e7fa3958df1", + "model_id": "8036196b7e194ee38336f33c15df9344", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.494143Z", - "iopub.status.busy": "2024-07-18T04:07:02.493831Z", - "iopub.status.idle": "2024-07-18T04:07:02.500460Z", - "shell.execute_reply": "2024-07-18T04:07:02.499905Z" + "iopub.execute_input": "2024-07-30T16:36:58.681445Z", + "iopub.status.busy": "2024-07-30T16:36:58.681234Z", + "iopub.status.idle": "2024-07-30T16:36:58.688163Z", + "shell.execute_reply": "2024-07-30T16:36:58.687730Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.502621Z", - "iopub.status.busy": "2024-07-18T04:07:02.502180Z", - "iopub.status.idle": "2024-07-18T04:07:02.505851Z", - "shell.execute_reply": "2024-07-18T04:07:02.505417Z" + "iopub.execute_input": "2024-07-30T16:36:58.690192Z", + "iopub.status.busy": "2024-07-30T16:36:58.689845Z", + "iopub.status.idle": "2024-07-30T16:36:58.693407Z", + "shell.execute_reply": "2024-07-30T16:36:58.692931Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.507955Z", - "iopub.status.busy": "2024-07-18T04:07:02.507640Z", - "iopub.status.idle": "2024-07-18T04:07:02.513939Z", - "shell.execute_reply": "2024-07-18T04:07:02.513397Z" + "iopub.execute_input": "2024-07-30T16:36:58.695508Z", + "iopub.status.busy": "2024-07-30T16:36:58.695194Z", + "iopub.status.idle": "2024-07-30T16:36:58.701664Z", + "shell.execute_reply": "2024-07-30T16:36:58.701093Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.516039Z", - "iopub.status.busy": "2024-07-18T04:07:02.515728Z", - "iopub.status.idle": "2024-07-18T04:07:02.555933Z", - "shell.execute_reply": "2024-07-18T04:07:02.555220Z" + "iopub.execute_input": "2024-07-30T16:36:58.703807Z", + "iopub.status.busy": "2024-07-30T16:36:58.703473Z", + "iopub.status.idle": "2024-07-30T16:36:58.753286Z", + "shell.execute_reply": "2024-07-30T16:36:58.752623Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.558438Z", - "iopub.status.busy": "2024-07-18T04:07:02.558213Z", - "iopub.status.idle": "2024-07-18T04:07:02.598165Z", - "shell.execute_reply": "2024-07-18T04:07:02.597449Z" + "iopub.execute_input": "2024-07-30T16:36:58.756242Z", + "iopub.status.busy": "2024-07-30T16:36:58.755751Z", + "iopub.status.idle": "2024-07-30T16:36:58.810969Z", + "shell.execute_reply": "2024-07-30T16:36:58.810185Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.601310Z", - "iopub.status.busy": "2024-07-18T04:07:02.600741Z", - "iopub.status.idle": "2024-07-18T04:07:02.727436Z", - "shell.execute_reply": "2024-07-18T04:07:02.726793Z" + "iopub.execute_input": "2024-07-30T16:36:58.813764Z", + "iopub.status.busy": "2024-07-30T16:36:58.813494Z", + "iopub.status.idle": "2024-07-30T16:36:58.954189Z", + "shell.execute_reply": "2024-07-30T16:36:58.953479Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.730278Z", - "iopub.status.busy": "2024-07-18T04:07:02.729603Z", - "iopub.status.idle": "2024-07-18T04:07:05.738103Z", - "shell.execute_reply": "2024-07-18T04:07:05.737444Z" + "iopub.execute_input": "2024-07-30T16:36:58.956979Z", + "iopub.status.busy": "2024-07-30T16:36:58.956298Z", + "iopub.status.idle": "2024-07-30T16:37:02.028094Z", + "shell.execute_reply": "2024-07-30T16:37:02.027507Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.740463Z", - "iopub.status.busy": "2024-07-18T04:07:05.740273Z", - "iopub.status.idle": "2024-07-18T04:07:05.799846Z", - "shell.execute_reply": "2024-07-18T04:07:05.799281Z" + "iopub.execute_input": "2024-07-30T16:37:02.030600Z", + "iopub.status.busy": "2024-07-30T16:37:02.030207Z", + "iopub.status.idle": "2024-07-30T16:37:02.089072Z", + "shell.execute_reply": "2024-07-30T16:37:02.088458Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.801850Z", - "iopub.status.busy": "2024-07-18T04:07:05.801541Z", - "iopub.status.idle": "2024-07-18T04:07:05.841021Z", - "shell.execute_reply": "2024-07-18T04:07:05.840447Z" + "iopub.execute_input": "2024-07-30T16:37:02.091254Z", + "iopub.status.busy": "2024-07-30T16:37:02.091064Z", + "iopub.status.idle": "2024-07-30T16:37:02.134008Z", + "shell.execute_reply": "2024-07-30T16:37:02.133534Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "a846fe33", + "id": "984213fa", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "abe989bf", + "id": "2618e545", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "682e16e3", + "id": "1e0becd2", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "82d68237", + "id": "cba58da6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.843106Z", - "iopub.status.busy": "2024-07-18T04:07:05.842779Z", - "iopub.status.idle": "2024-07-18T04:07:05.850387Z", - "shell.execute_reply": "2024-07-18T04:07:05.849822Z" + "iopub.execute_input": "2024-07-30T16:37:02.136245Z", + "iopub.status.busy": "2024-07-30T16:37:02.136064Z", + "iopub.status.idle": "2024-07-30T16:37:02.143652Z", + "shell.execute_reply": "2024-07-30T16:37:02.143210Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "e698fd46", + "id": "fea318fb", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e6b8075c", + "id": "6afc3734", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.852549Z", - "iopub.status.busy": "2024-07-18T04:07:05.852221Z", - "iopub.status.idle": "2024-07-18T04:07:05.870747Z", - "shell.execute_reply": "2024-07-18T04:07:05.870171Z" + "iopub.execute_input": "2024-07-30T16:37:02.145731Z", + "iopub.status.busy": "2024-07-30T16:37:02.145388Z", + "iopub.status.idle": "2024-07-30T16:37:02.165432Z", + "shell.execute_reply": "2024-07-30T16:37:02.164935Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "307c5ea3", + "id": "b8513ca9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.873062Z", - "iopub.status.busy": "2024-07-18T04:07:05.872717Z", - "iopub.status.idle": "2024-07-18T04:07:05.876179Z", - "shell.execute_reply": "2024-07-18T04:07:05.875603Z" + "iopub.execute_input": "2024-07-30T16:37:02.167476Z", + "iopub.status.busy": "2024-07-30T16:37:02.167285Z", + "iopub.status.idle": "2024-07-30T16:37:02.170854Z", + "shell.execute_reply": "2024-07-30T16:37:02.170369Z" } }, "outputs": [ @@ -1622,99 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03f5f6546d474242bff21fb50168dc50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "042b5f7e6c694220aa1fa02292722c76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b7dad2904b8473591e036cf2e6f2053", - "placeholder": "​", - "style": "IPY_MODEL_3ec9bfd2314245f4b085fd8f68c1ca26", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "10eb4ef59cef44678cef5470d00d8c38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "142e5edc286d4e3790a59d3eb720f384": { + "0b139128833c45f089e40c4755cc2721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1732,25 +1640,33 @@ "text_color": null } }, - "196062f1252744b0bf7d1cd007823e1a": { + "2cc4889e619f4d3e9043341064b11c7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52bb780bf78947d192b9701de2336602", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a7b7b5c4aa8470db022c5fd5f7f5217", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "235633e658e345b7954a45d55013630c": { + "3fad135171fd4a1783040cd5e00be0a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1765,33 +1681,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78ce2f50bcd64118ac50de4e4d76ec75", + "layout": "IPY_MODEL_bf526f5c8d204d9dabafe472f6d5a633", "placeholder": "​", - "style": "IPY_MODEL_142e5edc286d4e3790a59d3eb720f384", + "style": "IPY_MODEL_cab24e4c26614d0496ef8c4fa57cb547", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1028368.56it/s]" } }, - "3ec9bfd2314245f4b085fd8f68c1ca26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b7dad2904b8473591e036cf2e6f2053": { + "52bb780bf78947d192b9701de2336602": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1844,59 +1742,84 @@ "width": null } }, - "57900003d6e54605b35f04067ae68062": { + "57581a07cda143f5ae3947a8ceb2effa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03f5f6546d474242bff21fb50168dc50", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_10eb4ef59cef44678cef5470d00d8c38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8254c641447480aa7f722801a84cae4", + "IPY_MODEL_2cc4889e619f4d3e9043341064b11c7c", + "IPY_MODEL_3fad135171fd4a1783040cd5e00be0a8" + ], + "layout": "IPY_MODEL_7b88ca779115406292c37cba27c25c20", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "6207ca46ed83432aa9815e733e24936c": { - "model_module": "@jupyter-widgets/controls", + "617558923b2244798dd8e64734279f0c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f935868fd7e4502803a5d16b92a2924", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e7a29fb812664299960bcc8fa3e70872", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e6e3cc4bb714d3f8590c41b962b2a1e": { + "6fa5f4c53bb04dfe94f30f73c931e9ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1911,15 +1834,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9057d5406e10486eb9b0d222aec6c173", + "layout": "IPY_MODEL_8c5f02c3ba3b4e35a7fb7b38460ea0c9", "placeholder": "​", - "style": "IPY_MODEL_93e759109ba04075acb0a71d2e97372b", + "style": "IPY_MODEL_f809c3480764400ea9f63b20e3e395c1", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1074003.02it/s]" + "value": "number of examples processed for checking labels: " } }, - "6f935868fd7e4502803a5d16b92a2924": { + "7b88ca779115406292c37cba27c25c20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1972,7 +1895,47 @@ "width": null } }, - "78ce2f50bcd64118ac50de4e4d76ec75": { + "8036196b7e194ee38336f33c15df9344": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fa5f4c53bb04dfe94f30f73c931e9ce", + "IPY_MODEL_acbe71dfaa064b86ac9d438d3f49c584", + "IPY_MODEL_ad2efaf794734426b265156be3d7a946" + ], + "layout": "IPY_MODEL_e9893acd97ab48599094be49c014c0aa", + "tabbable": null, + "tooltip": null + } + }, + "815bf26fdf864b97a1dcad97921e8ca0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "884f09022ec44bdc8c0f021616c3bac7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2025,7 +1988,7 @@ "width": null } }, - "9057d5406e10486eb9b0d222aec6c173": { + "8c5f02c3ba3b4e35a7fb7b38460ea0c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,49 +2041,23 @@ "width": null } }, - "93e759109ba04075acb0a71d2e97372b": { + "9a7b7b5c4aa8470db022c5fd5f7f5217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2060b8b81e144c6a49a7e7fa3958df1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_235633e658e345b7954a45d55013630c", - "IPY_MODEL_6207ca46ed83432aa9815e733e24936c", - "IPY_MODEL_ca86fa6464b747efa8cb70b6b43d5c8b" - ], - "layout": "IPY_MODEL_fd3bd7e5134a40e88254588af30968c5", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "ca86fa6464b747efa8cb70b6b43d5c8b": { + "a8254c641447480aa7f722801a84cae4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2135,55 +2072,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2a4770130074f03a1f894fe91ba0ef7", + "layout": "IPY_MODEL_617558923b2244798dd8e64734279f0c", "placeholder": "​", - "style": "IPY_MODEL_196062f1252744b0bf7d1cd007823e1a", + "style": "IPY_MODEL_0b139128833c45f089e40c4755cc2721", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1367514.59it/s]" + "value": "number of examples processed for estimating thresholds: " } }, - "d7a01475effc42c7a0d0df5831be2afd": { + "acbe71dfaa064b86ac9d438d3f49c584": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_042b5f7e6c694220aa1fa02292722c76", - "IPY_MODEL_57900003d6e54605b35f04067ae68062", - "IPY_MODEL_6e6e3cc4bb714d3f8590c41b962b2a1e" - ], - "layout": "IPY_MODEL_ec1db4ec95cb4fa487df30123ab7e1fc", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ea2d8ca3aa264b30ab6829a95956260e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_815bf26fdf864b97a1dcad97921e8ca0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "e7a29fb812664299960bcc8fa3e70872": { + "ad2efaf794734426b265156be3d7a946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_884f09022ec44bdc8c0f021616c3bac7", + "placeholder": "​", + "style": "IPY_MODEL_d8abcd65840740c1ab4448e80f8d6650", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1696313.19it/s]" } }, - "ec1db4ec95cb4fa487df30123ab7e1fc": { + "bf526f5c8d204d9dabafe472f6d5a633": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2236,7 +2182,43 @@ "width": null } }, - "f2a4770130074f03a1f894fe91ba0ef7": { + "cab24e4c26614d0496ef8c4fa57cb547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d8abcd65840740c1ab4448e80f8d6650": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e9893acd97ab48599094be49c014c0aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,7 +2271,7 @@ "width": null } }, - "fd3bd7e5134a40e88254588af30968c5": { + "ea2d8ca3aa264b30ab6829a95956260e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2323,24 @@ "visibility": null, "width": null } + }, + "f809c3480764400ea9f63b20e3e395c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 484d8de84..839c45673 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:10.188653Z", - "iopub.status.busy": "2024-07-18T04:07:10.188169Z", - "iopub.status.idle": "2024-07-18T04:07:11.330300Z", - "shell.execute_reply": "2024-07-18T04:07:11.329753Z" + "iopub.execute_input": "2024-07-30T16:37:06.847486Z", + "iopub.status.busy": "2024-07-30T16:37:06.846996Z", + "iopub.status.idle": "2024-07-30T16:37:08.300373Z", + "shell.execute_reply": "2024-07-30T16:37:08.299802Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.332925Z", - "iopub.status.busy": "2024-07-18T04:07:11.332477Z", - "iopub.status.idle": "2024-07-18T04:07:11.336208Z", - "shell.execute_reply": "2024-07-18T04:07:11.335748Z" + "iopub.execute_input": "2024-07-30T16:37:08.303031Z", + "iopub.status.busy": "2024-07-30T16:37:08.302535Z", + "iopub.status.idle": "2024-07-30T16:37:08.306381Z", + "shell.execute_reply": "2024-07-30T16:37:08.305889Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.338250Z", - "iopub.status.busy": "2024-07-18T04:07:11.337833Z", - "iopub.status.idle": "2024-07-18T04:07:11.871502Z", - "shell.execute_reply": "2024-07-18T04:07:11.870959Z" + "iopub.execute_input": "2024-07-30T16:37:08.308567Z", + "iopub.status.busy": "2024-07-30T16:37:08.308093Z", + "iopub.status.idle": "2024-07-30T16:37:08.564617Z", + "shell.execute_reply": "2024-07-30T16:37:08.564044Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.873441Z", - "iopub.status.busy": "2024-07-18T04:07:11.873281Z", - "iopub.status.idle": "2024-07-18T04:07:11.878931Z", - "shell.execute_reply": "2024-07-18T04:07:11.878446Z" + "iopub.execute_input": "2024-07-30T16:37:08.567009Z", + "iopub.status.busy": "2024-07-30T16:37:08.566570Z", + "iopub.status.idle": "2024-07-30T16:37:08.572786Z", + "shell.execute_reply": "2024-07-30T16:37:08.572249Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.880976Z", - "iopub.status.busy": "2024-07-18T04:07:11.880651Z", - "iopub.status.idle": "2024-07-18T04:07:11.887373Z", - "shell.execute_reply": "2024-07-18T04:07:11.886907Z" + "iopub.execute_input": "2024-07-30T16:37:08.575053Z", + "iopub.status.busy": "2024-07-30T16:37:08.574648Z", + "iopub.status.idle": "2024-07-30T16:37:08.581553Z", + "shell.execute_reply": "2024-07-30T16:37:08.580995Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.889413Z", - "iopub.status.busy": "2024-07-18T04:07:11.889074Z", - "iopub.status.idle": "2024-07-18T04:07:11.893459Z", - "shell.execute_reply": "2024-07-18T04:07:11.892989Z" + "iopub.execute_input": "2024-07-30T16:37:08.583694Z", + "iopub.status.busy": "2024-07-30T16:37:08.583295Z", + "iopub.status.idle": "2024-07-30T16:37:08.588214Z", + "shell.execute_reply": "2024-07-30T16:37:08.587641Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.895449Z", - "iopub.status.busy": "2024-07-18T04:07:11.895115Z", - "iopub.status.idle": "2024-07-18T04:07:11.900660Z", - "shell.execute_reply": "2024-07-18T04:07:11.900222Z" + "iopub.execute_input": "2024-07-30T16:37:08.590172Z", + "iopub.status.busy": "2024-07-30T16:37:08.589849Z", + "iopub.status.idle": "2024-07-30T16:37:08.595724Z", + "shell.execute_reply": "2024-07-30T16:37:08.595139Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.902522Z", - "iopub.status.busy": "2024-07-18T04:07:11.902251Z", - "iopub.status.idle": "2024-07-18T04:07:11.906435Z", - "shell.execute_reply": "2024-07-18T04:07:11.905884Z" + "iopub.execute_input": "2024-07-30T16:37:08.597670Z", + "iopub.status.busy": "2024-07-30T16:37:08.597361Z", + "iopub.status.idle": "2024-07-30T16:37:08.601523Z", + "shell.execute_reply": "2024-07-30T16:37:08.600966Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.908561Z", - "iopub.status.busy": "2024-07-18T04:07:11.908243Z", - "iopub.status.idle": "2024-07-18T04:07:11.972621Z", - "shell.execute_reply": "2024-07-18T04:07:11.972012Z" + "iopub.execute_input": "2024-07-30T16:37:08.603521Z", + "iopub.status.busy": "2024-07-30T16:37:08.603187Z", + "iopub.status.idle": "2024-07-30T16:37:08.669967Z", + "shell.execute_reply": "2024-07-30T16:37:08.669384Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.977951Z", - "iopub.status.busy": "2024-07-18T04:07:11.975122Z", - "iopub.status.idle": "2024-07-18T04:07:11.988974Z", - "shell.execute_reply": "2024-07-18T04:07:11.988486Z" + "iopub.execute_input": "2024-07-30T16:37:08.672642Z", + "iopub.status.busy": "2024-07-30T16:37:08.672054Z", + "iopub.status.idle": "2024-07-30T16:37:08.683309Z", + "shell.execute_reply": "2024-07-30T16:37:08.682790Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.991731Z", - "iopub.status.busy": "2024-07-18T04:07:11.991456Z", - "iopub.status.idle": "2024-07-18T04:07:12.012930Z", - "shell.execute_reply": "2024-07-18T04:07:12.012429Z" + "iopub.execute_input": "2024-07-30T16:37:08.685772Z", + "iopub.status.busy": "2024-07-30T16:37:08.685236Z", + "iopub.status.idle": "2024-07-30T16:37:08.705410Z", + "shell.execute_reply": "2024-07-30T16:37:08.704880Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.016335Z", - "iopub.status.busy": "2024-07-18T04:07:12.015426Z", - "iopub.status.idle": "2024-07-18T04:07:12.021208Z", - "shell.execute_reply": "2024-07-18T04:07:12.020724Z" + "iopub.execute_input": "2024-07-30T16:37:08.707757Z", + "iopub.status.busy": "2024-07-30T16:37:08.707363Z", + "iopub.status.idle": "2024-07-30T16:37:08.711693Z", + "shell.execute_reply": "2024-07-30T16:37:08.711182Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.024634Z", - "iopub.status.busy": "2024-07-18T04:07:12.023730Z", - "iopub.status.idle": "2024-07-18T04:07:12.029722Z", - "shell.execute_reply": "2024-07-18T04:07:12.029237Z" + "iopub.execute_input": "2024-07-30T16:37:08.714035Z", + "iopub.status.busy": "2024-07-30T16:37:08.713629Z", + "iopub.status.idle": "2024-07-30T16:37:08.718166Z", + "shell.execute_reply": "2024-07-30T16:37:08.717631Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.032990Z", - "iopub.status.busy": "2024-07-18T04:07:12.032270Z", - "iopub.status.idle": "2024-07-18T04:07:12.041800Z", - "shell.execute_reply": "2024-07-18T04:07:12.041134Z" + "iopub.execute_input": "2024-07-30T16:37:08.720507Z", + "iopub.status.busy": "2024-07-30T16:37:08.720111Z", + "iopub.status.idle": "2024-07-30T16:37:08.731439Z", + "shell.execute_reply": "2024-07-30T16:37:08.730910Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.044012Z", - "iopub.status.busy": "2024-07-18T04:07:12.043657Z", - "iopub.status.idle": "2024-07-18T04:07:12.048264Z", - "shell.execute_reply": "2024-07-18T04:07:12.047845Z" + "iopub.execute_input": "2024-07-30T16:37:08.733378Z", + "iopub.status.busy": "2024-07-30T16:37:08.733061Z", + "iopub.status.idle": "2024-07-30T16:37:08.737822Z", + "shell.execute_reply": "2024-07-30T16:37:08.737271Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.050252Z", - "iopub.status.busy": "2024-07-18T04:07:12.049932Z", - "iopub.status.idle": "2024-07-18T04:07:12.161492Z", - "shell.execute_reply": "2024-07-18T04:07:12.160998Z" + "iopub.execute_input": "2024-07-30T16:37:08.739993Z", + "iopub.status.busy": "2024-07-30T16:37:08.739678Z", + "iopub.status.idle": "2024-07-30T16:37:08.850454Z", + "shell.execute_reply": "2024-07-30T16:37:08.849916Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.163832Z", - "iopub.status.busy": "2024-07-18T04:07:12.163548Z", - "iopub.status.idle": "2024-07-18T04:07:12.169337Z", - "shell.execute_reply": "2024-07-18T04:07:12.168771Z" + "iopub.execute_input": "2024-07-30T16:37:08.852557Z", + "iopub.status.busy": "2024-07-30T16:37:08.852223Z", + "iopub.status.idle": "2024-07-30T16:37:08.858285Z", + "shell.execute_reply": "2024-07-30T16:37:08.857774Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.171714Z", - "iopub.status.busy": "2024-07-18T04:07:12.171220Z", - "iopub.status.idle": "2024-07-18T04:07:14.132704Z", - "shell.execute_reply": "2024-07-18T04:07:14.132092Z" + "iopub.execute_input": "2024-07-30T16:37:08.860639Z", + "iopub.status.busy": "2024-07-30T16:37:08.860116Z", + "iopub.status.idle": "2024-07-30T16:37:11.081523Z", + "shell.execute_reply": "2024-07-30T16:37:11.080894Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.136911Z", - "iopub.status.busy": "2024-07-18T04:07:14.135833Z", - "iopub.status.idle": "2024-07-18T04:07:14.150521Z", - "shell.execute_reply": "2024-07-18T04:07:14.150012Z" + "iopub.execute_input": "2024-07-30T16:37:11.085782Z", + "iopub.status.busy": "2024-07-30T16:37:11.084683Z", + "iopub.status.idle": "2024-07-30T16:37:11.100012Z", + "shell.execute_reply": "2024-07-30T16:37:11.099506Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.154039Z", - "iopub.status.busy": "2024-07-18T04:07:14.153107Z", - "iopub.status.idle": "2024-07-18T04:07:14.157115Z", - "shell.execute_reply": "2024-07-18T04:07:14.156603Z" + "iopub.execute_input": "2024-07-30T16:37:11.103570Z", + "iopub.status.busy": "2024-07-30T16:37:11.102644Z", + "iopub.status.idle": "2024-07-30T16:37:11.106644Z", + "shell.execute_reply": "2024-07-30T16:37:11.106149Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.160572Z", - "iopub.status.busy": "2024-07-18T04:07:14.159645Z", - "iopub.status.idle": "2024-07-18T04:07:14.165136Z", - "shell.execute_reply": "2024-07-18T04:07:14.164638Z" + "iopub.execute_input": "2024-07-30T16:37:11.110093Z", + "iopub.status.busy": "2024-07-30T16:37:11.109154Z", + "iopub.status.idle": "2024-07-30T16:37:11.114773Z", + "shell.execute_reply": "2024-07-30T16:37:11.114272Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.168650Z", - "iopub.status.busy": "2024-07-18T04:07:14.167719Z", - "iopub.status.idle": "2024-07-18T04:07:14.201487Z", - "shell.execute_reply": "2024-07-18T04:07:14.200991Z" + "iopub.execute_input": "2024-07-30T16:37:11.118266Z", + "iopub.status.busy": "2024-07-30T16:37:11.117324Z", + "iopub.status.idle": "2024-07-30T16:37:11.149228Z", + "shell.execute_reply": "2024-07-30T16:37:11.148699Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.204946Z", - "iopub.status.busy": "2024-07-18T04:07:14.204060Z", - "iopub.status.idle": "2024-07-18T04:07:14.715733Z", - "shell.execute_reply": "2024-07-18T04:07:14.715232Z" + "iopub.execute_input": "2024-07-30T16:37:11.152348Z", + "iopub.status.busy": "2024-07-30T16:37:11.151900Z", + "iopub.status.idle": "2024-07-30T16:37:11.662729Z", + "shell.execute_reply": "2024-07-30T16:37:11.662153Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.719208Z", - "iopub.status.busy": "2024-07-18T04:07:14.718293Z", - "iopub.status.idle": "2024-07-18T04:07:14.851216Z", - "shell.execute_reply": "2024-07-18T04:07:14.850601Z" + "iopub.execute_input": "2024-07-30T16:37:11.665547Z", + "iopub.status.busy": "2024-07-30T16:37:11.665125Z", + "iopub.status.idle": "2024-07-30T16:37:11.811588Z", + "shell.execute_reply": "2024-07-30T16:37:11.810893Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.854177Z", - "iopub.status.busy": "2024-07-18T04:07:14.853837Z", - "iopub.status.idle": "2024-07-18T04:07:14.860224Z", - "shell.execute_reply": "2024-07-18T04:07:14.859741Z" + "iopub.execute_input": "2024-07-30T16:37:11.814740Z", + "iopub.status.busy": "2024-07-30T16:37:11.814355Z", + "iopub.status.idle": "2024-07-30T16:37:11.821641Z", + "shell.execute_reply": "2024-07-30T16:37:11.821112Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.862683Z", - "iopub.status.busy": "2024-07-18T04:07:14.862372Z", - "iopub.status.idle": "2024-07-18T04:07:14.868198Z", - "shell.execute_reply": "2024-07-18T04:07:14.867715Z" + "iopub.execute_input": "2024-07-30T16:37:11.825192Z", + "iopub.status.busy": "2024-07-30T16:37:11.824261Z", + "iopub.status.idle": "2024-07-30T16:37:11.832276Z", + "shell.execute_reply": "2024-07-30T16:37:11.831780Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.870508Z", - "iopub.status.busy": "2024-07-18T04:07:14.870130Z", - "iopub.status.idle": "2024-07-18T04:07:14.875378Z", - "shell.execute_reply": "2024-07-18T04:07:14.874887Z" + "iopub.execute_input": "2024-07-30T16:37:11.835774Z", + "iopub.status.busy": "2024-07-30T16:37:11.834852Z", + "iopub.status.idle": "2024-07-30T16:37:11.842134Z", + "shell.execute_reply": "2024-07-30T16:37:11.841617Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.877652Z", - "iopub.status.busy": "2024-07-18T04:07:14.877284Z", - "iopub.status.idle": "2024-07-18T04:07:14.881329Z", - "shell.execute_reply": "2024-07-18T04:07:14.880859Z" + "iopub.execute_input": "2024-07-30T16:37:11.845557Z", + "iopub.status.busy": "2024-07-30T16:37:11.844646Z", + "iopub.status.idle": "2024-07-30T16:37:11.849988Z", + "shell.execute_reply": "2024-07-30T16:37:11.849571Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.883619Z", - "iopub.status.busy": "2024-07-18T04:07:14.883248Z", - "iopub.status.idle": "2024-07-18T04:07:14.887859Z", - "shell.execute_reply": "2024-07-18T04:07:14.887364Z" + "iopub.execute_input": "2024-07-30T16:37:11.852085Z", + "iopub.status.busy": "2024-07-30T16:37:11.851735Z", + "iopub.status.idle": "2024-07-30T16:37:11.856242Z", + "shell.execute_reply": "2024-07-30T16:37:11.855836Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.890172Z", - "iopub.status.busy": "2024-07-18T04:07:14.889802Z", - "iopub.status.idle": "2024-07-18T04:07:14.967278Z", - "shell.execute_reply": "2024-07-18T04:07:14.966734Z" + "iopub.execute_input": "2024-07-30T16:37:11.858461Z", + "iopub.status.busy": "2024-07-30T16:37:11.858025Z", + "iopub.status.idle": "2024-07-30T16:37:11.938221Z", + "shell.execute_reply": "2024-07-30T16:37:11.937709Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.969554Z", - "iopub.status.busy": "2024-07-18T04:07:14.969394Z", - "iopub.status.idle": "2024-07-18T04:07:14.980191Z", - "shell.execute_reply": "2024-07-18T04:07:14.979708Z" + "iopub.execute_input": "2024-07-30T16:37:11.940497Z", + "iopub.status.busy": "2024-07-30T16:37:11.940305Z", + "iopub.status.idle": "2024-07-30T16:37:11.950235Z", + "shell.execute_reply": "2024-07-30T16:37:11.949598Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.983421Z", - "iopub.status.busy": "2024-07-18T04:07:14.982704Z", - "iopub.status.idle": "2024-07-18T04:07:14.986309Z", - "shell.execute_reply": "2024-07-18T04:07:14.985259Z" + "iopub.execute_input": "2024-07-30T16:37:11.952707Z", + "iopub.status.busy": "2024-07-30T16:37:11.952413Z", + "iopub.status.idle": "2024-07-30T16:37:11.955525Z", + "shell.execute_reply": "2024-07-30T16:37:11.954939Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.988371Z", - "iopub.status.busy": "2024-07-18T04:07:14.988062Z", - "iopub.status.idle": "2024-07-18T04:07:14.997162Z", - "shell.execute_reply": "2024-07-18T04:07:14.996732Z" + "iopub.execute_input": "2024-07-30T16:37:11.957491Z", + "iopub.status.busy": "2024-07-30T16:37:11.957322Z", + "iopub.status.idle": "2024-07-30T16:37:11.968955Z", + "shell.execute_reply": "2024-07-30T16:37:11.968450Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.999345Z", - "iopub.status.busy": "2024-07-18T04:07:14.999017Z", - "iopub.status.idle": "2024-07-18T04:07:15.005252Z", - "shell.execute_reply": "2024-07-18T04:07:15.004791Z" + "iopub.execute_input": "2024-07-30T16:37:11.971083Z", + "iopub.status.busy": "2024-07-30T16:37:11.970902Z", + "iopub.status.idle": "2024-07-30T16:37:11.977806Z", + "shell.execute_reply": "2024-07-30T16:37:11.977330Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:15.007199Z", - "iopub.status.busy": "2024-07-18T04:07:15.006868Z", - "iopub.status.idle": "2024-07-18T04:07:15.009987Z", - "shell.execute_reply": "2024-07-18T04:07:15.009541Z" + "iopub.execute_input": "2024-07-30T16:37:11.979672Z", + "iopub.status.busy": "2024-07-30T16:37:11.979501Z", + "iopub.status.idle": "2024-07-30T16:37:11.982695Z", + "shell.execute_reply": "2024-07-30T16:37:11.982238Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:15.011951Z", - "iopub.status.busy": "2024-07-18T04:07:15.011621Z", - "iopub.status.idle": "2024-07-18T04:07:19.005757Z", - "shell.execute_reply": "2024-07-18T04:07:19.005204Z" + "iopub.execute_input": "2024-07-30T16:37:11.984563Z", + "iopub.status.busy": "2024-07-30T16:37:11.984385Z", + "iopub.status.idle": "2024-07-30T16:37:16.038898Z", + "shell.execute_reply": "2024-07-30T16:37:16.038334Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:19.009017Z", - "iopub.status.busy": "2024-07-18T04:07:19.008110Z", - "iopub.status.idle": "2024-07-18T04:07:19.011999Z", - "shell.execute_reply": "2024-07-18T04:07:19.011599Z" + "iopub.execute_input": "2024-07-30T16:37:16.041419Z", + "iopub.status.busy": "2024-07-30T16:37:16.041044Z", + "iopub.status.idle": "2024-07-30T16:37:16.044136Z", + "shell.execute_reply": "2024-07-30T16:37:16.043742Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:19.013973Z", - "iopub.status.busy": "2024-07-18T04:07:19.013518Z", - "iopub.status.idle": "2024-07-18T04:07:19.016164Z", - "shell.execute_reply": "2024-07-18T04:07:19.015768Z" + "iopub.execute_input": "2024-07-30T16:37:16.046136Z", + "iopub.status.busy": "2024-07-30T16:37:16.045835Z", + "iopub.status.idle": "2024-07-30T16:37:16.048832Z", + "shell.execute_reply": "2024-07-30T16:37:16.048207Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 773aea810..63d074d15 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:22.076336Z", - "iopub.status.busy": "2024-07-18T04:07:22.075827Z", - "iopub.status.idle": "2024-07-18T04:07:23.267351Z", - "shell.execute_reply": "2024-07-18T04:07:23.266808Z" + "iopub.execute_input": "2024-07-30T16:37:19.514665Z", + "iopub.status.busy": "2024-07-30T16:37:19.514193Z", + "iopub.status.idle": "2024-07-30T16:37:20.970203Z", + "shell.execute_reply": "2024-07-30T16:37:20.969599Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.269779Z", - "iopub.status.busy": "2024-07-18T04:07:23.269491Z", - "iopub.status.idle": "2024-07-18T04:07:23.449090Z", - "shell.execute_reply": "2024-07-18T04:07:23.448580Z" + "iopub.execute_input": "2024-07-30T16:37:20.972868Z", + "iopub.status.busy": "2024-07-30T16:37:20.972378Z", + "iopub.status.idle": "2024-07-30T16:37:20.975839Z", + "shell.execute_reply": "2024-07-30T16:37:20.975373Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.451531Z", - "iopub.status.busy": "2024-07-18T04:07:23.451185Z", - "iopub.status.idle": "2024-07-18T04:07:23.462992Z", - "shell.execute_reply": "2024-07-18T04:07:23.462568Z" + "iopub.execute_input": "2024-07-30T16:37:20.977983Z", + "iopub.status.busy": "2024-07-30T16:37:20.977647Z", + "iopub.status.idle": "2024-07-30T16:37:20.988855Z", + "shell.execute_reply": "2024-07-30T16:37:20.988422Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.465102Z", - "iopub.status.busy": "2024-07-18T04:07:23.464771Z", - "iopub.status.idle": "2024-07-18T04:07:23.699321Z", - "shell.execute_reply": "2024-07-18T04:07:23.698710Z" + "iopub.execute_input": "2024-07-30T16:37:20.990750Z", + "iopub.status.busy": "2024-07-30T16:37:20.990413Z", + "iopub.status.idle": "2024-07-30T16:37:21.236239Z", + "shell.execute_reply": "2024-07-30T16:37:21.235736Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.701468Z", - "iopub.status.busy": "2024-07-18T04:07:23.701288Z", - "iopub.status.idle": "2024-07-18T04:07:23.726925Z", - "shell.execute_reply": "2024-07-18T04:07:23.726344Z" + "iopub.execute_input": "2024-07-30T16:37:21.238707Z", + "iopub.status.busy": "2024-07-30T16:37:21.238345Z", + "iopub.status.idle": "2024-07-30T16:37:21.264617Z", + "shell.execute_reply": "2024-07-30T16:37:21.264131Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.729027Z", - "iopub.status.busy": "2024-07-18T04:07:23.728854Z", - "iopub.status.idle": "2024-07-18T04:07:25.797394Z", - "shell.execute_reply": "2024-07-18T04:07:25.796767Z" + "iopub.execute_input": "2024-07-30T16:37:21.266767Z", + "iopub.status.busy": "2024-07-30T16:37:21.266578Z", + "iopub.status.idle": "2024-07-30T16:37:23.611867Z", + "shell.execute_reply": "2024-07-30T16:37:23.611160Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:25.799776Z", - "iopub.status.busy": "2024-07-18T04:07:25.799466Z", - "iopub.status.idle": "2024-07-18T04:07:25.818394Z", - "shell.execute_reply": "2024-07-18T04:07:25.817813Z" + "iopub.execute_input": "2024-07-30T16:37:23.614599Z", + "iopub.status.busy": "2024-07-30T16:37:23.614210Z", + "iopub.status.idle": "2024-07-30T16:37:23.634028Z", + "shell.execute_reply": "2024-07-30T16:37:23.633465Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:25.820464Z", - "iopub.status.busy": "2024-07-18T04:07:25.820179Z", - "iopub.status.idle": "2024-07-18T04:07:27.394088Z", - "shell.execute_reply": "2024-07-18T04:07:27.393509Z" + "iopub.execute_input": "2024-07-30T16:37:23.636438Z", + "iopub.status.busy": "2024-07-30T16:37:23.635973Z", + "iopub.status.idle": "2024-07-30T16:37:25.305599Z", + "shell.execute_reply": "2024-07-30T16:37:25.304862Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.396818Z", - "iopub.status.busy": "2024-07-18T04:07:27.396136Z", - "iopub.status.idle": "2024-07-18T04:07:27.409817Z", - "shell.execute_reply": "2024-07-18T04:07:27.409253Z" + "iopub.execute_input": "2024-07-30T16:37:25.308828Z", + "iopub.status.busy": "2024-07-30T16:37:25.307885Z", + "iopub.status.idle": "2024-07-30T16:37:25.322222Z", + "shell.execute_reply": "2024-07-30T16:37:25.321727Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.411938Z", - "iopub.status.busy": "2024-07-18T04:07:27.411554Z", - "iopub.status.idle": "2024-07-18T04:07:27.487589Z", - "shell.execute_reply": "2024-07-18T04:07:27.486978Z" + "iopub.execute_input": "2024-07-30T16:37:25.324721Z", + "iopub.status.busy": "2024-07-30T16:37:25.324152Z", + "iopub.status.idle": "2024-07-30T16:37:25.419049Z", + "shell.execute_reply": "2024-07-30T16:37:25.418364Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.490046Z", - "iopub.status.busy": "2024-07-18T04:07:27.489661Z", - "iopub.status.idle": "2024-07-18T04:07:27.700426Z", - "shell.execute_reply": "2024-07-18T04:07:27.699861Z" + "iopub.execute_input": "2024-07-30T16:37:25.421430Z", + "iopub.status.busy": "2024-07-30T16:37:25.421173Z", + "iopub.status.idle": "2024-07-30T16:37:25.644270Z", + "shell.execute_reply": "2024-07-30T16:37:25.643645Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.702570Z", - "iopub.status.busy": "2024-07-18T04:07:27.702242Z", - "iopub.status.idle": "2024-07-18T04:07:27.719037Z", - "shell.execute_reply": "2024-07-18T04:07:27.718497Z" + "iopub.execute_input": "2024-07-30T16:37:25.646795Z", + "iopub.status.busy": "2024-07-30T16:37:25.646428Z", + "iopub.status.idle": "2024-07-30T16:37:25.665764Z", + "shell.execute_reply": "2024-07-30T16:37:25.665270Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.721046Z", - "iopub.status.busy": "2024-07-18T04:07:27.720735Z", - "iopub.status.idle": "2024-07-18T04:07:27.731534Z", - "shell.execute_reply": "2024-07-18T04:07:27.730958Z" + "iopub.execute_input": "2024-07-30T16:37:25.667885Z", + "iopub.status.busy": "2024-07-30T16:37:25.667692Z", + "iopub.status.idle": "2024-07-30T16:37:25.678270Z", + "shell.execute_reply": "2024-07-30T16:37:25.677775Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.733768Z", - "iopub.status.busy": "2024-07-18T04:07:27.733373Z", - "iopub.status.idle": "2024-07-18T04:07:27.825217Z", - "shell.execute_reply": "2024-07-18T04:07:27.824625Z" + "iopub.execute_input": "2024-07-30T16:37:25.680557Z", + "iopub.status.busy": "2024-07-30T16:37:25.680215Z", + "iopub.status.idle": "2024-07-30T16:37:25.783566Z", + "shell.execute_reply": "2024-07-30T16:37:25.782891Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.827744Z", - "iopub.status.busy": "2024-07-18T04:07:27.827350Z", - "iopub.status.idle": "2024-07-18T04:07:27.961216Z", - "shell.execute_reply": "2024-07-18T04:07:27.960600Z" + "iopub.execute_input": "2024-07-30T16:37:25.786394Z", + "iopub.status.busy": "2024-07-30T16:37:25.785963Z", + "iopub.status.idle": "2024-07-30T16:37:25.944890Z", + "shell.execute_reply": "2024-07-30T16:37:25.944224Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.963793Z", - "iopub.status.busy": "2024-07-18T04:07:27.963318Z", - "iopub.status.idle": "2024-07-18T04:07:27.967349Z", - "shell.execute_reply": "2024-07-18T04:07:27.966769Z" + "iopub.execute_input": "2024-07-30T16:37:25.947223Z", + "iopub.status.busy": "2024-07-30T16:37:25.947014Z", + "iopub.status.idle": "2024-07-30T16:37:25.951228Z", + "shell.execute_reply": "2024-07-30T16:37:25.950663Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.969456Z", - "iopub.status.busy": "2024-07-18T04:07:27.969185Z", - "iopub.status.idle": "2024-07-18T04:07:27.972925Z", - "shell.execute_reply": "2024-07-18T04:07:27.972378Z" + "iopub.execute_input": "2024-07-30T16:37:25.953418Z", + "iopub.status.busy": "2024-07-30T16:37:25.953075Z", + "iopub.status.idle": "2024-07-30T16:37:25.957102Z", + "shell.execute_reply": "2024-07-30T16:37:25.956520Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.974780Z", - "iopub.status.busy": "2024-07-18T04:07:27.974604Z", - "iopub.status.idle": "2024-07-18T04:07:28.011316Z", - "shell.execute_reply": "2024-07-18T04:07:28.010835Z" + "iopub.execute_input": "2024-07-30T16:37:25.959055Z", + "iopub.status.busy": "2024-07-30T16:37:25.958872Z", + "iopub.status.idle": "2024-07-30T16:37:25.996394Z", + "shell.execute_reply": "2024-07-30T16:37:25.995898Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.013167Z", - "iopub.status.busy": "2024-07-18T04:07:28.012994Z", - "iopub.status.idle": "2024-07-18T04:07:28.054350Z", - "shell.execute_reply": "2024-07-18T04:07:28.053903Z" + "iopub.execute_input": "2024-07-30T16:37:25.998305Z", + "iopub.status.busy": "2024-07-30T16:37:25.998128Z", + "iopub.status.idle": "2024-07-30T16:37:26.039427Z", + "shell.execute_reply": "2024-07-30T16:37:26.038868Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.056361Z", - "iopub.status.busy": "2024-07-18T04:07:28.056029Z", - "iopub.status.idle": "2024-07-18T04:07:28.151883Z", - "shell.execute_reply": "2024-07-18T04:07:28.151289Z" + "iopub.execute_input": "2024-07-30T16:37:26.041607Z", + "iopub.status.busy": "2024-07-30T16:37:26.041417Z", + "iopub.status.idle": "2024-07-30T16:37:26.162225Z", + "shell.execute_reply": "2024-07-30T16:37:26.161548Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.154465Z", - "iopub.status.busy": "2024-07-18T04:07:28.154094Z", - "iopub.status.idle": "2024-07-18T04:07:28.255502Z", - "shell.execute_reply": "2024-07-18T04:07:28.254823Z" + "iopub.execute_input": "2024-07-30T16:37:26.165084Z", + "iopub.status.busy": "2024-07-30T16:37:26.164618Z", + "iopub.status.idle": "2024-07-30T16:37:26.285845Z", + "shell.execute_reply": "2024-07-30T16:37:26.285184Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.258165Z", - "iopub.status.busy": "2024-07-18T04:07:28.257804Z", - "iopub.status.idle": "2024-07-18T04:07:28.470060Z", - "shell.execute_reply": "2024-07-18T04:07:28.469555Z" + "iopub.execute_input": "2024-07-30T16:37:26.288464Z", + "iopub.status.busy": "2024-07-30T16:37:26.288093Z", + "iopub.status.idle": "2024-07-30T16:37:26.502063Z", + "shell.execute_reply": "2024-07-30T16:37:26.501416Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.472345Z", - "iopub.status.busy": "2024-07-18T04:07:28.471991Z", - "iopub.status.idle": "2024-07-18T04:07:28.679158Z", - "shell.execute_reply": "2024-07-18T04:07:28.678514Z" + "iopub.execute_input": "2024-07-30T16:37:26.504441Z", + "iopub.status.busy": "2024-07-30T16:37:26.503981Z", + "iopub.status.idle": "2024-07-30T16:37:26.744760Z", + "shell.execute_reply": "2024-07-30T16:37:26.744174Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.681512Z", - "iopub.status.busy": "2024-07-18T04:07:28.681268Z", - "iopub.status.idle": "2024-07-18T04:07:28.687496Z", - "shell.execute_reply": "2024-07-18T04:07:28.686962Z" + "iopub.execute_input": "2024-07-30T16:37:26.747291Z", + "iopub.status.busy": "2024-07-30T16:37:26.746891Z", + "iopub.status.idle": "2024-07-30T16:37:26.752870Z", + "shell.execute_reply": "2024-07-30T16:37:26.752415Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.689401Z", - "iopub.status.busy": "2024-07-18T04:07:28.689228Z", - "iopub.status.idle": "2024-07-18T04:07:28.907545Z", - "shell.execute_reply": "2024-07-18T04:07:28.907027Z" + "iopub.execute_input": "2024-07-30T16:37:26.754943Z", + "iopub.status.busy": "2024-07-30T16:37:26.754598Z", + "iopub.status.idle": "2024-07-30T16:37:26.972039Z", + "shell.execute_reply": "2024-07-30T16:37:26.971400Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.909667Z", - "iopub.status.busy": "2024-07-18T04:07:28.909321Z", - "iopub.status.idle": "2024-07-18T04:07:29.967572Z", - "shell.execute_reply": "2024-07-18T04:07:29.967037Z" + "iopub.execute_input": "2024-07-30T16:37:26.974261Z", + "iopub.status.busy": "2024-07-30T16:37:26.974064Z", + "iopub.status.idle": "2024-07-30T16:37:28.066231Z", + "shell.execute_reply": "2024-07-30T16:37:28.065649Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 04b78b7b1..fd2c70404 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:34.296538Z", - "iopub.status.busy": "2024-07-18T04:07:34.296363Z", - "iopub.status.idle": "2024-07-18T04:07:35.422497Z", - "shell.execute_reply": "2024-07-18T04:07:35.421862Z" + "iopub.execute_input": "2024-07-30T16:37:32.718320Z", + "iopub.status.busy": "2024-07-30T16:37:32.718143Z", + "iopub.status.idle": "2024-07-30T16:37:34.160547Z", + "shell.execute_reply": "2024-07-30T16:37:34.159900Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.425676Z", - "iopub.status.busy": "2024-07-18T04:07:35.425102Z", - "iopub.status.idle": "2024-07-18T04:07:35.428437Z", - "shell.execute_reply": "2024-07-18T04:07:35.427876Z" + "iopub.execute_input": "2024-07-30T16:37:34.163333Z", + "iopub.status.busy": "2024-07-30T16:37:34.163023Z", + "iopub.status.idle": "2024-07-30T16:37:34.166128Z", + "shell.execute_reply": "2024-07-30T16:37:34.165659Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.430702Z", - "iopub.status.busy": "2024-07-18T04:07:35.430517Z", - "iopub.status.idle": "2024-07-18T04:07:35.438434Z", - "shell.execute_reply": "2024-07-18T04:07:35.437884Z" + "iopub.execute_input": "2024-07-30T16:37:34.168192Z", + "iopub.status.busy": "2024-07-30T16:37:34.168013Z", + "iopub.status.idle": "2024-07-30T16:37:34.175994Z", + "shell.execute_reply": "2024-07-30T16:37:34.175519Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.440572Z", - "iopub.status.busy": "2024-07-18T04:07:35.440110Z", - "iopub.status.idle": "2024-07-18T04:07:35.486384Z", - "shell.execute_reply": "2024-07-18T04:07:35.485828Z" + "iopub.execute_input": "2024-07-30T16:37:34.178122Z", + "iopub.status.busy": "2024-07-30T16:37:34.177688Z", + "iopub.status.idle": "2024-07-30T16:37:34.225806Z", + "shell.execute_reply": "2024-07-30T16:37:34.225161Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.488599Z", - "iopub.status.busy": "2024-07-18T04:07:35.488257Z", - "iopub.status.idle": "2024-07-18T04:07:35.504681Z", - "shell.execute_reply": "2024-07-18T04:07:35.504225Z" + "iopub.execute_input": "2024-07-30T16:37:34.228546Z", + "iopub.status.busy": "2024-07-30T16:37:34.228175Z", + "iopub.status.idle": "2024-07-30T16:37:34.246251Z", + "shell.execute_reply": "2024-07-30T16:37:34.245703Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.506559Z", - "iopub.status.busy": "2024-07-18T04:07:35.506378Z", - "iopub.status.idle": "2024-07-18T04:07:35.510269Z", - "shell.execute_reply": "2024-07-18T04:07:35.509744Z" + "iopub.execute_input": "2024-07-30T16:37:34.248429Z", + "iopub.status.busy": "2024-07-30T16:37:34.248067Z", + "iopub.status.idle": "2024-07-30T16:37:34.251958Z", + "shell.execute_reply": "2024-07-30T16:37:34.251523Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.512387Z", - "iopub.status.busy": "2024-07-18T04:07:35.511994Z", - "iopub.status.idle": "2024-07-18T04:07:35.528137Z", - "shell.execute_reply": "2024-07-18T04:07:35.527604Z" + "iopub.execute_input": "2024-07-30T16:37:34.254230Z", + "iopub.status.busy": "2024-07-30T16:37:34.253755Z", + "iopub.status.idle": "2024-07-30T16:37:34.270486Z", + "shell.execute_reply": "2024-07-30T16:37:34.269879Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.530221Z", - "iopub.status.busy": "2024-07-18T04:07:35.529800Z", - "iopub.status.idle": "2024-07-18T04:07:35.555407Z", - "shell.execute_reply": "2024-07-18T04:07:35.554844Z" + "iopub.execute_input": "2024-07-30T16:37:34.272682Z", + "iopub.status.busy": "2024-07-30T16:37:34.272503Z", + "iopub.status.idle": "2024-07-30T16:37:34.299362Z", + "shell.execute_reply": "2024-07-30T16:37:34.298706Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.557521Z", - "iopub.status.busy": "2024-07-18T04:07:35.557213Z", - "iopub.status.idle": "2024-07-18T04:07:37.509880Z", - "shell.execute_reply": "2024-07-18T04:07:37.509298Z" + "iopub.execute_input": "2024-07-30T16:37:34.302325Z", + "iopub.status.busy": "2024-07-30T16:37:34.301951Z", + "iopub.status.idle": "2024-07-30T16:37:36.536542Z", + "shell.execute_reply": "2024-07-30T16:37:36.535928Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.512502Z", - "iopub.status.busy": "2024-07-18T04:07:37.511961Z", - "iopub.status.idle": "2024-07-18T04:07:37.518638Z", - "shell.execute_reply": "2024-07-18T04:07:37.518085Z" + "iopub.execute_input": "2024-07-30T16:37:36.540387Z", + "iopub.status.busy": "2024-07-30T16:37:36.538845Z", + "iopub.status.idle": "2024-07-30T16:37:36.547424Z", + "shell.execute_reply": "2024-07-30T16:37:36.546819Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.520639Z", - "iopub.status.busy": "2024-07-18T04:07:37.520331Z", - "iopub.status.idle": "2024-07-18T04:07:37.532904Z", - "shell.execute_reply": "2024-07-18T04:07:37.532451Z" + "iopub.execute_input": "2024-07-30T16:37:36.549619Z", + "iopub.status.busy": "2024-07-30T16:37:36.549270Z", + "iopub.status.idle": "2024-07-30T16:37:36.562222Z", + "shell.execute_reply": "2024-07-30T16:37:36.561697Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.534769Z", - "iopub.status.busy": "2024-07-18T04:07:37.534595Z", - "iopub.status.idle": "2024-07-18T04:07:37.541067Z", - "shell.execute_reply": "2024-07-18T04:07:37.540607Z" + "iopub.execute_input": "2024-07-30T16:37:36.564431Z", + "iopub.status.busy": "2024-07-30T16:37:36.564072Z", + "iopub.status.idle": "2024-07-30T16:37:36.570665Z", + "shell.execute_reply": "2024-07-30T16:37:36.570168Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.543185Z", - "iopub.status.busy": "2024-07-18T04:07:37.542911Z", - "iopub.status.idle": "2024-07-18T04:07:37.545708Z", - "shell.execute_reply": "2024-07-18T04:07:37.545133Z" + "iopub.execute_input": "2024-07-30T16:37:36.572817Z", + "iopub.status.busy": "2024-07-30T16:37:36.572406Z", + "iopub.status.idle": "2024-07-30T16:37:36.575372Z", + "shell.execute_reply": "2024-07-30T16:37:36.574796Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.547886Z", - "iopub.status.busy": "2024-07-18T04:07:37.547445Z", - "iopub.status.idle": "2024-07-18T04:07:37.550823Z", - "shell.execute_reply": "2024-07-18T04:07:37.550384Z" + "iopub.execute_input": "2024-07-30T16:37:36.577427Z", + "iopub.status.busy": "2024-07-30T16:37:36.577104Z", + "iopub.status.idle": "2024-07-30T16:37:36.580747Z", + "shell.execute_reply": "2024-07-30T16:37:36.580200Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.552820Z", - "iopub.status.busy": "2024-07-18T04:07:37.552645Z", - "iopub.status.idle": "2024-07-18T04:07:37.555115Z", - "shell.execute_reply": "2024-07-18T04:07:37.554670Z" + "iopub.execute_input": "2024-07-30T16:37:36.582932Z", + "iopub.status.busy": "2024-07-30T16:37:36.582604Z", + "iopub.status.idle": "2024-07-30T16:37:36.585678Z", + "shell.execute_reply": "2024-07-30T16:37:36.585251Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.557056Z", - "iopub.status.busy": "2024-07-18T04:07:37.556883Z", - "iopub.status.idle": "2024-07-18T04:07:37.561041Z", - "shell.execute_reply": "2024-07-18T04:07:37.560482Z" + "iopub.execute_input": "2024-07-30T16:37:36.587663Z", + "iopub.status.busy": "2024-07-30T16:37:36.587336Z", + "iopub.status.idle": "2024-07-30T16:37:36.591506Z", + "shell.execute_reply": "2024-07-30T16:37:36.590945Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.563256Z", - "iopub.status.busy": "2024-07-18T04:07:37.562843Z", - "iopub.status.idle": "2024-07-18T04:07:37.591846Z", - "shell.execute_reply": "2024-07-18T04:07:37.591369Z" + "iopub.execute_input": "2024-07-30T16:37:36.593587Z", + "iopub.status.busy": "2024-07-30T16:37:36.593411Z", + "iopub.status.idle": "2024-07-30T16:37:36.622081Z", + "shell.execute_reply": "2024-07-30T16:37:36.621614Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.593815Z", - "iopub.status.busy": "2024-07-18T04:07:37.593607Z", - "iopub.status.idle": "2024-07-18T04:07:37.598269Z", - "shell.execute_reply": "2024-07-18T04:07:37.597815Z" + "iopub.execute_input": "2024-07-30T16:37:36.624325Z", + "iopub.status.busy": "2024-07-30T16:37:36.623993Z", + "iopub.status.idle": "2024-07-30T16:37:36.628891Z", + "shell.execute_reply": "2024-07-30T16:37:36.628307Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 2d0d39b6e..85921d220 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:40.549664Z", - "iopub.status.busy": "2024-07-18T04:07:40.549497Z", - "iopub.status.idle": "2024-07-18T04:07:41.730292Z", - "shell.execute_reply": "2024-07-18T04:07:41.729739Z" + "iopub.execute_input": "2024-07-30T16:37:39.759530Z", + "iopub.status.busy": "2024-07-30T16:37:39.759170Z", + "iopub.status.idle": "2024-07-30T16:37:41.225938Z", + "shell.execute_reply": "2024-07-30T16:37:41.225361Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.732831Z", - "iopub.status.busy": "2024-07-18T04:07:41.732430Z", - "iopub.status.idle": "2024-07-18T04:07:41.924995Z", - "shell.execute_reply": "2024-07-18T04:07:41.924470Z" + "iopub.execute_input": "2024-07-30T16:37:41.228688Z", + "iopub.status.busy": "2024-07-30T16:37:41.228204Z", + "iopub.status.idle": "2024-07-30T16:37:41.249656Z", + "shell.execute_reply": "2024-07-30T16:37:41.249163Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.927419Z", - "iopub.status.busy": "2024-07-18T04:07:41.927009Z", - "iopub.status.idle": "2024-07-18T04:07:41.940256Z", - "shell.execute_reply": "2024-07-18T04:07:41.939813Z" + "iopub.execute_input": "2024-07-30T16:37:41.252375Z", + "iopub.status.busy": "2024-07-30T16:37:41.251838Z", + "iopub.status.idle": "2024-07-30T16:37:41.265158Z", + "shell.execute_reply": "2024-07-30T16:37:41.264726Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.942329Z", - "iopub.status.busy": "2024-07-18T04:07:41.942007Z", - "iopub.status.idle": "2024-07-18T04:07:44.554754Z", - "shell.execute_reply": "2024-07-18T04:07:44.554282Z" + "iopub.execute_input": "2024-07-30T16:37:41.267369Z", + "iopub.status.busy": "2024-07-30T16:37:41.266961Z", + "iopub.status.idle": "2024-07-30T16:37:43.948010Z", + "shell.execute_reply": "2024-07-30T16:37:43.947423Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:44.557154Z", - "iopub.status.busy": "2024-07-18T04:07:44.556790Z", - "iopub.status.idle": "2024-07-18T04:07:45.887262Z", - "shell.execute_reply": "2024-07-18T04:07:45.886610Z" + "iopub.execute_input": "2024-07-30T16:37:43.950421Z", + "iopub.status.busy": "2024-07-30T16:37:43.950035Z", + "iopub.status.idle": "2024-07-30T16:37:45.317858Z", + "shell.execute_reply": "2024-07-30T16:37:45.317234Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:45.889687Z", - "iopub.status.busy": "2024-07-18T04:07:45.889483Z", - "iopub.status.idle": "2024-07-18T04:07:45.893592Z", - "shell.execute_reply": "2024-07-18T04:07:45.893123Z" + "iopub.execute_input": "2024-07-30T16:37:45.320689Z", + "iopub.status.busy": "2024-07-30T16:37:45.320261Z", + "iopub.status.idle": "2024-07-30T16:37:45.325116Z", + "shell.execute_reply": "2024-07-30T16:37:45.324609Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:45.895685Z", - "iopub.status.busy": "2024-07-18T04:07:45.895358Z", - "iopub.status.idle": "2024-07-18T04:07:47.938953Z", - "shell.execute_reply": "2024-07-18T04:07:47.938261Z" + "iopub.execute_input": "2024-07-30T16:37:45.327504Z", + "iopub.status.busy": "2024-07-30T16:37:45.327099Z", + "iopub.status.idle": "2024-07-30T16:37:47.549771Z", + "shell.execute_reply": "2024-07-30T16:37:47.549091Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:47.941361Z", - "iopub.status.busy": "2024-07-18T04:07:47.941011Z", - "iopub.status.idle": "2024-07-18T04:07:47.949262Z", - "shell.execute_reply": "2024-07-18T04:07:47.948769Z" + "iopub.execute_input": "2024-07-30T16:37:47.552479Z", + "iopub.status.busy": "2024-07-30T16:37:47.551972Z", + "iopub.status.idle": "2024-07-30T16:37:47.560612Z", + "shell.execute_reply": "2024-07-30T16:37:47.560120Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:47.951205Z", - "iopub.status.busy": "2024-07-18T04:07:47.950934Z", - "iopub.status.idle": "2024-07-18T04:07:50.493764Z", - "shell.execute_reply": "2024-07-18T04:07:50.493249Z" + "iopub.execute_input": "2024-07-30T16:37:47.562648Z", + "iopub.status.busy": "2024-07-30T16:37:47.562368Z", + "iopub.status.idle": "2024-07-30T16:37:50.183671Z", + "shell.execute_reply": "2024-07-30T16:37:50.183000Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.495904Z", - "iopub.status.busy": "2024-07-18T04:07:50.495718Z", - "iopub.status.idle": "2024-07-18T04:07:50.499462Z", - "shell.execute_reply": "2024-07-18T04:07:50.498995Z" + "iopub.execute_input": "2024-07-30T16:37:50.186114Z", + "iopub.status.busy": "2024-07-30T16:37:50.185699Z", + "iopub.status.idle": "2024-07-30T16:37:50.189636Z", + "shell.execute_reply": "2024-07-30T16:37:50.189140Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.501330Z", - "iopub.status.busy": "2024-07-18T04:07:50.501162Z", - "iopub.status.idle": "2024-07-18T04:07:50.504431Z", - "shell.execute_reply": "2024-07-18T04:07:50.503994Z" + "iopub.execute_input": "2024-07-30T16:37:50.191867Z", + "iopub.status.busy": "2024-07-30T16:37:50.191497Z", + "iopub.status.idle": "2024-07-30T16:37:50.195269Z", + "shell.execute_reply": "2024-07-30T16:37:50.194765Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.506301Z", - "iopub.status.busy": "2024-07-18T04:07:50.506126Z", - "iopub.status.idle": "2024-07-18T04:07:50.509100Z", - "shell.execute_reply": "2024-07-18T04:07:50.508661Z" + "iopub.execute_input": "2024-07-30T16:37:50.197502Z", + "iopub.status.busy": "2024-07-30T16:37:50.197113Z", + "iopub.status.idle": "2024-07-30T16:37:50.200387Z", + "shell.execute_reply": "2024-07-30T16:37:50.199867Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index c73a5e42a..b908d214b 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:53.027507Z", - "iopub.status.busy": "2024-07-18T04:07:53.027336Z", - "iopub.status.idle": "2024-07-18T04:07:54.203836Z", - "shell.execute_reply": "2024-07-18T04:07:54.203291Z" + "iopub.execute_input": "2024-07-30T16:37:52.967876Z", + "iopub.status.busy": "2024-07-30T16:37:52.967697Z", + "iopub.status.idle": "2024-07-30T16:37:54.423334Z", + "shell.execute_reply": "2024-07-30T16:37:54.422716Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:54.206499Z", - "iopub.status.busy": "2024-07-18T04:07:54.205989Z", - "iopub.status.idle": "2024-07-18T04:07:56.950673Z", - "shell.execute_reply": "2024-07-18T04:07:56.949957Z" + "iopub.execute_input": "2024-07-30T16:37:54.426120Z", + "iopub.status.busy": "2024-07-30T16:37:54.425563Z", + "iopub.status.idle": "2024-07-30T16:37:55.812519Z", + "shell.execute_reply": "2024-07-30T16:37:55.811700Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.953257Z", - "iopub.status.busy": "2024-07-18T04:07:56.953039Z", - "iopub.status.idle": "2024-07-18T04:07:56.956605Z", - "shell.execute_reply": "2024-07-18T04:07:56.956021Z" + "iopub.execute_input": "2024-07-30T16:37:55.815457Z", + "iopub.status.busy": "2024-07-30T16:37:55.815048Z", + "iopub.status.idle": "2024-07-30T16:37:55.818533Z", + "shell.execute_reply": "2024-07-30T16:37:55.817973Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.958812Z", - "iopub.status.busy": "2024-07-18T04:07:56.958471Z", - "iopub.status.idle": "2024-07-18T04:07:56.965097Z", - "shell.execute_reply": "2024-07-18T04:07:56.964666Z" + "iopub.execute_input": "2024-07-30T16:37:55.820681Z", + "iopub.status.busy": "2024-07-30T16:37:55.820334Z", + "iopub.status.idle": "2024-07-30T16:37:55.827147Z", + "shell.execute_reply": "2024-07-30T16:37:55.826691Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.967310Z", - "iopub.status.busy": "2024-07-18T04:07:56.966946Z", - "iopub.status.idle": "2024-07-18T04:07:57.458211Z", - "shell.execute_reply": "2024-07-18T04:07:57.457607Z" + "iopub.execute_input": "2024-07-30T16:37:55.829268Z", + "iopub.status.busy": "2024-07-30T16:37:55.828920Z", + "iopub.status.idle": "2024-07-30T16:37:56.150888Z", + "shell.execute_reply": "2024-07-30T16:37:56.150240Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.460514Z", - "iopub.status.busy": "2024-07-18T04:07:57.460329Z", - "iopub.status.idle": "2024-07-18T04:07:57.465713Z", - "shell.execute_reply": "2024-07-18T04:07:57.465150Z" + "iopub.execute_input": "2024-07-30T16:37:56.154023Z", + "iopub.status.busy": "2024-07-30T16:37:56.153563Z", + "iopub.status.idle": "2024-07-30T16:37:56.159171Z", + "shell.execute_reply": "2024-07-30T16:37:56.158713Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.467728Z", - "iopub.status.busy": "2024-07-18T04:07:57.467432Z", - "iopub.status.idle": "2024-07-18T04:07:57.471282Z", - "shell.execute_reply": "2024-07-18T04:07:57.470724Z" + "iopub.execute_input": "2024-07-30T16:37:56.161294Z", + "iopub.status.busy": "2024-07-30T16:37:56.160941Z", + "iopub.status.idle": "2024-07-30T16:37:56.164954Z", + "shell.execute_reply": "2024-07-30T16:37:56.164403Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.473417Z", - "iopub.status.busy": "2024-07-18T04:07:57.473021Z", - "iopub.status.idle": "2024-07-18T04:07:58.320437Z", - "shell.execute_reply": "2024-07-18T04:07:58.319767Z" + "iopub.execute_input": "2024-07-30T16:37:56.166946Z", + "iopub.status.busy": "2024-07-30T16:37:56.166762Z", + "iopub.status.idle": "2024-07-30T16:37:57.061837Z", + "shell.execute_reply": "2024-07-30T16:37:57.061214Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.322734Z", - "iopub.status.busy": "2024-07-18T04:07:58.322537Z", - "iopub.status.idle": "2024-07-18T04:07:58.596192Z", - "shell.execute_reply": "2024-07-18T04:07:58.595728Z" + "iopub.execute_input": "2024-07-30T16:37:57.064231Z", + "iopub.status.busy": "2024-07-30T16:37:57.064020Z", + "iopub.status.idle": "2024-07-30T16:37:57.269680Z", + "shell.execute_reply": "2024-07-30T16:37:57.269071Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.598116Z", - "iopub.status.busy": "2024-07-18T04:07:58.597937Z", - "iopub.status.idle": "2024-07-18T04:07:58.602256Z", - "shell.execute_reply": "2024-07-18T04:07:58.601801Z" + "iopub.execute_input": "2024-07-30T16:37:57.271779Z", + "iopub.status.busy": "2024-07-30T16:37:57.271589Z", + "iopub.status.idle": "2024-07-30T16:37:57.276069Z", + "shell.execute_reply": "2024-07-30T16:37:57.275620Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.604102Z", - "iopub.status.busy": "2024-07-18T04:07:58.603930Z", - "iopub.status.idle": "2024-07-18T04:07:59.051714Z", - "shell.execute_reply": "2024-07-18T04:07:59.051138Z" + "iopub.execute_input": "2024-07-30T16:37:57.277956Z", + "iopub.status.busy": "2024-07-30T16:37:57.277779Z", + "iopub.status.idle": "2024-07-30T16:37:57.741717Z", + "shell.execute_reply": "2024-07-30T16:37:57.741080Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.054893Z", - "iopub.status.busy": "2024-07-18T04:07:59.054683Z", - "iopub.status.idle": "2024-07-18T04:07:59.362985Z", - "shell.execute_reply": "2024-07-18T04:07:59.362380Z" + "iopub.execute_input": "2024-07-30T16:37:57.744943Z", + "iopub.status.busy": "2024-07-30T16:37:57.744706Z", + "iopub.status.idle": "2024-07-30T16:37:58.080727Z", + "shell.execute_reply": "2024-07-30T16:37:58.080133Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.365227Z", - "iopub.status.busy": "2024-07-18T04:07:59.364819Z", - "iopub.status.idle": "2024-07-18T04:07:59.721287Z", - "shell.execute_reply": "2024-07-18T04:07:59.720689Z" + "iopub.execute_input": "2024-07-30T16:37:58.083717Z", + "iopub.status.busy": "2024-07-30T16:37:58.083475Z", + "iopub.status.idle": "2024-07-30T16:37:58.448789Z", + "shell.execute_reply": "2024-07-30T16:37:58.448130Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.723711Z", - "iopub.status.busy": "2024-07-18T04:07:59.723524Z", - "iopub.status.idle": "2024-07-18T04:08:00.129832Z", - "shell.execute_reply": "2024-07-18T04:08:00.129234Z" + "iopub.execute_input": "2024-07-30T16:37:58.451979Z", + "iopub.status.busy": "2024-07-30T16:37:58.451737Z", + "iopub.status.idle": "2024-07-30T16:37:58.897902Z", + "shell.execute_reply": "2024-07-30T16:37:58.897266Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.134389Z", - "iopub.status.busy": "2024-07-18T04:08:00.134195Z", - "iopub.status.idle": "2024-07-18T04:08:00.555058Z", - "shell.execute_reply": "2024-07-18T04:08:00.554472Z" + "iopub.execute_input": "2024-07-30T16:37:58.902565Z", + "iopub.status.busy": "2024-07-30T16:37:58.902206Z", + "iopub.status.idle": "2024-07-30T16:37:59.331261Z", + "shell.execute_reply": "2024-07-30T16:37:59.330642Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.557791Z", - "iopub.status.busy": "2024-07-18T04:08:00.557601Z", - "iopub.status.idle": "2024-07-18T04:08:00.745423Z", - "shell.execute_reply": "2024-07-18T04:08:00.744861Z" + "iopub.execute_input": "2024-07-30T16:37:59.334413Z", + "iopub.status.busy": "2024-07-30T16:37:59.334051Z", + "iopub.status.idle": "2024-07-30T16:37:59.529024Z", + "shell.execute_reply": "2024-07-30T16:37:59.528352Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.747619Z", - "iopub.status.busy": "2024-07-18T04:08:00.747438Z", - "iopub.status.idle": "2024-07-18T04:08:00.951881Z", - "shell.execute_reply": "2024-07-18T04:08:00.951263Z" + "iopub.execute_input": "2024-07-30T16:37:59.531621Z", + "iopub.status.busy": "2024-07-30T16:37:59.531147Z", + "iopub.status.idle": "2024-07-30T16:37:59.713867Z", + "shell.execute_reply": "2024-07-30T16:37:59.713268Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.954083Z", - "iopub.status.busy": "2024-07-18T04:08:00.953900Z", - "iopub.status.idle": "2024-07-18T04:08:00.956913Z", - "shell.execute_reply": "2024-07-18T04:08:00.956455Z" + "iopub.execute_input": "2024-07-30T16:37:59.716604Z", + "iopub.status.busy": "2024-07-30T16:37:59.716372Z", + "iopub.status.idle": "2024-07-30T16:37:59.719701Z", + "shell.execute_reply": "2024-07-30T16:37:59.719240Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.958720Z", - "iopub.status.busy": "2024-07-18T04:08:00.958549Z", - "iopub.status.idle": "2024-07-18T04:08:01.900993Z", - "shell.execute_reply": "2024-07-18T04:08:01.900441Z" + "iopub.execute_input": "2024-07-30T16:37:59.721469Z", + "iopub.status.busy": "2024-07-30T16:37:59.721297Z", + "iopub.status.idle": "2024-07-30T16:38:00.653952Z", + "shell.execute_reply": "2024-07-30T16:38:00.653313Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:01.903897Z", - "iopub.status.busy": "2024-07-18T04:08:01.903502Z", - "iopub.status.idle": "2024-07-18T04:08:02.024595Z", - "shell.execute_reply": "2024-07-18T04:08:02.024142Z" + "iopub.execute_input": "2024-07-30T16:38:00.656659Z", + "iopub.status.busy": "2024-07-30T16:38:00.656200Z", + "iopub.status.idle": "2024-07-30T16:38:00.806657Z", + "shell.execute_reply": "2024-07-30T16:38:00.806013Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.026835Z", - "iopub.status.busy": "2024-07-18T04:08:02.026498Z", - "iopub.status.idle": "2024-07-18T04:08:02.149086Z", - "shell.execute_reply": "2024-07-18T04:08:02.148602Z" + "iopub.execute_input": "2024-07-30T16:38:00.809105Z", + "iopub.status.busy": "2024-07-30T16:38:00.808873Z", + "iopub.status.idle": "2024-07-30T16:38:01.017879Z", + "shell.execute_reply": "2024-07-30T16:38:01.017223Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.151149Z", - "iopub.status.busy": "2024-07-18T04:08:02.150799Z", - "iopub.status.idle": "2024-07-18T04:08:02.892035Z", - "shell.execute_reply": "2024-07-18T04:08:02.891450Z" + "iopub.execute_input": "2024-07-30T16:38:01.020087Z", + "iopub.status.busy": "2024-07-30T16:38:01.019752Z", + "iopub.status.idle": "2024-07-30T16:38:01.734744Z", + "shell.execute_reply": "2024-07-30T16:38:01.734246Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.894338Z", - "iopub.status.busy": "2024-07-18T04:08:02.894143Z", - "iopub.status.idle": "2024-07-18T04:08:02.898103Z", - "shell.execute_reply": "2024-07-18T04:08:02.897554Z" + "iopub.execute_input": "2024-07-30T16:38:01.737160Z", + "iopub.status.busy": "2024-07-30T16:38:01.736731Z", + "iopub.status.idle": "2024-07-30T16:38:01.740592Z", + "shell.execute_reply": "2024-07-30T16:38:01.740039Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index db08980fc..3df92007c 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:05.194442Z", - "iopub.status.busy": "2024-07-18T04:08:05.194273Z", - "iopub.status.idle": "2024-07-18T04:08:07.990167Z", - "shell.execute_reply": "2024-07-18T04:08:07.989536Z" + "iopub.execute_input": "2024-07-30T16:38:03.978289Z", + "iopub.status.busy": "2024-07-30T16:38:03.977787Z", + "iopub.status.idle": "2024-07-30T16:38:07.296478Z", + "shell.execute_reply": "2024-07-30T16:38:07.295899Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:07.993089Z", - "iopub.status.busy": "2024-07-18T04:08:07.992487Z", - "iopub.status.idle": "2024-07-18T04:08:08.306676Z", - "shell.execute_reply": "2024-07-18T04:08:08.306053Z" + "iopub.execute_input": "2024-07-30T16:38:07.299136Z", + "iopub.status.busy": "2024-07-30T16:38:07.298701Z", + "iopub.status.idle": "2024-07-30T16:38:07.318355Z", + "shell.execute_reply": "2024-07-30T16:38:07.317750Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:08.309275Z", - "iopub.status.busy": "2024-07-18T04:08:08.308985Z", - "iopub.status.idle": "2024-07-18T04:08:08.313469Z", - "shell.execute_reply": "2024-07-18T04:08:08.312921Z" + "iopub.execute_input": "2024-07-30T16:38:07.320466Z", + "iopub.status.busy": "2024-07-30T16:38:07.320062Z", + "iopub.status.idle": "2024-07-30T16:38:07.324323Z", + "shell.execute_reply": "2024-07-30T16:38:07.323777Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:08.315749Z", - "iopub.status.busy": "2024-07-18T04:08:08.315344Z", - "iopub.status.idle": "2024-07-18T04:08:15.710803Z", - "shell.execute_reply": "2024-07-18T04:08:15.710242Z" + "iopub.execute_input": "2024-07-30T16:38:07.326455Z", + "iopub.status.busy": "2024-07-30T16:38:07.325959Z", + "iopub.status.idle": "2024-07-30T16:38:11.831429Z", + "shell.execute_reply": "2024-07-30T16:38:11.830839Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 65536/170498071 [00:00<05:54, 480174.66it/s]" + " 1%| | 917504/170498071 [00:00<00:20, 8226376.49it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:57, 956605.73it/s]" + " 6%|▋ | 10846208/170498071 [00:00<00:02, 59307309.31it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:59, 2869713.68it/s]" + " 13%|█▎ | 22511616/170498071 [00:00<00:01, 84811001.30it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3473408/170498071 [00:00<00:16, 9967088.73it/s]" + " 20%|██ | 34209792/170498071 [00:00<00:01, 97255735.33it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8978432/170498071 [00:00<00:06, 23993424.46it/s]" + " 27%|██▋ | 45875200/170498071 [00:00<00:01, 104168464.41it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12845056/170498071 [00:00<00:05, 28406729.61it/s]" + " 34%|███▍ | 57573376/170498071 [00:00<00:01, 108391005.55it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17596416/170498071 [00:00<00:04, 34211430.57it/s]" + " 41%|████ | 69271552/170498071 [00:00<00:00, 111144409.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22249472/170498071 [00:00<00:03, 37768341.91it/s]" + " 47%|████▋ | 80936960/170498071 [00:00<00:00, 112866681.19it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26542080/170498071 [00:01<00:03, 39303818.64it/s]" + " 54%|█████▍ | 92635136/170498071 [00:00<00:00, 114109378.79it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 31686656/170498071 [00:01<00:03, 42912353.67it/s]" + " 61%|██████ | 104300544/170498071 [00:01<00:00, 114843936.89it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 36077568/170498071 [00:01<00:03, 42821253.72it/s]" + " 68%|██████▊ | 115933184/170498071 [00:01<00:00, 115260750.98it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41091072/170498071 [00:01<00:02, 44483581.19it/s]" + " 75%|███████▍ | 127631360/170498071 [00:01<00:00, 115738038.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45580288/170498071 [00:01<00:02, 44029931.37it/s]" + " 82%|████████▏ | 139296768/170498071 [00:01<00:00, 115934009.59it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 50561024/170498071 [00:01<00:02, 45704439.03it/s]" + " 89%|████████▊ | 150994944/170498071 [00:01<00:00, 116207199.22it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55181312/170498071 [00:01<00:02, 44384083.52it/s]" + " 95%|█████████▌| 162627584/170498071 [00:01<00:00, 116186659.71it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60129280/170498071 [00:01<00:02, 45411992.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 38%|███▊ | 64716800/170498071 [00:01<00:02, 44963014.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████ | 69599232/170498071 [00:01<00:02, 45683897.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▎ | 74285056/170498071 [00:02<00:02, 46016824.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 79036416/170498071 [00:02<00:01, 45854658.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83918848/170498071 [00:02<00:01, 46668759.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88604672/170498071 [00:02<00:01, 46174985.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 93552640/170498071 [00:02<00:01, 46706268.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 46441658.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 103251968/170498071 [00:02<00:01, 47507283.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 108036096/170498071 [00:02<00:01, 46191263.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▋ | 113082368/170498071 [00:02<00:01, 46992738.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117800960/170498071 [00:02<00:01, 46099619.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122716160/170498071 [00:03<00:01, 46753587.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127401984/170498071 [00:03<00:00, 46589077.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 132284416/170498071 [00:03<00:00, 47236308.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 137035776/170498071 [00:03<00:00, 46277779.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142016512/170498071 [00:03<00:00, 47148951.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 146767872/170498071 [00:03<00:00, 46600796.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 151683072/170498071 [00:03<00:00, 47332021.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156434432/170498071 [00:03<00:00, 46258206.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161710080/170498071 [00:03<00:00, 48137919.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166559744/170498071 [00:04<00:00, 46952044.94it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 41662854.99it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:15.713264Z", - "iopub.status.busy": "2024-07-18T04:08:15.712838Z", - "iopub.status.idle": "2024-07-18T04:08:15.717532Z", - "shell.execute_reply": "2024-07-18T04:08:15.717089Z" + "iopub.execute_input": "2024-07-30T16:38:11.833918Z", + "iopub.status.busy": "2024-07-30T16:38:11.833462Z", + "iopub.status.idle": "2024-07-30T16:38:11.838434Z", + "shell.execute_reply": "2024-07-30T16:38:11.837866Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:15.719428Z", - "iopub.status.busy": "2024-07-18T04:08:15.719259Z", - "iopub.status.idle": "2024-07-18T04:08:16.258630Z", - "shell.execute_reply": "2024-07-18T04:08:16.258056Z" + "iopub.execute_input": "2024-07-30T16:38:11.840562Z", + "iopub.status.busy": "2024-07-30T16:38:11.840251Z", + "iopub.status.idle": "2024-07-30T16:38:12.371586Z", + "shell.execute_reply": "2024-07-30T16:38:12.371033Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.260848Z", - "iopub.status.busy": "2024-07-18T04:08:16.260520Z", - "iopub.status.idle": "2024-07-18T04:08:16.767687Z", - "shell.execute_reply": "2024-07-18T04:08:16.767215Z" + "iopub.execute_input": "2024-07-30T16:38:12.373894Z", + "iopub.status.busy": "2024-07-30T16:38:12.373541Z", + "iopub.status.idle": "2024-07-30T16:38:12.887091Z", + "shell.execute_reply": "2024-07-30T16:38:12.886524Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.769863Z", - "iopub.status.busy": "2024-07-18T04:08:16.769508Z", - "iopub.status.idle": "2024-07-18T04:08:16.772822Z", - "shell.execute_reply": "2024-07-18T04:08:16.772376Z" + "iopub.execute_input": "2024-07-30T16:38:12.889299Z", + "iopub.status.busy": "2024-07-30T16:38:12.888937Z", + "iopub.status.idle": "2024-07-30T16:38:12.892536Z", + "shell.execute_reply": "2024-07-30T16:38:12.892076Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.774860Z", - "iopub.status.busy": "2024-07-18T04:08:16.774532Z", - "iopub.status.idle": "2024-07-18T04:08:29.229998Z", - "shell.execute_reply": "2024-07-18T04:08:29.229404Z" + "iopub.execute_input": "2024-07-30T16:38:12.894534Z", + "iopub.status.busy": "2024-07-30T16:38:12.894200Z", + "iopub.status.idle": "2024-07-30T16:38:25.488449Z", + "shell.execute_reply": "2024-07-30T16:38:25.487794Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "424409b5a3c248919a596aef89b959d3", + "model_id": "23a512869c5e4f05a2356b8f464b1bcc", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:29.232469Z", - "iopub.status.busy": "2024-07-18T04:08:29.232033Z", - "iopub.status.idle": "2024-07-18T04:08:31.261531Z", - "shell.execute_reply": "2024-07-18T04:08:31.260905Z" + "iopub.execute_input": "2024-07-30T16:38:25.490754Z", + "iopub.status.busy": "2024-07-30T16:38:25.490545Z", + "iopub.status.idle": "2024-07-30T16:38:27.681301Z", + "shell.execute_reply": "2024-07-30T16:38:27.680552Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:31.264147Z", - "iopub.status.busy": "2024-07-18T04:08:31.263800Z", - "iopub.status.idle": "2024-07-18T04:08:31.486008Z", - "shell.execute_reply": "2024-07-18T04:08:31.485290Z" + "iopub.execute_input": "2024-07-30T16:38:27.684463Z", + "iopub.status.busy": "2024-07-30T16:38:27.683946Z", + "iopub.status.idle": "2024-07-30T16:38:27.951193Z", + "shell.execute_reply": "2024-07-30T16:38:27.950604Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:31.488468Z", - "iopub.status.busy": "2024-07-18T04:08:31.488018Z", - "iopub.status.idle": "2024-07-18T04:08:32.142236Z", - "shell.execute_reply": "2024-07-18T04:08:32.141607Z" + "iopub.execute_input": "2024-07-30T16:38:27.953780Z", + "iopub.status.busy": "2024-07-30T16:38:27.953567Z", + "iopub.status.idle": "2024-07-30T16:38:28.631392Z", + "shell.execute_reply": "2024-07-30T16:38:28.630768Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.144771Z", - "iopub.status.busy": "2024-07-18T04:08:32.144585Z", - "iopub.status.idle": "2024-07-18T04:08:32.436148Z", - "shell.execute_reply": "2024-07-18T04:08:32.435672Z" + "iopub.execute_input": "2024-07-30T16:38:28.634456Z", + "iopub.status.busy": "2024-07-30T16:38:28.633952Z", + "iopub.status.idle": "2024-07-30T16:38:28.975662Z", + "shell.execute_reply": "2024-07-30T16:38:28.975098Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.438256Z", - "iopub.status.busy": "2024-07-18T04:08:32.437904Z", - "iopub.status.idle": "2024-07-18T04:08:32.675912Z", - "shell.execute_reply": "2024-07-18T04:08:32.675301Z" + "iopub.execute_input": "2024-07-30T16:38:28.978011Z", + "iopub.status.busy": "2024-07-30T16:38:28.977574Z", + "iopub.status.idle": "2024-07-30T16:38:29.207618Z", + "shell.execute_reply": "2024-07-30T16:38:29.206996Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.678608Z", - "iopub.status.busy": "2024-07-18T04:08:32.678123Z", - "iopub.status.idle": "2024-07-18T04:08:32.775298Z", - "shell.execute_reply": "2024-07-18T04:08:32.774751Z" + "iopub.execute_input": "2024-07-30T16:38:29.209892Z", + "iopub.status.busy": "2024-07-30T16:38:29.209709Z", + "iopub.status.idle": "2024-07-30T16:38:29.298647Z", + "shell.execute_reply": "2024-07-30T16:38:29.297971Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.778213Z", - "iopub.status.busy": "2024-07-18T04:08:32.777804Z", - "iopub.status.idle": "2024-07-18T04:08:43.316731Z", - "shell.execute_reply": "2024-07-18T04:08:43.316056Z" + "iopub.execute_input": "2024-07-30T16:38:29.301052Z", + "iopub.status.busy": "2024-07-30T16:38:29.300869Z", + "iopub.status.idle": "2024-07-30T16:38:39.931040Z", + "shell.execute_reply": "2024-07-30T16:38:39.930336Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:43.319383Z", - "iopub.status.busy": "2024-07-18T04:08:43.319007Z", - "iopub.status.idle": "2024-07-18T04:08:45.511352Z", - "shell.execute_reply": "2024-07-18T04:08:45.510818Z" + "iopub.execute_input": "2024-07-30T16:38:39.933469Z", + "iopub.status.busy": "2024-07-30T16:38:39.933256Z", + "iopub.status.idle": "2024-07-30T16:38:42.292073Z", + "shell.execute_reply": "2024-07-30T16:38:42.291503Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.513955Z", - "iopub.status.busy": "2024-07-18T04:08:45.513429Z", - "iopub.status.idle": "2024-07-18T04:08:45.711540Z", - "shell.execute_reply": "2024-07-18T04:08:45.711028Z" + "iopub.execute_input": "2024-07-30T16:38:42.295015Z", + "iopub.status.busy": "2024-07-30T16:38:42.294328Z", + "iopub.status.idle": "2024-07-30T16:38:42.501084Z", + "shell.execute_reply": "2024-07-30T16:38:42.500563Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.713788Z", - "iopub.status.busy": "2024-07-18T04:08:45.713606Z", - "iopub.status.idle": "2024-07-18T04:08:45.716870Z", - "shell.execute_reply": "2024-07-18T04:08:45.716441Z" + "iopub.execute_input": "2024-07-30T16:38:42.503445Z", + "iopub.status.busy": "2024-07-30T16:38:42.503259Z", + "iopub.status.idle": "2024-07-30T16:38:42.506470Z", + "shell.execute_reply": "2024-07-30T16:38:42.506025Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.718925Z", - "iopub.status.busy": "2024-07-18T04:08:45.718613Z", - "iopub.status.idle": "2024-07-18T04:08:45.726667Z", - "shell.execute_reply": "2024-07-18T04:08:45.726221Z" + "iopub.execute_input": "2024-07-30T16:38:42.508323Z", + "iopub.status.busy": "2024-07-30T16:38:42.508151Z", + "iopub.status.idle": "2024-07-30T16:38:42.517729Z", + "shell.execute_reply": "2024-07-30T16:38:42.517288Z" }, "nbsphinx": "hidden" }, @@ -1337,59 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13b75646e4ae45bb8738a8342199ed8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ea943e162c94baba190703922291391": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "26b0e201445143b6ad5363d6f61e02c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "424409b5a3c248919a596aef89b959d3": { + "23a512869c5e4f05a2356b8f464b1bcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1404,16 +1168,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eb3b2b87a32446c892767b6727cf7c96", - "IPY_MODEL_62d287d26948474db68cc5ea75df7b81", - "IPY_MODEL_e35529740133431397715ff5e470a55e" + "IPY_MODEL_58618ff0d8be415dbaa56326b7b1db8c", + "IPY_MODEL_633d743f49c44f93be1bfe7c09cb76e5", + "IPY_MODEL_313c673f5ae140548d908be43be34294" ], - "layout": "IPY_MODEL_5955528c2a2f4be686f4bb6106813bff", + "layout": "IPY_MODEL_f1fa8803defc478f8f1a9688f96d5a79", "tabbable": null, "tooltip": null } }, - "5955528c2a2f4be686f4bb6106813bff": { + "3094116b83c34a98b8ed5ce27da55168": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1466,7 +1230,71 @@ "width": null } }, - "62d287d26948474db68cc5ea75df7b81": { + "313c673f5ae140548d908be43be34294": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afe5f4fb71e54d6b97c4b44ecea40c54", + "placeholder": "​", + "style": "IPY_MODEL_59856c986feb4d3abc586fed584de5c0", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 274MB/s]" + } + }, + "58618ff0d8be415dbaa56326b7b1db8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3094116b83c34a98b8ed5ce27da55168", + "placeholder": "​", + "style": "IPY_MODEL_7105d5b497e34139b8cba14426fdd044", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "59856c986feb4d3abc586fed584de5c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "633d743f49c44f93be1bfe7c09cb76e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1482,17 +1310,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7d11920d1e3a4b0f923cc702ffaaadcd", + "layout": "IPY_MODEL_6eb5b857715449aaa4e92a9a9560a833", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1ea943e162c94baba190703922291391", + "style": "IPY_MODEL_dae8ad4cd0df4444bf5ff766e8012dc4", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "7d11920d1e3a4b0f923cc702ffaaadcd": { + "6eb5b857715449aaa4e92a9a9560a833": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1545,7 +1373,25 @@ "width": null } }, - "83d24ca021e7439990012fc1cfae5ebc": { + "7105d5b497e34139b8cba14426fdd044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afe5f4fb71e54d6b97c4b44ecea40c54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1598,53 +1444,23 @@ "width": null } }, - "e35529740133431397715ff5e470a55e": { + "dae8ad4cd0df4444bf5ff766e8012dc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f169574227104d7b94f6e1a96b5ff27b", - "placeholder": "​", - "style": "IPY_MODEL_13b75646e4ae45bb8738a8342199ed8d", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 305MB/s]" - } - }, - "eb3b2b87a32446c892767b6727cf7c96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83d24ca021e7439990012fc1cfae5ebc", - "placeholder": "​", - "style": "IPY_MODEL_26b0e201445143b6ad5363d6f61e02c4", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f169574227104d7b94f6e1a96b5ff27b": { + "f1fa8803defc478f8f1a9688f96d5a79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 28ed3a546..7c5c07d39 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:49.857100Z", - "iopub.status.busy": "2024-07-18T04:08:49.856925Z", - "iopub.status.idle": "2024-07-18T04:08:51.033463Z", - "shell.execute_reply": "2024-07-18T04:08:51.032826Z" + "iopub.execute_input": "2024-07-30T16:38:46.925237Z", + "iopub.status.busy": "2024-07-30T16:38:46.925067Z", + "iopub.status.idle": "2024-07-30T16:38:48.345531Z", + "shell.execute_reply": "2024-07-30T16:38:48.344960Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.036042Z", - "iopub.status.busy": "2024-07-18T04:08:51.035764Z", - "iopub.status.idle": "2024-07-18T04:08:51.053474Z", - "shell.execute_reply": "2024-07-18T04:08:51.052908Z" + "iopub.execute_input": "2024-07-30T16:38:48.348157Z", + "iopub.status.busy": "2024-07-30T16:38:48.347674Z", + "iopub.status.idle": "2024-07-30T16:38:48.365919Z", + "shell.execute_reply": "2024-07-30T16:38:48.365467Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.055718Z", - "iopub.status.busy": "2024-07-18T04:08:51.055333Z", - "iopub.status.idle": "2024-07-18T04:08:51.058387Z", - "shell.execute_reply": "2024-07-18T04:08:51.057846Z" + "iopub.execute_input": "2024-07-30T16:38:48.368246Z", + "iopub.status.busy": "2024-07-30T16:38:48.367803Z", + "iopub.status.idle": "2024-07-30T16:38:48.370780Z", + "shell.execute_reply": "2024-07-30T16:38:48.370332Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.060619Z", - "iopub.status.busy": "2024-07-18T04:08:51.060155Z", - "iopub.status.idle": "2024-07-18T04:08:51.265981Z", - "shell.execute_reply": "2024-07-18T04:08:51.265535Z" + "iopub.execute_input": "2024-07-30T16:38:48.372766Z", + "iopub.status.busy": "2024-07-30T16:38:48.372450Z", + "iopub.status.idle": "2024-07-30T16:38:48.468454Z", + "shell.execute_reply": "2024-07-30T16:38:48.467839Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.268127Z", - "iopub.status.busy": "2024-07-18T04:08:51.267788Z", - "iopub.status.idle": "2024-07-18T04:08:51.448821Z", - "shell.execute_reply": "2024-07-18T04:08:51.448311Z" + "iopub.execute_input": "2024-07-30T16:38:48.471122Z", + "iopub.status.busy": "2024-07-30T16:38:48.470653Z", + "iopub.status.idle": "2024-07-30T16:38:48.475521Z", + "shell.execute_reply": "2024-07-30T16:38:48.475049Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.450979Z", - "iopub.status.busy": "2024-07-18T04:08:51.450781Z", - "iopub.status.idle": "2024-07-18T04:08:51.660929Z", - "shell.execute_reply": "2024-07-18T04:08:51.660315Z" + "iopub.execute_input": "2024-07-30T16:38:48.477468Z", + "iopub.status.busy": "2024-07-30T16:38:48.477131Z", + "iopub.status.idle": "2024-07-30T16:38:48.720327Z", + "shell.execute_reply": "2024-07-30T16:38:48.719696Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.663179Z", - "iopub.status.busy": "2024-07-18T04:08:51.662774Z", - "iopub.status.idle": "2024-07-18T04:08:51.667262Z", - "shell.execute_reply": "2024-07-18T04:08:51.666686Z" + "iopub.execute_input": "2024-07-30T16:38:48.722633Z", + "iopub.status.busy": "2024-07-30T16:38:48.722278Z", + "iopub.status.idle": "2024-07-30T16:38:48.726622Z", + "shell.execute_reply": "2024-07-30T16:38:48.726163Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.669382Z", - "iopub.status.busy": "2024-07-18T04:08:51.669036Z", - "iopub.status.idle": "2024-07-18T04:08:51.674698Z", - "shell.execute_reply": "2024-07-18T04:08:51.674244Z" + "iopub.execute_input": "2024-07-30T16:38:48.728701Z", + "iopub.status.busy": "2024-07-30T16:38:48.728352Z", + "iopub.status.idle": "2024-07-30T16:38:48.734485Z", + "shell.execute_reply": "2024-07-30T16:38:48.734046Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.676720Z", - "iopub.status.busy": "2024-07-18T04:08:51.676391Z", - "iopub.status.idle": "2024-07-18T04:08:51.678866Z", - "shell.execute_reply": "2024-07-18T04:08:51.678427Z" + "iopub.execute_input": "2024-07-30T16:38:48.736597Z", + "iopub.status.busy": "2024-07-30T16:38:48.736263Z", + "iopub.status.idle": "2024-07-30T16:38:48.738985Z", + "shell.execute_reply": "2024-07-30T16:38:48.738429Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.680800Z", - "iopub.status.busy": "2024-07-18T04:08:51.680488Z", - "iopub.status.idle": "2024-07-18T04:09:00.539921Z", - "shell.execute_reply": "2024-07-18T04:09:00.539355Z" + "iopub.execute_input": "2024-07-30T16:38:48.741068Z", + "iopub.status.busy": "2024-07-30T16:38:48.740746Z", + "iopub.status.idle": "2024-07-30T16:38:57.890643Z", + "shell.execute_reply": "2024-07-30T16:38:57.890064Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.542544Z", - "iopub.status.busy": "2024-07-18T04:09:00.542172Z", - "iopub.status.idle": "2024-07-18T04:09:00.549395Z", - "shell.execute_reply": "2024-07-18T04:09:00.548943Z" + "iopub.execute_input": "2024-07-30T16:38:57.893640Z", + "iopub.status.busy": "2024-07-30T16:38:57.893011Z", + "iopub.status.idle": "2024-07-30T16:38:57.900759Z", + "shell.execute_reply": "2024-07-30T16:38:57.900288Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.551482Z", - "iopub.status.busy": "2024-07-18T04:09:00.551165Z", - "iopub.status.idle": "2024-07-18T04:09:00.554829Z", - "shell.execute_reply": "2024-07-18T04:09:00.554351Z" + "iopub.execute_input": "2024-07-30T16:38:57.903196Z", + "iopub.status.busy": "2024-07-30T16:38:57.902725Z", + "iopub.status.idle": "2024-07-30T16:38:57.906622Z", + "shell.execute_reply": "2024-07-30T16:38:57.906179Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.556730Z", - "iopub.status.busy": "2024-07-18T04:09:00.556561Z", - "iopub.status.idle": "2024-07-18T04:09:00.559924Z", - "shell.execute_reply": "2024-07-18T04:09:00.559463Z" + "iopub.execute_input": "2024-07-30T16:38:57.908608Z", + "iopub.status.busy": "2024-07-30T16:38:57.908262Z", + "iopub.status.idle": "2024-07-30T16:38:57.911716Z", + "shell.execute_reply": "2024-07-30T16:38:57.911253Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.561758Z", - "iopub.status.busy": "2024-07-18T04:09:00.561590Z", - "iopub.status.idle": "2024-07-18T04:09:00.564614Z", - "shell.execute_reply": "2024-07-18T04:09:00.564159Z" + "iopub.execute_input": "2024-07-30T16:38:57.913595Z", + "iopub.status.busy": "2024-07-30T16:38:57.913317Z", + "iopub.status.idle": "2024-07-30T16:38:57.916287Z", + "shell.execute_reply": "2024-07-30T16:38:57.915835Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.566608Z", - "iopub.status.busy": "2024-07-18T04:09:00.566208Z", - "iopub.status.idle": "2024-07-18T04:09:00.574230Z", - "shell.execute_reply": "2024-07-18T04:09:00.573776Z" + "iopub.execute_input": "2024-07-30T16:38:57.918353Z", + "iopub.status.busy": "2024-07-30T16:38:57.918022Z", + "iopub.status.idle": "2024-07-30T16:38:57.925798Z", + "shell.execute_reply": "2024-07-30T16:38:57.925354Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.576300Z", - "iopub.status.busy": "2024-07-18T04:09:00.575910Z", - "iopub.status.idle": "2024-07-18T04:09:00.578480Z", - "shell.execute_reply": "2024-07-18T04:09:00.578034Z" + "iopub.execute_input": "2024-07-30T16:38:57.927921Z", + "iopub.status.busy": "2024-07-30T16:38:57.927572Z", + "iopub.status.idle": "2024-07-30T16:38:57.930349Z", + "shell.execute_reply": "2024-07-30T16:38:57.929874Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.580633Z", - "iopub.status.busy": "2024-07-18T04:09:00.580237Z", - "iopub.status.idle": "2024-07-18T04:09:00.703841Z", - "shell.execute_reply": "2024-07-18T04:09:00.703327Z" + "iopub.execute_input": "2024-07-30T16:38:57.932400Z", + "iopub.status.busy": "2024-07-30T16:38:57.932062Z", + "iopub.status.idle": "2024-07-30T16:38:58.059365Z", + "shell.execute_reply": "2024-07-30T16:38:58.058741Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.705943Z", - "iopub.status.busy": "2024-07-18T04:09:00.705589Z", - "iopub.status.idle": "2024-07-18T04:09:00.829071Z", - "shell.execute_reply": "2024-07-18T04:09:00.828455Z" + "iopub.execute_input": "2024-07-30T16:38:58.061937Z", + "iopub.status.busy": "2024-07-30T16:38:58.061368Z", + "iopub.status.idle": "2024-07-30T16:38:58.173574Z", + "shell.execute_reply": "2024-07-30T16:38:58.172969Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.831504Z", - "iopub.status.busy": "2024-07-18T04:09:00.831176Z", - "iopub.status.idle": "2024-07-18T04:09:01.327951Z", - "shell.execute_reply": "2024-07-18T04:09:01.327366Z" + "iopub.execute_input": "2024-07-30T16:38:58.176096Z", + "iopub.status.busy": "2024-07-30T16:38:58.175756Z", + "iopub.status.idle": "2024-07-30T16:38:58.686374Z", + "shell.execute_reply": "2024-07-30T16:38:58.685762Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.330201Z", - "iopub.status.busy": "2024-07-18T04:09:01.329830Z", - "iopub.status.idle": "2024-07-18T04:09:01.439967Z", - "shell.execute_reply": "2024-07-18T04:09:01.439456Z" + "iopub.execute_input": "2024-07-30T16:38:58.689154Z", + "iopub.status.busy": "2024-07-30T16:38:58.688791Z", + "iopub.status.idle": "2024-07-30T16:38:58.788057Z", + "shell.execute_reply": "2024-07-30T16:38:58.787414Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.442336Z", - "iopub.status.busy": "2024-07-18T04:09:01.441869Z", - "iopub.status.idle": "2024-07-18T04:09:01.450335Z", - "shell.execute_reply": "2024-07-18T04:09:01.449911Z" + "iopub.execute_input": "2024-07-30T16:38:58.790444Z", + "iopub.status.busy": "2024-07-30T16:38:58.790105Z", + "iopub.status.idle": "2024-07-30T16:38:58.799165Z", + "shell.execute_reply": "2024-07-30T16:38:58.798679Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.452412Z", - "iopub.status.busy": "2024-07-18T04:09:01.452106Z", - "iopub.status.idle": "2024-07-18T04:09:01.454865Z", - "shell.execute_reply": "2024-07-18T04:09:01.454378Z" + "iopub.execute_input": "2024-07-30T16:38:58.801513Z", + "iopub.status.busy": "2024-07-30T16:38:58.801103Z", + "iopub.status.idle": "2024-07-30T16:38:58.804084Z", + "shell.execute_reply": "2024-07-30T16:38:58.803524Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.456775Z", - "iopub.status.busy": "2024-07-18T04:09:01.456602Z", - "iopub.status.idle": "2024-07-18T04:09:07.281893Z", - "shell.execute_reply": "2024-07-18T04:09:07.281280Z" + "iopub.execute_input": "2024-07-30T16:38:58.806513Z", + "iopub.status.busy": "2024-07-30T16:38:58.805981Z", + "iopub.status.idle": "2024-07-30T16:39:04.543731Z", + "shell.execute_reply": "2024-07-30T16:39:04.543118Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:07.284419Z", - "iopub.status.busy": "2024-07-18T04:09:07.284045Z", - "iopub.status.idle": "2024-07-18T04:09:07.292412Z", - "shell.execute_reply": "2024-07-18T04:09:07.291957Z" + "iopub.execute_input": "2024-07-30T16:39:04.546340Z", + "iopub.status.busy": "2024-07-30T16:39:04.545828Z", + "iopub.status.idle": "2024-07-30T16:39:04.554540Z", + "shell.execute_reply": "2024-07-30T16:39:04.553952Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:07.294524Z", - "iopub.status.busy": "2024-07-18T04:09:07.294199Z", - "iopub.status.idle": "2024-07-18T04:09:07.357921Z", - "shell.execute_reply": "2024-07-18T04:09:07.357469Z" + "iopub.execute_input": "2024-07-30T16:39:04.556793Z", + "iopub.status.busy": "2024-07-30T16:39:04.556293Z", + "iopub.status.idle": "2024-07-30T16:39:04.620999Z", + "shell.execute_reply": "2024-07-30T16:39:04.620353Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 907281bf0..ddf315699 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:10.560124Z", - "iopub.status.busy": "2024-07-18T04:09:10.559958Z", - "iopub.status.idle": "2024-07-18T04:09:13.104127Z", - "shell.execute_reply": "2024-07-18T04:09:13.103356Z" + "iopub.execute_input": "2024-07-30T16:39:08.949260Z", + "iopub.status.busy": "2024-07-30T16:39:08.949088Z", + "iopub.status.idle": "2024-07-30T16:39:10.916447Z", + "shell.execute_reply": "2024-07-30T16:39:10.915748Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:13.106805Z", - "iopub.status.busy": "2024-07-18T04:09:13.106609Z", - "iopub.status.idle": "2024-07-18T04:10:28.268458Z", - "shell.execute_reply": "2024-07-18T04:10:28.267678Z" + "iopub.execute_input": "2024-07-30T16:39:10.918962Z", + "iopub.status.busy": "2024-07-30T16:39:10.918773Z", + "iopub.status.idle": "2024-07-30T16:40:31.011988Z", + "shell.execute_reply": "2024-07-30T16:40:31.011219Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:28.271144Z", - "iopub.status.busy": "2024-07-18T04:10:28.270903Z", - "iopub.status.idle": "2024-07-18T04:10:29.405571Z", - "shell.execute_reply": "2024-07-18T04:10:29.405039Z" + "iopub.execute_input": "2024-07-30T16:40:31.014861Z", + "iopub.status.busy": "2024-07-30T16:40:31.014482Z", + "iopub.status.idle": "2024-07-30T16:40:32.523099Z", + "shell.execute_reply": "2024-07-30T16:40:32.522526Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.408244Z", - "iopub.status.busy": "2024-07-18T04:10:29.407724Z", - "iopub.status.idle": "2024-07-18T04:10:29.411085Z", - "shell.execute_reply": "2024-07-18T04:10:29.410512Z" + "iopub.execute_input": "2024-07-30T16:40:32.525566Z", + "iopub.status.busy": "2024-07-30T16:40:32.525262Z", + "iopub.status.idle": "2024-07-30T16:40:32.528712Z", + "shell.execute_reply": "2024-07-30T16:40:32.528246Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.413314Z", - "iopub.status.busy": "2024-07-18T04:10:29.413010Z", - "iopub.status.idle": "2024-07-18T04:10:29.416803Z", - "shell.execute_reply": "2024-07-18T04:10:29.416373Z" + "iopub.execute_input": "2024-07-30T16:40:32.530916Z", + "iopub.status.busy": "2024-07-30T16:40:32.530497Z", + "iopub.status.idle": "2024-07-30T16:40:32.534386Z", + "shell.execute_reply": "2024-07-30T16:40:32.533915Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.418928Z", - "iopub.status.busy": "2024-07-18T04:10:29.418571Z", - "iopub.status.idle": "2024-07-18T04:10:29.422140Z", - "shell.execute_reply": "2024-07-18T04:10:29.421708Z" + "iopub.execute_input": "2024-07-30T16:40:32.536602Z", + "iopub.status.busy": "2024-07-30T16:40:32.536175Z", + "iopub.status.idle": "2024-07-30T16:40:32.539968Z", + "shell.execute_reply": "2024-07-30T16:40:32.539531Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.424233Z", - "iopub.status.busy": "2024-07-18T04:10:29.423908Z", - "iopub.status.idle": "2024-07-18T04:10:29.426602Z", - "shell.execute_reply": "2024-07-18T04:10:29.426181Z" + "iopub.execute_input": "2024-07-30T16:40:32.542052Z", + "iopub.status.busy": "2024-07-30T16:40:32.541706Z", + "iopub.status.idle": "2024-07-30T16:40:32.544446Z", + "shell.execute_reply": "2024-07-30T16:40:32.544021Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.428591Z", - "iopub.status.busy": "2024-07-18T04:10:29.428256Z", - "iopub.status.idle": "2024-07-18T04:11:06.947288Z", - "shell.execute_reply": "2024-07-18T04:11:06.946575Z" + "iopub.execute_input": "2024-07-30T16:40:32.546293Z", + "iopub.status.busy": "2024-07-30T16:40:32.546119Z", + "iopub.status.idle": "2024-07-30T16:41:10.690446Z", + "shell.execute_reply": "2024-07-30T16:41:10.689776Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b72b2c1cac4c46cf8fdcb9a698c41e2d", + "model_id": "3c621015e28040a280bd1034a80975dc", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59e1bc568b054e7ba3e6e8735e0b46ca", + "model_id": "0f880a204f2942c89dcc00391ef9c5e7", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:06.950015Z", - "iopub.status.busy": "2024-07-18T04:11:06.949795Z", - "iopub.status.idle": "2024-07-18T04:11:07.618088Z", - "shell.execute_reply": "2024-07-18T04:11:07.617601Z" + "iopub.execute_input": "2024-07-30T16:41:10.693189Z", + "iopub.status.busy": "2024-07-30T16:41:10.692781Z", + "iopub.status.idle": "2024-07-30T16:41:11.146443Z", + "shell.execute_reply": "2024-07-30T16:41:11.145848Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:07.620378Z", - "iopub.status.busy": "2024-07-18T04:11:07.619929Z", - "iopub.status.idle": "2024-07-18T04:11:10.617575Z", - "shell.execute_reply": "2024-07-18T04:11:10.616973Z" + "iopub.execute_input": "2024-07-30T16:41:11.148909Z", + "iopub.status.busy": "2024-07-30T16:41:11.148535Z", + "iopub.status.idle": "2024-07-30T16:41:14.025111Z", + "shell.execute_reply": "2024-07-30T16:41:14.024529Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:10.619936Z", - "iopub.status.busy": "2024-07-18T04:11:10.619515Z", - "iopub.status.idle": "2024-07-18T04:11:43.703098Z", - "shell.execute_reply": "2024-07-18T04:11:43.702508Z" + "iopub.execute_input": "2024-07-30T16:41:14.027425Z", + "iopub.status.busy": "2024-07-30T16:41:14.027043Z", + "iopub.status.idle": "2024-07-30T16:41:46.636156Z", + "shell.execute_reply": "2024-07-30T16:41:46.635613Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf636d0171541789af2388c3416e5d8", + "model_id": "8aadf42791a644d7aa84ea5ea93db52a", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:43.705345Z", - "iopub.status.busy": "2024-07-18T04:11:43.704988Z", - "iopub.status.idle": "2024-07-18T04:11:59.439667Z", - "shell.execute_reply": "2024-07-18T04:11:59.439016Z" + "iopub.execute_input": "2024-07-30T16:41:46.638629Z", + "iopub.status.busy": "2024-07-30T16:41:46.638229Z", + "iopub.status.idle": "2024-07-30T16:42:01.915473Z", + "shell.execute_reply": "2024-07-30T16:42:01.914892Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:59.442385Z", - "iopub.status.busy": "2024-07-18T04:11:59.441988Z", - "iopub.status.idle": "2024-07-18T04:12:03.320177Z", - "shell.execute_reply": "2024-07-18T04:12:03.319687Z" + "iopub.execute_input": "2024-07-30T16:42:01.918239Z", + "iopub.status.busy": "2024-07-30T16:42:01.917804Z", + "iopub.status.idle": "2024-07-30T16:42:05.845501Z", + "shell.execute_reply": "2024-07-30T16:42:05.844878Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:03.322503Z", - "iopub.status.busy": "2024-07-18T04:12:03.322159Z", - "iopub.status.idle": "2024-07-18T04:12:04.826127Z", - "shell.execute_reply": "2024-07-18T04:12:04.825565Z" + "iopub.execute_input": "2024-07-30T16:42:05.847761Z", + "iopub.status.busy": "2024-07-30T16:42:05.847553Z", + "iopub.status.idle": "2024-07-30T16:42:07.336104Z", + "shell.execute_reply": "2024-07-30T16:42:07.335452Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa25231490e54be4825aa7b428111c87", + "model_id": "bd34f6363dd94413a10ce5318e70a5ff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:04.828561Z", - "iopub.status.busy": "2024-07-18T04:12:04.828379Z", - "iopub.status.idle": "2024-07-18T04:12:04.858249Z", - "shell.execute_reply": "2024-07-18T04:12:04.857723Z" + "iopub.execute_input": "2024-07-30T16:42:07.338634Z", + "iopub.status.busy": "2024-07-30T16:42:07.338421Z", + "iopub.status.idle": "2024-07-30T16:42:07.369072Z", + "shell.execute_reply": "2024-07-30T16:42:07.368500Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:04.860698Z", - "iopub.status.busy": "2024-07-18T04:12:04.860465Z", - "iopub.status.idle": "2024-07-18T04:12:11.011245Z", - "shell.execute_reply": "2024-07-18T04:12:11.010640Z" + "iopub.execute_input": "2024-07-30T16:42:07.371445Z", + "iopub.status.busy": "2024-07-30T16:42:07.371243Z", + "iopub.status.idle": "2024-07-30T16:42:13.423924Z", + "shell.execute_reply": "2024-07-30T16:42:13.423326Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:11.013336Z", - "iopub.status.busy": "2024-07-18T04:12:11.013156Z", - "iopub.status.idle": "2024-07-18T04:12:11.069138Z", - "shell.execute_reply": "2024-07-18T04:12:11.068595Z" + "iopub.execute_input": "2024-07-30T16:42:13.426357Z", + "iopub.status.busy": "2024-07-30T16:42:13.425904Z", + "iopub.status.idle": "2024-07-30T16:42:13.482723Z", + "shell.execute_reply": "2024-07-30T16:42:13.482084Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a20edbe6a594498909b06e9c5396420": { + "0f880a204f2942c89dcc00391ef9c5e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e636b5573aab44bba46435bd71934d2c", + "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", + "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516" + ], + "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", + "tabbable": null, + "tooltip": null + } + }, + "15b6c6e4483e414bbffdca6b1332ba45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,7 +1115,53 @@ "width": null } }, - "0cd83a443fc84266ad25416b5aff0bb7": { + "2e5a8275ab144dd1837b3acb899ba516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", + "placeholder": "​", + "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.14it/s]" + } + }, + "3959826deb41466c9cff772fbcdc14cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", + "placeholder": "​", + "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3a237c75a8f54cf38e283f9c7d217f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,66 +1214,31 @@ "width": null } }, - "0e8c0a9e25994e2ca3f8d2ece39596a5": { + "3c621015e28040a280bd1034a80975dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d8b7fb74f8c417e9e17f911ecde280f", - "placeholder": "​", - "style": "IPY_MODEL_178f9c96dbf64c2e84d718e79f53936f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", + "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", + "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef" + ], + "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "10749c7cde6b4303a9ca2d45595c2710": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "178f9c96dbf64c2e84d718e79f53936f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "18ef129f375049d085108684638b6023": { + "4289a1e8279c46b0b291b9d03ed580e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,7 +1291,79 @@ "width": null } }, - "1a80b216c35947cf815d6f2bb5ebb85f": { + "53ec7ed5cdda45ee9abaa821657d4972": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", + "placeholder": "​", + "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 154765.99it/s]" + } + }, + "5d9c48453ded44f187c73beb3ab94bef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", + "placeholder": "​", + "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 809.67it/s]" + } + }, + "665af0e8c3f645a59c02f43043fdff51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6d36dca0c74f4a7d8aaeeab44134b5ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1309,7 +1416,92 @@ "width": null } }, - "4461ec16ae5e4721b352a3fbdc75a0b4": { + "6f0287eca6f748f48079369ebec0af00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "7759184621734da7ad7af7156fef025c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ab2dd5b34e14de4aee5ee3ca7cd1e03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", + "placeholder": "​", + "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "7b240753a02c4bcf9fe60a2a6583280e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ee856f3b3b6489cadb00bc56b8cfbfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1554,7 @@ "width": null } }, - "454c04298568464e900ed58997051dc4": { + "806c92b800564387bef7dd39a678fbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1415,49 +1607,25 @@ "width": null } }, - "48cb8a66bcd1494f941da6683a3b6919": { + "842810ddd25f4f9a91f6c1488c693fed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f26cc2fc788433487e0331c48aac4f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4461ec16ae5e4721b352a3fbdc75a0b4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48cb8a66bcd1494f941da6683a3b6919", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "596bafdfec9e406bbffa6835ef386484": { + "86ce7a15782f4be0bdcea8d3e956fdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1473,7 +1641,7 @@ "description_width": "" } }, - "59e1bc568b054e7ba3e6e8735e0b46ca": { + "8aadf42791a644d7aa84ea5ea93db52a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1488,114 +1656,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0e8c0a9e25994e2ca3f8d2ece39596a5", - "IPY_MODEL_4f26cc2fc788433487e0331c48aac4f9", - "IPY_MODEL_d5ad76449c39401cafbc62f08675233c" + "IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", + "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", + "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972" ], - "layout": "IPY_MODEL_b42b51ac859041f9a41fac789eb47c0f", + "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", "tabbable": null, "tooltip": null } }, - "5c8208c77c3240628ff0208ff4f0a4a9": { + "8b0bd8d97261484186cbbc3b754ec950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ff3d452491e4d93a5a3403c464a60b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67b5edcec1d74ae4b54af34d8696f99b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a5e964186ae49038b1cc962b672b697": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b9a6b3902894a6ab4c4db415e0f19ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a80b216c35947cf815d6f2bb5ebb85f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f98050f4a9814463893abb2bd49e930a", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "bar_color": null, + "description_width": "" } }, - "6fcefb4cf9864027ab426517dbece0c9": { + "8fcef29a8bc14e859cd9c969f9e518fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,33 +1734,7 @@ "width": null } }, - "719774e4d63942a4a4f87677b419ca45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92567ab696d3482d8ad371a2eef0cbdb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_596bafdfec9e406bbffa6835ef386484", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "74ab83b9cd4a4714bae4d108f607cf6f": { + "916b2b82c5da485e96eb7becee3ab269": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1727,7 +1787,7 @@ "width": null } }, - "756e70ea38bd4cd59509987c5d800737": { + "984b4a402c5e4260b8d9a0f92ba2547b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1780,25 +1840,30 @@ "width": null } }, - "7c39fc393d73430e8a4d2b5f1b4b4b73": { + "a4dcefed1766446b8c69b4d02fab4125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", + "placeholder": "​", + "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.41it/s]" } }, - "8d8b7fb74f8c417e9e17f911ecde280f": { + "a779351ef43a464290826c053fbba728": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1851,33 +1916,7 @@ "width": null } }, - "911fe71d3be64e2ab2071f4f6dcc1016": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_454c04298568464e900ed58997051dc4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d69aaf5b8d44dd99124d63caa7d8614", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "92567ab696d3482d8ad371a2eef0cbdb": { + "aace38a5bc714ce49401be885a999f66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,58 +1964,12 @@ "overflow": null, "padding": null, "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "94fecb2db41d48eb88721abbc823752d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_756e70ea38bd4cd59509987c5d800737", - "placeholder": "​", - "style": "IPY_MODEL_10749c7cde6b4303a9ca2d45595c2710", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "9a160cb8119042b1b0257cd745f36bb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcdf5d53ec1f4db8b5a3a858dc8846ac", - "placeholder": "​", - "style": "IPY_MODEL_6a5e964186ae49038b1cc962b672b697", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 815.98it/s]" + "top": null, + "visibility": null, + "width": null } }, - "9be448ce653f4a0fbede9675cfe3afb2": { + "b2fe9990927042c6bb636763d7937e0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,23 +2022,7 @@ "width": null } }, - "9d69aaf5b8d44dd99124d63caa7d8614": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a25b5530380249f99eb6ee49ba220301": { + "b6e50060b45f4c09ba567bff5d89bbd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2098,7 +2075,7 @@ "width": null } }, - "a6608049421140b1ac4d14b7c43eab7d": { + "bb262a4cefe2454ea0bfaf1857eaaaa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2113,39 +2090,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b8749ed68a6f4dffb642e2951426ac92", + "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", "placeholder": "​", - "style": "IPY_MODEL_67b5edcec1d74ae4b54af34d8696f99b", + "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "aa25231490e54be4825aa7b428111c87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_94fecb2db41d48eb88721abbc823752d", - "IPY_MODEL_719774e4d63942a4a4f87677b419ca45", - "IPY_MODEL_ae60fa4e2c044172b0e99b28c0a04e0c" - ], - "layout": "IPY_MODEL_9be448ce653f4a0fbede9675cfe3afb2", - "tabbable": null, - "tooltip": null + "value": "number of examples processed for estimating thresholds: 100%" } }, - "abf636d0171541789af2388c3416e5d8": { + "bd34f6363dd94413a10ce5318e70a5ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2160,39 +2113,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a6608049421140b1ac4d14b7c43eab7d", - "IPY_MODEL_6b9a6b3902894a6ab4c4db415e0f19ac", - "IPY_MODEL_e401b5ec83c4494bb96085914e21687b" + "IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", + "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", + "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125" ], - "layout": "IPY_MODEL_74ab83b9cd4a4714bae4d108f607cf6f", + "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", "tabbable": null, "tooltip": null } }, - "ae60fa4e2c044172b0e99b28c0a04e0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18ef129f375049d085108684638b6023", - "placeholder": "​", - "style": "IPY_MODEL_5ff3d452491e4d93a5a3403c464a60b8", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.32it/s]" - } - }, - "b42b51ac859041f9a41fac789eb47c0f": { + "c103e73e53c7487084bdb73546e2c3f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2245,31 +2175,25 @@ "width": null } }, - "b72b2c1cac4c46cf8fdcb9a698c41e2d": { + "c2a8b93dbec1492481abde0df026087e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5fa676c9a584d139234c30abd25aa09", - "IPY_MODEL_911fe71d3be64e2ab2071f4f6dcc1016", - "IPY_MODEL_9a160cb8119042b1b0257cd745f36bb2" - ], - "layout": "IPY_MODEL_0cd83a443fc84266ad25416b5aff0bb7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b8145b7e889a47059348256665e43ab0": { + "c3ac3d6d5373421680b5cdfd9f305953": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2287,60 +2211,23 @@ "text_color": null } }, - "b8749ed68a6f4dffb642e2951426ac92": { - "model_module": "@jupyter-widgets/base", + "c59fdcdcb4d04accba7ce0c3d58c5eb0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bcdf5d53ec1f4db8b5a3a858dc8846ac": { + "d3f1e045fd804f4a9b2bc2eab9679b2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2393,30 +2280,69 @@ "width": null } }, - "c5fa676c9a584d139234c30abd25aa09": { + "d4d10f8bafa946de89419591759057de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd16bea5c99646b898f24b1cf3d54721": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e298261bfee74f53a9d4ee7608c7dbba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a20edbe6a594498909b06e9c5396420", - "placeholder": "​", - "style": "IPY_MODEL_b8145b7e889a47059348256665e43ab0", + "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": 30.0 } }, - "d5ad76449c39401cafbc62f08675233c": { + "e636b5573aab44bba46435bd71934d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2431,38 +2357,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a25b5530380249f99eb6ee49ba220301", + "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", "placeholder": "​", - "style": "IPY_MODEL_5c8208c77c3240628ff0208ff4f0a4a9", + "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.19it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "e401b5ec83c4494bb96085914e21687b": { + "ec065695ccda4be494a55a12d2a2a747": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fcefb4cf9864027ab426517dbece0c9", - "placeholder": "​", - "style": "IPY_MODEL_7c39fc393d73430e8a4d2b5f1b4b4b73", + "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150147.31it/s]" + "value": 4997683.0 + } + }, + "f0d230f541b948e9a2051618e62f2712": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f98050f4a9814463893abb2bd49e930a": { + "f1789c1a5e684dd89f01bb738355ab84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2477,6 +2459,24 @@ "bar_color": null, "description_width": "" } + }, + "fbd95489418e417688ccd6e6da39d464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 1cfa9de2e..6a696df89 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:13.563318Z", - "iopub.status.busy": "2024-07-18T04:12:13.563162Z", - "iopub.status.idle": "2024-07-18T04:12:15.665934Z", - "shell.execute_reply": "2024-07-18T04:12:15.665276Z" + "iopub.execute_input": "2024-07-30T16:42:16.108435Z", + "iopub.status.busy": "2024-07-30T16:42:16.108277Z", + "iopub.status.idle": "2024-07-30T16:42:17.473595Z", + "shell.execute_reply": "2024-07-30T16:42:17.472949Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-18 04:12:13-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-30 16:42:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.49.183, 2400:52e0:1a01::1001:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.183|:443... connected.\r\n", + "185.93.1.250, 2400:52e0:1a00::1070:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -116,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.71MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-18 04:12:13 (5.71 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-30 16:42:16 (6.62 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-18 04:12:14-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.140.161, 52.217.200.145, 16.182.74.81, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.140.161|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-07-30 16:42:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.138.89, 52.217.134.249, 52.216.41.17, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.138.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,34 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 160.53K 750KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.42M 3.31MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 49%[========> ] 7.97M 12.4MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 99%[==================> ] 16.12M 18.8MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 19.0MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-18 04:12:15 (19.0 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-30 16:42:17 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -218,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:15.668596Z", - "iopub.status.busy": "2024-07-18T04:12:15.668398Z", - "iopub.status.idle": "2024-07-18T04:12:16.911759Z", - "shell.execute_reply": "2024-07-18T04:12:16.911145Z" + "iopub.execute_input": "2024-07-30T16:42:17.476282Z", + "iopub.status.busy": "2024-07-30T16:42:17.475905Z", + "iopub.status.idle": "2024-07-30T16:42:18.926532Z", + "shell.execute_reply": "2024-07-30T16:42:18.925850Z" }, "nbsphinx": "hidden" }, @@ -232,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -258,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.914442Z", - "iopub.status.busy": "2024-07-18T04:12:16.914008Z", - "iopub.status.idle": "2024-07-18T04:12:16.917267Z", - "shell.execute_reply": "2024-07-18T04:12:16.916832Z" + "iopub.execute_input": "2024-07-30T16:42:18.929007Z", + "iopub.status.busy": "2024-07-30T16:42:18.928712Z", + "iopub.status.idle": "2024-07-30T16:42:18.932103Z", + "shell.execute_reply": "2024-07-30T16:42:18.931658Z" } }, "outputs": [], @@ -311,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.919339Z", - "iopub.status.busy": "2024-07-18T04:12:16.919000Z", - "iopub.status.idle": "2024-07-18T04:12:16.922078Z", - "shell.execute_reply": "2024-07-18T04:12:16.921530Z" + "iopub.execute_input": "2024-07-30T16:42:18.934243Z", + "iopub.status.busy": "2024-07-30T16:42:18.933903Z", + "iopub.status.idle": "2024-07-30T16:42:18.937344Z", + "shell.execute_reply": "2024-07-30T16:42:18.936919Z" }, "nbsphinx": "hidden" }, @@ -332,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.924213Z", - "iopub.status.busy": "2024-07-18T04:12:16.923864Z", - "iopub.status.idle": "2024-07-18T04:12:26.037149Z", - "shell.execute_reply": "2024-07-18T04:12:26.036588Z" + "iopub.execute_input": "2024-07-30T16:42:18.939414Z", + "iopub.status.busy": "2024-07-30T16:42:18.939071Z", + "iopub.status.idle": "2024-07-30T16:42:28.307360Z", + "shell.execute_reply": "2024-07-30T16:42:28.306819Z" } }, "outputs": [], @@ -409,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.039560Z", - "iopub.status.busy": "2024-07-18T04:12:26.039344Z", - "iopub.status.idle": "2024-07-18T04:12:26.044846Z", - "shell.execute_reply": "2024-07-18T04:12:26.044413Z" + "iopub.execute_input": "2024-07-30T16:42:28.310072Z", + "iopub.status.busy": "2024-07-30T16:42:28.309609Z", + "iopub.status.idle": "2024-07-30T16:42:28.315308Z", + "shell.execute_reply": "2024-07-30T16:42:28.314851Z" }, "nbsphinx": "hidden" }, @@ -452,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.046633Z", - "iopub.status.busy": "2024-07-18T04:12:26.046462Z", - "iopub.status.idle": "2024-07-18T04:12:26.386018Z", - "shell.execute_reply": "2024-07-18T04:12:26.385389Z" + "iopub.execute_input": "2024-07-30T16:42:28.317438Z", + "iopub.status.busy": "2024-07-30T16:42:28.317037Z", + "iopub.status.idle": "2024-07-30T16:42:28.691191Z", + "shell.execute_reply": "2024-07-30T16:42:28.690527Z" } }, "outputs": [], @@ -492,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.388817Z", - "iopub.status.busy": "2024-07-18T04:12:26.388359Z", - "iopub.status.idle": "2024-07-18T04:12:26.392513Z", - "shell.execute_reply": "2024-07-18T04:12:26.392066Z" + "iopub.execute_input": "2024-07-30T16:42:28.693775Z", + "iopub.status.busy": "2024-07-30T16:42:28.693565Z", + "iopub.status.idle": "2024-07-30T16:42:28.698316Z", + "shell.execute_reply": "2024-07-30T16:42:28.697696Z" } }, "outputs": [ @@ -567,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.394754Z", - "iopub.status.busy": "2024-07-18T04:12:26.394386Z", - "iopub.status.idle": "2024-07-18T04:12:29.007823Z", - "shell.execute_reply": "2024-07-18T04:12:29.007030Z" + "iopub.execute_input": "2024-07-30T16:42:28.700484Z", + "iopub.status.busy": "2024-07-30T16:42:28.700147Z", + "iopub.status.idle": "2024-07-30T16:42:31.466890Z", + "shell.execute_reply": "2024-07-30T16:42:31.466180Z" } }, "outputs": [], @@ -592,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.011403Z", - "iopub.status.busy": "2024-07-18T04:12:29.010454Z", - "iopub.status.idle": "2024-07-18T04:12:29.015308Z", - "shell.execute_reply": "2024-07-18T04:12:29.014770Z" + "iopub.execute_input": "2024-07-30T16:42:31.470029Z", + "iopub.status.busy": "2024-07-30T16:42:31.469337Z", + "iopub.status.idle": "2024-07-30T16:42:31.473767Z", + "shell.execute_reply": "2024-07-30T16:42:31.473222Z" } }, "outputs": [ @@ -631,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.017563Z", - "iopub.status.busy": "2024-07-18T04:12:29.017204Z", - "iopub.status.idle": "2024-07-18T04:12:29.023529Z", - "shell.execute_reply": "2024-07-18T04:12:29.022965Z" + "iopub.execute_input": "2024-07-30T16:42:31.476028Z", + "iopub.status.busy": "2024-07-30T16:42:31.475684Z", + "iopub.status.idle": "2024-07-30T16:42:31.481390Z", + "shell.execute_reply": "2024-07-30T16:42:31.480918Z" } }, "outputs": [ @@ -812,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.025886Z", - "iopub.status.busy": "2024-07-18T04:12:29.025543Z", - "iopub.status.idle": "2024-07-18T04:12:29.053000Z", - "shell.execute_reply": "2024-07-18T04:12:29.052460Z" + "iopub.execute_input": "2024-07-30T16:42:31.483594Z", + "iopub.status.busy": "2024-07-30T16:42:31.483253Z", + "iopub.status.idle": "2024-07-30T16:42:31.509722Z", + "shell.execute_reply": "2024-07-30T16:42:31.509269Z" } }, "outputs": [ @@ -917,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.055238Z", - "iopub.status.busy": "2024-07-18T04:12:29.054781Z", - "iopub.status.idle": "2024-07-18T04:12:29.059137Z", - "shell.execute_reply": "2024-07-18T04:12:29.058579Z" + "iopub.execute_input": "2024-07-30T16:42:31.511897Z", + "iopub.status.busy": "2024-07-30T16:42:31.511537Z", + "iopub.status.idle": "2024-07-30T16:42:31.516114Z", + "shell.execute_reply": "2024-07-30T16:42:31.515643Z" } }, "outputs": [ @@ -994,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.061173Z", - "iopub.status.busy": "2024-07-18T04:12:29.061001Z", - "iopub.status.idle": "2024-07-18T04:12:30.455263Z", - "shell.execute_reply": "2024-07-18T04:12:30.454724Z" + "iopub.execute_input": "2024-07-30T16:42:31.518017Z", + "iopub.status.busy": "2024-07-30T16:42:31.517821Z", + "iopub.status.idle": "2024-07-30T16:42:33.009420Z", + "shell.execute_reply": "2024-07-30T16:42:33.008849Z" } }, "outputs": [ @@ -1169,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:30.457343Z", - "iopub.status.busy": "2024-07-18T04:12:30.457166Z", - "iopub.status.idle": "2024-07-18T04:12:30.461345Z", - "shell.execute_reply": "2024-07-18T04:12:30.460894Z" + "iopub.execute_input": "2024-07-30T16:42:33.011845Z", + "iopub.status.busy": "2024-07-30T16:42:33.011502Z", + "iopub.status.idle": "2024-07-30T16:42:33.015539Z", + "shell.execute_reply": "2024-07-30T16:42:33.015098Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_workflows_82_3.png b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_82_3.png new file mode 100644 index 000000000..e605bd643 Binary files /dev/null and b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_82_3.png differ diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 14a2eceb9..9219fc870 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index b959f9638..7cbb6fb00 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index e7f5d1613..4f285469e 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 114395d8b..0a8e0702a 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index e659319ad..6c7d62556 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index f8c25482a..3f0646d17 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 14c7728f8..12600e683 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index c4638e68c..fb192b6ca 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 80801cb71..de0c59a5a 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 63bad1fad..759df5ccf 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index b3a215734..70eeecacd 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 2715a5a0d..ad9aac7b7 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index c34475731..d8b03574a 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index a6b9a7abe..5c3eb8abf 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index f2acdbfd6..514f91221 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index c4b541ed5..80928ee85 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index fefaf571d..95aca87ee 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 6f388b87f..8beb9bc8c 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index a1c91cae7..fbb19a025 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 6325498ed..412d44680 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index f2e61c9bd..ec9d046ce 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 0fe23c943..85b725786 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 505a3bd7e..c4cf97242 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 94d906685..3cb1eec45 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_images/tutorials_datalab_workflows_82_3.png b/master/_images/tutorials_datalab_workflows_82_3.png new file mode 100644 index 000000000..e605bd643 Binary files /dev/null and b/master/_images/tutorials_datalab_workflows_82_3.png differ diff --git a/master/_modules/cleanlab/datalab/datalab.html b/master/_modules/cleanlab/datalab/datalab.html index f859ca058..6c56bc5a7 100644 --- a/master/_modules/cleanlab/datalab/datalab.html +++ b/master/_modules/cleanlab/datalab/datalab.html @@ -746,6 +746,7 @@

Source code for cleanlab.datalab.datalab

         self.cleanlab_version = cleanlab.version.__version__
         self.verbosity = verbosity
         self._imagelab = create_imagelab(dataset=self.data, image_key=image_key)
+        self._correlations_df = pd.DataFrame(columns=["property", "score"])
 
         # Create the builder for DataIssues
         builder = _DataIssuesBuilder(self._data)
@@ -1033,6 +1034,7 @@ 

Source code for cleanlab.datalab.datalab

             show_summary_score=show_summary_score,
             show_all_issues=show_all_issues,
             imagelab=self._imagelab,
+            correlations_df=self._correlations_df,
         )
         reporter.report(num_examples=num_examples)
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 45ca43268..28232a59a 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index c14fac2ae..fcc9d1478 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 5e7efeb22..39ad45277 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 5e7b3aaac..aab33d6e3 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 421f154a5..64e8b75c3 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 7837c0c27..9132d3724 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 49f95ce4d..84937486a 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/workflows.ipynb b/master/_sources/tutorials/datalab/workflows.ipynb index 0a17e353b..ccd7d003e 100644 --- a/master/_sources/tutorials/datalab/workflows.ipynb +++ b/master/_sources/tutorials/datalab/workflows.ipynb @@ -1336,15 +1336,14 @@ "This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels.\n", "These correlations could lead to unreliable model predictions and poor generalization.\n", "\n", - "\n", - "By providing an `image_key` argument, we can analyze image-specific attributes such as:\n", + "`Datalab` automatically analyzes image-specific attributes such as:\n", "\n", "- Darkness\n", "- Blurriness\n", "- Aspect ratio anomalies\n", "- More image-specific features from [CleanVision](https://cleanvision.readthedocs.io/en/latest/tutorials/tutorial.html#What-is-CleanVision?)\n", "\n", - "This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.\n" + "This analysis helps identify unintended biases in datasets and guides steps to enhance the robustness of machine learning models.\n" ] }, { @@ -1353,73 +1352,25 @@ "source": [ "### 1. Load the Dataset\n", "\n", - "We'll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:\n", - "\n", - "- We'll artificially introduce a bias by altering all images of one class (e.g., darkening them).\n", - "- The correlation scores range from 0 to 1, where:\n", - " - Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.\n", - " - Scores close to 1 suggest little to no correlation between the property and class labels.\n", - "- By introducing this bias, we expect to see:\n", - " - A decrease in the `dark_score` for the darkened class, indicating an increased correlation between darkness and that class label.\n", - " - Similar effects can be observed with `blurry_score` or `odd_aspect_ratio_score` by introducing corresponding characteristics to one class.\n", - "\n", - "This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels." + "For this tutorial, we'll use a subset of the CIFAR-10 dataset with artificially introduced biases to illustrate how Datalab detects spurious correlations. We'll assume you have a directory of images organized into subdirectories by class." ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "from cleanlab import Datalab\n", - "from torchvision.datasets import CIFAR10\n", - "from datasets import Dataset\n", - "import io\n", - "from PIL import Image, ImageEnhance\n", - "import random\n", - "import numpy as np\n", - "from IPython.display import display, Markdown\n", - "\n", - "# Download the CIFAR-10 test dataset\n", - "data = CIFAR10(root='./data', train=False, download=True)\n", - "\n", - "# Set seed for reproducibility\n", - "np.random.seed(0)\n", - "random.seed(0)\n", - "\n", - "# Randomly select two classes\n", - "classes = list(range(len(data.classes)))\n", - "selected_classes = random.sample(classes, 2)\n", - "\n", - "# Function to convert PIL object to PNG image to be passed to the Datalab object\n", - "def convert_to_png_image(image):\n", - " buffer = io.BytesIO()\n", - " image.save(buffer, format='PNG')\n", - " buffer.seek(0)\n", - " return Image.open(buffer)\n", - "\n", - "# Generating 100 ('max_num_images') images from each of the two chosen classes\n", - "max_num_images = 100\n", - "list_images, list_labels = [], []\n", - "num_images = {selected_classes[0]: 0, selected_classes[1]: 0}\n", - "\n", - "for img, label in data:\n", - " if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:\n", - " break\n", - " if label in selected_classes:\n", - " if num_images[label] == max_num_images:\n", - " continue\n", - " list_images.append(convert_to_png_image(img))\n", - " list_labels.append(label)\n", - " num_images[label] += 1" + "To fetch the data for this tutorial, make sure you have `wget` and `zip` installed." ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find image-related issues" + "# Download the dataset\n", + "!wget -nc https://s.cleanlab.ai/CIFAR-10-subset.zip\n", + "!unzip -q CIFAR-10-subset.zip" ] }, { @@ -1428,16 +1379,40 @@ "metadata": {}, "outputs": [], "source": [ - "# Create a datasets.Dataset object from list of images and their corresponding labels\n", - "dataset_dict = {'image': list_images, 'label': list_labels}\n", - "dataset = Dataset.from_dict(dataset_dict)" + "from datasets import Dataset\n", + "from torchvision.datasets import ImageFolder\n", + "\n", + "def load_image_dataset(data_dir: str):\n", + " \"\"\"\n", + " Load images from a directory structure and create a datasets.Dataset object.\n", + " \n", + " Parameters\n", + " ----------\n", + " data_dir : str\n", + " Path to the root directory containing class subdirectories.\n", + " \n", + " Returns\n", + " -------\n", + " datasets.Dataset\n", + " A Dataset object containing 'image' and 'label' columns.\n", + " \"\"\"\n", + " image_dataset = ImageFolder(data_dir)\n", + " images = [img for img, _ in image_dataset]\n", + " labels = [label for _, label in image_dataset]\n", + " return Dataset.from_dict({\"image\": images, \"label\": labels})\n", + "\n", + "# Load the dataset\n", + "data_dir = \"CIFAR-10-subset/darkened_images\"\n", + "dataset = load_image_dataset(data_dir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 3. (Optional) Creating a transformed dataset using `ImageEnhance` to induce darkness" + "### 2. Run Datalab Analysis\n", + "\n", + "Now that we have loaded our dataset, let's use `Datalab` to analyze it for potential spurious correlations." ] }, { @@ -1446,28 +1421,25 @@ "metadata": {}, "outputs": [], "source": [ - "# Function to reduce brightness to 30%\n", - "def apply_dark(image):\n", - " \"\"\"Decreases brightness of the image.\"\"\"\n", - " enhancer = ImageEnhance.Brightness(image)\n", - " return enhancer.enhance(0.3)\n", + "from cleanlab import Datalab\n", "\n", - "# Applying the darkness filter to one of the classes\n", - "transformed_list_images = [\n", - " apply_dark(img) if label == selected_classes[0] else img\n", - " for label, img in zip(list_labels, list_images)\n", - "]\n", + "# Initialize Datalab with the dataset\n", + "lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", + "\n", + "# Run the analysis\n", + "lab.find_issues()\n", "\n", - "# Creating datasets.Dataset object from the transformed dataset\n", - "transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}\n", - "transformed_dataset = Dataset.from_dict(transformed_dataset_dict)" + "# Generate and display the report\n", + "lab.report()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 4. (Optional) Visualizing Images in the dataset" + "### 3. Interpret the Results\n", + "\n", + "While the `lab.report()` output is comprehensive, we can use more targeted methods to examine the results:" ] }, { @@ -1476,47 +1448,51 @@ "metadata": {}, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", + "from IPython.display import display\n", "\n", - "def plot_images(dataset_dict):\n", - " \"\"\"Plots the first 15 images from the dataset dictionary.\"\"\"\n", - " images = dataset_dict['image']\n", - " labels = dataset_dict['label']\n", - " \n", - " # Define the number of images to plot\n", - " num_images_to_plot = 15\n", - " num_cols = 5 # Number of columns in the plot grid\n", - " num_rows = (num_images_to_plot + num_cols - 1) // num_cols # Calculate rows needed\n", - " \n", - " # Create a figure\n", - " fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))\n", - " axes = axes.flatten()\n", - " \n", - " # Plot each image\n", - " for i in range(num_images_to_plot):\n", - " img = images[i]\n", - " label = labels[i]\n", - " axes[i].imshow(img)\n", - " axes[i].set_title(f'Label: {label}')\n", - " axes[i].axis('off')\n", - " \n", - " # Hide any remaining empty subplots\n", - " for i in range(num_images_to_plot, len(axes)):\n", - " axes[i].axis('off')\n", - " \n", - " # Show the plot\n", - " plt.tight_layout()\n", - " plt.show()\n", + "# Get the correlation scores for image properties\n", + "correlation_scores = lab._correlations_df\n", + "print(\"Correlation scores for image properties:\")\n", + "display(correlation_scores)\n", "\n", - "plot_images(dataset_dict)\n", - "plot_images(transformed_dataset_dict)" + "# Get image-specific issues\n", + "issue_name = \"dark\"\n", + "image_issues = lab.get_issues(issue_name)\n", + "print(\"\\nImage-specific issues:\")\n", + "display(image_issues)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 5. Finding image-specific property scores" + "\n", + "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", + "\n", + "Interpreting the results:\n", + "\n", + "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", + "\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", + "\n", + "For real-world datasets, pay attention to:\n", + "\n", + "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Prevalent issues in the image_issues DataFrame\n", + "\n", + "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", + "\n", + "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", + "\n", + "To understand the impact of spurious correlations, it can be helpful to compare our results with a dataset that doesn't have artificially introduced biases. In this case, we'll use the original CIFAR-10 subset." ] }, { @@ -1525,28 +1501,35 @@ "metadata": {}, "outputs": [], "source": [ - "# Function to find image-specific property scores given the dataset object\n", - "def get_property_scores(dataset):\n", - " lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", - " lab.find_issues()\n", - " return lab._spurious_correlation()\n", + "# Load the original dataset\n", + "original_data_dir = \"CIFAR-10-subset/original_images\"\n", + "original_dataset = load_image_dataset(original_data_dir)\n", "\n", - "# Finds specific property score in the dataframe containing property scores \n", - "def get_specific_property_score(property_scores_df, property_name):\n", - " return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]\n", + "# Create a new Datalab instance and run analysis\n", + "original_lab = Datalab(data=original_dataset, label_name=\"label\", image_key=\"image\")\n", + "original_lab.find_issues()\n", "\n", - "# Finding scores in original and transformed dataset\n", - "standard_property_scores = get_property_scores(dataset)\n", - "transformed_property_scores = get_property_scores(transformed_dataset)\n", + "# Compare correlation scores\n", + "original_scores = original_lab._correlations_df\n", + "print(\"Correlation scores for original dataset:\")\n", + "display(original_scores)\n", + "\n", + "# Compare image-specific issues\n", + "original_issues = original_lab.get_issues(\"dark\")\n", + "print(\"\\nImage-specific issues in original dataset:\")\n", + "display(original_issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When comparing the results:\n", "\n", - "# Displaying the scores dataframe\n", - "display(Markdown(\"### Image-specific property scores in the original dataset\"))\n", - "display(standard_property_scores)\n", - "display(Markdown(\"### Image-specific property scores in the transformed dataset\"))\n", - "display(transformed_property_scores)\n", + "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "2. Compare the number and types of image-specific issues detected.\n", "\n", - "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n", - "assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')" + "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] } ], diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 8c71ca66b..1d2cfdc12 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index e79be378b..438ca9320 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 18d4cf7fb..feb419f3f 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 2f099ee7b..cda239e55 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index a897a974b..bb30f1dc1 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 51f78152c..bcff2400f 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 9545eb9e4..a2fa23c15 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 02ded3480..29bd5bde2 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 6c1096146..64d2a9d9e 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index ae68fbb16..16a5dc3ee 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/objects.inv b/master/objects.inv index 0b91c3a02..5d4ef7f2d 100644 Binary files a/master/objects.inv and b/master/objects.inv differ diff --git a/master/searchindex.js b/master/searchindex.js index fcec6e052..a8dde8682 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106, 108], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 104, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106, 108], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "visa_or_mastercard": [87, 94], "beneficiary_not_allow": [87, 94], "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "change_pin": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_payment_fee_charg": [87, 94], "card_about_to_expir": [87, 94], "lost_or_stolen_phon": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "886": [91, 93], "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "688": [91, 98, 106], "493": 91, "060": 91, "882": 91, "330": [91, 98, 103], "505": 91, "635": 91, "476": [91, 98], "340": [91, 98], "760": 91, "328": [91, 103], "310": 91, "559": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "40217729": 95, "65it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103, 108], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103, 108], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": [103, 108], "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": [103, 108], "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "41662854": 104, "99it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "183": 108, "2400": 108, "52e0": 108, "1a01": 108, "1001": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "71mb": 108, "mb": 108, "directori": 108, "inflat": 108, "161": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "0mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 96, 103, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 95, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 95, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106, 108], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103, 108], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106, 108], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": [86, 91], "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_about_to_expir": [87, 94], "lost_or_stolen_phon": [87, 94], "beneficiary_not_allow": [87, 94], "visa_or_mastercard": [87, 94], "apple_pay_or_google_pai": [87, 94], "getting_spare_card": [87, 94], "card_payment_fee_charg": [87, 94], "supported_cards_and_curr": [87, 94], "change_pin": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106, 108], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": [89, 108], "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "221": [91, 98], "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "922": 91, "493": 91, "060": 91, "330": [91, 98, 103], "505": 91, "913": 91, "476": [91, 98], "340": [91, 98], "455": 91, "328": [91, 103], "310": 91, "031": [91, 96], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103, 108], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": [95, 108], "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": [98, 108], "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": [103, 108], "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "107805868": 104, "41it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 76fc0cf88..1b1f01adb 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:36.624070Z", - "iopub.status.busy": "2024-07-18T04:01:36.623720Z", - "iopub.status.idle": "2024-07-18T04:01:37.842464Z", - "shell.execute_reply": "2024-07-18T04:01:37.841899Z" + "iopub.execute_input": "2024-07-30T16:31:34.527671Z", + "iopub.status.busy": "2024-07-30T16:31:34.527492Z", + "iopub.status.idle": "2024-07-30T16:31:36.140632Z", + "shell.execute_reply": "2024-07-30T16:31:36.140024Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:37.845272Z", - "iopub.status.busy": "2024-07-18T04:01:37.844748Z", - "iopub.status.idle": "2024-07-18T04:01:37.863056Z", - "shell.execute_reply": "2024-07-18T04:01:37.862447Z" + "iopub.execute_input": "2024-07-30T16:31:36.143586Z", + "iopub.status.busy": "2024-07-30T16:31:36.143047Z", + "iopub.status.idle": "2024-07-30T16:31:36.178768Z", + "shell.execute_reply": "2024-07-30T16:31:36.178228Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:37.865460Z", - "iopub.status.busy": "2024-07-18T04:01:37.865067Z", - "iopub.status.idle": "2024-07-18T04:01:38.092310Z", - "shell.execute_reply": "2024-07-18T04:01:38.091732Z" + "iopub.execute_input": "2024-07-30T16:31:36.181589Z", + "iopub.status.busy": "2024-07-30T16:31:36.181045Z", + "iopub.status.idle": "2024-07-30T16:31:36.338074Z", + "shell.execute_reply": "2024-07-30T16:31:36.337466Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.121141Z", - "iopub.status.busy": "2024-07-18T04:01:38.120969Z", - "iopub.status.idle": "2024-07-18T04:01:38.124263Z", - "shell.execute_reply": "2024-07-18T04:01:38.123800Z" + "iopub.execute_input": "2024-07-30T16:31:36.372204Z", + "iopub.status.busy": "2024-07-30T16:31:36.371964Z", + "iopub.status.idle": "2024-07-30T16:31:36.377781Z", + "shell.execute_reply": "2024-07-30T16:31:36.377262Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.126350Z", - "iopub.status.busy": "2024-07-18T04:01:38.126009Z", - "iopub.status.idle": "2024-07-18T04:01:38.134504Z", - "shell.execute_reply": "2024-07-18T04:01:38.134029Z" + "iopub.execute_input": "2024-07-30T16:31:36.380079Z", + "iopub.status.busy": "2024-07-30T16:31:36.379702Z", + "iopub.status.idle": "2024-07-30T16:31:36.389163Z", + "shell.execute_reply": "2024-07-30T16:31:36.388645Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.136643Z", - "iopub.status.busy": "2024-07-18T04:01:38.136297Z", - "iopub.status.idle": "2024-07-18T04:01:38.138802Z", - "shell.execute_reply": "2024-07-18T04:01:38.138325Z" + "iopub.execute_input": "2024-07-30T16:31:36.391552Z", + "iopub.status.busy": "2024-07-30T16:31:36.391341Z", + "iopub.status.idle": "2024-07-30T16:31:36.394409Z", + "shell.execute_reply": "2024-07-30T16:31:36.393862Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.140938Z", - "iopub.status.busy": "2024-07-18T04:01:38.140608Z", - "iopub.status.idle": "2024-07-18T04:01:38.660247Z", - "shell.execute_reply": "2024-07-18T04:01:38.659701Z" + "iopub.execute_input": "2024-07-30T16:31:36.396451Z", + "iopub.status.busy": "2024-07-30T16:31:36.396262Z", + "iopub.status.idle": "2024-07-30T16:31:36.936436Z", + "shell.execute_reply": "2024-07-30T16:31:36.935844Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:38.662748Z", - "iopub.status.busy": "2024-07-18T04:01:38.662379Z", - "iopub.status.idle": "2024-07-18T04:01:40.571765Z", - "shell.execute_reply": "2024-07-18T04:01:40.571111Z" + "iopub.execute_input": "2024-07-30T16:31:36.939261Z", + "iopub.status.busy": "2024-07-30T16:31:36.938884Z", + "iopub.status.idle": "2024-07-30T16:31:39.269788Z", + "shell.execute_reply": "2024-07-30T16:31:39.269009Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.574577Z", - "iopub.status.busy": "2024-07-18T04:01:40.573829Z", - "iopub.status.idle": "2024-07-18T04:01:40.584210Z", - "shell.execute_reply": "2024-07-18T04:01:40.583746Z" + "iopub.execute_input": "2024-07-30T16:31:39.273002Z", + "iopub.status.busy": "2024-07-30T16:31:39.272142Z", + "iopub.status.idle": "2024-07-30T16:31:39.283199Z", + "shell.execute_reply": "2024-07-30T16:31:39.282635Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.586373Z", - "iopub.status.busy": "2024-07-18T04:01:40.586110Z", - "iopub.status.idle": "2024-07-18T04:01:40.590039Z", - "shell.execute_reply": "2024-07-18T04:01:40.589558Z" + "iopub.execute_input": "2024-07-30T16:31:39.285386Z", + "iopub.status.busy": "2024-07-30T16:31:39.285054Z", + "iopub.status.idle": "2024-07-30T16:31:39.289139Z", + "shell.execute_reply": "2024-07-30T16:31:39.288681Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.592168Z", - "iopub.status.busy": "2024-07-18T04:01:40.591831Z", - "iopub.status.idle": "2024-07-18T04:01:40.598929Z", - "shell.execute_reply": "2024-07-18T04:01:40.598494Z" + "iopub.execute_input": "2024-07-30T16:31:39.291246Z", + "iopub.status.busy": "2024-07-30T16:31:39.290919Z", + "iopub.status.idle": "2024-07-30T16:31:39.298453Z", + "shell.execute_reply": "2024-07-30T16:31:39.297891Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.600960Z", - "iopub.status.busy": "2024-07-18T04:01:40.600619Z", - "iopub.status.idle": "2024-07-18T04:01:40.712077Z", - "shell.execute_reply": "2024-07-18T04:01:40.711624Z" + "iopub.execute_input": "2024-07-30T16:31:39.301188Z", + "iopub.status.busy": "2024-07-30T16:31:39.300801Z", + "iopub.status.idle": "2024-07-30T16:31:39.419299Z", + "shell.execute_reply": "2024-07-30T16:31:39.418728Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.714154Z", - "iopub.status.busy": "2024-07-18T04:01:40.713728Z", - "iopub.status.idle": "2024-07-18T04:01:40.716643Z", - "shell.execute_reply": "2024-07-18T04:01:40.716066Z" + "iopub.execute_input": "2024-07-30T16:31:39.421608Z", + "iopub.status.busy": "2024-07-30T16:31:39.421234Z", + "iopub.status.idle": "2024-07-30T16:31:39.424361Z", + "shell.execute_reply": "2024-07-30T16:31:39.423765Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:40.718951Z", - "iopub.status.busy": "2024-07-18T04:01:40.718505Z", - "iopub.status.idle": "2024-07-18T04:01:42.835910Z", - "shell.execute_reply": "2024-07-18T04:01:42.835101Z" + "iopub.execute_input": "2024-07-30T16:31:39.426671Z", + "iopub.status.busy": "2024-07-30T16:31:39.426252Z", + "iopub.status.idle": "2024-07-30T16:31:41.720026Z", + "shell.execute_reply": "2024-07-30T16:31:41.719145Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:42.839563Z", - "iopub.status.busy": "2024-07-18T04:01:42.838450Z", - "iopub.status.idle": "2024-07-18T04:01:42.850192Z", - "shell.execute_reply": "2024-07-18T04:01:42.849635Z" + "iopub.execute_input": "2024-07-30T16:31:41.723999Z", + "iopub.status.busy": "2024-07-30T16:31:41.722968Z", + "iopub.status.idle": "2024-07-30T16:31:41.736024Z", + "shell.execute_reply": "2024-07-30T16:31:41.735553Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:42.852397Z", - "iopub.status.busy": "2024-07-18T04:01:42.851948Z", - "iopub.status.idle": "2024-07-18T04:01:42.971378Z", - "shell.execute_reply": "2024-07-18T04:01:42.970812Z" + "iopub.execute_input": "2024-07-30T16:31:41.738164Z", + "iopub.status.busy": "2024-07-30T16:31:41.737959Z", + "iopub.status.idle": "2024-07-30T16:31:41.800777Z", + "shell.execute_reply": "2024-07-30T16:31:41.800288Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 973404da4..5f3a2c5ca 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'lost_or_stolen_phone'}
+Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"208ff78a62bf47daa967f97128bd3c55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "23513a6f1e644dee88e8debf1eb8ea3d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7577b718b40b42bf9633cd31e1bff8bd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_208ff78a62bf47daa967f97128bd3c55", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_23513a6f1e644dee88e8debf1eb8ea3d", "tabbable": null, "tooltip": null, "value": 391.0}}, "812dafde65964029908a43fd12d8905c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "81138bdef66c4e3c96527e5438ddf3dc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dbfddca5cc6a4a88aef89852808cfbfc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_812dafde65964029908a43fd12d8905c", "placeholder": "\u200b", "style": "IPY_MODEL_81138bdef66c4e3c96527e5438ddf3dc", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "0cf81ed339d447e0950cc24ec082be5e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4e22ef817f2458e91e12c9bf63d3f2a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bdb1d0e80f3941589397d41409c76171": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cf81ed339d447e0950cc24ec082be5e", "placeholder": "\u200b", "style": "IPY_MODEL_b4e22ef817f2458e91e12c9bf63d3f2a", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200771.1kB/s]"}}, "e5cc4d957ac64618badb70fa990772e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83b2420f333343458a1e286e0240c1ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dbfddca5cc6a4a88aef89852808cfbfc", "IPY_MODEL_7577b718b40b42bf9633cd31e1bff8bd", "IPY_MODEL_bdb1d0e80f3941589397d41409c76171"], "layout": "IPY_MODEL_e5cc4d957ac64618badb70fa990772e1", "tabbable": null, "tooltip": null}}, "a3f98d4160d0404fb6f57ecf02ae64df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9824f35786644daa37d42bd953ade4a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f7e7688b1f6f44858c99eaa0b436d560": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3f98d4160d0404fb6f57ecf02ae64df", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c9824f35786644daa37d42bd953ade4a", "tabbable": null, "tooltip": null, "value": 2211.0}}, "c7f9c7ca7440434985d7aff042e3ce7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa8ac95cb2ee4f72bc599eed8a77d72a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b4ddfba613cd4d45b02b54b40a5f4b81": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7f9c7ca7440434985d7aff042e3ce7a", "placeholder": "\u200b", "style": "IPY_MODEL_aa8ac95cb2ee4f72bc599eed8a77d72a", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "cb6c46de574d4ea3b8dd44655a823f51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "555dca7a425b43efb60fcc6200dc6f25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bc02936354f148bcb509652443a972fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb6c46de574d4ea3b8dd44655a823f51", "placeholder": "\u200b", "style": "IPY_MODEL_555dca7a425b43efb60fcc6200dc6f25", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007477kB/s]"}}, "c2ceb3a14bea41e0b2071454cb90297b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b0962e591ec4487841dcc3bb135137b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b4ddfba613cd4d45b02b54b40a5f4b81", "IPY_MODEL_f7e7688b1f6f44858c99eaa0b436d560", "IPY_MODEL_bc02936354f148bcb509652443a972fc"], "layout": "IPY_MODEL_c2ceb3a14bea41e0b2071454cb90297b", "tabbable": null, "tooltip": null}}, "6c9323ed77eb40068958d2833451705f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c496aa336ebb4288a9b319e35addd407": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "20db3c3f04654a07ac858f22274e5158": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c9323ed77eb40068958d2833451705f", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c496aa336ebb4288a9b319e35addd407", "tabbable": null, "tooltip": null, "value": 665.0}}, "b3eec33a4cb54d92ab7a9e1ad1747d76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3da7f98621641758fe69549d23255f3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6cf0a7b40a514d448cdcaa75fc9cdd59": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3eec33a4cb54d92ab7a9e1ad1747d76", "placeholder": "\u200b", "style": "IPY_MODEL_d3da7f98621641758fe69549d23255f3", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "bcf2fc689e0b41b7991703338eeccef9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b382553d1eb34a5ebe547c2c8df03f3e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "357b9f5a21344b9d9bee9460189ba7cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcf2fc689e0b41b7991703338eeccef9", "placeholder": "\u200b", "style": "IPY_MODEL_b382553d1eb34a5ebe547c2c8df03f3e", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007147kB/s]"}}, "45b37783117e408889a02d47eace6f0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07d2941c07a44b5ba94397e076325ff4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6cf0a7b40a514d448cdcaa75fc9cdd59", "IPY_MODEL_20db3c3f04654a07ac858f22274e5158", "IPY_MODEL_357b9f5a21344b9d9bee9460189ba7cd"], "layout": "IPY_MODEL_45b37783117e408889a02d47eace6f0d", "tabbable": null, "tooltip": null}}, "eb708ac4acfb47f2b2c8d64e7f8ccd47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "094a232267ee4ed08fbe7d3ca6e5b9b9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "77f496a9bf524de2a865e4bdfbfbc367": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb708ac4acfb47f2b2c8d64e7f8ccd47", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_094a232267ee4ed08fbe7d3ca6e5b9b9", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "96ba4d9e807c4a8e8def5eb25c4422aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b88c7aecc522424e9987feb281cdbb25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f132dc25482746f199401cb51fe590df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96ba4d9e807c4a8e8def5eb25c4422aa", "placeholder": "\u200b", "style": "IPY_MODEL_b88c7aecc522424e9987feb281cdbb25", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "cfb64ff862b840a681a3358b0c1fb5ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "421920c6f3fb4409a6b93f0a3bf375d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8eb45aed0fc64ca4b060c66f163ab125": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cfb64ff862b840a681a3358b0c1fb5ca", "placeholder": "\u200b", "style": "IPY_MODEL_421920c6f3fb4409a6b93f0a3bf375d8", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007293MB/s]"}}, "c50e16d4ae244ba1a7808ec0f23f1a9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4b6a256d1ca4f4eb87362bb9b27857a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f132dc25482746f199401cb51fe590df", "IPY_MODEL_77f496a9bf524de2a865e4bdfbfbc367", "IPY_MODEL_8eb45aed0fc64ca4b060c66f163ab125"], "layout": "IPY_MODEL_c50e16d4ae244ba1a7808ec0f23f1a9b", "tabbable": null, "tooltip": null}}, "918eeb7bb1b04196934bc0ebc509abf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d14f54f08eb43fab79058f85af4af4e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "264c67ebf46545d8bed6c7353b7c21e5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_918eeb7bb1b04196934bc0ebc509abf8", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1d14f54f08eb43fab79058f85af4af4e", "tabbable": null, "tooltip": null, "value": 466062.0}}, "6115c283e46c449e862188900d96f40d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4e43e629e334723b53074458099ebe1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b382ceb65cb4474bde20c4e6b43a8ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6115c283e46c449e862188900d96f40d", "placeholder": "\u200b", "style": "IPY_MODEL_d4e43e629e334723b53074458099ebe1", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "6fe4f4d5f7af4bd8a45795ce3caa67d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "830a143f93fe42b49f124b7a1041f772": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9ad0dd89c0ec43d684a8f7abf301c59e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fe4f4d5f7af4bd8a45795ce3caa67d8", "placeholder": "\u200b", "style": "IPY_MODEL_830a143f93fe42b49f124b7a1041f772", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20071.90MB/s]"}}, "00f42b9345fc42da8a2daf26b2415eb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "594bd335e58344c1a96d7e14714fe720": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3b382ceb65cb4474bde20c4e6b43a8ca", "IPY_MODEL_264c67ebf46545d8bed6c7353b7c21e5", "IPY_MODEL_9ad0dd89c0ec43d684a8f7abf301c59e"], "layout": "IPY_MODEL_00f42b9345fc42da8a2daf26b2415eb5", "tabbable": null, "tooltip": null}}, "7d342c65197942659c09c9e001836e30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "346652bef05c4087ac0185f41005faa4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c9ec6a5f99a44cd86eafa04ce0e6b50": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d342c65197942659c09c9e001836e30", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_346652bef05c4087ac0185f41005faa4", "tabbable": null, "tooltip": null, "value": 48.0}}, "741959084d66436a8dee2f1fa979c6e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65e7bc18440c416583450c4ab68f2cc0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "430e366c4b0542399882361b4786da60": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_741959084d66436a8dee2f1fa979c6e7", "placeholder": "\u200b", "style": "IPY_MODEL_65e7bc18440c416583450c4ab68f2cc0", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "f4d302d48d244388bcc8a7e180f83823": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7efbd8a387824c6dab4c6ea19e3bcdd6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8758c33d0204b0f8f728a3c7217b7f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f4d302d48d244388bcc8a7e180f83823", "placeholder": "\u200b", "style": "IPY_MODEL_7efbd8a387824c6dab4c6ea19e3bcdd6", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u200710.3kB/s]"}}, "c2fb900f4e8141aa9eb8c43510310702": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27a9d77c69074a5d90239d0ec1bef651": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_430e366c4b0542399882361b4786da60", "IPY_MODEL_5c9ec6a5f99a44cd86eafa04ce0e6b50", "IPY_MODEL_b8758c33d0204b0f8f728a3c7217b7f7"], "layout": "IPY_MODEL_c2fb900f4e8141aa9eb8c43510310702", "tabbable": null, "tooltip": null}}, "22e98405775f47efb60fbfd0cff2a814": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64c5e77d2a8e4c3b9cb87653f70314a5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "14d0a87899f24b19b23890d6a24ae65f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22e98405775f47efb60fbfd0cff2a814", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_64c5e77d2a8e4c3b9cb87653f70314a5", "tabbable": null, "tooltip": null, "value": 231508.0}}, "609442c072ad4df48e117eda6b493701": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73a3462f4bab49678fc11865bb9b8d38": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df453fe04d4e4793a5e935685001523f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_609442c072ad4df48e117eda6b493701", "placeholder": "\u200b", "style": "IPY_MODEL_73a3462f4bab49678fc11865bb9b8d38", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "2a3a35bec6aa4c63b61c761ddabfe31f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fff28c4abb7743bcbc87068c18fc714d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24ff99be1a8e43c78152308e8e494cc6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a3a35bec6aa4c63b61c761ddabfe31f", "placeholder": "\u200b", "style": "IPY_MODEL_fff28c4abb7743bcbc87068c18fc714d", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20073.83MB/s]"}}, "08ee1f13e3784ed698a1a539052275f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a916345ea2fb4a09a0a9731240dd711e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df453fe04d4e4793a5e935685001523f", "IPY_MODEL_14d0a87899f24b19b23890d6a24ae65f", "IPY_MODEL_24ff99be1a8e43c78152308e8e494cc6"], "layout": "IPY_MODEL_08ee1f13e3784ed698a1a539052275f6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"d6c44d17bd624eb985c735cf50307d2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e50c4161bc6e46ceb2c825d8a4f8cb98": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94a5cc6c053e4ead8726e97f9ce65217": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", "tabbable": null, "tooltip": null, "value": 391.0}}, "d2f0816714c7481ea3ba31bd7408fe93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9e39c8f34f044faabfd9b2d9c388e8e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16f0cb3955fd4bc4ad142727ace2acb7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", "placeholder": "\u200b", "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "2d0af3b45858495695ecd11901488921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d2e898cf98f4ff0bf943ff097e1df72": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "52be430244ac43218140c7633e6f1dfa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", "placeholder": "\u200b", "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200768.8kB/s]"}}, "f57043327c7a43d580fbd77e72e74801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97c7a5a1b558446099d39e138e95bd3c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", "IPY_MODEL_52be430244ac43218140c7633e6f1dfa"], "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", "tabbable": null, "tooltip": null}}, "d4bfc6c1d28d468a844bbd112010b800": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "debd8d9478f64845b7f4de702d42849e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf7840537df1484d8fb3ea86b9dee4a6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", "tabbable": null, "tooltip": null, "value": 2211.0}}, "5a71b8cd70d84f7ba31770899fe09c9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c394f7a4870a4f5f8de748644e8df357": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc3db8eb310345b3b1c927bd575ab50e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", "placeholder": "\u200b", "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "0243ca7793174c8d987c19c51daa3a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b13ec61dc594dfda9fb9ff4a3ffa610": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e75d528fab848b998f06bb5793338b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", "placeholder": "\u200b", "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007413kB/s]"}}, "97a2c254de1b4787a362825c816f4b69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91c91931728e42119a5ed1a8e771a320": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", "IPY_MODEL_4e75d528fab848b998f06bb5793338b2"], "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", "tabbable": null, "tooltip": null}}, "f492c8a7a79d41b082fc05a8a4fa2314": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6a96c30e59a4ad1801f48d9410f7122": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "19de02d763694c5da9f2eb73acc8c2d8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", "tabbable": null, "tooltip": null, "value": 665.0}}, "bb8179f5ad91428198964675263f3c98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a5bc0b6202c42d4becd870c3fc89c4a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24871bcd90cc412a87f3523b51b28390": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", "placeholder": "\u200b", "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "4a10916e9e8e41ad8ad3c7000d4222bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf8ed7281baa435093a60e267938b36c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4dc231bcb3b84bae9ceb7afa763c8645": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", "placeholder": "\u200b", "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007125kB/s]"}}, "badf4422987648d180ccbecfa7665702": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a58243eb6a194ea7957507b4c0fcd20c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_24871bcd90cc412a87f3523b51b28390", "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645"], "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", "tabbable": null, "tooltip": null}}, "948f678b67764226a70290363bc21f69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "317e39ae55e344a2b95726702a28d6e6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "753e8b7795c943afa31e39370262dac0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "2cd2c3cd9a904a8393460eb703c6bfe3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d71c0eb8f1045b997085b72f441bf64": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eebcc942ebba414e8985c53b0046690f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", "placeholder": "\u200b", "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "df19c92cc2b34e7ca61218f410745348": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe392344d7834620bada4587f2dbf065": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f44abb2240724661a8f28fabeb7e6152": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", "placeholder": "\u200b", "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007237MB/s]"}}, "9e52acaf4e244873ab2a7f8db7a56f87": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f47d961a8a6443fdb97fc093198a3a37": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eebcc942ebba414e8985c53b0046690f", "IPY_MODEL_753e8b7795c943afa31e39370262dac0", "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152"], "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", "tabbable": null, "tooltip": null}}, "2fd8b281b8a747ff8f3a6b5dd31fa793": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55672ddc10b54cec865a6468894f8351": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e1b0d7a21034fc5824ae939b257969c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", "tabbable": null, "tooltip": null, "value": 466062.0}}, "92f1ff004b1f40519e67fbe042500034": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4084d229b3ea480b905a4c74c66cf73d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "09d6edb40022407d9d74e5d3f54b74a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", "placeholder": "\u200b", "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "46885cc820904880a25c68c839f552a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54eaf3ed21294c3ca4cc75eea7eeaf3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c44f2615b974d98a8796c59d501f913": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", "placeholder": "\u200b", "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20079.54MB/s]"}}, "ee3043f31e4f41de93cd71ed1d3aaceb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd86dc9f79bf4ea6b32ccf1b10684fdd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", "IPY_MODEL_3c44f2615b974d98a8796c59d501f913"], "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", "tabbable": null, "tooltip": null}}, "b562a3e54de946de8de1969318bc9932": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5899664489c24407968ee1c33db9b3ed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "05556e121c214fd9a3ccf7b3e260d069": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", "tabbable": null, "tooltip": null, "value": 48.0}}, "0b36279738da476c8b898b110b96cb68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f7d28a055234c1d9dec696453f0b0d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "564246d366604d34ab1d16ad529ba126": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", "placeholder": "\u200b", "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "ef05813c951740c2a35d4b744ebef5a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6059268df3744b559c76372905e85f89": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cee3f6cf3334eca8b80cf3b48dcb2c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", "placeholder": "\u200b", "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.35kB/s]"}}, "318a21d452c84bceac013df1bdff9465": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f07a08b8ebf486cbecde146931b6ae3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_564246d366604d34ab1d16ad529ba126", "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9"], "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", "tabbable": null, "tooltip": null}}, "b969c4646a1f4296a60d5269570d7812": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55a0b5fabd584495be04d9dc3cb4051e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c5f50cde5734e65ae80022e95c8a7d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "534c2062a82441dcbe8775003ff3ab5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f441a285fe8463eb8d4917032d171f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "80b423d8da65443590ae4c634d0b83a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", "placeholder": "\u200b", "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "7de6fba59ec94a1aa5df391d3b952eea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f16d80c7cb544353a5e1babe95cc1a97": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "45c8dc232e4c422a8454eafb546ca6d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", "placeholder": "\u200b", "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200728.7MB/s]"}}, "8da99fc57db34318a69f0a2f7aa23f9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9438aa4de0a49669ef6cc3e242dea8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8"], "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 6b885ed09..0ca024c1d 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:46.668712Z", - "iopub.status.busy": "2024-07-18T04:01:46.668554Z", - "iopub.status.idle": "2024-07-18T04:01:49.461835Z", - "shell.execute_reply": "2024-07-18T04:01:49.461271Z" + "iopub.execute_input": "2024-07-30T16:31:45.538656Z", + "iopub.status.busy": "2024-07-30T16:31:45.538493Z", + "iopub.status.idle": "2024-07-30T16:31:49.398554Z", + "shell.execute_reply": "2024-07-30T16:31:49.397834Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.464660Z", - "iopub.status.busy": "2024-07-18T04:01:49.464107Z", - "iopub.status.idle": "2024-07-18T04:01:49.467448Z", - "shell.execute_reply": "2024-07-18T04:01:49.466979Z" + "iopub.execute_input": "2024-07-30T16:31:49.401469Z", + "iopub.status.busy": "2024-07-30T16:31:49.401084Z", + "iopub.status.idle": "2024-07-30T16:31:49.404559Z", + "shell.execute_reply": "2024-07-30T16:31:49.404113Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.469527Z", - "iopub.status.busy": "2024-07-18T04:01:49.469126Z", - "iopub.status.idle": "2024-07-18T04:01:49.472275Z", - "shell.execute_reply": "2024-07-18T04:01:49.471805Z" + "iopub.execute_input": "2024-07-30T16:31:49.406866Z", + "iopub.status.busy": "2024-07-30T16:31:49.406454Z", + "iopub.status.idle": "2024-07-30T16:31:49.409954Z", + "shell.execute_reply": "2024-07-30T16:31:49.409295Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.474142Z", - "iopub.status.busy": "2024-07-18T04:01:49.473968Z", - "iopub.status.idle": "2024-07-18T04:01:49.588009Z", - "shell.execute_reply": "2024-07-18T04:01:49.587466Z" + "iopub.execute_input": "2024-07-30T16:31:49.412895Z", + "iopub.status.busy": "2024-07-30T16:31:49.412480Z", + "iopub.status.idle": "2024-07-30T16:31:49.471562Z", + "shell.execute_reply": "2024-07-30T16:31:49.470965Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.589968Z", - "iopub.status.busy": "2024-07-18T04:01:49.589787Z", - "iopub.status.idle": "2024-07-18T04:01:49.593376Z", - "shell.execute_reply": "2024-07-18T04:01:49.592931Z" + "iopub.execute_input": "2024-07-30T16:31:49.473824Z", + "iopub.status.busy": "2024-07-30T16:31:49.473632Z", + "iopub.status.idle": "2024-07-30T16:31:49.477513Z", + "shell.execute_reply": "2024-07-30T16:31:49.477050Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.595482Z", - "iopub.status.busy": "2024-07-18T04:01:49.595092Z", - "iopub.status.idle": "2024-07-18T04:01:49.598627Z", - "shell.execute_reply": "2024-07-18T04:01:49.598158Z" + "iopub.execute_input": "2024-07-30T16:31:49.479493Z", + "iopub.status.busy": "2024-07-30T16:31:49.479316Z", + "iopub.status.idle": "2024-07-30T16:31:49.482910Z", + "shell.execute_reply": "2024-07-30T16:31:49.482450Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'lost_or_stolen_phone'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.600656Z", - "iopub.status.busy": "2024-07-18T04:01:49.600330Z", - "iopub.status.idle": "2024-07-18T04:01:49.603386Z", - "shell.execute_reply": "2024-07-18T04:01:49.602846Z" + "iopub.execute_input": "2024-07-30T16:31:49.484867Z", + "iopub.status.busy": "2024-07-30T16:31:49.484521Z", + "iopub.status.idle": "2024-07-30T16:31:49.487821Z", + "shell.execute_reply": "2024-07-30T16:31:49.487340Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.605480Z", - "iopub.status.busy": "2024-07-18T04:01:49.605149Z", - "iopub.status.idle": "2024-07-18T04:01:49.608580Z", - "shell.execute_reply": "2024-07-18T04:01:49.607995Z" + "iopub.execute_input": "2024-07-30T16:31:49.489683Z", + "iopub.status.busy": "2024-07-30T16:31:49.489500Z", + "iopub.status.idle": "2024-07-30T16:31:49.492910Z", + "shell.execute_reply": "2024-07-30T16:31:49.492341Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:49.610780Z", - "iopub.status.busy": "2024-07-18T04:01:49.610348Z", - "iopub.status.idle": "2024-07-18T04:01:54.796801Z", - "shell.execute_reply": "2024-07-18T04:01:54.796219Z" + "iopub.execute_input": "2024-07-30T16:31:49.495136Z", + "iopub.status.busy": "2024-07-30T16:31:49.494608Z", + "iopub.status.idle": "2024-07-30T16:31:53.944545Z", + "shell.execute_reply": "2024-07-30T16:31:53.943984Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "83b2420f333343458a1e286e0240c1ae", + "model_id": "97c7a5a1b558446099d39e138e95bd3c", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b0962e591ec4487841dcc3bb135137b", + "model_id": "91c91931728e42119a5ed1a8e771a320", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07d2941c07a44b5ba94397e076325ff4", + "model_id": "a58243eb6a194ea7957507b4c0fcd20c", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a4b6a256d1ca4f4eb87362bb9b27857a", + "model_id": "f47d961a8a6443fdb97fc093198a3a37", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "594bd335e58344c1a96d7e14714fe720", + "model_id": "cd86dc9f79bf4ea6b32ccf1b10684fdd", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "27a9d77c69074a5d90239d0ec1bef651", + "model_id": "3f07a08b8ebf486cbecde146931b6ae3", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a916345ea2fb4a09a0a9731240dd711e", + "model_id": "d9438aa4de0a49669ef6cc3e242dea8a", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.799563Z", - "iopub.status.busy": "2024-07-18T04:01:54.799374Z", - "iopub.status.idle": "2024-07-18T04:01:54.802131Z", - "shell.execute_reply": "2024-07-18T04:01:54.801644Z" + "iopub.execute_input": "2024-07-30T16:31:53.947400Z", + "iopub.status.busy": "2024-07-30T16:31:53.946989Z", + "iopub.status.idle": "2024-07-30T16:31:53.949968Z", + "shell.execute_reply": "2024-07-30T16:31:53.949474Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.804143Z", - "iopub.status.busy": "2024-07-18T04:01:54.803966Z", - "iopub.status.idle": "2024-07-18T04:01:54.806508Z", - "shell.execute_reply": "2024-07-18T04:01:54.806059Z" + "iopub.execute_input": "2024-07-30T16:31:53.952023Z", + "iopub.status.busy": "2024-07-30T16:31:53.951691Z", + "iopub.status.idle": "2024-07-30T16:31:53.954244Z", + "shell.execute_reply": "2024-07-30T16:31:53.953779Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:54.808380Z", - "iopub.status.busy": "2024-07-18T04:01:54.808205Z", - "iopub.status.idle": "2024-07-18T04:01:57.530182Z", - "shell.execute_reply": "2024-07-18T04:01:57.529534Z" + "iopub.execute_input": "2024-07-30T16:31:53.956328Z", + "iopub.status.busy": "2024-07-30T16:31:53.955997Z", + "iopub.status.idle": "2024-07-30T16:31:56.844109Z", + "shell.execute_reply": "2024-07-30T16:31:56.843384Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.533334Z", - "iopub.status.busy": "2024-07-18T04:01:57.532532Z", - "iopub.status.idle": "2024-07-18T04:01:57.540347Z", - "shell.execute_reply": "2024-07-18T04:01:57.539824Z" + "iopub.execute_input": "2024-07-30T16:31:56.847565Z", + "iopub.status.busy": "2024-07-30T16:31:56.846661Z", + "iopub.status.idle": "2024-07-30T16:31:56.854826Z", + "shell.execute_reply": "2024-07-30T16:31:56.854335Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.542577Z", - "iopub.status.busy": "2024-07-18T04:01:57.542120Z", - "iopub.status.idle": "2024-07-18T04:01:57.546071Z", - "shell.execute_reply": "2024-07-18T04:01:57.545610Z" + "iopub.execute_input": "2024-07-30T16:31:56.856986Z", + "iopub.status.busy": "2024-07-30T16:31:56.856636Z", + "iopub.status.idle": "2024-07-30T16:31:56.860988Z", + "shell.execute_reply": "2024-07-30T16:31:56.860503Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.547927Z", - "iopub.status.busy": "2024-07-18T04:01:57.547755Z", - "iopub.status.idle": "2024-07-18T04:01:57.551227Z", - "shell.execute_reply": "2024-07-18T04:01:57.550746Z" + "iopub.execute_input": "2024-07-30T16:31:56.863129Z", + "iopub.status.busy": "2024-07-30T16:31:56.862787Z", + "iopub.status.idle": "2024-07-30T16:31:56.866220Z", + "shell.execute_reply": "2024-07-30T16:31:56.865721Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.553099Z", - "iopub.status.busy": "2024-07-18T04:01:57.552927Z", - "iopub.status.idle": "2024-07-18T04:01:57.555992Z", - "shell.execute_reply": "2024-07-18T04:01:57.555438Z" + "iopub.execute_input": "2024-07-30T16:31:56.868248Z", + "iopub.status.busy": "2024-07-30T16:31:56.867919Z", + "iopub.status.idle": "2024-07-30T16:31:56.871062Z", + "shell.execute_reply": "2024-07-30T16:31:56.870497Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.557955Z", - "iopub.status.busy": "2024-07-18T04:01:57.557775Z", - "iopub.status.idle": "2024-07-18T04:01:57.564590Z", - "shell.execute_reply": "2024-07-18T04:01:57.564124Z" + "iopub.execute_input": "2024-07-30T16:31:56.873122Z", + "iopub.status.busy": "2024-07-30T16:31:56.872946Z", + "iopub.status.idle": "2024-07-30T16:31:56.880133Z", + "shell.execute_reply": "2024-07-30T16:31:56.879673Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.566659Z", - "iopub.status.busy": "2024-07-18T04:01:57.566320Z", - "iopub.status.idle": "2024-07-18T04:01:57.826486Z", - "shell.execute_reply": "2024-07-18T04:01:57.825872Z" + "iopub.execute_input": "2024-07-30T16:31:56.882358Z", + "iopub.status.busy": "2024-07-30T16:31:56.881972Z", + "iopub.status.idle": "2024-07-30T16:31:57.113724Z", + "shell.execute_reply": "2024-07-30T16:31:57.113137Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:57.829319Z", - "iopub.status.busy": "2024-07-18T04:01:57.829097Z", - "iopub.status.idle": "2024-07-18T04:01:58.004835Z", - "shell.execute_reply": "2024-07-18T04:01:58.004337Z" + "iopub.execute_input": "2024-07-30T16:31:57.116220Z", + "iopub.status.busy": "2024-07-30T16:31:57.115868Z", + "iopub.status.idle": "2024-07-30T16:31:57.325117Z", + "shell.execute_reply": "2024-07-30T16:31:57.324552Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:01:58.007345Z", - "iopub.status.busy": "2024-07-18T04:01:58.006948Z", - "iopub.status.idle": "2024-07-18T04:01:58.010676Z", - "shell.execute_reply": "2024-07-18T04:01:58.010167Z" + "iopub.execute_input": "2024-07-30T16:31:57.328218Z", + "iopub.status.busy": "2024-07-30T16:31:57.327844Z", + "iopub.status.idle": "2024-07-30T16:31:57.332176Z", + "shell.execute_reply": "2024-07-30T16:31:57.331645Z" }, "nbsphinx": "hidden" }, @@ -1105,7 +1105,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00f42b9345fc42da8a2daf26b2415eb5": { + "0243ca7793174c8d987c19c51daa3a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1158,31 +1158,74 @@ "width": null } }, - "07d2941c07a44b5ba94397e076325ff4": { + "05556e121c214fd9a3ccf7b3e260d069": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6cf0a7b40a514d448cdcaa75fc9cdd59", - "IPY_MODEL_20db3c3f04654a07ac858f22274e5158", - "IPY_MODEL_357b9f5a21344b9d9bee9460189ba7cd" - ], - "layout": "IPY_MODEL_45b37783117e408889a02d47eace6f0d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "09d6edb40022407d9d74e5d3f54b74a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", + "placeholder": "​", + "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "0b13ec61dc594dfda9fb9ff4a3ffa610": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08ee1f13e3784ed698a1a539052275f6": { + "0b36279738da476c8b898b110b96cb68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1235,100 +1278,48 @@ "width": null } }, - "094a232267ee4ed08fbe7d3ca6e5b9b9": { + "0d2e898cf98f4ff0bf943ff097e1df72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b0962e591ec4487841dcc3bb135137b": { + "16f0cb3955fd4bc4ad142727ace2acb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4ddfba613cd4d45b02b54b40a5f4b81", - "IPY_MODEL_f7e7688b1f6f44858c99eaa0b436d560", - "IPY_MODEL_bc02936354f148bcb509652443a972fc" - ], - "layout": "IPY_MODEL_c2ceb3a14bea41e0b2071454cb90297b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", + "placeholder": "​", + "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", "tabbable": null, - "tooltip": null - } - }, - "0cf81ed339d447e0950cc24ec082be5e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "14d0a87899f24b19b23890d6a24ae65f": { + "19de02d763694c5da9f2eb73acc8c2d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1344,33 +1335,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22e98405775f47efb60fbfd0cff2a814", - "max": 231508.0, + "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64c5e77d2a8e4c3b9cb87653f70314a5", + "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 665.0 } }, - "1d14f54f08eb43fab79058f85af4af4e": { + "1f441a285fe8463eb8d4917032d171f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "24871bcd90cc412a87f3523b51b28390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", + "placeholder": "​", + "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "208ff78a62bf47daa967f97128bd3c55": { + "2cd2c3cd9a904a8393460eb703c6bfe3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1423,33 +1439,7 @@ "width": null } }, - "20db3c3f04654a07ac858f22274e5158": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c9323ed77eb40068958d2833451705f", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c496aa336ebb4288a9b319e35addd407", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "22e98405775f47efb60fbfd0cff2a814": { + "2d0af3b45858495695ecd11901488921": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1502,46 +1492,7 @@ "width": null } }, - "23513a6f1e644dee88e8debf1eb8ea3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "24ff99be1a8e43c78152308e8e494cc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a3a35bec6aa4c63b61c761ddabfe31f", - "placeholder": "​", - "style": "IPY_MODEL_fff28c4abb7743bcbc87068c18fc714d", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 3.83MB/s]" - } - }, - "264c67ebf46545d8bed6c7353b7c21e5": { + "2e1b0d7a21034fc5824ae939b257969c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1557,41 +1508,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_918eeb7bb1b04196934bc0ebc509abf8", + "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1d14f54f08eb43fab79058f85af4af4e", + "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", "tabbable": null, "tooltip": null, "value": 466062.0 } }, - "27a9d77c69074a5d90239d0ec1bef651": { + "2f7d28a055234c1d9dec696453f0b0d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_430e366c4b0542399882361b4786da60", - "IPY_MODEL_5c9ec6a5f99a44cd86eafa04ce0e6b50", - "IPY_MODEL_b8758c33d0204b0f8f728a3c7217b7f7" - ], - "layout": "IPY_MODEL_c2fb900f4e8141aa9eb8c43510310702", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2a3a35bec6aa4c63b61c761ddabfe31f": { + "2fd8b281b8a747ff8f3a6b5dd31fa793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1644,7 +1589,7 @@ "width": null } }, - "346652bef05c4087ac0185f41005faa4": { + "317e39ae55e344a2b95726702a28d6e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1660,103 +1605,16 @@ "description_width": "" } }, - "357b9f5a21344b9d9bee9460189ba7cd": { - "model_module": "@jupyter-widgets/controls", + "318a21d452c84bceac013df1bdff9465": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcf2fc689e0b41b7991703338eeccef9", - "placeholder": "​", - "style": "IPY_MODEL_b382553d1eb34a5ebe547c2c8df03f3e", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 147kB/s]" - } - }, - "3b382ceb65cb4474bde20c4e6b43a8ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6115c283e46c449e862188900d96f40d", - "placeholder": "​", - "style": "IPY_MODEL_d4e43e629e334723b53074458099ebe1", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "421920c6f3fb4409a6b93f0a3bf375d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "430e366c4b0542399882361b4786da60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_741959084d66436a8dee2f1fa979c6e7", - "placeholder": "​", - "style": "IPY_MODEL_65e7bc18440c416583450c4ab68f2cc0", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "45b37783117e408889a02d47eace6f0d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -1800,25 +1658,30 @@ "width": null } }, - "555dca7a425b43efb60fcc6200dc6f25": { + "3c44f2615b974d98a8796c59d501f913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", + "placeholder": "​", + "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 9.54MB/s]" } }, - "594bd335e58344c1a96d7e14714fe720": { + "3f07a08b8ebf486cbecde146931b6ae3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1833,42 +1696,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3b382ceb65cb4474bde20c4e6b43a8ca", - "IPY_MODEL_264c67ebf46545d8bed6c7353b7c21e5", - "IPY_MODEL_9ad0dd89c0ec43d684a8f7abf301c59e" + "IPY_MODEL_564246d366604d34ab1d16ad529ba126", + "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", + "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9" ], - "layout": "IPY_MODEL_00f42b9345fc42da8a2daf26b2415eb5", + "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", "tabbable": null, "tooltip": null } }, - "5c9ec6a5f99a44cd86eafa04ce0e6b50": { + "4084d229b3ea480b905a4c74c66cf73d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "45c8dc232e4c422a8454eafb546ca6d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7d342c65197942659c09c9e001836e30", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_346652bef05c4087ac0185f41005faa4", + "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", + "placeholder": "​", + "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 232k/232k [00:00<00:00, 28.7MB/s]" } }, - "609442c072ad4df48e117eda6b493701": { + "46885cc820904880a25c68c839f552a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1921,7 +1799,7 @@ "width": null } }, - "6115c283e46c449e862188900d96f40d": { + "4a10916e9e8e41ad8ad3c7000d4222bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,41 +1852,99 @@ "width": null } }, - "64c5e77d2a8e4c3b9cb87653f70314a5": { + "4cee3f6cf3334eca8b80cf3b48dcb2c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", + "placeholder": "​", + "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.35kB/s]" } }, - "65e7bc18440c416583450c4ab68f2cc0": { + "4dc231bcb3b84bae9ceb7afa763c8645": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", + "placeholder": "​", + "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 125kB/s]" + } + }, + "4e75d528fab848b998f06bb5793338b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", + "placeholder": "​", + "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 413kB/s]" + } + }, + "52be430244ac43218140c7633e6f1dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", + "placeholder": "​", + "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 68.8kB/s]" } }, - "6c9323ed77eb40068958d2833451705f": { + "534c2062a82441dcbe8775003ff3ab5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +1997,57 @@ "width": null } }, - "6cf0a7b40a514d448cdcaa75fc9cdd59": { + "54eaf3ed21294c3ca4cc75eea7eeaf3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "55672ddc10b54cec865a6468894f8351": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "55a0b5fabd584495be04d9dc3cb4051e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "564246d366604d34ab1d16ad529ba126": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2076,15 +2062,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b3eec33a4cb54d92ab7a9e1ad1747d76", + "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", "placeholder": "​", - "style": "IPY_MODEL_d3da7f98621641758fe69549d23255f3", + "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": "tokenizer_config.json: 100%" + } + }, + "5899664489c24407968ee1c33db9b3ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6fe4f4d5f7af4bd8a45795ce3caa67d8": { + "5a71b8cd70d84f7ba31770899fe09c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2137,7 +2139,7 @@ "width": null } }, - "73a3462f4bab49678fc11865bb9b8d38": { + "6059268df3744b559c76372905e85f89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2155,60 +2157,25 @@ "text_color": null } }, - "741959084d66436a8dee2f1fa979c6e7": { - "model_module": "@jupyter-widgets/base", + "6a5bc0b6202c42d4becd870c3fc89c4a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7577b718b40b42bf9633cd31e1bff8bd": { + "6c5f50cde5734e65ae80022e95c8a7d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2224,17 +2191,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_208ff78a62bf47daa967f97128bd3c55", - "max": 391.0, + "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_23513a6f1e644dee88e8debf1eb8ea3d", + "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 231508.0 + } + }, + "6d71c0eb8f1045b997085b72f441bf64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77f496a9bf524de2a865e4bdfbfbc367": { + "753e8b7795c943afa31e39370262dac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2250,17 +2235,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb708ac4acfb47f2b2c8d64e7f8ccd47", + "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_094a232267ee4ed08fbe7d3ca6e5b9b9", + "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "7d342c65197942659c09c9e001836e30": { + "7de6fba59ec94a1aa5df391d3b952eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2313,43 +2298,30 @@ "width": null } }, - "7efbd8a387824c6dab4c6ea19e3bcdd6": { + "80b423d8da65443590ae4c634d0b83a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "81138bdef66c4e3c96527e5438ddf3dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", + "placeholder": "​", + "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "812dafde65964029908a43fd12d8905c": { + "8da99fc57db34318a69f0a2f7aa23f9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,25 +2374,7 @@ "width": null } }, - "830a143f93fe42b49f124b7a1041f772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83b2420f333343458a1e286e0240c1ae": { + "91c91931728e42119a5ed1a8e771a320": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2435,39 +2389,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dbfddca5cc6a4a88aef89852808cfbfc", - "IPY_MODEL_7577b718b40b42bf9633cd31e1bff8bd", - "IPY_MODEL_bdb1d0e80f3941589397d41409c76171" + "IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", + "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", + "IPY_MODEL_4e75d528fab848b998f06bb5793338b2" ], - "layout": "IPY_MODEL_e5cc4d957ac64618badb70fa990772e1", + "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", "tabbable": null, "tooltip": null } }, - "8eb45aed0fc64ca4b060c66f163ab125": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb64ff862b840a681a3358b0c1fb5ca", - "placeholder": "​", - "style": "IPY_MODEL_421920c6f3fb4409a6b93f0a3bf375d8", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 293MB/s]" - } - }, - "918eeb7bb1b04196934bc0ebc509abf8": { + "92f1ff004b1f40519e67fbe042500034": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2520,7 +2451,7 @@ "width": null } }, - "96ba4d9e807c4a8e8def5eb25c4422aa": { + "948f678b67764226a70290363bc21f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2573,30 +2504,33 @@ "width": null } }, - "9ad0dd89c0ec43d684a8f7abf301c59e": { + "94a5cc6c053e4ead8726e97f9ce65217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fe4f4d5f7af4bd8a45795ce3caa67d8", - "placeholder": "​", - "style": "IPY_MODEL_830a143f93fe42b49f124b7a1041f772", + "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 1.90MB/s]" + "value": 391.0 } }, - "a3f98d4160d0404fb6f57ecf02ae64df": { + "97a2c254de1b4787a362825c816f4b69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2649,31 +2583,7 @@ "width": null } }, - "a4b6a256d1ca4f4eb87362bb9b27857a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f132dc25482746f199401cb51fe590df", - "IPY_MODEL_77f496a9bf524de2a865e4bdfbfbc367", - "IPY_MODEL_8eb45aed0fc64ca4b060c66f163ab125" - ], - "layout": "IPY_MODEL_c50e16d4ae244ba1a7808ec0f23f1a9b", - "tabbable": null, - "tooltip": null - } - }, - "a916345ea2fb4a09a0a9731240dd711e": { + "97c7a5a1b558446099d39e138e95bd3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2688,52 +2598,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_df453fe04d4e4793a5e935685001523f", - "IPY_MODEL_14d0a87899f24b19b23890d6a24ae65f", - "IPY_MODEL_24ff99be1a8e43c78152308e8e494cc6" + "IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", + "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", + "IPY_MODEL_52be430244ac43218140c7633e6f1dfa" ], - "layout": "IPY_MODEL_08ee1f13e3784ed698a1a539052275f6", + "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", "tabbable": null, "tooltip": null } }, - "aa8ac95cb2ee4f72bc599eed8a77d72a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b382553d1eb34a5ebe547c2c8df03f3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3eec33a4cb54d92ab7a9e1ad1747d76": { + "9e52acaf4e244873ab2a7f8db7a56f87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2786,112 +2660,190 @@ "width": null } }, - "b4ddfba613cd4d45b02b54b40a5f4b81": { + "a58243eb6a194ea7957507b4c0fcd20c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7f9c7ca7440434985d7aff042e3ce7a", - "placeholder": "​", - "style": "IPY_MODEL_aa8ac95cb2ee4f72bc599eed8a77d72a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_24871bcd90cc412a87f3523b51b28390", + "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", + "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645" + ], + "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "tooltip": null } }, - "b4e22ef817f2458e91e12c9bf63d3f2a": { - "model_module": "@jupyter-widgets/controls", + "b562a3e54de946de8de1969318bc9932": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b8758c33d0204b0f8f728a3c7217b7f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4d302d48d244388bcc8a7e180f83823", - "placeholder": "​", - "style": "IPY_MODEL_7efbd8a387824c6dab4c6ea19e3bcdd6", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 10.3kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b88c7aecc522424e9987feb281cdbb25": { - "model_module": "@jupyter-widgets/controls", + "b969c4646a1f4296a60d5269570d7812": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc02936354f148bcb509652443a972fc": { - "model_module": "@jupyter-widgets/controls", + "badf4422987648d180ccbecfa7665702": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb6c46de574d4ea3b8dd44655a823f51", - "placeholder": "​", - "style": "IPY_MODEL_555dca7a425b43efb60fcc6200dc6f25", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 477kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bcf2fc689e0b41b7991703338eeccef9": { + "bb8179f5ad91428198964675263f3c98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2944,30 +2896,93 @@ "width": null } }, - "bdb1d0e80f3941589397d41409c76171": { + "c394f7a4870a4f5f8de748644e8df357": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cd86dc9f79bf4ea6b32ccf1b10684fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", + "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", + "IPY_MODEL_3c44f2615b974d98a8796c59d501f913" + ], + "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", + "tabbable": null, + "tooltip": null + } + }, + "cf7840537df1484d8fb3ea86b9dee4a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0cf81ed339d447e0950cc24ec082be5e", - "placeholder": "​", - "style": "IPY_MODEL_b4e22ef817f2458e91e12c9bf63d3f2a", + "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 71.1kB/s]" + "value": 2211.0 + } + }, + "cf8ed7281baa435093a60e267938b36c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c2ceb3a14bea41e0b2071454cb90297b": { + "d2f0816714c7481ea3ba31bd7408fe93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3020,7 +3035,7 @@ "width": null } }, - "c2fb900f4e8141aa9eb8c43510310702": { + "d4bfc6c1d28d468a844bbd112010b800": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3073,7 +3088,7 @@ "width": null } }, - "c496aa336ebb4288a9b319e35addd407": { + "d6a96c30e59a4ad1801f48d9410f7122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3089,7 +3104,7 @@ "description_width": "" } }, - "c50e16d4ae244ba1a7808ec0f23f1a9b": { + "d6c44d17bd624eb985c735cf50307d2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3142,7 +3157,47 @@ "width": null } }, - "c7f9c7ca7440434985d7aff042e3ce7a": { + "d9438aa4de0a49669ef6cc3e242dea8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", + "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", + "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8" + ], + "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", + "tabbable": null, + "tooltip": null + } + }, + "debd8d9478f64845b7f4de702d42849e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df19c92cc2b34e7ca61218f410745348": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3195,7 +3250,7 @@ "width": null } }, - "c9824f35786644daa37d42bd953ade4a": { + "e50c4161bc6e46ceb2c825d8a4f8cb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3211,7 +3266,7 @@ "description_width": "" } }, - "cb6c46de574d4ea3b8dd44655a823f51": { + "ee3043f31e4f41de93cd71ed1d3aaceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,7 +3319,30 @@ "width": null } }, - "cfb64ff862b840a681a3358b0c1fb5ca": { + "eebcc942ebba414e8985c53b0046690f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", + "placeholder": "​", + "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "ef05813c951740c2a35d4b744ebef5a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3317,25 +3395,7 @@ "width": null } }, - "d3da7f98621641758fe69549d23255f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d4e43e629e334723b53074458099ebe1": { + "f16d80c7cb544353a5e1babe95cc1a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3353,7 +3413,7 @@ "text_color": null } }, - "dbfddca5cc6a4a88aef89852808cfbfc": { + "f44abb2240724661a8f28fabeb7e6152": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3368,38 +3428,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_812dafde65964029908a43fd12d8905c", + "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", "placeholder": "​", - "style": "IPY_MODEL_81138bdef66c4e3c96527e5438ddf3dc", + "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 237MB/s]" } }, - "df453fe04d4e4793a5e935685001523f": { + "f47d961a8a6443fdb97fc093198a3a37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609442c072ad4df48e117eda6b493701", - "placeholder": "​", - "style": "IPY_MODEL_73a3462f4bab49678fc11865bb9b8d38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eebcc942ebba414e8985c53b0046690f", + "IPY_MODEL_753e8b7795c943afa31e39370262dac0", + "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152" + ], + "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "e5cc4d957ac64618badb70fa990772e1": { + "f492c8a7a79d41b082fc05a8a4fa2314": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3452,7 +3513,7 @@ "width": null } }, - "eb708ac4acfb47f2b2c8d64e7f8ccd47": { + "f57043327c7a43d580fbd77e72e74801": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3505,109 +3566,48 @@ "width": null } }, - "f132dc25482746f199401cb51fe590df": { + "f9e39c8f34f044faabfd9b2d9c388e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96ba4d9e807c4a8e8def5eb25c4422aa", - "placeholder": "​", - "style": "IPY_MODEL_b88c7aecc522424e9987feb281cdbb25", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "f4d302d48d244388bcc8a7e180f83823": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f7e7688b1f6f44858c99eaa0b436d560": { + "fc3db8eb310345b3b1c927bd575ab50e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3f98d4160d0404fb6f57ecf02ae64df", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9824f35786644daa37d42bd953ade4a", + "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", + "placeholder": "​", + "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "fff28c4abb7743bcbc87068c18fc714d": { + "fe392344d7834620bada4587f2dbf065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index bc51cc406..c7a485406 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"099dabc8ca1a419a8f798757fe52e113": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff81642801b140aa8a6bc1154da9218a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "44b3171020814a07b41fd05ef40a7b32": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_099dabc8ca1a419a8f798757fe52e113", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ff81642801b140aa8a6bc1154da9218a", "tabbable": null, "tooltip": null, "value": 2041.0}}, "92943e95bab34361b569654e8de40b5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c7097304f134ad0b086bc6ccfcb350c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72eb98c6e3e441dab912e332f8a0b34c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92943e95bab34361b569654e8de40b5b", "placeholder": "\u200b", "style": "IPY_MODEL_9c7097304f134ad0b086bc6ccfcb350c", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "e17953cf4d17415b9ee3947612388244": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5c9a576afba43079bc817ed712e6359": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e1f958e94414f2f8535d9ce4e7de1a9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e17953cf4d17415b9ee3947612388244", "placeholder": "\u200b", "style": "IPY_MODEL_b5c9a576afba43079bc817ed712e6359", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "810b336e7d6a4d95a3675aa7455715fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c663b817e37949eb86658a8eba8c4ae7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_72eb98c6e3e441dab912e332f8a0b34c", "IPY_MODEL_44b3171020814a07b41fd05ef40a7b32", "IPY_MODEL_2e1f958e94414f2f8535d9ce4e7de1a9"], "layout": "IPY_MODEL_810b336e7d6a4d95a3675aa7455715fa", "tabbable": null, "tooltip": null}}, "ece0b818044746469aca3f330ee29274": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2af897d03f6c437f9abbacc9d5621adc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c411bd6633714cf883bba455ac3fb08c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ece0b818044746469aca3f330ee29274", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2af897d03f6c437f9abbacc9d5621adc", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "f16e9b4820324eeaad22e87dd6fc0203": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d97a818ca904253a36ed52659548563": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d993effcd2114158b661354c687df470": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f16e9b4820324eeaad22e87dd6fc0203", "placeholder": "\u200b", "style": "IPY_MODEL_6d97a818ca904253a36ed52659548563", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "2b762b42a5fb477cbcb248129d768237": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "544bf43a6fb44b508e651a1196f3a11d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ca83975994744617a0dd97e13eb64600": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b762b42a5fb477cbcb248129d768237", "placeholder": "\u200b", "style": "IPY_MODEL_544bf43a6fb44b508e651a1196f3a11d", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007225MB/s]"}}, "03ae8018dd3e4b8f9ba566d10e173229": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13ec23ae0b82478c8649f822bdeff432": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d993effcd2114158b661354c687df470", "IPY_MODEL_c411bd6633714cf883bba455ac3fb08c", "IPY_MODEL_ca83975994744617a0dd97e13eb64600"], "layout": "IPY_MODEL_03ae8018dd3e4b8f9ba566d10e173229", "tabbable": null, "tooltip": null}}, "0310f2e8275a4fee997ba703be9a74bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03ad2371a2ae4a21a351c5689665109d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c9bc263c50141be932168a8d5361efe": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0310f2e8275a4fee997ba703be9a74bf", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_03ad2371a2ae4a21a351c5689665109d", "tabbable": null, "tooltip": null, "value": 3201.0}}, "f62c3116d2b74642a243ae7703bf3201": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "527dc89a8299473ba6e5fa06b793206d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5104eaceb154661be8ee4c9dfc5100b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f62c3116d2b74642a243ae7703bf3201", "placeholder": "\u200b", "style": "IPY_MODEL_527dc89a8299473ba6e5fa06b793206d", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "93da3ce1cc95446bb0144f7100dec07e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "491fa28fae4c4af281e4e86c8a7b7250": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b18ff1f2c364471ab3f90ae046a14c9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_93da3ce1cc95446bb0144f7100dec07e", "placeholder": "\u200b", "style": "IPY_MODEL_491fa28fae4c4af281e4e86c8a7b7250", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007800kB/s]"}}, "51ec0fbf36d74595b531f469980746ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37e542373cdc444f9efa49bf35d6b577": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5104eaceb154661be8ee4c9dfc5100b", "IPY_MODEL_5c9bc263c50141be932168a8d5361efe", "IPY_MODEL_b18ff1f2c364471ab3f90ae046a14c9f"], "layout": "IPY_MODEL_51ec0fbf36d74595b531f469980746ac", "tabbable": null, "tooltip": null}}, "fbe4bbaa9f6e4821adc6bb3a71cf48fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43febdd3ddaa4e99855db177b8402c0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6aee6459e1484a5db4b27eee1cff5c7d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbe4bbaa9f6e4821adc6bb3a71cf48fd", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_43febdd3ddaa4e99855db177b8402c0f", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "ec1cdbea1e874548abb716b6420bf941": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccb4dc555c114cf2a02ac20d97c88315": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce73ce3464244c60b3bf466af79429a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec1cdbea1e874548abb716b6420bf941", "placeholder": "\u200b", "style": "IPY_MODEL_ccb4dc555c114cf2a02ac20d97c88315", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "f2cfdce64a8f4a02b6bc16745bd1d185": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dacc3decb544148af7b1ad745f6e811": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "837c89ce37a6469693f3ac5183cf9cc8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2cfdce64a8f4a02b6bc16745bd1d185", "placeholder": "\u200b", "style": "IPY_MODEL_7dacc3decb544148af7b1ad745f6e811", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007262MB/s]"}}, "2e20561ab8d544cea586887a7ec2f7ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7fb476aafa14916ba5acbbe7338a574": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ce73ce3464244c60b3bf466af79429a2", "IPY_MODEL_6aee6459e1484a5db4b27eee1cff5c7d", "IPY_MODEL_837c89ce37a6469693f3ac5183cf9cc8"], "layout": "IPY_MODEL_2e20561ab8d544cea586887a7ec2f7ca", "tabbable": null, "tooltip": null}}, "1b88ef880cd544cb8f81cff091ac52a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e049b1e243d439eb9c1a88bb6cbf0ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a36698d045934e159fd6780d8ed22d02": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b88ef880cd544cb8f81cff091ac52a8", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e049b1e243d439eb9c1a88bb6cbf0ae", "tabbable": null, "tooltip": null, "value": 128619.0}}, "f966ca32ba7546c09b4de99fe354effc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "acdd14865d9645b59233616afa6233af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b29f12837770460a87639969e2501c71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f966ca32ba7546c09b4de99fe354effc", "placeholder": "\u200b", "style": "IPY_MODEL_acdd14865d9645b59233616afa6233af", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "70d386cfb3b545aea9eb732a6255b51b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7693962195d54179b9f977de6699c1a5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "649584acb89f4352b3f09502fe90047b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70d386cfb3b545aea9eb732a6255b51b", "placeholder": "\u200b", "style": "IPY_MODEL_7693962195d54179b9f977de6699c1a5", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.03MB/s]"}}, "83ef83e6f0894eff87649ed19057ece7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15b022401b854b9f8a7d29991ca0a46e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b29f12837770460a87639969e2501c71", "IPY_MODEL_a36698d045934e159fd6780d8ed22d02", "IPY_MODEL_649584acb89f4352b3f09502fe90047b"], "layout": "IPY_MODEL_83ef83e6f0894eff87649ed19057ece7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a0f3a3764e7a4f70a89147d24e41d44a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "798e65658ced4c4ba43c73541fcaf498": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2afe02bb7907473397517feb001d0bc7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e22da2b2272b421bbef0df76cace290f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19d0ea09fbe34640848d1ec2ad02d65b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2e5a2475afa46a89c0cfc93e8649905": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", "placeholder": "\u200b", "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "b018e0e6db134be6ba16634195b51282": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b0531130fa84e98afcd52b0fc37a26a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ca803e568a640c2aa768e33ebf24164": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", "placeholder": "\u200b", "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007438kB/s]"}}, "9aedd1b5b4a94daa8e57b77e4932c62f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cedc3a0e8f548a1ad9c3884bd4addbc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164"], "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", "tabbable": null, "tooltip": null}}, "163b36917c2b4640bf87813ecc7aecc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2eb75fcccd564c998153fe7eb21cc15f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94b5339e1e5d462ca9a8ed81c2cbc6d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bc3fca0de1e34fe0841a520f49a44fcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "520e56fda33e4c98b222ee893d4a3946": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a86987978bf2456880b33e417bfcc80e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", "placeholder": "\u200b", "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "563342ed4a724e169020735f2e098785": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2133a9fb59af4c94a6d3bf96899e9fa0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6b535061cda444d9943ac6bb614b319": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", "placeholder": "\u200b", "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200739.7MB/s]"}}, "a609aacd3b83432398f55caed51374bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f9cdd5eb8e645049e955cd7017ad172": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a86987978bf2456880b33e417bfcc80e", "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", "IPY_MODEL_d6b535061cda444d9943ac6bb614b319"], "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", "tabbable": null, "tooltip": null}}, "1cf489240a5147e7be36c2ebd34e4991": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae2362edc22d424a8ca4ef7ba7dc22f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6724f0872c634ed28a8ddf5141b6cf52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", "tabbable": null, "tooltip": null, "value": 3201.0}}, "0a09ec5bab80464fbc3525d61fd287e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fac37b2db5114541b4cfa045627b25a9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e641d93e8364bb38c2649d5e9409472": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", "placeholder": "\u200b", "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "6696954ac6cc4663830ff71533e2274a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "245870b17e934b70a9d46ac916c5ab49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f877b024aaa4832a870ddeafa209522": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", "placeholder": "\u200b", "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007850kB/s]"}}, "6f35caf701d147819bcff508b0d7b21f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5272de0323e4c94ba3b04a6b32e6aa7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", "IPY_MODEL_8f877b024aaa4832a870ddeafa209522"], "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", "tabbable": null, "tooltip": null}}, "fd8d727262ef4b3c8a26a144efa6a319": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7130d0c967334fd481dd95531afcbff6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9401b730a9fa4869b1a2ed1a91ae3804": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2e035e4e57004636a79bb03dccd33238": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4103846b2bc4a4a8e12430befda4a7d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffa1c84fb874460b957924837b893cd2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", "placeholder": "\u200b", "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "9087116450574f6e82ab1912c77b4c08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f05b5620d3c4ea8b8c2b62df6fd1976": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24117d460fe04c2595c8a3df89e4dc71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", "placeholder": "\u200b", "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200749.6MB/s]"}}, "d0912c4ce6314fffb1eec46e7902061a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5915bf142f9949d0b62f3936280ff677": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ffa1c84fb874460b957924837b893cd2", "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71"], "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", "tabbable": null, "tooltip": null}}, "ecf9dd73dda64d359b746655a5a60031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e7a3765a82041cc9826e87725016075": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ef4ce1e627f64413bff7de5ef03c1544": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", "tabbable": null, "tooltip": null, "value": 128619.0}}, "35b6e4408720413d9e978a6f60746c55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0141de0607f0403f827d29243c404408": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6e2619a05cf4c6892ae13e2c851eb0e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", "placeholder": "\u200b", "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "8203d92bb037499eb58f4a94cf43af20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bba811cedf5144c1a2c8e84f62b80614": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dce5f0e1a3174c649eb53b9cab013b58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", "placeholder": "\u200b", "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20075.64MB/s]"}}, "9dc82a7b78864ce18d1e3cff48063e14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35fc2caf823447f2b6a4e5ac4e1060cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58"], "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index c06368ad7..a2d329ad2 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:01.117687Z", - "iopub.status.busy": "2024-07-18T04:02:01.117526Z", - "iopub.status.idle": "2024-07-18T04:02:06.436581Z", - "shell.execute_reply": "2024-07-18T04:02:06.435951Z" + "iopub.execute_input": "2024-07-30T16:32:01.430387Z", + "iopub.status.busy": "2024-07-30T16:32:01.430194Z", + "iopub.status.idle": "2024-07-30T16:32:07.507356Z", + "shell.execute_reply": "2024-07-30T16:32:07.506775Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.439753Z", - "iopub.status.busy": "2024-07-18T04:02:06.438998Z", - "iopub.status.idle": "2024-07-18T04:02:06.442507Z", - "shell.execute_reply": "2024-07-18T04:02:06.442047Z" + "iopub.execute_input": "2024-07-30T16:32:07.510541Z", + "iopub.status.busy": "2024-07-30T16:32:07.509839Z", + "iopub.status.idle": "2024-07-30T16:32:07.513583Z", + "shell.execute_reply": "2024-07-30T16:32:07.513077Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.444488Z", - "iopub.status.busy": "2024-07-18T04:02:06.444150Z", - "iopub.status.idle": "2024-07-18T04:02:06.448808Z", - "shell.execute_reply": "2024-07-18T04:02:06.448377Z" + "iopub.execute_input": "2024-07-30T16:32:07.515817Z", + "iopub.status.busy": "2024-07-30T16:32:07.515454Z", + "iopub.status.idle": "2024-07-30T16:32:07.520703Z", + "shell.execute_reply": "2024-07-30T16:32:07.520274Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:06.450829Z", - "iopub.status.busy": "2024-07-18T04:02:06.450489Z", - "iopub.status.idle": "2024-07-18T04:02:08.286142Z", - "shell.execute_reply": "2024-07-18T04:02:08.285466Z" + "iopub.execute_input": "2024-07-30T16:32:07.522733Z", + "iopub.status.busy": "2024-07-30T16:32:07.522401Z", + "iopub.status.idle": "2024-07-30T16:32:09.284078Z", + "shell.execute_reply": "2024-07-30T16:32:09.283231Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.288955Z", - "iopub.status.busy": "2024-07-18T04:02:08.288547Z", - "iopub.status.idle": "2024-07-18T04:02:08.299806Z", - "shell.execute_reply": "2024-07-18T04:02:08.299296Z" + "iopub.execute_input": "2024-07-30T16:32:09.287053Z", + "iopub.status.busy": "2024-07-30T16:32:09.286654Z", + "iopub.status.idle": "2024-07-30T16:32:09.297621Z", + "shell.execute_reply": "2024-07-30T16:32:09.297169Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.302021Z", - "iopub.status.busy": "2024-07-18T04:02:08.301679Z", - "iopub.status.idle": "2024-07-18T04:02:08.307287Z", - "shell.execute_reply": "2024-07-18T04:02:08.306826Z" + "iopub.execute_input": "2024-07-30T16:32:09.299786Z", + "iopub.status.busy": "2024-07-30T16:32:09.299427Z", + "iopub.status.idle": "2024-07-30T16:32:09.304872Z", + "shell.execute_reply": "2024-07-30T16:32:09.304392Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.309302Z", - "iopub.status.busy": "2024-07-18T04:02:08.308959Z", - "iopub.status.idle": "2024-07-18T04:02:08.779123Z", - "shell.execute_reply": "2024-07-18T04:02:08.778615Z" + "iopub.execute_input": "2024-07-30T16:32:09.307010Z", + "iopub.status.busy": "2024-07-30T16:32:09.306676Z", + "iopub.status.idle": "2024-07-30T16:32:09.814179Z", + "shell.execute_reply": "2024-07-30T16:32:09.813575Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:08.781502Z", - "iopub.status.busy": "2024-07-18T04:02:08.780993Z", - "iopub.status.idle": "2024-07-18T04:02:09.831176Z", - "shell.execute_reply": "2024-07-18T04:02:09.830565Z" + "iopub.execute_input": "2024-07-30T16:32:09.816449Z", + "iopub.status.busy": "2024-07-30T16:32:09.816091Z", + "iopub.status.idle": "2024-07-30T16:32:11.566172Z", + "shell.execute_reply": "2024-07-30T16:32:11.565639Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.833594Z", - "iopub.status.busy": "2024-07-18T04:02:09.833376Z", - "iopub.status.idle": "2024-07-18T04:02:09.851912Z", - "shell.execute_reply": "2024-07-18T04:02:09.851466Z" + "iopub.execute_input": "2024-07-30T16:32:11.568615Z", + "iopub.status.busy": "2024-07-30T16:32:11.568320Z", + "iopub.status.idle": "2024-07-30T16:32:11.586724Z", + "shell.execute_reply": "2024-07-30T16:32:11.586277Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.853723Z", - "iopub.status.busy": "2024-07-18T04:02:09.853550Z", - "iopub.status.idle": "2024-07-18T04:02:09.856982Z", - "shell.execute_reply": "2024-07-18T04:02:09.856425Z" + "iopub.execute_input": "2024-07-30T16:32:11.588741Z", + "iopub.status.busy": "2024-07-30T16:32:11.588441Z", + "iopub.status.idle": "2024-07-30T16:32:11.591552Z", + "shell.execute_reply": "2024-07-30T16:32:11.591039Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:09.859010Z", - "iopub.status.busy": "2024-07-18T04:02:09.858672Z", - "iopub.status.idle": "2024-07-18T04:02:23.705662Z", - "shell.execute_reply": "2024-07-18T04:02:23.705044Z" + "iopub.execute_input": "2024-07-30T16:32:11.593585Z", + "iopub.status.busy": "2024-07-30T16:32:11.593193Z", + "iopub.status.idle": "2024-07-30T16:32:26.818572Z", + "shell.execute_reply": "2024-07-30T16:32:26.817879Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:23.708515Z", - "iopub.status.busy": "2024-07-18T04:02:23.708112Z", - "iopub.status.idle": "2024-07-18T04:02:23.711931Z", - "shell.execute_reply": "2024-07-18T04:02:23.711369Z" + "iopub.execute_input": "2024-07-30T16:32:26.821335Z", + "iopub.status.busy": "2024-07-30T16:32:26.821126Z", + "iopub.status.idle": "2024-07-30T16:32:26.825126Z", + "shell.execute_reply": "2024-07-30T16:32:26.824635Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:23.713930Z", - "iopub.status.busy": "2024-07-18T04:02:23.713624Z", - "iopub.status.idle": "2024-07-18T04:02:24.398596Z", - "shell.execute_reply": "2024-07-18T04:02:24.398020Z" + "iopub.execute_input": "2024-07-30T16:32:26.827091Z", + "iopub.status.busy": "2024-07-30T16:32:26.826917Z", + "iopub.status.idle": "2024-07-30T16:32:27.596925Z", + "shell.execute_reply": "2024-07-30T16:32:27.596317Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.401422Z", - "iopub.status.busy": "2024-07-18T04:02:24.401003Z", - "iopub.status.idle": "2024-07-18T04:02:24.406081Z", - "shell.execute_reply": "2024-07-18T04:02:24.405558Z" + "iopub.execute_input": "2024-07-30T16:32:27.600680Z", + "iopub.status.busy": "2024-07-30T16:32:27.599702Z", + "iopub.status.idle": "2024-07-30T16:32:27.606621Z", + "shell.execute_reply": "2024-07-30T16:32:27.606103Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.409353Z", - "iopub.status.busy": "2024-07-18T04:02:24.408424Z", - "iopub.status.idle": "2024-07-18T04:02:24.518831Z", - "shell.execute_reply": "2024-07-18T04:02:24.518201Z" + "iopub.execute_input": "2024-07-30T16:32:27.610268Z", + "iopub.status.busy": "2024-07-30T16:32:27.609309Z", + "iopub.status.idle": "2024-07-30T16:32:27.732351Z", + "shell.execute_reply": "2024-07-30T16:32:27.731717Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.521227Z", - "iopub.status.busy": "2024-07-18T04:02:24.521025Z", - "iopub.status.idle": "2024-07-18T04:02:24.533914Z", - "shell.execute_reply": "2024-07-18T04:02:24.533353Z" + "iopub.execute_input": "2024-07-30T16:32:27.734791Z", + "iopub.status.busy": "2024-07-30T16:32:27.734594Z", + "iopub.status.idle": "2024-07-30T16:32:27.747001Z", + "shell.execute_reply": "2024-07-30T16:32:27.746549Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.536409Z", - "iopub.status.busy": "2024-07-18T04:02:24.536011Z", - "iopub.status.idle": "2024-07-18T04:02:24.546219Z", - "shell.execute_reply": "2024-07-18T04:02:24.545646Z" + "iopub.execute_input": "2024-07-30T16:32:27.749097Z", + "iopub.status.busy": "2024-07-30T16:32:27.748752Z", + "iopub.status.idle": "2024-07-30T16:32:27.756559Z", + "shell.execute_reply": "2024-07-30T16:32:27.756099Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.548577Z", - "iopub.status.busy": "2024-07-18T04:02:24.548223Z", - "iopub.status.idle": "2024-07-18T04:02:24.552829Z", - "shell.execute_reply": "2024-07-18T04:02:24.552251Z" + "iopub.execute_input": "2024-07-30T16:32:27.758711Z", + "iopub.status.busy": "2024-07-30T16:32:27.758331Z", + "iopub.status.idle": "2024-07-30T16:32:27.762339Z", + "shell.execute_reply": "2024-07-30T16:32:27.761744Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.554997Z", - "iopub.status.busy": "2024-07-18T04:02:24.554598Z", - "iopub.status.idle": "2024-07-18T04:02:24.561408Z", - "shell.execute_reply": "2024-07-18T04:02:24.560893Z" + "iopub.execute_input": "2024-07-30T16:32:27.764292Z", + "iopub.status.busy": "2024-07-30T16:32:27.764112Z", + "iopub.status.idle": "2024-07-30T16:32:27.769903Z", + "shell.execute_reply": "2024-07-30T16:32:27.769437Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.563575Z", - "iopub.status.busy": "2024-07-18T04:02:24.563220Z", - "iopub.status.idle": "2024-07-18T04:02:24.675460Z", - "shell.execute_reply": "2024-07-18T04:02:24.674903Z" + "iopub.execute_input": "2024-07-30T16:32:27.772012Z", + "iopub.status.busy": "2024-07-30T16:32:27.771665Z", + "iopub.status.idle": "2024-07-30T16:32:27.883771Z", + "shell.execute_reply": "2024-07-30T16:32:27.883239Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.677403Z", - "iopub.status.busy": "2024-07-18T04:02:24.677229Z", - "iopub.status.idle": "2024-07-18T04:02:24.777959Z", - "shell.execute_reply": "2024-07-18T04:02:24.777499Z" + "iopub.execute_input": "2024-07-30T16:32:27.886039Z", + "iopub.status.busy": "2024-07-30T16:32:27.885669Z", + "iopub.status.idle": "2024-07-30T16:32:27.991085Z", + "shell.execute_reply": "2024-07-30T16:32:27.990488Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.779879Z", - "iopub.status.busy": "2024-07-18T04:02:24.779706Z", - "iopub.status.idle": "2024-07-18T04:02:24.878772Z", - "shell.execute_reply": "2024-07-18T04:02:24.878242Z" + "iopub.execute_input": "2024-07-30T16:32:27.993501Z", + "iopub.status.busy": "2024-07-30T16:32:27.993093Z", + "iopub.status.idle": "2024-07-30T16:32:28.099248Z", + "shell.execute_reply": "2024-07-30T16:32:28.098713Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.880733Z", - "iopub.status.busy": "2024-07-18T04:02:24.880559Z", - "iopub.status.idle": "2024-07-18T04:02:24.978145Z", - "shell.execute_reply": "2024-07-18T04:02:24.977703Z" + "iopub.execute_input": "2024-07-30T16:32:28.101776Z", + "iopub.status.busy": "2024-07-30T16:32:28.101402Z", + "iopub.status.idle": "2024-07-30T16:32:28.203687Z", + "shell.execute_reply": "2024-07-30T16:32:28.203188Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:24.980012Z", - "iopub.status.busy": "2024-07-18T04:02:24.979836Z", - "iopub.status.idle": "2024-07-18T04:02:24.982977Z", - "shell.execute_reply": "2024-07-18T04:02:24.982521Z" + "iopub.execute_input": "2024-07-30T16:32:28.205976Z", + "iopub.status.busy": "2024-07-30T16:32:28.205604Z", + "iopub.status.idle": "2024-07-30T16:32:28.209012Z", + "shell.execute_reply": "2024-07-30T16:32:28.208540Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0310f2e8275a4fee997ba703be9a74bf": { + "0141de0607f0403f827d29243c404408": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0a09ec5bab80464fbc3525d61fd287e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,23 +1463,25 @@ "width": null } }, - "03ad2371a2ae4a21a351c5689665109d": { + "0f05b5620d3c4ea8b8c2b62df6fd1976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "03ae8018dd3e4b8f9ba566d10e173229": { + "163b36917c2b4640bf87813ecc7aecc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1514,7 +1534,48 @@ "width": null } }, - "099dabc8ca1a419a8f798757fe52e113": { + "19d0ea09fbe34640848d1ec2ad02d65b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1ca803e568a640c2aa768e33ebf24164": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", + "placeholder": "​", + "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 438kB/s]" + } + }, + "1cf489240a5147e7be36c2ebd34e4991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1567,55 +1628,92 @@ "width": null } }, - "13ec23ae0b82478c8649f822bdeff432": { + "2133a9fb59af4c94a6d3bf96899e9fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "24117d460fe04c2595c8a3df89e4dc71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d993effcd2114158b661354c687df470", - "IPY_MODEL_c411bd6633714cf883bba455ac3fb08c", - "IPY_MODEL_ca83975994744617a0dd97e13eb64600" - ], - "layout": "IPY_MODEL_03ae8018dd3e4b8f9ba566d10e173229", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", + "placeholder": "​", + "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 49.6MB/s]" } }, - "15b022401b854b9f8a7d29991ca0a46e": { + "245870b17e934b70a9d46ac916c5ab49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2afe02bb7907473397517feb001d0bc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b29f12837770460a87639969e2501c71", - "IPY_MODEL_a36698d045934e159fd6780d8ed22d02", - "IPY_MODEL_649584acb89f4352b3f09502fe90047b" - ], - "layout": "IPY_MODEL_83ef83e6f0894eff87649ed19057ece7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 2041.0 } }, - "1b88ef880cd544cb8f81cff091ac52a8": { + "2e035e4e57004636a79bb03dccd33238": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,7 +1766,7 @@ "width": null } }, - "2af897d03f6c437f9abbacc9d5621adc": { + "2eb75fcccd564c998153fe7eb21cc15f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1684,7 +1782,7 @@ "description_width": "" } }, - "2b762b42a5fb477cbcb248129d768237": { + "35b6e4408720413d9e978a6f60746c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1737,7 +1835,31 @@ "width": null } }, - "2e049b1e243d439eb9c1a88bb6cbf0ae": { + "35fc2caf823447f2b6a4e5ac4e1060cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", + "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", + "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58" + ], + "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", + "tabbable": null, + "tooltip": null + } + }, + "4e7a3765a82041cc9826e87725016075": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1753,30 +1875,25 @@ "description_width": "" } }, - "2e1f958e94414f2f8535d9ce4e7de1a9": { + "520e56fda33e4c98b222ee893d4a3946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e17953cf4d17415b9ee3947612388244", - "placeholder": "​", - "style": "IPY_MODEL_b5c9a576afba43079bc817ed712e6359", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2e20561ab8d544cea586887a7ec2f7ca": { + "563342ed4a724e169020735f2e098785": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,7 +1946,7 @@ "width": null } }, - "37e542373cdc444f9efa49bf35d6b577": { + "5915bf142f9949d0b62f3936280ff677": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1844,76 +1961,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b5104eaceb154661be8ee4c9dfc5100b", - "IPY_MODEL_5c9bc263c50141be932168a8d5361efe", - "IPY_MODEL_b18ff1f2c364471ab3f90ae046a14c9f" + "IPY_MODEL_ffa1c84fb874460b957924837b893cd2", + "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", + "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71" ], - "layout": "IPY_MODEL_51ec0fbf36d74595b531f469980746ac", + "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", "tabbable": null, "tooltip": null } }, - "43febdd3ddaa4e99855db177b8402c0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44b3171020814a07b41fd05ef40a7b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_099dabc8ca1a419a8f798757fe52e113", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff81642801b140aa8a6bc1154da9218a", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "491fa28fae4c4af281e4e86c8a7b7250": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "51ec0fbf36d74595b531f469980746ac": { + "6696954ac6cc4663830ff71533e2274a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,25 +2023,33 @@ "width": null } }, - "527dc89a8299473ba6e5fa06b793206d": { + "6724f0872c634ed28a8ddf5141b6cf52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "544bf43a6fb44b508e651a1196f3a11d": { + "6b0531130fa84e98afcd52b0fc37a26a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2002,33 +2067,31 @@ "text_color": null } }, - "5c9bc263c50141be932168a8d5361efe": { + "6cedc3a0e8f548a1ad9c3884bd4addbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0310f2e8275a4fee997ba703be9a74bf", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_03ad2371a2ae4a21a351c5689665109d", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", + "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", + "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164" + ], + "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", + "tabbable": null, + "tooltip": null } }, - "649584acb89f4352b3f09502fe90047b": { + "6e641d93e8364bb38c2649d5e9409472": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2043,59 +2106,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70d386cfb3b545aea9eb732a6255b51b", + "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", "placeholder": "​", - "style": "IPY_MODEL_7693962195d54179b9f977de6699c1a5", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.03MB/s]" - } - }, - "6aee6459e1484a5db4b27eee1cff5c7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbe4bbaa9f6e4821adc6bb3a71cf48fd", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43febdd3ddaa4e99855db177b8402c0f", + "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "6d97a818ca904253a36ed52659548563": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "70d386cfb3b545aea9eb732a6255b51b": { + "6f35caf701d147819bcff508b0d7b21f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,66 +2167,63 @@ "width": null } }, - "72eb98c6e3e441dab912e332f8a0b34c": { + "7130d0c967334fd481dd95531afcbff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92943e95bab34361b569654e8de40b5b", - "placeholder": "​", - "style": "IPY_MODEL_9c7097304f134ad0b086bc6ccfcb350c", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7693962195d54179b9f977de6699c1a5": { + "798e65658ced4c4ba43c73541fcaf498": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7dacc3decb544148af7b1ad745f6e811": { + "7f9cdd5eb8e645049e955cd7017ad172": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a86987978bf2456880b33e417bfcc80e", + "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", + "IPY_MODEL_d6b535061cda444d9943ac6bb614b319" + ], + "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", + "tabbable": null, + "tooltip": null } }, - "810b336e7d6a4d95a3675aa7455715fa": { + "8203d92bb037499eb58f4a94cf43af20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2260,7 +2276,7 @@ "width": null } }, - "837c89ce37a6469693f3ac5183cf9cc8": { + "8f877b024aaa4832a870ddeafa209522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2275,15 +2291,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2cfdce64a8f4a02b6bc16745bd1d185", + "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", "placeholder": "​", - "style": "IPY_MODEL_7dacc3decb544148af7b1ad745f6e811", + "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 262MB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 850kB/s]" } }, - "83ef83e6f0894eff87649ed19057ece7": { + "9087116450574f6e82ab1912c77b4c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2336,60 +2352,59 @@ "width": null } }, - "92943e95bab34361b569654e8de40b5b": { - "model_module": "@jupyter-widgets/base", + "9401b730a9fa4869b1a2ed1a91ae3804": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "94b5339e1e5d462ca9a8ed81c2cbc6d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "93da3ce1cc95446bb0144f7100dec07e": { + "9aedd1b5b4a94daa8e57b77e4932c62f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2436,299 +2451,13 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9c7097304f134ad0b086bc6ccfcb350c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a36698d045934e159fd6780d8ed22d02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b88ef880cd544cb8f81cff091ac52a8", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e049b1e243d439eb9c1a88bb6cbf0ae", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "acdd14865d9645b59233616afa6233af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b18ff1f2c364471ab3f90ae046a14c9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93da3ce1cc95446bb0144f7100dec07e", - "placeholder": "​", - "style": "IPY_MODEL_491fa28fae4c4af281e4e86c8a7b7250", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 800kB/s]" - } - }, - "b29f12837770460a87639969e2501c71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f966ca32ba7546c09b4de99fe354effc", - "placeholder": "​", - "style": "IPY_MODEL_acdd14865d9645b59233616afa6233af", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "b5104eaceb154661be8ee4c9dfc5100b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f62c3116d2b74642a243ae7703bf3201", - "placeholder": "​", - "style": "IPY_MODEL_527dc89a8299473ba6e5fa06b793206d", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "b5c9a576afba43079bc817ed712e6359": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c411bd6633714cf883bba455ac3fb08c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece0b818044746469aca3f330ee29274", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2af897d03f6c437f9abbacc9d5621adc", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "c663b817e37949eb86658a8eba8c4ae7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72eb98c6e3e441dab912e332f8a0b34c", - "IPY_MODEL_44b3171020814a07b41fd05ef40a7b32", - "IPY_MODEL_2e1f958e94414f2f8535d9ce4e7de1a9" - ], - "layout": "IPY_MODEL_810b336e7d6a4d95a3675aa7455715fa", - "tabbable": null, - "tooltip": null - } - }, - "ca83975994744617a0dd97e13eb64600": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b762b42a5fb477cbcb248129d768237", - "placeholder": "​", - "style": "IPY_MODEL_544bf43a6fb44b508e651a1196f3a11d", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 225MB/s]" - } - }, - "ccb4dc555c114cf2a02ac20d97c88315": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce73ce3464244c60b3bf466af79429a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec1cdbea1e874548abb716b6420bf941", - "placeholder": "​", - "style": "IPY_MODEL_ccb4dc555c114cf2a02ac20d97c88315", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "d993effcd2114158b661354c687df470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f16e9b4820324eeaad22e87dd6fc0203", - "placeholder": "​", - "style": "IPY_MODEL_6d97a818ca904253a36ed52659548563", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e17953cf4d17415b9ee3947612388244": { + "9dc82a7b78864ce18d1e3cff48063e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2781,7 +2510,7 @@ "width": null } }, - "ec1cdbea1e874548abb716b6420bf941": { + "a0f3a3764e7a4f70a89147d24e41d44a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,7 +2563,7 @@ "width": null } }, - "ece0b818044746469aca3f330ee29274": { + "a609aacd3b83432398f55caed51374bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2887,7 +2616,69 @@ "width": null } }, - "f16e9b4820324eeaad22e87dd6fc0203": { + "a6e2619a05cf4c6892ae13e2c851eb0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", + "placeholder": "​", + "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "a86987978bf2456880b33e417bfcc80e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", + "placeholder": "​", + "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "ae2362edc22d424a8ca4ef7ba7dc22f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b018e0e6db134be6ba16634195b51282": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2940,7 +2731,25 @@ "width": null } }, - "f2cfdce64a8f4a02b6bc16745bd1d185": { + "bba811cedf5144c1a2c8e84f62b80614": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc3fca0de1e34fe0841a520f49a44fcb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2993,7 +2802,7 @@ "width": null } }, - "f62c3116d2b74642a243ae7703bf3201": { + "d0912c4ce6314fffb1eec46e7902061a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3046,7 +2855,48 @@ "width": null } }, - "f7fb476aafa14916ba5acbbe7338a574": { + "d2e5a2475afa46a89c0cfc93e8649905": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", + "placeholder": "​", + "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "d4103846b2bc4a4a8e12430befda4a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5272de0323e4c94ba3b04a6b32e6aa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3061,16 +2911,62 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce73ce3464244c60b3bf466af79429a2", - "IPY_MODEL_6aee6459e1484a5db4b27eee1cff5c7d", - "IPY_MODEL_837c89ce37a6469693f3ac5183cf9cc8" + "IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", + "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", + "IPY_MODEL_8f877b024aaa4832a870ddeafa209522" ], - "layout": "IPY_MODEL_2e20561ab8d544cea586887a7ec2f7ca", + "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", "tabbable": null, "tooltip": null } }, - "f966ca32ba7546c09b4de99fe354effc": { + "d6b535061cda444d9943ac6bb614b319": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", + "placeholder": "​", + "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 39.7MB/s]" + } + }, + "dce5f0e1a3174c649eb53b9cab013b58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", + "placeholder": "​", + "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 5.64MB/s]" + } + }, + "e22da2b2272b421bbef0df76cace290f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,7 +3019,7 @@ "width": null } }, - "fbe4bbaa9f6e4821adc6bb3a71cf48fd": { + "ecf9dd73dda64d359b746655a5a60031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,20 +3072,124 @@ "width": null } }, - "ff81642801b140aa8a6bc1154da9218a": { + "ef4ce1e627f64413bff7de5ef03c1544": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "fac37b2db5114541b4cfa045627b25a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd8d727262ef4b3c8a26a144efa6a319": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffa1c84fb874460b957924837b893cd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", + "placeholder": "​", + "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index e0b7ceb44..74c522b46 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"56926f83ffd946b2891a0c5b59d5efe7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3336c4c3c4d64feeb15f1975452e8cfd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a2f48d81a080433fa84848011182083e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56926f83ffd946b2891a0c5b59d5efe7", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3336c4c3c4d64feeb15f1975452e8cfd", "tabbable": null, "tooltip": null, "value": 132.0}}, "763e5f2ae48c455985ff412e49431ad8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "839aa6fe30a94d79a49415b12a228e66": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d23e2ab4630b440f9ef86ee9b8882048": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_763e5f2ae48c455985ff412e49431ad8", "placeholder": "\u200b", "style": "IPY_MODEL_839aa6fe30a94d79a49415b12a228e66", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "4c3f56f4b21a4b48bea56e97391218d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2818c73205bb431a93742b1f5090693d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b449a3c7d1b4be4ad41c40c8b11a491": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c3f56f4b21a4b48bea56e97391218d3", "placeholder": "\u200b", "style": "IPY_MODEL_2818c73205bb431a93742b1f5090693d", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713336.10\u2007examples/s]"}}, "960116dab3344fc8a824d39c6d7c5b37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "015de6fc683f4baaa22cb8b403a13432": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d23e2ab4630b440f9ef86ee9b8882048", "IPY_MODEL_a2f48d81a080433fa84848011182083e", "IPY_MODEL_3b449a3c7d1b4be4ad41c40c8b11a491"], "layout": "IPY_MODEL_960116dab3344fc8a824d39c6d7c5b37", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a8759625ec944bbbac04db9cec87a317": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee9027d19159444e8d46c66083251836": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa38f1de6f7849ee9f7cd7ad7a504555": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", "tabbable": null, "tooltip": null, "value": 132.0}}, "71845e53cfb34c7390d3c257eefae520": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9c800ac49fd453fbbdcc88f12d35194": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d477eb478231404692d7fabdeafcfa6e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", "placeholder": "\u200b", "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "c9a94c2705dc4c6888c5b9bcb593ec3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1d8b31237d943e5a791e20c8cb36100": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24e5bfd20a30498b87f31ca923bcaee0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", "placeholder": "\u200b", "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u20079927.17\u2007examples/s]"}}, "fe623ece577749be8a8ce449c28b2074": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "724816767a8e4540b761b5447f273b35": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0"], "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 1d8d4bc13..899e02b72 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:29.204779Z", - "iopub.status.busy": "2024-07-18T04:02:29.204616Z", - "iopub.status.idle": "2024-07-18T04:02:30.379450Z", - "shell.execute_reply": "2024-07-18T04:02:30.378831Z" + "iopub.execute_input": "2024-07-30T16:32:32.656232Z", + "iopub.status.busy": "2024-07-30T16:32:32.656056Z", + "iopub.status.idle": "2024-07-30T16:32:34.118637Z", + "shell.execute_reply": "2024-07-30T16:32:34.117917Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.382052Z", - "iopub.status.busy": "2024-07-18T04:02:30.381624Z", - "iopub.status.idle": "2024-07-18T04:02:30.384679Z", - "shell.execute_reply": "2024-07-18T04:02:30.384157Z" + "iopub.execute_input": "2024-07-30T16:32:34.121608Z", + "iopub.status.busy": "2024-07-30T16:32:34.121097Z", + "iopub.status.idle": "2024-07-30T16:32:34.124191Z", + "shell.execute_reply": "2024-07-30T16:32:34.123735Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.386897Z", - "iopub.status.busy": "2024-07-18T04:02:30.386555Z", - "iopub.status.idle": "2024-07-18T04:02:30.395101Z", - "shell.execute_reply": "2024-07-18T04:02:30.394657Z" + "iopub.execute_input": "2024-07-30T16:32:34.126267Z", + "iopub.status.busy": "2024-07-30T16:32:34.126096Z", + "iopub.status.idle": "2024-07-30T16:32:34.134798Z", + "shell.execute_reply": "2024-07-30T16:32:34.134311Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.397072Z", - "iopub.status.busy": "2024-07-18T04:02:30.396747Z", - "iopub.status.idle": "2024-07-18T04:02:30.401452Z", - "shell.execute_reply": "2024-07-18T04:02:30.401038Z" + "iopub.execute_input": "2024-07-30T16:32:34.136971Z", + "iopub.status.busy": "2024-07-30T16:32:34.136634Z", + "iopub.status.idle": "2024-07-30T16:32:34.141247Z", + "shell.execute_reply": "2024-07-30T16:32:34.140806Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.403464Z", - "iopub.status.busy": "2024-07-18T04:02:30.403158Z", - "iopub.status.idle": "2024-07-18T04:02:30.584668Z", - "shell.execute_reply": "2024-07-18T04:02:30.584074Z" + "iopub.execute_input": "2024-07-30T16:32:34.143531Z", + "iopub.status.busy": "2024-07-30T16:32:34.143189Z", + "iopub.status.idle": "2024-07-30T16:32:34.151658Z", + "shell.execute_reply": "2024-07-30T16:32:34.151032Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.586832Z", - "iopub.status.busy": "2024-07-18T04:02:30.586642Z", - "iopub.status.idle": "2024-07-18T04:02:30.955459Z", - "shell.execute_reply": "2024-07-18T04:02:30.954890Z" + "iopub.execute_input": "2024-07-30T16:32:34.153882Z", + "iopub.status.busy": "2024-07-30T16:32:34.153554Z", + "iopub.status.idle": "2024-07-30T16:32:34.532146Z", + "shell.execute_reply": "2024-07-30T16:32:34.531569Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.957670Z", - "iopub.status.busy": "2024-07-18T04:02:30.957486Z", - "iopub.status.idle": "2024-07-18T04:02:30.980305Z", - "shell.execute_reply": "2024-07-18T04:02:30.979879Z" + "iopub.execute_input": "2024-07-30T16:32:34.534572Z", + "iopub.status.busy": "2024-07-30T16:32:34.534215Z", + "iopub.status.idle": "2024-07-30T16:32:34.557586Z", + "shell.execute_reply": "2024-07-30T16:32:34.557126Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.982226Z", - "iopub.status.busy": "2024-07-18T04:02:30.982048Z", - "iopub.status.idle": "2024-07-18T04:02:30.993230Z", - "shell.execute_reply": "2024-07-18T04:02:30.992801Z" + "iopub.execute_input": "2024-07-30T16:32:34.559946Z", + "iopub.status.busy": "2024-07-30T16:32:34.559562Z", + "iopub.status.idle": "2024-07-30T16:32:34.574011Z", + "shell.execute_reply": "2024-07-30T16:32:34.573551Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:30.995299Z", - "iopub.status.busy": "2024-07-18T04:02:30.994966Z", - "iopub.status.idle": "2024-07-18T04:02:33.034709Z", - "shell.execute_reply": "2024-07-18T04:02:33.034140Z" + "iopub.execute_input": "2024-07-30T16:32:34.576252Z", + "iopub.status.busy": "2024-07-30T16:32:34.575906Z", + "iopub.status.idle": "2024-07-30T16:32:36.755631Z", + "shell.execute_reply": "2024-07-30T16:32:36.755030Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.037102Z", - "iopub.status.busy": "2024-07-18T04:02:33.036820Z", - "iopub.status.idle": "2024-07-18T04:02:33.057501Z", - "shell.execute_reply": "2024-07-18T04:02:33.057031Z" + "iopub.execute_input": "2024-07-30T16:32:36.758222Z", + "iopub.status.busy": "2024-07-30T16:32:36.757670Z", + "iopub.status.idle": "2024-07-30T16:32:36.781789Z", + "shell.execute_reply": "2024-07-30T16:32:36.781269Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.059378Z", - "iopub.status.busy": "2024-07-18T04:02:33.059207Z", - "iopub.status.idle": "2024-07-18T04:02:33.076924Z", - "shell.execute_reply": "2024-07-18T04:02:33.076333Z" + "iopub.execute_input": "2024-07-30T16:32:36.783987Z", + "iopub.status.busy": "2024-07-30T16:32:36.783638Z", + "iopub.status.idle": "2024-07-30T16:32:36.801674Z", + "shell.execute_reply": "2024-07-30T16:32:36.801212Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.079121Z", - "iopub.status.busy": "2024-07-18T04:02:33.078763Z", - "iopub.status.idle": "2024-07-18T04:02:33.093985Z", - "shell.execute_reply": "2024-07-18T04:02:33.093445Z" + "iopub.execute_input": "2024-07-30T16:32:36.803794Z", + "iopub.status.busy": "2024-07-30T16:32:36.803471Z", + "iopub.status.idle": "2024-07-30T16:32:36.818094Z", + "shell.execute_reply": "2024-07-30T16:32:36.817505Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.096034Z", - "iopub.status.busy": "2024-07-18T04:02:33.095855Z", - "iopub.status.idle": "2024-07-18T04:02:33.115172Z", - "shell.execute_reply": "2024-07-18T04:02:33.114557Z" + "iopub.execute_input": "2024-07-30T16:32:36.820298Z", + "iopub.status.busy": "2024-07-30T16:32:36.819881Z", + "iopub.status.idle": "2024-07-30T16:32:36.842978Z", + "shell.execute_reply": "2024-07-30T16:32:36.842357Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "015de6fc683f4baaa22cb8b403a13432", + "model_id": "724816767a8e4540b761b5447f273b35", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.117002Z", - "iopub.status.busy": "2024-07-18T04:02:33.116833Z", - "iopub.status.idle": "2024-07-18T04:02:33.132198Z", - "shell.execute_reply": "2024-07-18T04:02:33.131663Z" + "iopub.execute_input": "2024-07-30T16:32:36.845323Z", + "iopub.status.busy": "2024-07-30T16:32:36.844892Z", + "iopub.status.idle": "2024-07-30T16:32:36.859999Z", + "shell.execute_reply": "2024-07-30T16:32:36.859413Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.134209Z", - "iopub.status.busy": "2024-07-18T04:02:33.133882Z", - "iopub.status.idle": "2024-07-18T04:02:33.139556Z", - "shell.execute_reply": "2024-07-18T04:02:33.139102Z" + "iopub.execute_input": "2024-07-30T16:32:36.862276Z", + "iopub.status.busy": "2024-07-30T16:32:36.861910Z", + "iopub.status.idle": "2024-07-30T16:32:36.868061Z", + "shell.execute_reply": "2024-07-30T16:32:36.867583Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:33.141446Z", - "iopub.status.busy": "2024-07-18T04:02:33.141272Z", - "iopub.status.idle": "2024-07-18T04:02:33.159771Z", - "shell.execute_reply": "2024-07-18T04:02:33.159275Z" + "iopub.execute_input": "2024-07-30T16:32:36.870048Z", + "iopub.status.busy": "2024-07-30T16:32:36.869719Z", + "iopub.status.idle": "2024-07-30T16:32:36.889337Z", + "shell.execute_reply": "2024-07-30T16:32:36.888743Z" } }, "outputs": [ @@ -1447,65 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "015de6fc683f4baaa22cb8b403a13432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d23e2ab4630b440f9ef86ee9b8882048", - "IPY_MODEL_a2f48d81a080433fa84848011182083e", - "IPY_MODEL_3b449a3c7d1b4be4ad41c40c8b11a491" - ], - "layout": "IPY_MODEL_960116dab3344fc8a824d39c6d7c5b37", - "tabbable": null, - "tooltip": null - } - }, - "2818c73205bb431a93742b1f5090693d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3336c4c3c4d64feeb15f1975452e8cfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3b449a3c7d1b4be4ad41c40c8b11a491": { + "24e5bfd20a30498b87f31ca923bcaee0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1520,15 +1462,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c3f56f4b21a4b48bea56e97391218d3", + "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", "placeholder": "​", - "style": "IPY_MODEL_2818c73205bb431a93742b1f5090693d", + "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 13336.10 examples/s]" + "value": " 132/132 [00:00<00:00, 9927.17 examples/s]" } }, - "4c3f56f4b21a4b48bea56e97391218d3": { + "71845e53cfb34c7390d3c257eefae520": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1523,31 @@ "width": null } }, - "56926f83ffd946b2891a0c5b59d5efe7": { + "724816767a8e4540b761b5447f273b35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", + "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", + "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0" + ], + "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", + "tabbable": null, + "tooltip": null + } + }, + "a8759625ec944bbbac04db9cec87a317": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1634,7 +1600,7 @@ "width": null } }, - "763e5f2ae48c455985ff412e49431ad8": { + "c9a94c2705dc4c6888c5b9bcb593ec3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1687,7 +1653,64 @@ "width": null } }, - "839aa6fe30a94d79a49415b12a228e66": { + "d477eb478231404692d7fabdeafcfa6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", + "placeholder": "​", + "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "e1d8b31237d943e5a791e20c8cb36100": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee9027d19159444e8d46c66083251836": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f9c800ac49fd453fbbdcc88f12d35194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1705,7 +1728,33 @@ "text_color": null } }, - "960116dab3344fc8a824d39c6d7c5b37": { + "fa38f1de6f7849ee9f7cd7ad7a504555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "fe623ece577749be8a8ce449c28b2074": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1757,55 +1806,6 @@ "visibility": null, "width": null } - }, - "a2f48d81a080433fa84848011182083e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56926f83ffd946b2891a0c5b59d5efe7", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3336c4c3c4d64feeb15f1975452e8cfd", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d23e2ab4630b440f9ef86ee9b8882048": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_763e5f2ae48c455985ff412e49431ad8", - "placeholder": "​", - "style": "IPY_MODEL_839aa6fe30a94d79a49415b12a228e66", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index d88ccd2ad..dd27cd645 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:36.051413Z", - "iopub.status.busy": "2024-07-18T04:02:36.051244Z", - "iopub.status.idle": "2024-07-18T04:02:37.266874Z", - "shell.execute_reply": "2024-07-18T04:02:37.266234Z" + "iopub.execute_input": "2024-07-30T16:32:39.968392Z", + "iopub.status.busy": "2024-07-30T16:32:39.968219Z", + "iopub.status.idle": "2024-07-30T16:32:41.428731Z", + "shell.execute_reply": "2024-07-30T16:32:41.428142Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.269397Z", - "iopub.status.busy": "2024-07-18T04:02:37.269128Z", - "iopub.status.idle": "2024-07-18T04:02:37.272272Z", - "shell.execute_reply": "2024-07-18T04:02:37.271823Z" + "iopub.execute_input": "2024-07-30T16:32:41.431407Z", + "iopub.status.busy": "2024-07-30T16:32:41.430932Z", + "iopub.status.idle": "2024-07-30T16:32:41.433897Z", + "shell.execute_reply": "2024-07-30T16:32:41.433429Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.274522Z", - "iopub.status.busy": "2024-07-18T04:02:37.274188Z", - "iopub.status.idle": "2024-07-18T04:02:37.283099Z", - "shell.execute_reply": "2024-07-18T04:02:37.282643Z" + "iopub.execute_input": "2024-07-30T16:32:41.436056Z", + "iopub.status.busy": "2024-07-30T16:32:41.435693Z", + "iopub.status.idle": "2024-07-30T16:32:41.444683Z", + "shell.execute_reply": "2024-07-30T16:32:41.444228Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.285099Z", - "iopub.status.busy": "2024-07-18T04:02:37.284756Z", - "iopub.status.idle": "2024-07-18T04:02:37.289489Z", - "shell.execute_reply": "2024-07-18T04:02:37.289025Z" + "iopub.execute_input": "2024-07-30T16:32:41.446855Z", + "iopub.status.busy": "2024-07-30T16:32:41.446459Z", + "iopub.status.idle": "2024-07-30T16:32:41.451834Z", + "shell.execute_reply": "2024-07-30T16:32:41.451242Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.291764Z", - "iopub.status.busy": "2024-07-18T04:02:37.291422Z", - "iopub.status.idle": "2024-07-18T04:02:37.472524Z", - "shell.execute_reply": "2024-07-18T04:02:37.472008Z" + "iopub.execute_input": "2024-07-30T16:32:41.454128Z", + "iopub.status.busy": "2024-07-30T16:32:41.453789Z", + "iopub.status.idle": "2024-07-30T16:32:41.461841Z", + "shell.execute_reply": "2024-07-30T16:32:41.461254Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.474534Z", - "iopub.status.busy": "2024-07-18T04:02:37.474266Z", - "iopub.status.idle": "2024-07-18T04:02:37.844349Z", - "shell.execute_reply": "2024-07-18T04:02:37.843783Z" + "iopub.execute_input": "2024-07-30T16:32:41.463879Z", + "iopub.status.busy": "2024-07-30T16:32:41.463564Z", + "iopub.status.idle": "2024-07-30T16:32:41.841201Z", + "shell.execute_reply": "2024-07-30T16:32:41.840606Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.846655Z", - "iopub.status.busy": "2024-07-18T04:02:37.846287Z", - "iopub.status.idle": "2024-07-18T04:02:37.849124Z", - "shell.execute_reply": "2024-07-18T04:02:37.848661Z" + "iopub.execute_input": "2024-07-30T16:32:41.843720Z", + "iopub.status.busy": "2024-07-30T16:32:41.843358Z", + "iopub.status.idle": "2024-07-30T16:32:41.846353Z", + "shell.execute_reply": "2024-07-30T16:32:41.845761Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.851174Z", - "iopub.status.busy": "2024-07-18T04:02:37.850810Z", - "iopub.status.idle": "2024-07-18T04:02:37.884496Z", - "shell.execute_reply": "2024-07-18T04:02:37.884041Z" + "iopub.execute_input": "2024-07-30T16:32:41.848467Z", + "iopub.status.busy": "2024-07-30T16:32:41.848142Z", + "iopub.status.idle": "2024-07-30T16:32:41.882970Z", + "shell.execute_reply": "2024-07-30T16:32:41.882316Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:37.886502Z", - "iopub.status.busy": "2024-07-18T04:02:37.886186Z", - "iopub.status.idle": "2024-07-18T04:02:39.946867Z", - "shell.execute_reply": "2024-07-18T04:02:39.946264Z" + "iopub.execute_input": "2024-07-30T16:32:41.885593Z", + "iopub.status.busy": "2024-07-30T16:32:41.885224Z", + "iopub.status.idle": "2024-07-30T16:32:44.166781Z", + "shell.execute_reply": "2024-07-30T16:32:44.166160Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.949465Z", - "iopub.status.busy": "2024-07-18T04:02:39.948936Z", - "iopub.status.idle": "2024-07-18T04:02:39.967547Z", - "shell.execute_reply": "2024-07-18T04:02:39.967070Z" + "iopub.execute_input": "2024-07-30T16:32:44.169594Z", + "iopub.status.busy": "2024-07-30T16:32:44.168967Z", + "iopub.status.idle": "2024-07-30T16:32:44.189239Z", + "shell.execute_reply": "2024-07-30T16:32:44.188670Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.969591Z", - "iopub.status.busy": "2024-07-18T04:02:39.969258Z", - "iopub.status.idle": "2024-07-18T04:02:39.975832Z", - "shell.execute_reply": "2024-07-18T04:02:39.975379Z" + "iopub.execute_input": "2024-07-30T16:32:44.191720Z", + "iopub.status.busy": "2024-07-30T16:32:44.191313Z", + "iopub.status.idle": "2024-07-30T16:32:44.198409Z", + "shell.execute_reply": "2024-07-30T16:32:44.197866Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.977855Z", - "iopub.status.busy": "2024-07-18T04:02:39.977518Z", - "iopub.status.idle": "2024-07-18T04:02:39.983314Z", - "shell.execute_reply": "2024-07-18T04:02:39.982722Z" + "iopub.execute_input": "2024-07-30T16:32:44.200671Z", + "iopub.status.busy": "2024-07-30T16:32:44.200330Z", + "iopub.status.idle": "2024-07-30T16:32:44.206405Z", + "shell.execute_reply": "2024-07-30T16:32:44.205886Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.985271Z", - "iopub.status.busy": "2024-07-18T04:02:39.984975Z", - "iopub.status.idle": "2024-07-18T04:02:39.995497Z", - "shell.execute_reply": "2024-07-18T04:02:39.994935Z" + "iopub.execute_input": "2024-07-30T16:32:44.208540Z", + "iopub.status.busy": "2024-07-30T16:32:44.208187Z", + "iopub.status.idle": "2024-07-30T16:32:44.218769Z", + "shell.execute_reply": "2024-07-30T16:32:44.218292Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:39.997551Z", - "iopub.status.busy": "2024-07-18T04:02:39.997256Z", - "iopub.status.idle": "2024-07-18T04:02:40.006036Z", - "shell.execute_reply": "2024-07-18T04:02:40.005587Z" + "iopub.execute_input": "2024-07-30T16:32:44.221000Z", + "iopub.status.busy": "2024-07-30T16:32:44.220629Z", + "iopub.status.idle": "2024-07-30T16:32:44.230293Z", + "shell.execute_reply": "2024-07-30T16:32:44.229490Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.008141Z", - "iopub.status.busy": "2024-07-18T04:02:40.007823Z", - "iopub.status.idle": "2024-07-18T04:02:40.014540Z", - "shell.execute_reply": "2024-07-18T04:02:40.014100Z" + "iopub.execute_input": "2024-07-30T16:32:44.232925Z", + "iopub.status.busy": "2024-07-30T16:32:44.232545Z", + "iopub.status.idle": "2024-07-30T16:32:44.240606Z", + "shell.execute_reply": "2024-07-30T16:32:44.239954Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.016481Z", - "iopub.status.busy": "2024-07-18T04:02:40.016306Z", - "iopub.status.idle": "2024-07-18T04:02:40.025823Z", - "shell.execute_reply": "2024-07-18T04:02:40.025365Z" + "iopub.execute_input": "2024-07-30T16:32:44.242998Z", + "iopub.status.busy": "2024-07-30T16:32:44.242622Z", + "iopub.status.idle": "2024-07-30T16:32:44.252782Z", + "shell.execute_reply": "2024-07-30T16:32:44.252133Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:40.027917Z", - "iopub.status.busy": "2024-07-18T04:02:40.027593Z", - "iopub.status.idle": "2024-07-18T04:02:40.042624Z", - "shell.execute_reply": "2024-07-18T04:02:40.042164Z" + "iopub.execute_input": "2024-07-30T16:32:44.255163Z", + "iopub.status.busy": "2024-07-30T16:32:44.254809Z", + "iopub.status.idle": "2024-07-30T16:32:44.273057Z", + "shell.execute_reply": "2024-07-30T16:32:44.272419Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 050e10ef0..c0c41a388 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1328,7 +1328,7 @@

View report - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index ae9c3c784..4228b95b6 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:42.669719Z", - "iopub.status.busy": "2024-07-18T04:02:42.669546Z", - "iopub.status.idle": "2024-07-18T04:02:45.613067Z", - "shell.execute_reply": "2024-07-18T04:02:45.612422Z" + "iopub.execute_input": "2024-07-30T16:32:47.382198Z", + "iopub.status.busy": "2024-07-30T16:32:47.381761Z", + "iopub.status.idle": "2024-07-30T16:32:50.574056Z", + "shell.execute_reply": "2024-07-30T16:32:50.573420Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:45.615720Z", - "iopub.status.busy": "2024-07-18T04:02:45.615473Z", - "iopub.status.idle": "2024-07-18T04:02:45.619132Z", - "shell.execute_reply": "2024-07-18T04:02:45.618589Z" + "iopub.execute_input": "2024-07-30T16:32:50.576906Z", + "iopub.status.busy": "2024-07-30T16:32:50.576348Z", + "iopub.status.idle": "2024-07-30T16:32:50.580381Z", + "shell.execute_reply": "2024-07-30T16:32:50.579783Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:45.621224Z", - "iopub.status.busy": "2024-07-18T04:02:45.620918Z", - "iopub.status.idle": "2024-07-18T04:02:59.785458Z", - "shell.execute_reply": "2024-07-18T04:02:59.784890Z" + "iopub.execute_input": "2024-07-30T16:32:50.582599Z", + "iopub.status.busy": "2024-07-30T16:32:50.582229Z", + "iopub.status.idle": "2024-07-30T16:33:02.303436Z", + "shell.execute_reply": "2024-07-30T16:33:02.302939Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cfa127d2d15346cfaecddd1f501e10b5", + "model_id": "7cd770708ca5498492377d6a0fd76616", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84cc79fb8dfc4c8b9878470743351e05", + "model_id": "c4fa7fdeeb9446ddbf6516f8963fa52e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ff98a3cd12749eaa0f172837c5ee79f", + "model_id": "a6e2987ba28d48c28d884b33288562df", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e5e8b53b8e7c4bbe8e49fb581f733d5b", + "model_id": "29ade62a53ac448198f24b5900001b05", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "777602f50c1c472883ca1e491224fbf8", + "model_id": "926846a8c6954c46acf37f4dd63e7eb9", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8253b9a8b625435f97de457cdd8b57a4", + "model_id": "6aaa8d39274f4cfea54a66eb8516a06f", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84b77d23a1794224b69e4e95c7b2f83d", + "model_id": "96697881a93440babad369ae2e2fd4b8", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d781af0165714c0d9c2a1ea7cc0d7fab", + "model_id": "efe64e5c44d94c6bb0bed3ad6e844c33", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:59.787598Z", - "iopub.status.busy": "2024-07-18T04:02:59.787373Z", - "iopub.status.idle": "2024-07-18T04:02:59.791159Z", - "shell.execute_reply": "2024-07-18T04:02:59.790668Z" + "iopub.execute_input": "2024-07-30T16:33:02.305705Z", + "iopub.status.busy": "2024-07-30T16:33:02.305351Z", + "iopub.status.idle": "2024-07-30T16:33:02.309197Z", + "shell.execute_reply": "2024-07-30T16:33:02.308695Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:02:59.793186Z", - "iopub.status.busy": "2024-07-18T04:02:59.792855Z", - "iopub.status.idle": "2024-07-18T04:03:11.249028Z", - "shell.execute_reply": "2024-07-18T04:03:11.248480Z" + "iopub.execute_input": "2024-07-30T16:33:02.311412Z", + "iopub.status.busy": "2024-07-30T16:33:02.311066Z", + "iopub.status.idle": "2024-07-30T16:33:14.158148Z", + "shell.execute_reply": "2024-07-30T16:33:14.157496Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe3ea1a98f724dee92ced94c01b8f215", + "model_id": "c48d73b75d8543b7900f7e3a24c14ff0", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:11.251514Z", - "iopub.status.busy": "2024-07-18T04:03:11.251273Z", - "iopub.status.idle": "2024-07-18T04:03:29.163263Z", - "shell.execute_reply": "2024-07-18T04:03:29.162608Z" + "iopub.execute_input": "2024-07-30T16:33:14.161054Z", + "iopub.status.busy": "2024-07-30T16:33:14.160637Z", + "iopub.status.idle": "2024-07-30T16:33:33.040556Z", + "shell.execute_reply": "2024-07-30T16:33:33.039889Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.166273Z", - "iopub.status.busy": "2024-07-18T04:03:29.165751Z", - "iopub.status.idle": "2024-07-18T04:03:29.171052Z", - "shell.execute_reply": "2024-07-18T04:03:29.170476Z" + "iopub.execute_input": "2024-07-30T16:33:33.043526Z", + "iopub.status.busy": "2024-07-30T16:33:33.043163Z", + "iopub.status.idle": "2024-07-30T16:33:33.048147Z", + "shell.execute_reply": "2024-07-30T16:33:33.047576Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.173245Z", - "iopub.status.busy": "2024-07-18T04:03:29.172808Z", - "iopub.status.idle": "2024-07-18T04:03:29.176965Z", - "shell.execute_reply": "2024-07-18T04:03:29.176548Z" + "iopub.execute_input": "2024-07-30T16:33:33.050340Z", + "iopub.status.busy": "2024-07-30T16:33:33.049814Z", + "iopub.status.idle": "2024-07-30T16:33:33.054210Z", + "shell.execute_reply": "2024-07-30T16:33:33.053653Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.179181Z", - "iopub.status.busy": "2024-07-18T04:03:29.178764Z", - "iopub.status.idle": "2024-07-18T04:03:29.187660Z", - "shell.execute_reply": "2024-07-18T04:03:29.187210Z" + "iopub.execute_input": "2024-07-30T16:33:33.056104Z", + "iopub.status.busy": "2024-07-30T16:33:33.055933Z", + "iopub.status.idle": "2024-07-30T16:33:33.065120Z", + "shell.execute_reply": "2024-07-30T16:33:33.064640Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.189749Z", - "iopub.status.busy": "2024-07-18T04:03:29.189427Z", - "iopub.status.idle": "2024-07-18T04:03:29.217121Z", - "shell.execute_reply": "2024-07-18T04:03:29.216709Z" + "iopub.execute_input": "2024-07-30T16:33:33.067246Z", + "iopub.status.busy": "2024-07-30T16:33:33.066927Z", + "iopub.status.idle": "2024-07-30T16:33:33.096315Z", + "shell.execute_reply": "2024-07-30T16:33:33.095690Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:03:29.219128Z", - "iopub.status.busy": "2024-07-18T04:03:29.218782Z", - "iopub.status.idle": "2024-07-18T04:04:02.310457Z", - "shell.execute_reply": "2024-07-18T04:04:02.309852Z" + "iopub.execute_input": "2024-07-30T16:33:33.098981Z", + "iopub.status.busy": "2024-07-30T16:33:33.098550Z", + "iopub.status.idle": "2024-07-30T16:34:08.613598Z", + "shell.execute_reply": "2024-07-30T16:34:08.612987Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.886\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.221\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.688\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.922\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5f6a6c71bb6e4541a581f4f3310c0e87", + "model_id": "4800d17f20734ee3900349a11b2585dc", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8e7468aca074d3ea5c95769c1d98882", + "model_id": "21d92163462b4f67a981a814fcb48508", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.882\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.233\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.635\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.913\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f7547caf87ef4a6e9cdaf34ecfe7a776", + "model_id": "8af1aec52aef434b81a22b708073556f", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf776da7e61c45d184a4ccbaec7843e3", + "model_id": "19a5e3a37b304b559df2c5101035122f", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.455\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.559\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.031\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce1365ddf37d4fd386cefbbc32a2b2a4", + "model_id": "a2738be416ce480c95fff046962f1137", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6cc5976d20884235b934ecfaa7687b01", + "model_id": "6c2f40cf42cc413e8b1040c82a085028", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.312910Z", - "iopub.status.busy": "2024-07-18T04:04:02.312660Z", - "iopub.status.idle": "2024-07-18T04:04:02.327049Z", - "shell.execute_reply": "2024-07-18T04:04:02.326569Z" + "iopub.execute_input": "2024-07-30T16:34:08.616395Z", + "iopub.status.busy": "2024-07-30T16:34:08.615872Z", + "iopub.status.idle": "2024-07-30T16:34:08.631241Z", + "shell.execute_reply": "2024-07-30T16:34:08.630690Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.329066Z", - "iopub.status.busy": "2024-07-18T04:04:02.328768Z", - "iopub.status.idle": "2024-07-18T04:04:02.796841Z", - "shell.execute_reply": "2024-07-18T04:04:02.796286Z" + "iopub.execute_input": "2024-07-30T16:34:08.633394Z", + "iopub.status.busy": "2024-07-30T16:34:08.633052Z", + "iopub.status.idle": "2024-07-30T16:34:09.125544Z", + "shell.execute_reply": "2024-07-30T16:34:09.124944Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:04:02.799526Z", - "iopub.status.busy": "2024-07-18T04:04:02.799081Z", - "iopub.status.idle": "2024-07-18T04:05:39.908807Z", - "shell.execute_reply": "2024-07-18T04:05:39.908161Z" + "iopub.execute_input": "2024-07-30T16:34:09.128240Z", + "iopub.status.busy": "2024-07-30T16:34:09.127855Z", + "iopub.status.idle": "2024-07-30T16:35:49.585066Z", + "shell.execute_reply": "2024-07-30T16:35:49.584319Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "83f24aa593964f26bcdc4ca9d1acb2c1", + "model_id": "1e7ed9a8db3f47d499c32f8ab98695a3", "version_major": 2, "version_minor": 0 }, @@ -1120,7 +1120,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n", + "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 7714 issues found in the dataset.\n" ] @@ -1144,10 +1150,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:39.911277Z", - "iopub.status.busy": "2024-07-18T04:05:39.910826Z", - "iopub.status.idle": "2024-07-18T04:05:40.363119Z", - "shell.execute_reply": "2024-07-18T04:05:40.362545Z" + "iopub.execute_input": "2024-07-30T16:35:49.587886Z", + "iopub.status.busy": "2024-07-30T16:35:49.587314Z", + "iopub.status.idle": "2024-07-30T16:35:50.063963Z", + "shell.execute_reply": "2024-07-30T16:35:50.063372Z" } }, "outputs": [ @@ -1233,7 +1239,7 @@ "\n", "\n", "\n", - "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.5 \n", + "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1 \n", "------------------ low_information images ------------------\n", "\n", "Number of examples with this issue: 166\n", @@ -1293,10 +1299,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.365503Z", - "iopub.status.busy": "2024-07-18T04:05:40.365120Z", - "iopub.status.idle": "2024-07-18T04:05:40.427219Z", - "shell.execute_reply": "2024-07-18T04:05:40.426389Z" + "iopub.execute_input": "2024-07-30T16:35:50.066551Z", + "iopub.status.busy": "2024-07-30T16:35:50.065928Z", + "iopub.status.idle": "2024-07-30T16:35:50.128967Z", + "shell.execute_reply": "2024-07-30T16:35:50.128437Z" } }, "outputs": [ @@ -1400,10 +1406,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.429398Z", - "iopub.status.busy": "2024-07-18T04:05:40.428968Z", - "iopub.status.idle": "2024-07-18T04:05:40.437542Z", - "shell.execute_reply": "2024-07-18T04:05:40.437085Z" + "iopub.execute_input": "2024-07-30T16:35:50.131433Z", + "iopub.status.busy": "2024-07-30T16:35:50.130978Z", + "iopub.status.idle": "2024-07-30T16:35:50.141475Z", + "shell.execute_reply": "2024-07-30T16:35:50.140991Z" } }, "outputs": [ @@ -1533,10 +1539,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.439398Z", - "iopub.status.busy": "2024-07-18T04:05:40.439226Z", - "iopub.status.idle": "2024-07-18T04:05:40.443724Z", - "shell.execute_reply": "2024-07-18T04:05:40.443274Z" + "iopub.execute_input": "2024-07-30T16:35:50.143638Z", + "iopub.status.busy": "2024-07-30T16:35:50.143453Z", + "iopub.status.idle": "2024-07-30T16:35:50.148446Z", + "shell.execute_reply": "2024-07-30T16:35:50.147959Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1588,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.445775Z", - "iopub.status.busy": "2024-07-18T04:05:40.445449Z", - "iopub.status.idle": "2024-07-18T04:05:40.937446Z", - "shell.execute_reply": "2024-07-18T04:05:40.936903Z" + "iopub.execute_input": "2024-07-30T16:35:50.150589Z", + "iopub.status.busy": "2024-07-30T16:35:50.150254Z", + "iopub.status.idle": "2024-07-30T16:35:50.655702Z", + "shell.execute_reply": "2024-07-30T16:35:50.655117Z" } }, "outputs": [ @@ -1620,10 +1626,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.939591Z", - "iopub.status.busy": "2024-07-18T04:05:40.939250Z", - "iopub.status.idle": "2024-07-18T04:05:40.947145Z", - "shell.execute_reply": "2024-07-18T04:05:40.946558Z" + "iopub.execute_input": "2024-07-30T16:35:50.658180Z", + "iopub.status.busy": "2024-07-30T16:35:50.657804Z", + "iopub.status.idle": "2024-07-30T16:35:50.666671Z", + "shell.execute_reply": "2024-07-30T16:35:50.666179Z" } }, "outputs": [ @@ -1790,10 +1796,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.949355Z", - "iopub.status.busy": "2024-07-18T04:05:40.949021Z", - "iopub.status.idle": "2024-07-18T04:05:40.956013Z", - "shell.execute_reply": "2024-07-18T04:05:40.955573Z" + "iopub.execute_input": "2024-07-30T16:35:50.668871Z", + "iopub.status.busy": "2024-07-30T16:35:50.668531Z", + "iopub.status.idle": "2024-07-30T16:35:50.675953Z", + "shell.execute_reply": "2024-07-30T16:35:50.675476Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1875,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:40.957854Z", - "iopub.status.busy": "2024-07-18T04:05:40.957563Z", - "iopub.status.idle": "2024-07-18T04:05:41.700271Z", - "shell.execute_reply": "2024-07-18T04:05:41.699684Z" + "iopub.execute_input": "2024-07-30T16:35:50.677971Z", + "iopub.status.busy": "2024-07-30T16:35:50.677635Z", + "iopub.status.idle": "2024-07-30T16:35:51.461209Z", + "shell.execute_reply": "2024-07-30T16:35:51.460595Z" } }, "outputs": [ @@ -1909,10 +1915,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.702563Z", - "iopub.status.busy": "2024-07-18T04:05:41.702218Z", - "iopub.status.idle": "2024-07-18T04:05:41.717782Z", - "shell.execute_reply": "2024-07-18T04:05:41.717223Z" + "iopub.execute_input": "2024-07-30T16:35:51.463335Z", + "iopub.status.busy": "2024-07-30T16:35:51.463157Z", + "iopub.status.idle": "2024-07-30T16:35:51.478468Z", + "shell.execute_reply": "2024-07-30T16:35:51.477939Z" } }, "outputs": [ @@ -2069,10 +2075,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.720064Z", - "iopub.status.busy": "2024-07-18T04:05:41.719741Z", - "iopub.status.idle": "2024-07-18T04:05:41.725292Z", - "shell.execute_reply": "2024-07-18T04:05:41.724826Z" + "iopub.execute_input": "2024-07-30T16:35:51.480643Z", + "iopub.status.busy": "2024-07-30T16:35:51.480298Z", + "iopub.status.idle": "2024-07-30T16:35:51.486080Z", + "shell.execute_reply": "2024-07-30T16:35:51.485499Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2123,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:41.727255Z", - "iopub.status.busy": "2024-07-18T04:05:41.726947Z", - "iopub.status.idle": "2024-07-18T04:05:42.108095Z", - "shell.execute_reply": "2024-07-18T04:05:42.107541Z" + "iopub.execute_input": "2024-07-30T16:35:51.488104Z", + "iopub.status.busy": "2024-07-30T16:35:51.487778Z", + "iopub.status.idle": "2024-07-30T16:35:51.924919Z", + "shell.execute_reply": "2024-07-30T16:35:51.924107Z" } }, "outputs": [ @@ -2202,10 +2208,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.110467Z", - "iopub.status.busy": "2024-07-18T04:05:42.110297Z", - "iopub.status.idle": "2024-07-18T04:05:42.119483Z", - "shell.execute_reply": "2024-07-18T04:05:42.118929Z" + "iopub.execute_input": "2024-07-30T16:35:51.927416Z", + "iopub.status.busy": "2024-07-30T16:35:51.927225Z", + "iopub.status.idle": "2024-07-30T16:35:51.936102Z", + "shell.execute_reply": "2024-07-30T16:35:51.935657Z" } }, "outputs": [ @@ -2230,47 +2236,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2333,10 +2339,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.121840Z", - "iopub.status.busy": "2024-07-18T04:05:42.121675Z", - "iopub.status.idle": "2024-07-18T04:05:42.127275Z", - "shell.execute_reply": "2024-07-18T04:05:42.126719Z" + "iopub.execute_input": "2024-07-30T16:35:51.938423Z", + "iopub.status.busy": "2024-07-30T16:35:51.938102Z", + "iopub.status.idle": "2024-07-30T16:35:51.942887Z", + "shell.execute_reply": "2024-07-30T16:35:51.942471Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2379,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.129465Z", - "iopub.status.busy": "2024-07-18T04:05:42.129300Z", - "iopub.status.idle": "2024-07-18T04:05:42.307685Z", - "shell.execute_reply": "2024-07-18T04:05:42.307222Z" + "iopub.execute_input": "2024-07-30T16:35:51.944959Z", + "iopub.status.busy": "2024-07-30T16:35:51.944785Z", + "iopub.status.idle": "2024-07-30T16:35:52.122597Z", + "shell.execute_reply": "2024-07-30T16:35:52.121954Z" } }, "outputs": [ @@ -2418,10 +2424,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.310041Z", - "iopub.status.busy": "2024-07-18T04:05:42.309876Z", - "iopub.status.idle": "2024-07-18T04:05:42.317464Z", - "shell.execute_reply": "2024-07-18T04:05:42.317044Z" + "iopub.execute_input": "2024-07-30T16:35:52.124950Z", + "iopub.status.busy": "2024-07-30T16:35:52.124756Z", + "iopub.status.idle": "2024-07-30T16:35:52.135215Z", + "shell.execute_reply": "2024-07-30T16:35:52.134594Z" } }, "outputs": [ @@ -2507,10 +2513,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.319520Z", - "iopub.status.busy": "2024-07-18T04:05:42.319216Z", - "iopub.status.idle": "2024-07-18T04:05:42.488104Z", - "shell.execute_reply": "2024-07-18T04:05:42.487720Z" + "iopub.execute_input": "2024-07-30T16:35:52.137816Z", + "iopub.status.busy": "2024-07-30T16:35:52.137602Z", + "iopub.status.idle": "2024-07-30T16:35:52.311705Z", + "shell.execute_reply": "2024-07-30T16:35:52.311080Z" } }, "outputs": [ @@ -2550,10 +2556,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:42.490200Z", - "iopub.status.busy": "2024-07-18T04:05:42.489883Z", - "iopub.status.idle": "2024-07-18T04:05:42.494879Z", - "shell.execute_reply": "2024-07-18T04:05:42.494374Z" + "iopub.execute_input": "2024-07-30T16:35:52.314392Z", + "iopub.status.busy": "2024-07-30T16:35:52.313905Z", + "iopub.status.idle": "2024-07-30T16:35:52.318429Z", + "shell.execute_reply": "2024-07-30T16:35:52.317890Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2596,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "025a1c24bb1742378b7e895247166823": { + "0013256c6393414d897e747fbb692b2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2649,88 @@ "width": null } }, - "03829977c9ce4072b8e6be2abf9c81d1": { + "004fcea71628418685555fb760dec429": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6826340ac4a7479cb63a98919d60e1b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcd9b7afd17f44798d2064cf5a3862de", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "0119a979303348feaf5374a2e7f3b418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7d9dcc168074809a9f461109ae607c0", + "placeholder": "​", + "style": "IPY_MODEL_e4613e030b794d219b1926a1e5b67f63", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" + } + }, + "01972cf3b8f94fab866c986e21f7f91f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "035a0174785c4ed3bb69dcff3281ef55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06d84d61f0474ccabad6fb12d0aa215b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,7 +2783,25 @@ "width": null } }, - "067d787b02cd4f76a7ad8e7caaa198dd": { + "08618be7a9234af1a5348de326d6418b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0af0baad7c99404cbce2f5872c14531d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,7 +2854,7 @@ "width": null } }, - "06e5b497708943179a656ffcb7a430e9": { + "0b1ef64e0ea844c4a0efed4b089ecc5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2764,15 +2869,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff6c65a3e52748a9a9493f576321c597", + "layout": "IPY_MODEL_3123f857e00343f4bd9235d4bafc70bf", "placeholder": "​", - "style": "IPY_MODEL_43b68727ad8347a984bc34cf61b6c807", + "style": "IPY_MODEL_166f4e2b87384d8f94272fd75e017ce1", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "100%" + } + }, + "0ca0287b646c497e8e812ef207ee400f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a502ea89a10b4d3f8b810850b097c4c8", + "placeholder": "​", + "style": "IPY_MODEL_106a78e01b744c7e853e027a36ffe806", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1209.26it/s]" + } + }, + "0ccaafe3fa3d4248819d0a351c6afed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60e6b313ac404eb49b45082ef785605e", + "placeholder": "​", + "style": "IPY_MODEL_60cd2aa7a8ab4eadbcc00cf551cf13f2", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "0747ae38449040eaa67d2ed970cd5a19": { + "0db4b028aefb4687827337f7e184db65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2941,30 @@ "text_color": null } }, - "084065e8d6e54783a4303357eca88b12": { + "0f32fa1658214a03a0e7b355268571f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9c9176e7a0b4f09b751df8cc4e0666a", + "placeholder": "​", + "style": "IPY_MODEL_480213636d724918930198d0a10688df", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0f477d12bbbc409caed9b4d8a9bcc695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +3017,7 @@ "width": null } }, - "0850e868cb924126a2f32e6fd18a0743": { + "106a78e01b744c7e853e027a36ffe806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2861,7 +3035,30 @@ "text_color": null } }, - "0acca4d1618941bcac99b7038a2c0d3c": { + "116f6fc2329645d68a83663b5feb94ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_67da9cc8d08944909f459041ea4e201e", + "placeholder": "​", + "style": "IPY_MODEL_be62105b70444309b42629557d23dd31", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "15aa61db4cc44bdc991db5521f2fa425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2914,7 +3111,77 @@ "width": null } }, - "0edf2b48b11e4a86915c9187956e4679": { + "166f4e2b87384d8f94272fd75e017ce1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16ff670713eb4f70a0cc1728a34d5452": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f477d12bbbc409caed9b4d8a9bcc695", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d8bc20fd5c14f0b8fe44ed387e39400", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "184ad9317d854ba1a1ced110910cca10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d8be42381424e8386712e589902ea33", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d3edf2e39d944c09f3fbef854866461", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "194f679dc6e14a978e8925bb038e3793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2967,10 +3234,60 @@ "width": null } }, - "109ee4ce035b4358b7b3c6db518278b8": { - "model_module": "@jupyter-widgets/base", + "19a5e3a37b304b559df2c5101035122f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_798557df3a2647b7986d02dc545587b8", + "IPY_MODEL_1ebb404b2871496886508c42693e8007", + "IPY_MODEL_4247f90a7e514d59a156a29ddfc979bc" + ], + "layout": "IPY_MODEL_7b0284c026ce41ef999e0bad78664f3a", + "tabbable": null, + "tooltip": null + } + }, + "1d157e6477da483192d99d6ea6dc4738": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50def53d0bfc4f10b462dc84ac9d3884", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ee495dc542a4878b7b0589a8865264f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1e1a87a8a45e4b57adf13faea5793824": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3020,130 +3337,73 @@ "width": null } }, - "11f1bfd4003047d5a2d688fd05dbfec5": { + "1e7ed9a8db3f47d499c32f8ab98695a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa0b775e48fa44f1a13511452bc20105", - "placeholder": "​", - "style": "IPY_MODEL_5bee064f7e584882bfaab2c78499c5c0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f32fa1658214a03a0e7b355268571f9", + "IPY_MODEL_fabe89de1f3f41f493f2490c661f6d02", + "IPY_MODEL_5868a22f8e0e413da7cdf7bc7c8f6baf" + ], + "layout": "IPY_MODEL_82a91f795cc0496d884607edf4c43169", "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "13469b245a7849b881b3d6c14cd95835": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "150eec890513431c81f66688c32bbc6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1581d2e68d7847108100e4a2b1f305b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "1587aaca6e464ecda853c67dcb3a281c": { + "1ebb404b2871496886508c42693e8007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adf412eb248c4f4fb9faef6c838f7aeb", - "placeholder": "​", - "style": "IPY_MODEL_94ddb00bb597452babe24c7d7822cb8a", + "layout": "IPY_MODEL_4718f5d7ff96463c8fc9e38bcb1d4f84", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57c02383588c4f38bf7a1f4d6e862131", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:06<00:00, 8817.84 examples/s]" + "value": 40.0 } }, - "15f53d41e91b426491e177d9300adb8f": { + "1ee495dc542a4878b7b0589a8865264f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b6fdaf81a0e41419555be8c52d508ed", - "placeholder": "​", - "style": "IPY_MODEL_7e59bedd02fd4768bb6dead5e34e5fa8", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1644281bdd9d45ae84dafdfa9b69beb7": { + "1ff7f1a37c2a45dcb7598e70cf6710d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3161,7 +3421,7 @@ "text_color": null } }, - "16715418ff784f57a5c29074b9ea7029": { + "213272b1b45445c7b3f2b35602fa31b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3214,41 +3474,7 @@ "width": null } }, - "173da0035c2643149768ea84c79d308c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1998eff58e854928a588ea6f29ea7801": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1fe45791ce3a4396915402cc63026c86": { + "21c7629462754933abb55f66fa8af51e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3301,7 +3527,31 @@ "width": null } }, - "205091d3502f413c917b57d35126bb95": { + "21d92163462b4f67a981a814fcb48508": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_365106e243354786ba305456bcfe36bb", + "IPY_MODEL_50051443ed9e43948d3f683823437ef4", + "IPY_MODEL_97665d87bb634843b13c86ccc743aab1" + ], + "layout": "IPY_MODEL_d9fce56a4501415dbadef0b6597c3c59", + "tabbable": null, + "tooltip": null + } + }, + "2276743b098540579a44bab387084257": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3354,7 +3604,7 @@ "width": null } }, - "20a77e64b07f4fdb8cbb2d169fc358bc": { + "22a0669e75de415dac70a25c5054d25b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3407,51 +3657,7 @@ "width": null } }, - "20b34901440345ca9ec063e5e02dba7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acac1db8cce54dc9a77b6b7e8495e062", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_340ae5071beb49d599ddbad4c6196ee1", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "215bfd67d9674bb59f77787a88426436": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "21ee233f699541d78b4c166f75263571": { + "22b2d39a70b04bfeb7943490bd911b90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3504,7 +3710,7 @@ "width": null } }, - "2490647e9e444afea9456e2607fabf83": { + "23c83cfb62484a5aa0c6f3daa481f042": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3557,143 +3763,110 @@ "width": null } }, - "254d4a9aeb4b4b55abccd1e20ac55fc0": { + "24bcebdd6f9f41bb84c60f2b915efbc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aee010ee679c45a6b71fd152c945c80c", - "placeholder": "​", - "style": "IPY_MODEL_7764019fa11d43f39c2e1c60bf728582", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "269aeaa9341f4f97a704b8b36e768e01": { + "24daedc2073f4af4960d8c11c761dfdc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_025a1c24bb1742378b7e895247166823", - "placeholder": "​", - "style": "IPY_MODEL_821f19b478024465b3abc71264fc248f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.06it/s]" - } - }, - "26f7f5bb3feb4b209e3f81a4c1843e33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "274041d096514b7b94c33fe5dab1cb25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03829977c9ce4072b8e6be2abf9c81d1", - "placeholder": "​", - "style": "IPY_MODEL_0850e868cb924126a2f32e6fd18a0743", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "bar_color": null, + "description_width": "" } }, - "2ca67e4598ed4ef1bf1090dd216d6eee": { - "model_module": "@jupyter-widgets/controls", + "274b94c3c9414616afaa8d88d50ed39a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbeabefbeaa64d04a806c1856623bc1c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c7bc6372bc4f480ca03f7a39c8b9ca60", - "tabbable": null, - "tooltip": null, - "value": 4.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f52558eef5a4b28a94aafab88303832": { + "28a88184c039419c865f50a0132f936e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0acca4d1618941bcac99b7038a2c0d3c", - "placeholder": "​", - "style": "IPY_MODEL_150eec890513431c81f66688c32bbc6c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.87it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f8c307c65924ee584e38d06585146ef": { + "29ad3993f94346419af35928193d2eb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3746,33 +3919,31 @@ "width": null } }, - "301547355b334e17a9b1c044d70ec23b": { + "29ade62a53ac448198f24b5900001b05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21ee233f699541d78b4c166f75263571", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a2c944eb1e104ff1937ecfaae2893cfd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e2c7cda7d9b4df4a04a6753ab931f09", + "IPY_MODEL_4ba04e6400bf4886bd6115b9e964954f", + "IPY_MODEL_585a8b54491d4c409958f8e777013c6d" + ], + "layout": "IPY_MODEL_274b94c3c9414616afaa8d88d50ed39a", "tabbable": null, - "tooltip": null, - "value": 29515.0 + "tooltip": null } }, - "30b0eb3dc72a4f1b9697396466fae05a": { + "2ab5cadb30864d4bb423984588e08dc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3825,7 +3996,7 @@ "width": null } }, - "336eeae1ed694f72bc2769cf4f87f020": { + "2c4d2a0d6acb4e3890230f3c2c9bfe68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3878,23 +4049,25 @@ "width": null } }, - "340ae5071beb49d599ddbad4c6196ee1": { + "2d6fb7b4b561449a9dee9ff41aedb47f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3557e96d08c141d6bf425f8b00e3b421": { + "2e0328d5e45b46aab2d236490c3e32c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3912,7 +4085,7 @@ "text_color": null } }, - "35a8bc22117549fb80c22a49630cdf6d": { + "2e2c7cda7d9b4df4a04a6753ab931f09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3927,31 +4100,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_815a04a1f0884b2c83b2190ca1006c89", + "layout": "IPY_MODEL_554c4f5cf7704bc59bac43290853c47f", "placeholder": "​", - "style": "IPY_MODEL_173da0035c2643149768ea84c79d308c", + "style": "IPY_MODEL_ca407d230f484390a47362031adf31b7", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.64MB/s]" + "value": "Downloading data: 100%" + } + }, + "2ea002ba5ef6449d8d22840ba751df3c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3701815c9598434184badd22e50840c2": { + "303be7344e754dc0b81cc4362585ad42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "382afbc9ffd4441e9f689c27fbeb411d": { + "3123f857e00343f4bd9235d4bafc70bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4004,30 +4232,25 @@ "width": null } }, - "38866248116c466c87d72da1e9250e42": { + "35038d2d13684a2a91ad7feed779f096": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_382afbc9ffd4441e9f689c27fbeb411d", - "placeholder": "​", - "style": "IPY_MODEL_9e478de77c4e4c76aa96aa4b7595836f", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a234f95cf424e59b72989dcf062fd9e": { + "365106e243354786ba305456bcfe36bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4042,15 +4265,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a56bbbdacce14f949c4fcb81f9764b4e", + "layout": "IPY_MODEL_c47e19aac35c46eb9cad874bb2fde728", "placeholder": "​", - "style": "IPY_MODEL_7d71c9468e114abaa87e0fe1fb97a4e2", + "style": "IPY_MODEL_35038d2d13684a2a91ad7feed779f096", "tabbable": null, "tooltip": null, "value": "100%" } }, - "3a46d8405e3b4ef6ab3050c545de700f": { + "3704b910152b45dc924bb624c0ee95f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4065,15 +4288,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e53edb735bc049319576eca58e1bdbfe", + "layout": "IPY_MODEL_605c839bcc484635bec417281648e724", "placeholder": "​", - "style": "IPY_MODEL_5e1780cff25847e4a05d1502dfde56cd", + "style": "IPY_MODEL_0db4b028aefb4687827337f7e184db65", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 4.83k/4.83k [00:00<00:00, 594kB/s]" } }, - "3a6de9ee60874688addbc81ffee23089": { + "3b6ea79aef284f04a18098981d12f5e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4126,68 +4349,16 @@ "width": null } }, - "3a7f6b08a8134701aaa1be5a8ca7d7b0": { - "model_module": "@jupyter-widgets/controls", + "418123f93e554dba92a9656f5d7cee79": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ed1b8d025ba74579ba0469452c32b071", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fa54871983cc4f06913c94c644a0a55c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "3dfcdb1321bf4eed84bd120b118452f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3046446726f4433b4970c929c396889", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f2ff897ffb24e3992ffcbfed9738f79", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3ecf932245c4495887d4997a395a3d24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4231,59 +4402,56 @@ "width": null } }, - "3f1c062ac1a64a30b28682f4b271dbd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "43049d6b1ad7404f94287db340c9aeb3": { + "4247f90a7e514d59a156a29ddfc979bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9eaf779387934026b193e48e9bb55a86", + "placeholder": "​", + "style": "IPY_MODEL_2e0328d5e45b46aab2d236490c3e32c0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.22it/s]" } }, - "43b68727ad8347a984bc34cf61b6c807": { + "43ffe5059e7e475ebc29e46493f6aaa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b578fa4f2c45411b949fd41b642899ec", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54d3aef6e7d041718cf3822974717221", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "4491a7f34d5f47d4a183a6ece2f9f802": { + "465e03a22e1f4b66b9a21c2e90039525": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4336,7 +4504,33 @@ "width": null } }, - "459091439ddb4761bb7ea9c603198f52": { + "46b2604d41d1439898a0f49c0ba53f78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_884c1f18b9ab4af49db7098fea18ef3d", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9078ad04df284aceade5e9637028e264", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "4718f5d7ff96463c8fc9e38bcb1d4f84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4389,7 +4583,7 @@ "width": null } }, - "45bc614770ee446da94cd6e5e3b53e84": { + "4800d17f20734ee3900349a11b2585dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4404,32 +4598,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_50d424b65d9b4492a12ca099d54fc1f4", - "IPY_MODEL_2ca67e4598ed4ef1bf1090dd216d6eee", - "IPY_MODEL_691c9e9681af4665b83d5a5f4a60f0a0" + "IPY_MODEL_0ccaafe3fa3d4248819d0a351c6afed7", + "IPY_MODEL_cc7c41fca7e14c8384b2ce49dac60516", + "IPY_MODEL_83644b7829034008a0cf8f0a63589d9c" ], - "layout": "IPY_MODEL_b387ae2ecb0d4fa284927960c0cc983c", + "layout": "IPY_MODEL_06d84d61f0474ccabad6fb12d0aa215b", "tabbable": null, "tooltip": null } }, - "45e4cdedfd994fa68ebf275fc19c2b0e": { + "480213636d724918930198d0a10688df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "48f43503f3ab4823b8198939eddc905f": { + "4a320115b97a42bd89dd7903073750fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4482,7 +4678,7 @@ "width": null } }, - "4a03705dc29f4e0393edb513f1d529d6": { + "4a6f02046de3424183282c1ef1a1321c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4535,7 +4731,67 @@ "width": null } }, - "4e90596536664b249241df80a239815d": { + "4ba04e6400bf4886bd6115b9e964954f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21c7629462754933abb55f66fa8af51e", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_035a0174785c4ed3bb69dcff3281ef55", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "4be2bfe6a47d40969d0226111c98ad2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c1a2e32c7124951b219b1f250f77e8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f219139576c49c8b25a132eec1c1644": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4588,62 +4844,33 @@ "width": null } }, - "4f29d1b13e6546fdbce0fd55462b8638": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f2ff897ffb24e3992ffcbfed9738f79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "50d424b65d9b4492a12ca099d54fc1f4": { + "50051443ed9e43948d3f683823437ef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_777a3f5a37e44119b42044aa9ab7731f", - "placeholder": "​", - "style": "IPY_MODEL_215bfd67d9674bb59f77787a88426436", + "layout": "IPY_MODEL_886c2364549848efa14fa9cf9f8ebde8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c1a2e32c7124951b219b1f250f77e8e", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": 40.0 } }, - "52b7ca925a40402cbfd35b32fcb21eab": { + "50def53d0bfc4f10b462dc84ac9d3884": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4696,7 +4923,23 @@ "width": null } }, - "52c407789081499caa67c8e86db71772": { + "54d3aef6e7d041718cf3822974717221": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54f8cf66c9fb4adfb6053467fa1dd06a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4749,7 +4992,7 @@ "width": null } }, - "532ca127e03f4a56be8b301c45c8c80a": { + "554c4f5cf7704bc59bac43290853c47f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4802,152 +5045,124 @@ "width": null } }, - "5bee064f7e584882bfaab2c78499c5c0": { + "56e6cb6825cc46a2918ad113792fcfad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_418123f93e554dba92a9656f5d7cee79", + "placeholder": "​", + "style": "IPY_MODEL_973ecb943cf94facbeaff08a43b11a14", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 791kB/s]" } }, - "5e1780cff25847e4a05d1502dfde56cd": { + "57c02383588c4f38bf7a1f4d6e862131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5f530614d3ef42ec8689f11c454b4e38": { - "model_module": "@jupyter-widgets/base", + "57f0147d0b40481487ead645778ad6f0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f6a6c71bb6e4541a581f4f3310c0e87": { + "57fdb406a0104c008712f455671416ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d144627d3cf144deb4f911cb6eb89f6d", - "IPY_MODEL_3dfcdb1321bf4eed84bd120b118452f8", - "IPY_MODEL_c73ffe3904c64a1d828761cd31677884" - ], - "layout": "IPY_MODEL_4491a7f34d5f47d4a183a6ece2f9f802", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "646ee45635c84ed2ba977b9283df8062": { + "585a8b54491d4c409958f8e777013c6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70fd4c0942f949219503830958a45c03", + "placeholder": "​", + "style": "IPY_MODEL_a5bb522450e449f9b7e10fcb83ff9537", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" } }, - "65118b91fbf545009ceabf5f2215d7c8": { + "5868a22f8e0e413da7cdf7bc7c8f6baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_804696d71f5c428aa77920387c9f13ab", + "placeholder": "​", + "style": "IPY_MODEL_80dbd77206334fa4a9255057329a0f43", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:39<00:00, 1541.50it/s]" } }, - "66fa9f08729d4807b8b59132e63080ae": { + "5a01deaf41c841cab934b678df22a7e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4963,40 +5178,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd1982fee53e41bf8c0bc0f8e25d67cd", - "max": 60000.0, + "layout": "IPY_MODEL_54f8cf66c9fb4adfb6053467fa1dd06a", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f1c062ac1a64a30b28682f4b271dbd7", + "style": "IPY_MODEL_c5138f4ab850429ba23c48fd5efae242", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 4833.0 } }, - "691c9e9681af4665b83d5a5f4a60f0a0": { + "5d8bc20fd5c14f0b8fe44ed387e39400": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e90596536664b249241df80a239815d", - "placeholder": "​", - "style": "IPY_MODEL_bda9f12523974ede82995084618a87bf", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1327.21it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b6fdaf81a0e41419555be8c52d508ed": { + "605c839bcc484635bec417281648e724": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5049,80 +5257,7 @@ "width": null } }, - "6b957d1d9fbe463c98ae7c1b63332490": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e89df2d6769046448524cb6ff6d00f02", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8080183439e1485986625a2e6cdd9f17", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "6cc5976d20884235b934ecfaa7687b01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef0edb3177c64147a8b62f9aca23f99c", - "IPY_MODEL_bf56c0b8f25e4c3d87a253bfad346268", - "IPY_MODEL_2f52558eef5a4b28a94aafab88303832" - ], - "layout": "IPY_MODEL_16715418ff784f57a5c29074b9ea7029", - "tabbable": null, - "tooltip": null - } - }, - "6cc9e9f5b5f744df91fff7ff46d05237": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78e51bbf4d5a427b8fb703c563744189", - "placeholder": "​", - "style": "IPY_MODEL_6e4f7d2fbb4c4adc99a94e235b9692ab", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.63it/s]" - } - }, - "6e4f7d2fbb4c4adc99a94e235b9692ab": { + "60cd2aa7a8ab4eadbcc00cf551cf13f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5140,31 +5275,7 @@ "text_color": null } }, - "6ff98a3cd12749eaa0f172837c5ee79f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a46d8405e3b4ef6ab3050c545de700f", - "IPY_MODEL_76c4b91db604478992590636065720b1", - "IPY_MODEL_87b028711ed941708ca088dffd622180" - ], - "layout": "IPY_MODEL_1fe45791ce3a4396915402cc63026c86", - "tabbable": null, - "tooltip": null - } - }, - "73dcccd22b3a4471aade8f07ecf349dd": { + "60e6b313ac404eb49b45082ef785605e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5217,51 +5328,23 @@ "width": null } }, - "744303da18fc4002b5679084cf39dc3d": { + "610a71ef770945809dc9f2e4b94664af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76c4b91db604478992590636065720b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_532ca127e03f4a56be8b301c45c8c80a", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef3c0c626f614525935057f6640fc612", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 + "bar_color": null, + "description_width": "" } }, - "7764019fa11d43f39c2e1c60bf728582": { + "61751669aa9c4b51923ed3a7deea7f56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5279,31 +5362,25 @@ "text_color": null } }, - "777602f50c1c472883ca1e491224fbf8": { + "61d0c2efb0824d70ac0138f650ac65ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdd378c59c5640b6b2e1303e4ed8ed50", - "IPY_MODEL_6b957d1d9fbe463c98ae7c1b63332490", - "IPY_MODEL_ca6152cc3c464dafa50d135c867685fd" - ], - "layout": "IPY_MODEL_fb66250e6795458bbd8d5ce9a9f1a7e2", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "777a3f5a37e44119b42044aa9ab7731f": { + "6443147e64204784b6b79779c4b0ece4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5356,7 +5433,30 @@ "width": null } }, - "78e51bbf4d5a427b8fb703c563744189": { + "6538276c3913471e82d12b7dfb5e849f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d68dfef9ba6d482e8e9c7a037d2c1ef7", + "placeholder": "​", + "style": "IPY_MODEL_ab22b295e4a042c898986f757b7461df", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 71.3MB/s]" + } + }, + "66018dbdfa8e4496b534e3d80379136d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5409,25 +5509,7 @@ "width": null } }, - "79885906947f4f9b85f31ff7b0a3799c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a10d96061fb4d3b9074e70ce47a0724": { + "67da9cc8d08944909f459041ea4e201e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5480,7 +5562,30 @@ "width": null } }, - "7b234ae1ceb8427797f558c31ebf01b7": { + "67df8310ec724197b5a903618210990a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ab5cadb30864d4bb423984588e08dc5", + "placeholder": "​", + "style": "IPY_MODEL_1ff7f1a37c2a45dcb7598e70cf6710d0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 51.58it/s]" + } + }, + "6826340ac4a7479cb63a98919d60e1b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5533,85 +5638,94 @@ "width": null } }, - "7b38470950be4ec5a60ad0cdb0fd2a04": { + "6aaa8d39274f4cfea54a66eb8516a06f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8a212a49ff945ff9d75a27df6f47bc6", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_65118b91fbf545009ceabf5f2215d7c8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f6229a7aab1d42ca8805f534935617d9", + "IPY_MODEL_f4570a2a6a834672b816a3c3c92674d9", + "IPY_MODEL_56e6cb6825cc46a2918ad113792fcfad" + ], + "layout": "IPY_MODEL_2276743b098540579a44bab387084257", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "7be2bd76bb3e43ab8575ac5f3be11436": { + "6b304bb9a46443e0bf010d5cb11b422e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c4d2a0d6acb4e3890230f3c2c9bfe68", + "placeholder": "​", + "style": "IPY_MODEL_61d0c2efb0824d70ac0138f650ac65ef", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "7d71c9468e114abaa87e0fe1fb97a4e2": { + "6c2f40cf42cc413e8b1040c82a085028": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8e2ad07a3434005b3e28de5674a34fc", + "IPY_MODEL_43ffe5059e7e475ebc29e46493f6aaa2", + "IPY_MODEL_82514eeb7db2422c95cbe913e49e59dd" + ], + "layout": "IPY_MODEL_4f219139576c49c8b25a132eec1c1644", + "tabbable": null, + "tooltip": null } }, - "7e59bedd02fd4768bb6dead5e34e5fa8": { + "6d3edf2e39d944c09f3fbef854866461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7e9be49f9e06426c88bb867124e54bec": { + "70c567e5ed4d420aa7f58a9bfe7d98f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5664,41 +5778,7 @@ "width": null } }, - "8080183439e1485986625a2e6cdd9f17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "80b7c84a674f4cc192d7ddb206ce9587": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "815a04a1f0884b2c83b2190ca1006c89": { + "70fd4c0942f949219503830958a45c03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5751,99 +5831,78 @@ "width": null } }, - "821f19b478024465b3abc71264fc248f": { - "model_module": "@jupyter-widgets/controls", + "728c63d0a7f54119aa080aaa6102d38f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8253b9a8b625435f97de457cdd8b57a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf9ca4c1eea74b6b8b5419ea32af2860", - "IPY_MODEL_833c3cf7167748a1be43b6b01af86798", - "IPY_MODEL_9d2f2202a4704fe9be836c005564d6db" - ], - "layout": "IPY_MODEL_52c407789081499caa67c8e86db71772", - "tabbable": null, - "tooltip": null - } - }, - "833c3cf7167748a1be43b6b01af86798": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2490647e9e444afea9456e2607fabf83", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1998eff58e854928a588ea6f29ea7801", - "tabbable": null, - "tooltip": null, - "value": 5148.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "83f24aa593964f26bcdc4ca9d1acb2c1": { + "74c23aa172ae42798ea320ca991b942f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_15f53d41e91b426491e177d9300adb8f", - "IPY_MODEL_84a6f8168b8b4b32b8aa43c974fb7038", - "IPY_MODEL_915f55e3b8e649c4b23552001f14d789" - ], - "layout": "IPY_MODEL_d75259c27bf347e3b718bbaedcdcfc45", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "84a6f8168b8b4b32b8aa43c974fb7038": { + "78e8cecb5a6641d5a9de69eb25af212d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5859,65 +5918,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9c1aff3dbc841dba1d6b9fa102c61e3", - "max": 60000.0, + "layout": "IPY_MODEL_66018dbdfa8e4496b534e3d80379136d", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f41c25f12ded4df5b01f2c30b33c91d8", + "style": "IPY_MODEL_610a71ef770945809dc9f2e4b94664af", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "84b77d23a1794224b69e4e95c7b2f83d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_274041d096514b7b94c33fe5dab1cb25", - "IPY_MODEL_66fa9f08729d4807b8b59132e63080ae", - "IPY_MODEL_1587aaca6e464ecda853c67dcb3a281c" - ], - "layout": "IPY_MODEL_f74fc0c6579e4010bf9d4fb96aa94b47", - "tabbable": null, - "tooltip": null + "value": 4422102.0 } }, - "84cc79fb8dfc4c8b9878470743351e05": { + "798557df3a2647b7986d02dc545587b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11f1bfd4003047d5a2d688fd05dbfec5", - "IPY_MODEL_20b34901440345ca9ec063e5e02dba7f", - "IPY_MODEL_ae9ac75e621744d397dc5c30167711d4" - ], - "layout": "IPY_MODEL_109ee4ce035b4358b7b3c6db518278b8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c64517cd44d84c8293b4115971217abf", + "placeholder": "​", + "style": "IPY_MODEL_f36e7eec2ef6494ea5dfe75f34bb946e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "85e0e62e6c744fde907b2153c35ae0ab": { + "7a2680bb83ca418e9bc7dd0bd7182858": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5933,40 +5967,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3ecf932245c4495887d4997a395a3d24", - "max": 40.0, + "layout": "IPY_MODEL_0af0baad7c99404cbce2f5872c14531d", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_45e4cdedfd994fa68ebf275fc19c2b0e", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "87b028711ed941708ca088dffd622180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e9be49f9e06426c88bb867124e54bec", - "placeholder": "​", - "style": "IPY_MODEL_9df5140f2d2d4e47a9ad9ce486454084", + "style": "IPY_MODEL_57fdb406a0104c008712f455671416ae", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 108MB/s]" + "value": 4.0 } }, - "898adcdaafa64a2d9fdb33f1732faa46": { + "7b0284c026ce41ef999e0bad78664f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6019,33 +6030,54 @@ "width": null } }, - "8b275dda5f4447a2abe3023d2fa37d8a": { + "7cd770708ca5498492377d6a0fd76616": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0119a979303348feaf5374a2e7f3b418", + "IPY_MODEL_5a01deaf41c841cab934b678df22a7e6", + "IPY_MODEL_3704b910152b45dc924bb624c0ee95f3" + ], + "layout": "IPY_MODEL_465e03a22e1f4b66b9a21c2e90039525", + "tabbable": null, + "tooltip": null + } + }, + "7d944b6142fa4b42a31040ba023cc921": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_de11909af9d94f1fbd44447d6a2da336", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_646ee45635c84ed2ba977b9283df8062", + "layout": "IPY_MODEL_8839fda3f07946ab99f1eff02138bef9", + "placeholder": "​", + "style": "IPY_MODEL_4be2bfe6a47d40969d0226111c98ad2c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:07<00:00, 8586.20 examples/s]" } }, - "8bfe63527ba741e48abbc03d2590020c": { + "7de7c4771e83468099e7dd5e21e3dc6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,43 +6130,7 @@ "width": null } }, - "8cac2b7b3ff94ad1a1599233df5e0376": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "91109e43749e484abb12f5549945289f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "915f55e3b8e649c4b23552001f14d789": { + "7f7fd12e202d45a4909d8a8ceaeebfa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6149,15 +6145,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4090ea7594b4008a1b1522b65b3b3d5", + "layout": "IPY_MODEL_3b6ea79aef284f04a18098981d12f5e7", "placeholder": "​", - "style": "IPY_MODEL_91109e43749e484abb12f5549945289f", + "style": "IPY_MODEL_eebb5bc624d34a7bb328172559a2334c", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:37<00:00, 1569.06it/s]" + "value": " 10000/10000 [00:01<00:00, 8543.66 examples/s]" } }, - "918570fe365c40839c1c0e55002a0ff6": { + "804696d71f5c428aa77920387c9f13ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6210,30 +6206,25 @@ "width": null } }, - "932c2344bdae4b169b685b28dd30c460": { + "806b07de0bfe4dc2b704114688fd1694": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f530614d3ef42ec8689f11c454b4e38", - "placeholder": "​", - "style": "IPY_MODEL_26f7f5bb3feb4b209e3f81a4c1843e33", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.46it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "94ddb00bb597452babe24c7d7822cb8a": { + "80dbd77206334fa4a9255057329a0f43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6251,25 +6242,30 @@ "text_color": null } }, - "9529efe107064cfeb676e7525d67a9ee": { + "82514eeb7db2422c95cbe913e49e59dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6443147e64204784b6b79779c4b0ece4", + "placeholder": "​", + "style": "IPY_MODEL_8a1fee4cdac341fd9b445fbcbffb8655", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.37it/s]" } }, - "9750ce6b87c449c689354e9ece51264e": { + "82a91f795cc0496d884607edf4c43169": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6322,7 +6318,30 @@ "width": null } }, - "99316e1c2ae44ccd9f09d41218cc069c": { + "83644b7829034008a0cf8f0a63589d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7de7c4771e83468099e7dd5e21e3dc6d", + "placeholder": "​", + "style": "IPY_MODEL_08618be7a9234af1a5348de326d6418b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 52.85it/s]" + } + }, + "83dffa805ce741a0bea9dd9b781586ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6375,7 +6394,7 @@ "width": null } }, - "9ba57d4a84d14735b80d998edbf99790": { + "840737321da24bfe8003332a0accc1cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6393,7 +6412,7 @@ "text_color": null } }, - "9d2f2202a4704fe9be836c005564d6db": { + "8555634c504d4027997abd8cfba7db7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6403,72 +6422,20 @@ "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6e97e358cd34f368251e09e1825d4b2", - "placeholder": "​", - "style": "IPY_MODEL_79885906947f4f9b85f31ff7b0a3799c", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 851kB/s]" - } - }, - "9df5140f2d2d4e47a9ad9ce486454084": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e478de77c4e4c76aa96aa4b7595836f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2c944eb1e104ff1937ecfaae2893cfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d9413cabdaf84f7c8e9a6c68232b43ae", + "placeholder": "​", + "style": "IPY_MODEL_c72bb5b65a6a48329cdc5dd5ef15e73d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6952.76 examples/s]" } }, - "a56bbbdacce14f949c4fcb81f9764b4e": { + "8839fda3f07946ab99f1eff02138bef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6521,7 +6488,7 @@ "width": null } }, - "a800ce83aee241cf976b279f20c603cc": { + "884c1f18b9ab4af49db7098fea18ef3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6574,33 +6541,7 @@ "width": null } }, - "a81d54c54031418ca8350d17d1b7e068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48f43503f3ab4823b8198939eddc905f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f29d1b13e6546fdbce0fd55462b8638", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "aa0b775e48fa44f1a13511452bc20105": { + "886c2364549848efa14fa9cf9f8ebde8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6653,7 +6594,216 @@ "width": null } }, - "acac1db8cce54dc9a77b6b7e8495e062": { + "8a1fee4cdac341fd9b445fbcbffb8655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8af1aec52aef434b81a22b708073556f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b1ef64e0ea844c4a0efed4b089ecc5e", + "IPY_MODEL_aa62616f2a584678acaa6072d7e59db6", + "IPY_MODEL_67df8310ec724197b5a903618210990a" + ], + "layout": "IPY_MODEL_4a320115b97a42bd89dd7903073750fa", + "tabbable": null, + "tooltip": null + } + }, + "9078ad04df284aceade5e9637028e264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "926846a8c6954c46acf37f4dd63e7eb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_116f6fc2329645d68a83663b5feb94ce", + "IPY_MODEL_78e8cecb5a6641d5a9de69eb25af212d", + "IPY_MODEL_6538276c3913471e82d12b7dfb5e849f" + ], + "layout": "IPY_MODEL_22b2d39a70b04bfeb7943490bd911b90", + "tabbable": null, + "tooltip": null + } + }, + "92906e8f1e224908beeb119e4f788514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83dffa805ce741a0bea9dd9b781586ec", + "placeholder": "​", + "style": "IPY_MODEL_faaac1dac8fa4eccb56fbb10b45393c3", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 111MB/s]" + } + }, + "96697881a93440babad369ae2e2fd4b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c8b3aec713be46d29ce76b2b35b3db44", + "IPY_MODEL_1d157e6477da483192d99d6ea6dc4738", + "IPY_MODEL_7d944b6142fa4b42a31040ba023cc921" + ], + "layout": "IPY_MODEL_9e2827b7c35b4ceea2534454dcbc9f13", + "tabbable": null, + "tooltip": null + } + }, + "973ecb943cf94facbeaff08a43b11a14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "97665d87bb634843b13c86ccc743aab1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0013256c6393414d897e747fbb692b2e", + "placeholder": "​", + "style": "IPY_MODEL_303be7344e754dc0b81cc4362585ad42", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.52it/s]" + } + }, + "9776abbe72d44baf86b75b8e6e2ec747": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a6f02046de3424183282c1ef1a1321c", + "placeholder": "​", + "style": "IPY_MODEL_806b07de0bfe4dc2b704114688fd1694", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "97cb96d8ca67417bb98eb22b83b67f3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d8be42381424e8386712e589902ea33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6706,7 +6856,7 @@ "width": null } }, - "adf412eb248c4f4fb9faef6c838f7aeb": { + "9e2827b7c35b4ceea2534454dcbc9f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6759,30 +6909,25 @@ "width": null } }, - "ae9ac75e621744d397dc5c30167711d4": { + "9e819f5dcbd74990a4ed32e6c6f49d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b234ae1ceb8427797f558c31ebf01b7", - "placeholder": "​", - "style": "IPY_MODEL_43049d6b1ad7404f94287db340c9aeb3", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.49MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aee010ee679c45a6b71fd152c945c80c": { + "9eaf779387934026b193e48e9bb55a86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6828,40 +6973,14 @@ "object_position": null, "order": null, "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "af3b2a90dd80499684e447a5b6241215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73dcccd22b3a4471aade8f07ecf349dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7be2bd76bb3e43ab8575ac5f3be11436", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b387ae2ecb0d4fa284927960c0cc983c": { + "a13807ee4fd84d609c078799a117b6c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6914,7 +7033,31 @@ "width": null } }, - "b9c1aff3dbc841dba1d6b9fa102c61e3": { + "a2738be416ce480c95fff046962f1137": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9776abbe72d44baf86b75b8e6e2ec747", + "IPY_MODEL_184ad9317d854ba1a1ced110910cca10", + "IPY_MODEL_d5b6ab4287134b9b8225c58b595314d0" + ], + "layout": "IPY_MODEL_2ea002ba5ef6449d8d22840ba751df3c", + "tabbable": null, + "tooltip": null + } + }, + "a28b02ad590c40019d88dd42a2c3e05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6967,74 +7110,7 @@ "width": null } }, - "bda9f12523974ede82995084618a87bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "beae343f221d429f9b051d96e0a519a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_336eeae1ed694f72bc2769cf4f87f020", - "placeholder": "​", - "style": "IPY_MODEL_fc65da9484aa4360a3e81eeeaed7602a", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "bf56c0b8f25e4c3d87a253bfad346268": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1b203fa45024375baf53c4d636634be", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3701815c9598434184badd22e50840c2", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "c23f3fd913e041ff9dc793bab0c07461": { + "a502ea89a10b4d3f8b810850b097c4c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7087,7 +7163,7 @@ "width": null } }, - "c250df04e89441f3b2fb0415786aed4d": { + "a5bb522450e449f9b7e10fcb83ff9537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7105,92 +7181,31 @@ "text_color": null } }, - "c4d9581d15d44748bfde9b08de4c39b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52b7ca925a40402cbfd35b32fcb21eab", - "placeholder": "​", - "style": "IPY_MODEL_80b7c84a674f4cc192d7ddb206ce9587", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8795.27 examples/s]" - } - }, - "c63438660f6e44098700b6a7883e3079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4369c3fd52e483db5b9a6e8e352cb07", - "placeholder": "​", - "style": "IPY_MODEL_13469b245a7849b881b3d6c14cd95835", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "c73ffe3904c64a1d828761cd31677884": { + "a6e2987ba28d48c28d884b33288562df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a10d96061fb4d3b9074e70ce47a0724", - "placeholder": "​", - "style": "IPY_MODEL_9ba57d4a84d14735b80d998edbf99790", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac29494915a144d3970c7c69d41b68c3", + "IPY_MODEL_46b2604d41d1439898a0f49c0ba53f78", + "IPY_MODEL_92906e8f1e224908beeb119e4f788514" + ], + "layout": "IPY_MODEL_a28b02ad590c40019d88dd42a2c3e05a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.71it/s]" - } - }, - "c7bc6372bc4f480ca03f7a39c8b9ca60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "c8a212a49ff945ff9d75a27df6f47bc6": { + "a9da43a6101a4854b4273cf805b61e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7243,77 +7258,7 @@ "width": null } }, - "ca6152cc3c464dafa50d135c867685fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a6de9ee60874688addbc81ffee23089", - "placeholder": "​", - "style": "IPY_MODEL_cf06b386d62f4c379f61ecfc6a69b6ee", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 80.1MB/s]" - } - }, - "cd84ca093c2d4c798af38ceb71e1eb00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_067d787b02cd4f76a7ad8e7caaa198dd", - "placeholder": "​", - "style": "IPY_MODEL_3557e96d08c141d6bf425f8b00e3b421", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 619kB/s]" - } - }, - "ce1365ddf37d4fd386cefbbc32a2b2a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da3f69b98a094123abd8fb2b604ce6f2", - "IPY_MODEL_8b275dda5f4447a2abe3023d2fa37d8a", - "IPY_MODEL_269aeaa9341f4f97a704b8b36e768e01" - ], - "layout": "IPY_MODEL_4a03705dc29f4e0393edb513f1d529d6", - "tabbable": null, - "tooltip": null - } - }, - "cf06b386d62f4c379f61ecfc6a69b6ee": { + "aa4c4e45414a4a46a86dfc2a94bebb72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7331,78 +7276,51 @@ "text_color": null } }, - "cf776da7e61c45d184a4ccbaec7843e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_254d4a9aeb4b4b55abccd1e20ac55fc0", - "IPY_MODEL_a81d54c54031418ca8350d17d1b7e068", - "IPY_MODEL_d8be8930fccb4d9ab103eb45e9769d67" - ], - "layout": "IPY_MODEL_20a77e64b07f4fdb8cbb2d169fc358bc", - "tabbable": null, - "tooltip": null - } - }, - "cf9ca4c1eea74b6b8b5419ea32af2860": { + "aa62616f2a584678acaa6072d7e59db6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a800ce83aee241cf976b279f20c603cc", - "placeholder": "​", - "style": "IPY_MODEL_c250df04e89441f3b2fb0415786aed4d", + "layout": "IPY_MODEL_15aa61db4cc44bdc991db5521f2fa425", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24bcebdd6f9f41bb84c60f2b915efbc6", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "cfa127d2d15346cfaecddd1f501e10b5": { + "ab22b295e4a042c898986f757b7461df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_beae343f221d429f9b051d96e0a519a3", - "IPY_MODEL_7b38470950be4ec5a60ad0cdb0fd2a04", - "IPY_MODEL_cd84ca093c2d4c798af38ceb71e1eb00" - ], - "layout": "IPY_MODEL_9750ce6b87c449c689354e9ece51264e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d144627d3cf144deb4f911cb6eb89f6d": { + "ac29494915a144d3970c7c69d41b68c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7417,15 +7335,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_084065e8d6e54783a4303357eca88b12", + "layout": "IPY_MODEL_213272b1b45445c7b3f2b35602fa31b9", "placeholder": "​", - "style": "IPY_MODEL_1644281bdd9d45ae84dafdfa9b69beb7", + "style": "IPY_MODEL_61751669aa9c4b51923ed3a7deea7f56", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "d1b203fa45024375baf53c4d636634be": { + "b578fa4f2c45411b949fd41b642899ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7478,60 +7396,66 @@ "width": null } }, - "d4369c3fd52e483db5b9a6e8e352cb07": { - "model_module": "@jupyter-widgets/base", + "bc3ee82f278d4b7facddd3df9e43d736": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_29ad3993f94346419af35928193d2eb8", + "placeholder": "​", + "style": "IPY_MODEL_9e819f5dcbd74990a4ed32e6c6f49d6e", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "be62105b70444309b42629557d23dd31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c15afcf9ca54456fadfde7d364d41e12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d75259c27bf347e3b718bbaedcdcfc45": { + "c47e19aac35c46eb9cad874bb2fde728": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7584,7 +7508,7 @@ "width": null } }, - "d781af0165714c0d9c2a1ea7cc0d7fab": { + "c48d73b75d8543b7900f7e3a24c14ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7599,39 +7523,56 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_38866248116c466c87d72da1e9250e42", - "IPY_MODEL_f68b49bb0e314f3a807ad354dbb11551", - "IPY_MODEL_c4d9581d15d44748bfde9b08de4c39b1" + "IPY_MODEL_bc3ee82f278d4b7facddd3df9e43d736", + "IPY_MODEL_004fcea71628418685555fb760dec429", + "IPY_MODEL_8555634c504d4027997abd8cfba7db7f" ], - "layout": "IPY_MODEL_99316e1c2ae44ccd9f09d41218cc069c", + "layout": "IPY_MODEL_f3268349f66e4fca99547204d4fed8cf", "tabbable": null, "tooltip": null } }, - "d8be8930fccb4d9ab103eb45e9769d67": { + "c4fa7fdeeb9446ddbf6516f8963fa52e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c23f3fd913e041ff9dc793bab0c07461", - "placeholder": "​", - "style": "IPY_MODEL_9529efe107064cfeb676e7525d67a9ee", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b304bb9a46443e0bf010d5cb11b422e", + "IPY_MODEL_cc170bcc85274d65b3c110def1444c5a", + "IPY_MODEL_e4168627ec534009a964921f659ea6bb" + ], + "layout": "IPY_MODEL_fd82af84285840158e600b4d0204c84e", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.04it/s]" + "tooltip": null + } + }, + "c5138f4ab850429ba23c48fd5efae242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "da3f69b98a094123abd8fb2b604ce6f2": { + "c5cd2207d2c8442b87534fd93bb1dd5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7646,15 +7587,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_205091d3502f413c917b57d35126bb95", + "layout": "IPY_MODEL_1e1a87a8a45e4b57adf13faea5793824", "placeholder": "​", - "style": "IPY_MODEL_744303da18fc4002b5679084cf39dc3d", + "style": "IPY_MODEL_caba801044f146d4838a5424c49f290c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "dbeabefbeaa64d04a806c1856623bc1c": { + "c64517cd44d84c8293b4115971217abf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7707,7 +7648,25 @@ "width": null } }, - "de11909af9d94f1fbd44447d6a2da336": { + "c72bb5b65a6a48329cdc5dd5ef15e73d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c72eded270c04594b9cd5ab865ec18ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7760,7 +7719,30 @@ "width": null } }, - "df156437b1d54844a302425c91315733": { + "c8b3aec713be46d29ce76b2b35b3db44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_194f679dc6e14a978e8925bb038e3793", + "placeholder": "​", + "style": "IPY_MODEL_28a88184c039419c865f50a0132f936e", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "c9c9176e7a0b4f09b751df8cc4e0666a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7813,99 +7795,95 @@ "width": null } }, - "df5e7e28414e4159ba337ce29cc336fd": { + "ca407d230f484390a47362031adf31b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e277307688f74bec8f2c8ea22a9e10cd": { + "caba801044f146d4838a5424c49f290c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cc170bcc85274d65b3c110def1444c5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_898adcdaafa64a2d9fdb33f1732faa46", - "placeholder": "​", - "style": "IPY_MODEL_8cac2b7b3ff94ad1a1599233df5e0376", + "layout": "IPY_MODEL_e5b12b259dcd4360b125dc57fbb0fca2", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24daedc2073f4af4960d8c11c761dfdc", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 8845.0 } }, - "e3046446726f4433b4970c929c396889": { - "model_module": "@jupyter-widgets/base", + "cc7c41fca7e14c8384b2ce49dac60516": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_728c63d0a7f54119aa080aaa6102d38f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97cb96d8ca67417bb98eb22b83b67f3d", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "e53edb735bc049319576eca58e1bdbfe": { + "cf74cfcebf544df0b3274fc9e22c1e9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7958,31 +7936,7 @@ "width": null } }, - "e5e8b53b8e7c4bbe8e49fb581f733d5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c63438660f6e44098700b6a7883e3079", - "IPY_MODEL_301547355b334e17a9b1c044d70ec23b", - "IPY_MODEL_35a8bc22117549fb80c22a49630cdf6d" - ], - "layout": "IPY_MODEL_e9e74804836e4ac9a24bdf2bca2116d4", - "tabbable": null, - "tooltip": null - } - }, - "e6e97e358cd34f368251e09e1825d4b2": { + "d1dd8bf5204a4dccaa8161ea728fbc07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8035,7 +7989,30 @@ "width": null } }, - "e85de978a90644fc9de2f534a52cb11e": { + "d5b6ab4287134b9b8225c58b595314d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22a0669e75de415dac70a25c5054d25b", + "placeholder": "​", + "style": "IPY_MODEL_aa4c4e45414a4a46a86dfc2a94bebb72", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.87it/s]" + } + }, + "d677f0e9aa7d41e8851465e678a739d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8050,15 +8027,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f8c307c65924ee584e38d06585146ef", + "layout": "IPY_MODEL_a9da43a6101a4854b4273cf805b61e2f", "placeholder": "​", - "style": "IPY_MODEL_0747ae38449040eaa67d2ed970cd5a19", + "style": "IPY_MODEL_74c23aa172ae42798ea320ca991b942f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7505.06 examples/s]" + "value": "Generating test split: 100%" } }, - "e89df2d6769046448524cb6ff6d00f02": { + "d68dfef9ba6d482e8e9c7a037d2c1ef7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8111,31 +8088,30 @@ "width": null } }, - "e8e7468aca074d3ea5c95769c1d98882": { + "d8e2ad07a3434005b3e28de5674a34fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a234f95cf424e59b72989dcf062fd9e", - "IPY_MODEL_af3b2a90dd80499684e447a5b6241215", - "IPY_MODEL_6cc9e9f5b5f744df91fff7ff46d05237" - ], - "layout": "IPY_MODEL_8bfe63527ba741e48abbc03d2590020c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23c83cfb62484a5aa0c6f3daa481f042", + "placeholder": "​", + "style": "IPY_MODEL_2d6fb7b4b561449a9dee9ff41aedb47f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "e9e74804836e4ac9a24bdf2bca2116d4": { + "d9413cabdaf84f7c8e9a6c68232b43ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8188,25 +8164,7 @@ "width": null } }, - "ecf93b1a7f0e47d092301d0a21751f60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ed1b8d025ba74579ba0469452c32b071": { + "d9fce56a4501415dbadef0b6597c3c59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8259,30 +8217,7 @@ "width": null } }, - "ef0edb3177c64147a8b62f9aca23f99c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df156437b1d54844a302425c91315733", - "placeholder": "​", - "style": "IPY_MODEL_ecf93b1a7f0e47d092301d0a21751f60", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ef3c0c626f614525935057f6640fc612": { + "dcd9b7afd17f44798d2064cf5a3862de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8298,7 +8233,7 @@ "description_width": "" } }, - "f4090ea7594b4008a1b1522b65b3b3d5": { + "e1158e5544334ef2b34dff2aa52d6bf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8351,49 +8286,72 @@ "width": null } }, - "f41c25f12ded4df5b01f2c30b33c91d8": { + "e1894c9537a6499eb9bfed91c77fb518": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5cd2207d2c8442b87534fd93bb1dd5e", + "IPY_MODEL_7a2680bb83ca418e9bc7dd0bd7182858", + "IPY_MODEL_0ca0287b646c497e8e812ef207ee400f" + ], + "layout": "IPY_MODEL_70c567e5ed4d420aa7f58a9bfe7d98f6", + "tabbable": null, + "tooltip": null } }, - "f68b49bb0e314f3a807ad354dbb11551": { + "e4168627ec534009a964921f659ea6bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_459091439ddb4761bb7ea9c603198f52", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_df5e7e28414e4159ba337ce29cc336fd", + "layout": "IPY_MODEL_e1158e5544334ef2b34dff2aa52d6bf0", + "placeholder": "​", + "style": "IPY_MODEL_840737321da24bfe8003332a0accc1cb", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 8.85k/8.85k [00:00<00:00, 1.41MB/s]" + } + }, + "e4613e030b794d219b1926a1e5b67f63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f74fc0c6579e4010bf9d4fb96aa94b47": { + "e5b12b259dcd4360b125dc57fbb0fca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8446,7 +8404,25 @@ "width": null } }, - "f7547caf87ef4a6e9cdaf34ecfe7a776": { + "eebb5bc624d34a7bb328172559a2334c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "efe64e5c44d94c6bb0bed3ad6e844c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8461,32 +8437,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e277307688f74bec8f2c8ea22a9e10cd", - "IPY_MODEL_85e0e62e6c744fde907b2153c35ae0ab", - "IPY_MODEL_932c2344bdae4b169b685b28dd30c460" + "IPY_MODEL_d677f0e9aa7d41e8851465e678a739d6", + "IPY_MODEL_16ff670713eb4f70a0cc1728a34d5452", + "IPY_MODEL_7f7fd12e202d45a4909d8a8ceaeebfa9" ], - "layout": "IPY_MODEL_0edf2b48b11e4a86915c9187956e4679", + "layout": "IPY_MODEL_cf74cfcebf544df0b3274fc9e22c1e9c", "tabbable": null, "tooltip": null } }, - "fa54871983cc4f06913c94c644a0a55c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fb66250e6795458bbd8d5ce9a9f1a7e2": { + "f3268349f66e4fca99547204d4fed8cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8539,7 +8499,7 @@ "width": null } }, - "fc65da9484aa4360a3e81eeeaed7602a": { + "f36e7eec2ef6494ea5dfe75f34bb946e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8557,7 +8517,56 @@ "text_color": null } }, - "fd1982fee53e41bf8c0bc0f8e25d67cd": { + "f4570a2a6a834672b816a3c3c92674d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1dd8bf5204a4dccaa8161ea728fbc07", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57f0147d0b40481487ead645778ad6f0", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "f6229a7aab1d42ca8805f534935617d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a13807ee4fd84d609c078799a117b6c5", + "placeholder": "​", + "style": "IPY_MODEL_c15afcf9ca54456fadfde7d364d41e12", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "f7d9dcc168074809a9f461109ae607c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8610,54 +8619,51 @@ "width": null } }, - "fdd378c59c5640b6b2e1303e4ed8ed50": { + "faaac1dac8fa4eccb56fbb10b45393c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_918570fe365c40839c1c0e55002a0ff6", - "placeholder": "​", - "style": "IPY_MODEL_1581d2e68d7847108100e4a2b1f305b1", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fe3ea1a98f724dee92ced94c01b8f215": { + "fabe89de1f3f41f493f2490c661f6d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06e5b497708943179a656ffcb7a430e9", - "IPY_MODEL_3a7f6b08a8134701aaa1be5a8ca7d7b0", - "IPY_MODEL_e85de978a90644fc9de2f534a52cb11e" - ], - "layout": "IPY_MODEL_30b0eb3dc72a4f1b9697396466fae05a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c72eded270c04594b9cd5ab865ec18ee", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01972cf3b8f94fab866c986e21f7f91f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "ff6c65a3e52748a9a9493f576321c597": { + "fd82af84285840158e600b4d0204c84e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4d38880f7..a6ed7ee61 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:46.059528Z", - "iopub.status.busy": "2024-07-18T04:05:46.059357Z", - "iopub.status.idle": "2024-07-18T04:05:47.184703Z", - "shell.execute_reply": "2024-07-18T04:05:47.184146Z" + "iopub.execute_input": "2024-07-30T16:35:56.051172Z", + "iopub.status.busy": "2024-07-30T16:35:56.050992Z", + "iopub.status.idle": "2024-07-30T16:35:57.510285Z", + "shell.execute_reply": "2024-07-30T16:35:57.509737Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.187068Z", - "iopub.status.busy": "2024-07-18T04:05:47.186797Z", - "iopub.status.idle": "2024-07-18T04:05:47.205431Z", - "shell.execute_reply": "2024-07-18T04:05:47.204882Z" + "iopub.execute_input": "2024-07-30T16:35:57.512868Z", + "iopub.status.busy": "2024-07-30T16:35:57.512386Z", + "iopub.status.idle": "2024-07-30T16:35:57.530631Z", + "shell.execute_reply": "2024-07-30T16:35:57.530189Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.207698Z", - "iopub.status.busy": "2024-07-18T04:05:47.207321Z", - "iopub.status.idle": "2024-07-18T04:05:47.233000Z", - "shell.execute_reply": "2024-07-18T04:05:47.232462Z" + "iopub.execute_input": "2024-07-30T16:35:57.532740Z", + "iopub.status.busy": "2024-07-30T16:35:57.532388Z", + "iopub.status.idle": "2024-07-30T16:35:57.570290Z", + "shell.execute_reply": "2024-07-30T16:35:57.569781Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.235099Z", - "iopub.status.busy": "2024-07-18T04:05:47.234749Z", - "iopub.status.idle": "2024-07-18T04:05:47.238601Z", - "shell.execute_reply": "2024-07-18T04:05:47.238176Z" + "iopub.execute_input": "2024-07-30T16:35:57.572398Z", + "iopub.status.busy": "2024-07-30T16:35:57.572060Z", + "iopub.status.idle": "2024-07-30T16:35:57.575328Z", + "shell.execute_reply": "2024-07-30T16:35:57.574903Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.240630Z", - "iopub.status.busy": "2024-07-18T04:05:47.240299Z", - "iopub.status.idle": "2024-07-18T04:05:47.247818Z", - "shell.execute_reply": "2024-07-18T04:05:47.247390Z" + "iopub.execute_input": "2024-07-30T16:35:57.577365Z", + "iopub.status.busy": "2024-07-30T16:35:57.576966Z", + "iopub.status.idle": "2024-07-30T16:35:57.584694Z", + "shell.execute_reply": "2024-07-30T16:35:57.584132Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.249866Z", - "iopub.status.busy": "2024-07-18T04:05:47.249525Z", - "iopub.status.idle": "2024-07-18T04:05:47.251977Z", - "shell.execute_reply": "2024-07-18T04:05:47.251524Z" + "iopub.execute_input": "2024-07-30T16:35:57.586954Z", + "iopub.status.busy": "2024-07-30T16:35:57.586638Z", + "iopub.status.idle": "2024-07-30T16:35:57.589280Z", + "shell.execute_reply": "2024-07-30T16:35:57.588805Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:47.254011Z", - "iopub.status.busy": "2024-07-18T04:05:47.253687Z", - "iopub.status.idle": "2024-07-18T04:05:50.331843Z", - "shell.execute_reply": "2024-07-18T04:05:50.331208Z" + "iopub.execute_input": "2024-07-30T16:35:57.591284Z", + "iopub.status.busy": "2024-07-30T16:35:57.590950Z", + "iopub.status.idle": "2024-07-30T16:36:00.688049Z", + "shell.execute_reply": "2024-07-30T16:36:00.687486Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:50.334588Z", - "iopub.status.busy": "2024-07-18T04:05:50.334171Z", - "iopub.status.idle": "2024-07-18T04:05:50.343958Z", - "shell.execute_reply": "2024-07-18T04:05:50.343394Z" + "iopub.execute_input": "2024-07-30T16:36:00.690868Z", + "iopub.status.busy": "2024-07-30T16:36:00.690451Z", + "iopub.status.idle": "2024-07-30T16:36:00.700262Z", + "shell.execute_reply": "2024-07-30T16:36:00.699795Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:50.346159Z", - "iopub.status.busy": "2024-07-18T04:05:50.345987Z", - "iopub.status.idle": "2024-07-18T04:05:52.286664Z", - "shell.execute_reply": "2024-07-18T04:05:52.286109Z" + "iopub.execute_input": "2024-07-30T16:36:00.702232Z", + "iopub.status.busy": "2024-07-30T16:36:00.702054Z", + "iopub.status.idle": "2024-07-30T16:36:02.934148Z", + "shell.execute_reply": "2024-07-30T16:36:02.933492Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.289279Z", - "iopub.status.busy": "2024-07-18T04:05:52.288785Z", - "iopub.status.idle": "2024-07-18T04:05:52.307212Z", - "shell.execute_reply": "2024-07-18T04:05:52.306758Z" + "iopub.execute_input": "2024-07-30T16:36:02.936729Z", + "iopub.status.busy": "2024-07-30T16:36:02.936205Z", + "iopub.status.idle": "2024-07-30T16:36:02.954952Z", + "shell.execute_reply": "2024-07-30T16:36:02.954378Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.309234Z", - "iopub.status.busy": "2024-07-18T04:05:52.308879Z", - "iopub.status.idle": "2024-07-18T04:05:52.316628Z", - "shell.execute_reply": "2024-07-18T04:05:52.316083Z" + "iopub.execute_input": "2024-07-30T16:36:02.957056Z", + "iopub.status.busy": "2024-07-30T16:36:02.956878Z", + "iopub.status.idle": "2024-07-30T16:36:02.964858Z", + "shell.execute_reply": "2024-07-30T16:36:02.964382Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.318738Z", - "iopub.status.busy": "2024-07-18T04:05:52.318420Z", - "iopub.status.idle": "2024-07-18T04:05:52.327148Z", - "shell.execute_reply": "2024-07-18T04:05:52.326685Z" + "iopub.execute_input": "2024-07-30T16:36:02.966898Z", + "iopub.status.busy": "2024-07-30T16:36:02.966576Z", + "iopub.status.idle": "2024-07-30T16:36:02.975334Z", + "shell.execute_reply": "2024-07-30T16:36:02.974877Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.329288Z", - "iopub.status.busy": "2024-07-18T04:05:52.328960Z", - "iopub.status.idle": "2024-07-18T04:05:52.336509Z", - "shell.execute_reply": "2024-07-18T04:05:52.336049Z" + "iopub.execute_input": "2024-07-30T16:36:02.977396Z", + "iopub.status.busy": "2024-07-30T16:36:02.977076Z", + "iopub.status.idle": "2024-07-30T16:36:02.984945Z", + "shell.execute_reply": "2024-07-30T16:36:02.984391Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.338513Z", - "iopub.status.busy": "2024-07-18T04:05:52.338182Z", - "iopub.status.idle": "2024-07-18T04:05:52.346902Z", - "shell.execute_reply": "2024-07-18T04:05:52.346464Z" + "iopub.execute_input": "2024-07-30T16:36:02.987002Z", + "iopub.status.busy": "2024-07-30T16:36:02.986692Z", + "iopub.status.idle": "2024-07-30T16:36:02.995395Z", + "shell.execute_reply": "2024-07-30T16:36:02.994843Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.349015Z", - "iopub.status.busy": "2024-07-18T04:05:52.348609Z", - "iopub.status.idle": "2024-07-18T04:05:52.356966Z", - "shell.execute_reply": "2024-07-18T04:05:52.356427Z" + "iopub.execute_input": "2024-07-30T16:36:02.997442Z", + "iopub.status.busy": "2024-07-30T16:36:02.997120Z", + "iopub.status.idle": "2024-07-30T16:36:03.004551Z", + "shell.execute_reply": "2024-07-30T16:36:03.004009Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.359411Z", - "iopub.status.busy": "2024-07-18T04:05:52.359043Z", - "iopub.status.idle": "2024-07-18T04:05:52.368156Z", - "shell.execute_reply": "2024-07-18T04:05:52.367618Z" + "iopub.execute_input": "2024-07-30T16:36:03.006659Z", + "iopub.status.busy": "2024-07-30T16:36:03.006343Z", + "iopub.status.idle": "2024-07-30T16:36:03.014117Z", + "shell.execute_reply": "2024-07-30T16:36:03.013629Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:52.370501Z", - "iopub.status.busy": "2024-07-18T04:05:52.370163Z", - "iopub.status.idle": "2024-07-18T04:05:52.378576Z", - "shell.execute_reply": "2024-07-18T04:05:52.378040Z" + "iopub.execute_input": "2024-07-30T16:36:03.016347Z", + "iopub.status.busy": "2024-07-30T16:36:03.016027Z", + "iopub.status.idle": "2024-07-30T16:36:03.024539Z", + "shell.execute_reply": "2024-07-30T16:36:03.023965Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index b0048df12..ae13fe500 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}
+Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 9ede7e8a3..b380e2cea 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:55.129783Z", - "iopub.status.busy": "2024-07-18T04:05:55.129618Z", - "iopub.status.idle": "2024-07-18T04:05:57.865032Z", - "shell.execute_reply": "2024-07-18T04:05:57.864464Z" + "iopub.execute_input": "2024-07-30T16:36:05.906897Z", + "iopub.status.busy": "2024-07-30T16:36:05.906716Z", + "iopub.status.idle": "2024-07-30T16:36:09.210694Z", + "shell.execute_reply": "2024-07-30T16:36:09.210137Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.867630Z", - "iopub.status.busy": "2024-07-18T04:05:57.867176Z", - "iopub.status.idle": "2024-07-18T04:05:57.870439Z", - "shell.execute_reply": "2024-07-18T04:05:57.869974Z" + "iopub.execute_input": "2024-07-30T16:36:09.213471Z", + "iopub.status.busy": "2024-07-30T16:36:09.212961Z", + "iopub.status.idle": "2024-07-30T16:36:09.216206Z", + "shell.execute_reply": "2024-07-30T16:36:09.215755Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.872389Z", - "iopub.status.busy": "2024-07-18T04:05:57.872088Z", - "iopub.status.idle": "2024-07-18T04:05:57.875228Z", - "shell.execute_reply": "2024-07-18T04:05:57.874636Z" + "iopub.execute_input": "2024-07-30T16:36:09.218344Z", + "iopub.status.busy": "2024-07-30T16:36:09.217971Z", + "iopub.status.idle": "2024-07-30T16:36:09.221010Z", + "shell.execute_reply": "2024-07-30T16:36:09.220555Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.877320Z", - "iopub.status.busy": "2024-07-18T04:05:57.876885Z", - "iopub.status.idle": "2024-07-18T04:05:57.898872Z", - "shell.execute_reply": "2024-07-18T04:05:57.898311Z" + "iopub.execute_input": "2024-07-30T16:36:09.223151Z", + "iopub.status.busy": "2024-07-30T16:36:09.222813Z", + "iopub.status.idle": "2024-07-30T16:36:09.264547Z", + "shell.execute_reply": "2024-07-30T16:36:09.263969Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.900978Z", - "iopub.status.busy": "2024-07-18T04:05:57.900574Z", - "iopub.status.idle": "2024-07-18T04:05:57.904377Z", - "shell.execute_reply": "2024-07-18T04:05:57.903827Z" + "iopub.execute_input": "2024-07-30T16:36:09.266828Z", + "iopub.status.busy": "2024-07-30T16:36:09.266456Z", + "iopub.status.idle": "2024-07-30T16:36:09.270175Z", + "shell.execute_reply": "2024-07-30T16:36:09.269659Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}\n" + "Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.906549Z", - "iopub.status.busy": "2024-07-18T04:05:57.906236Z", - "iopub.status.idle": "2024-07-18T04:05:57.909389Z", - "shell.execute_reply": "2024-07-18T04:05:57.908857Z" + "iopub.execute_input": "2024-07-30T16:36:09.272350Z", + "iopub.status.busy": "2024-07-30T16:36:09.271989Z", + "iopub.status.idle": "2024-07-30T16:36:09.275119Z", + "shell.execute_reply": "2024-07-30T16:36:09.274559Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:05:57.911634Z", - "iopub.status.busy": "2024-07-18T04:05:57.911199Z", - "iopub.status.idle": "2024-07-18T04:06:01.969964Z", - "shell.execute_reply": "2024-07-18T04:06:01.969310Z" + "iopub.execute_input": "2024-07-30T16:36:09.277262Z", + "iopub.status.busy": "2024-07-30T16:36:09.276911Z", + "iopub.status.idle": "2024-07-30T16:36:13.012240Z", + "shell.execute_reply": "2024-07-30T16:36:13.011588Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:01.972914Z", - "iopub.status.busy": "2024-07-18T04:06:01.972480Z", - "iopub.status.idle": "2024-07-18T04:06:02.905487Z", - "shell.execute_reply": "2024-07-18T04:06:02.904899Z" + "iopub.execute_input": "2024-07-30T16:36:13.015209Z", + "iopub.status.busy": "2024-07-30T16:36:13.014850Z", + "iopub.status.idle": "2024-07-30T16:36:13.913858Z", + "shell.execute_reply": "2024-07-30T16:36:13.913251Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:02.909182Z", - "iopub.status.busy": "2024-07-18T04:06:02.908234Z", - "iopub.status.idle": "2024-07-18T04:06:02.912302Z", - "shell.execute_reply": "2024-07-18T04:06:02.911802Z" + "iopub.execute_input": "2024-07-30T16:36:13.917763Z", + "iopub.status.busy": "2024-07-30T16:36:13.916780Z", + "iopub.status.idle": "2024-07-30T16:36:13.920912Z", + "shell.execute_reply": "2024-07-30T16:36:13.920410Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:02.915812Z", - "iopub.status.busy": "2024-07-18T04:06:02.914874Z", - "iopub.status.idle": "2024-07-18T04:06:04.898450Z", - "shell.execute_reply": "2024-07-18T04:06:04.897813Z" + "iopub.execute_input": "2024-07-30T16:36:13.924505Z", + "iopub.status.busy": "2024-07-30T16:36:13.923570Z", + "iopub.status.idle": "2024-07-30T16:36:16.057240Z", + "shell.execute_reply": "2024-07-30T16:36:16.056500Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.901548Z", - "iopub.status.busy": "2024-07-18T04:06:04.900932Z", - "iopub.status.idle": "2024-07-18T04:06:04.924390Z", - "shell.execute_reply": "2024-07-18T04:06:04.923883Z" + "iopub.execute_input": "2024-07-30T16:36:16.060459Z", + "iopub.status.busy": "2024-07-30T16:36:16.059879Z", + "iopub.status.idle": "2024-07-30T16:36:16.084329Z", + "shell.execute_reply": "2024-07-30T16:36:16.083774Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.926793Z", - "iopub.status.busy": "2024-07-18T04:06:04.926402Z", - "iopub.status.idle": "2024-07-18T04:06:04.935972Z", - "shell.execute_reply": "2024-07-18T04:06:04.935475Z" + "iopub.execute_input": "2024-07-30T16:36:16.087159Z", + "iopub.status.busy": "2024-07-30T16:36:16.086783Z", + "iopub.status.idle": "2024-07-30T16:36:16.096644Z", + "shell.execute_reply": "2024-07-30T16:36:16.096072Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.938170Z", - "iopub.status.busy": "2024-07-18T04:06:04.937989Z", - "iopub.status.idle": "2024-07-18T04:06:04.942216Z", - "shell.execute_reply": "2024-07-18T04:06:04.941644Z" + "iopub.execute_input": "2024-07-30T16:36:16.098946Z", + "iopub.status.busy": "2024-07-30T16:36:16.098549Z", + "iopub.status.idle": "2024-07-30T16:36:16.103008Z", + "shell.execute_reply": "2024-07-30T16:36:16.102445Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.944237Z", - "iopub.status.busy": "2024-07-18T04:06:04.943959Z", - "iopub.status.idle": "2024-07-18T04:06:04.950201Z", - "shell.execute_reply": "2024-07-18T04:06:04.949747Z" + "iopub.execute_input": "2024-07-30T16:36:16.105150Z", + "iopub.status.busy": "2024-07-30T16:36:16.104822Z", + "iopub.status.idle": "2024-07-30T16:36:16.111211Z", + "shell.execute_reply": "2024-07-30T16:36:16.110658Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.952147Z", - "iopub.status.busy": "2024-07-18T04:06:04.951973Z", - "iopub.status.idle": "2024-07-18T04:06:04.958732Z", - "shell.execute_reply": "2024-07-18T04:06:04.958268Z" + "iopub.execute_input": "2024-07-30T16:36:16.113187Z", + "iopub.status.busy": "2024-07-30T16:36:16.112885Z", + "iopub.status.idle": "2024-07-30T16:36:16.119267Z", + "shell.execute_reply": "2024-07-30T16:36:16.118719Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.960553Z", - "iopub.status.busy": "2024-07-18T04:06:04.960383Z", - "iopub.status.idle": "2024-07-18T04:06:04.966173Z", - "shell.execute_reply": "2024-07-18T04:06:04.965718Z" + "iopub.execute_input": "2024-07-30T16:36:16.121235Z", + "iopub.status.busy": "2024-07-30T16:36:16.120924Z", + "iopub.status.idle": "2024-07-30T16:36:16.126639Z", + "shell.execute_reply": "2024-07-30T16:36:16.126077Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.968159Z", - "iopub.status.busy": "2024-07-18T04:06:04.967881Z", - "iopub.status.idle": "2024-07-18T04:06:04.976603Z", - "shell.execute_reply": "2024-07-18T04:06:04.976039Z" + "iopub.execute_input": "2024-07-30T16:36:16.128700Z", + "iopub.status.busy": "2024-07-30T16:36:16.128385Z", + "iopub.status.idle": "2024-07-30T16:36:16.136815Z", + "shell.execute_reply": "2024-07-30T16:36:16.136243Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.978783Z", - "iopub.status.busy": "2024-07-18T04:06:04.978354Z", - "iopub.status.idle": "2024-07-18T04:06:04.983722Z", - "shell.execute_reply": "2024-07-18T04:06:04.983158Z" + "iopub.execute_input": "2024-07-30T16:36:16.138817Z", + "iopub.status.busy": "2024-07-30T16:36:16.138521Z", + "iopub.status.idle": "2024-07-30T16:36:16.143841Z", + "shell.execute_reply": "2024-07-30T16:36:16.143287Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.985767Z", - "iopub.status.busy": "2024-07-18T04:06:04.985339Z", - "iopub.status.idle": "2024-07-18T04:06:04.990755Z", - "shell.execute_reply": "2024-07-18T04:06:04.990193Z" + "iopub.execute_input": "2024-07-30T16:36:16.145732Z", + "iopub.status.busy": "2024-07-30T16:36:16.145554Z", + "iopub.status.idle": "2024-07-30T16:36:16.150879Z", + "shell.execute_reply": "2024-07-30T16:36:16.150344Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.992910Z", - "iopub.status.busy": "2024-07-18T04:06:04.992598Z", - "iopub.status.idle": "2024-07-18T04:06:04.996239Z", - "shell.execute_reply": "2024-07-18T04:06:04.995691Z" + "iopub.execute_input": "2024-07-30T16:36:16.152863Z", + "iopub.status.busy": "2024-07-30T16:36:16.152548Z", + "iopub.status.idle": "2024-07-30T16:36:16.156185Z", + "shell.execute_reply": "2024-07-30T16:36:16.155650Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:04.998334Z", - "iopub.status.busy": "2024-07-18T04:06:04.998026Z", - "iopub.status.idle": "2024-07-18T04:06:05.003252Z", - "shell.execute_reply": "2024-07-18T04:06:05.002678Z" + "iopub.execute_input": "2024-07-30T16:36:16.158400Z", + "iopub.status.busy": "2024-07-30T16:36:16.158078Z", + "iopub.status.idle": "2024-07-30T16:36:16.163394Z", + "shell.execute_reply": "2024-07-30T16:36:16.162837Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 54c4c621f..ab5136da2 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3140,224 +3140,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3476,184 +3476,96 @@

3. (Optional) Visualize class imbalance issues

Identify Spurious Correlations in Image Datasets#

This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels. These correlations could lead to unreliable model predictions and poor generalization.

-

By providing an image_key argument, we can analyze image-specific attributes such as:

+

Datalab automatically analyzes image-specific attributes such as:

  • Darkness

  • Blurriness

  • Aspect ratio anomalies

  • More image-specific features from CleanVision

-

This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.

+

This analysis helps identify unintended biases in datasets and guides steps to enhance the robustness of machine learning models.

1. Load the Dataset#

-

We’ll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:

-
    -
  • We’ll artificially introduce a bias by altering all images of one class (e.g., darkening them).

  • -
  • The correlation scores range from 0 to 1, where:

    -
      -
    • Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.

    • -
    • Scores close to 1 suggest little to no correlation between the property and class labels.

    • -
    -
  • -
  • By introducing this bias, we expect to see:

    -
      -
    • A decrease in the dark_score for the darkened class, indicating an increased correlation between darkness and that class label.

    • -
    • Similar effects can be observed with blurry_score or odd_aspect_ratio_score by introducing corresponding characteristics to one class.

    • -
    -
  • -
-

This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels.

+

For this tutorial, we’ll use a subset of the CIFAR-10 dataset with artificially introduced biases to illustrate how Datalab detects spurious correlations. We’ll assume you have a directory of images organized into subdirectories by class.

+

To fetch the data for this tutorial, make sure you have wget and zip installed.

[33]:
 
-
from cleanlab import Datalab
-from torchvision.datasets import CIFAR10
-from datasets import Dataset
-import io
-from PIL import Image, ImageEnhance
-import random
-import numpy as np
-from IPython.display import display, Markdown
-
-# Download the CIFAR-10 test dataset
-data = CIFAR10(root='./data', train=False, download=True)
-
-# Set seed for reproducibility
-np.random.seed(0)
-random.seed(0)
-
-# Randomly select two classes
-classes = list(range(len(data.classes)))
-selected_classes = random.sample(classes, 2)
-
-# Function to convert PIL object to PNG image to be passed to the Datalab object
-def convert_to_png_image(image):
-    buffer = io.BytesIO()
-    image.save(buffer, format='PNG')
-    buffer.seek(0)
-    return Image.open(buffer)
-
-# Generating 100 ('max_num_images') images from each of the two chosen classes
-max_num_images = 100
-list_images, list_labels = [], []
-num_images = {selected_classes[0]: 0, selected_classes[1]: 0}
-
-for img, label in data:
-    if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:
-        break
-    if label in selected_classes:
-        if num_images[label] == max_num_images:
-            continue
-        list_images.append(convert_to_png_image(img))
-        list_labels.append(label)
-        num_images[label] += 1
+
# Download the dataset
+!wget -nc https://s.cleanlab.ai/CIFAR-10-subset.zip
+!unzip -q CIFAR-10-subset.zip
 
-
-
-
-
-
-Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
-
-
-
-
-
-
-
-100%|██████████| 170498071/170498071 [00:04<00:00, 40217729.65it/s]
-
-
-Extracting ./data/cifar-10-python.tar.gz to ./data
+--2024-07-30 16:36:35--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.108.153, 185.199.110.153, ...
+Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 986707 (964K) [application/zip]
+Saving to: ‘CIFAR-10-subset.zip’
+
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.03s
+
+2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+
 
-
- -
-

3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness#

-
-
[35]:
-
-
-
# Function to reduce brightness to 30%
-def apply_dark(image):
-    """Decreases brightness of the image."""
-    enhancer = ImageEnhance.Brightness(image)
-    return enhancer.enhance(0.3)
+
from datasets import Dataset
+from torchvision.datasets import ImageFolder
 
-# Applying the darkness filter to one of the classes
-transformed_list_images = [
-    apply_dark(img) if label == selected_classes[0] else img
-    for label, img in zip(list_labels, list_images)
-]
+def load_image_dataset(data_dir: str):
+    """
+    Load images from a directory structure and create a datasets.Dataset object.
+
+    Parameters
+    ----------
+    data_dir : str
+        Path to the root directory containing class subdirectories.
 
-# Creating datasets.Dataset object from the transformed dataset
-transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}
-transformed_dataset = Dataset.from_dict(transformed_dataset_dict)
+    Returns
+    -------
+    datasets.Dataset
+        A Dataset object containing 'image' and 'label' columns.
+    """
+    image_dataset = ImageFolder(data_dir)
+    images = [img for img, _ in image_dataset]
+    labels = [label for _, label in image_dataset]
+    return Dataset.from_dict({"image": images, "label": labels})
+
+# Load the dataset
+data_dir = "CIFAR-10-subset/darkened_images"
+dataset = load_image_dataset(data_dir)
 
-
-

4. (Optional) Visualizing Images in the dataset#

+
+

2. Run Datalab Analysis#

+

Now that we have loaded our dataset, let’s use Datalab to analyze it for potential spurious correlations.

-
[36]:
+
[35]:
 
-
import matplotlib.pyplot as plt
-
-def plot_images(dataset_dict):
-    """Plots the first 15 images from the dataset dictionary."""
-    images = dataset_dict['image']
-    labels = dataset_dict['label']
-
-    # Define the number of images to plot
-    num_images_to_plot = 15
-    num_cols = 5  # Number of columns in the plot grid
-    num_rows = (num_images_to_plot + num_cols - 1) // num_cols  # Calculate rows needed
-
-    # Create a figure
-    fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))
-    axes = axes.flatten()
-
-    # Plot each image
-    for i in range(num_images_to_plot):
-        img = images[i]
-        label = labels[i]
-        axes[i].imshow(img)
-        axes[i].set_title(f'Label: {label}')
-        axes[i].axis('off')
+
from cleanlab import Datalab
 
-    # Hide any remaining empty subplots
-    for i in range(num_images_to_plot, len(axes)):
-        axes[i].axis('off')
+# Initialize Datalab with the dataset
+lab = Datalab(data=dataset, label_name="label", image_key="image")
 
-    # Show the plot
-    plt.tight_layout()
-    plt.show()
+# Run the analysis
+lab.find_issues()
 
-plot_images(dataset_dict)
-plot_images(transformed_dataset_dict)
+# Generate and display the report
+lab.report()
 
@@ -3661,45 +3573,78 @@

4. (Optional) Visualizing Images in the dataset

-../../_images/tutorials_datalab_workflows_84_0.png +
+Finding class_imbalance issues ...
+Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...
+
+
+
+
+
+
+
+
+
+
+
+
+Removing dark, blurry from potential issues in the dataset as it exceeds max_prevalence=0.1
+
+Audit complete. 0 issues found in the dataset.
+No issues found in the data. Good job!
+
+Try re-running Datalab.report() with `show_summary_score = True` and `show_all_issues = True`.
+
+
+
+Removing dark from potential issues in the dataset as it exceeds max_prevalence=0.1
+Removing blurry from potential issues in the dataset as it exceeds max_prevalence=0.1
+
+
+
+Here is a summary of spurious correlations between image features like 'dark_score', 'blurry_score', etc., and class labels detected in the data.
+
+A lower score for each property implies a higher correlation of that property with the class labels.
+
+
+property  score
+    dark    0.0
+
+Here are the images corresponding to the extreme (minimum and maximum) individual scores for each of the detected correlated properties:
+
+
+Images with minimum and maximum individual scores for dark issue:
+
+
-../../_images/tutorials_datalab_workflows_84_1.png +../../_images/tutorials_datalab_workflows_82_3.png
-
-

5. Finding image-specific property scores#

+
+

3. Interpret the Results#

+

While the lab.report() output is comprehensive, we can use more targeted methods to examine the results:

-
[37]:
+
[36]:
 
-
# Function to find image-specific property scores given the dataset object
-def get_property_scores(dataset):
-    lab = Datalab(data=dataset, label_name="label", image_key="image")
-    lab.find_issues()
-    return lab._spurious_correlation()
-
-# Finds specific property score in the dataframe containing property scores
-def get_specific_property_score(property_scores_df, property_name):
-    return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]
+
from IPython.display import display
 
-# Finding scores in original and transformed dataset
-standard_property_scores = get_property_scores(dataset)
-transformed_property_scores = get_property_scores(transformed_dataset)
+# Get the correlation scores for image properties
+correlation_scores = lab._correlations_df
+print("Correlation scores for image properties:")
+display(correlation_scores)
 
-# Displaying the scores dataframe
-display(Markdown("### Image-specific property scores in the original dataset"))
-display(standard_property_scores)
-display(Markdown("### Image-specific property scores in the transformed dataset"))
-display(transformed_property_scores)
-
-# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset
-assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')
+# Get image-specific issues
+issue_name = "dark"
+image_issues = lab.get_issues(issue_name)
+print("\nImage-specific issues:")
+display(image_issues)
 
@@ -3708,15 +3653,74 @@

5. Finding image-specific property scores
-Finding class_imbalance issues ...
-Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...
+Correlation scores for image properties:
 

-
-
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
propertyscore
0dark_score0.000
1light_score0.180
2low_information_score0.015
3odd_aspect_ratio_score0.500
4odd_size_score0.500
5grayscale_score0.500
6blurry_score0.015
+
-
+
-
-
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
is_dark_issuedark_score
0True0.237196
1True0.197229
2True0.254188
3True0.229170
4True0.208907
.........
195False0.793840
196False1.000000
197False0.971560
198False0.862236
199False0.973533
+

200 rows × 2 columns

+
+
+
+

Important Note: The _correlations_df attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.

+
+

Interpreting the results:

+
    +
  1. Correlation Scores: The correlation_scores DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.

  2. +
  3. Image-Specific Issues: The image_issues DataFrame provides details on detected image-specific problems, including the issue type and affected samples.

  4. +
+

In our CIFAR-10 subset example, you should see that the ‘dark’ property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the ‘frog’ class). This is due to our artificial darkening of these images to demonstrate the concept.

+

For real-world datasets, pay attention to:

+
    +
  • Properties with notably low scores in the correlation_scores DataFrame

  • +
  • Prevalent issues in the image_issues DataFrame

  • +
+

These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.

+
+

Note: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of lab.report().

+
+
+
+

4. (Optional) Compare with a Dataset Without Spurious Correlations#

+

To understand the impact of spurious correlations, it can be helpful to compare our results with a dataset that doesn’t have artificially introduced biases. In this case, we’ll use the original CIFAR-10 subset.

+
+
[37]:
+
+
+
# Load the original dataset
+original_data_dir = "CIFAR-10-subset/original_images"
+original_dataset = load_image_dataset(original_data_dir)
+
+# Create a new Datalab instance and run analysis
+original_lab = Datalab(data=original_dataset, label_name="label", image_key="image")
+original_lab.find_issues()
+
+# Compare correlation scores
+original_scores = original_lab._correlations_df
+print("Correlation scores for original dataset:")
+display(original_scores)
+
+# Compare image-specific issues
+original_issues = original_lab.get_issues("dark")
+print("\nImage-specific issues in original dataset:")
+display(original_issues)
+
+
-Removing dark, blurry from potential issues in the dataset as it exceeds max_prevalence=0.1
-
-Audit complete. 0 issues found in the dataset.
+Finding class_imbalance issues ...
+Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...
 
-
-

Image-specific property scores in the original dataset#

-
+
+
+
+
+
+
+
+Audit complete. 0 issues found in the dataset.
+Correlation scores for original dataset:
+
+

When comparing the results:

+
    +
  1. Look for differences in the correlation scores, especially for the ‘dark’ property.

  2. +
  3. Compare the number and types of image-specific issues detected.

  4. +
+

You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by Datalab.

@@ -4032,10 +4194,9 @@

Image-specific property scores in the transformed datasetIdentify Spurious Correlations in Image Datasets diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 8c4e0af06..d6d1d2769 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.315133Z", - "iopub.status.busy": "2024-07-18T04:06:09.314702Z", - "iopub.status.idle": "2024-07-18T04:06:09.737826Z", - "shell.execute_reply": "2024-07-18T04:06:09.737324Z" + "iopub.execute_input": "2024-07-30T16:36:19.928818Z", + "iopub.status.busy": "2024-07-30T16:36:19.928315Z", + "iopub.status.idle": "2024-07-30T16:36:20.362342Z", + "shell.execute_reply": "2024-07-30T16:36:20.361793Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.740480Z", - "iopub.status.busy": "2024-07-18T04:06:09.740061Z", - "iopub.status.idle": "2024-07-18T04:06:09.869002Z", - "shell.execute_reply": "2024-07-18T04:06:09.868461Z" + "iopub.execute_input": "2024-07-30T16:36:20.365042Z", + "iopub.status.busy": "2024-07-30T16:36:20.364603Z", + "iopub.status.idle": "2024-07-30T16:36:20.497373Z", + "shell.execute_reply": "2024-07-30T16:36:20.496781Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.871271Z", - "iopub.status.busy": "2024-07-18T04:06:09.870845Z", - "iopub.status.idle": "2024-07-18T04:06:09.893540Z", - "shell.execute_reply": "2024-07-18T04:06:09.892922Z" + "iopub.execute_input": "2024-07-30T16:36:20.499582Z", + "iopub.status.busy": "2024-07-30T16:36:20.499349Z", + "iopub.status.idle": "2024-07-30T16:36:20.524504Z", + "shell.execute_reply": "2024-07-30T16:36:20.523915Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:09.896111Z", - "iopub.status.busy": "2024-07-18T04:06:09.895870Z", - "iopub.status.idle": "2024-07-18T04:06:12.653881Z", - "shell.execute_reply": "2024-07-18T04:06:12.653225Z" + "iopub.execute_input": "2024-07-30T16:36:20.527274Z", + "iopub.status.busy": "2024-07-30T16:36:20.527018Z", + "iopub.status.idle": "2024-07-30T16:36:23.840701Z", + "shell.execute_reply": "2024-07-30T16:36:23.840107Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:12.656529Z", - "iopub.status.busy": "2024-07-18T04:06:12.656139Z", - "iopub.status.idle": "2024-07-18T04:06:31.030202Z", - "shell.execute_reply": "2024-07-18T04:06:31.029589Z" + "iopub.execute_input": "2024-07-30T16:36:23.843646Z", + "iopub.status.busy": "2024-07-30T16:36:23.843036Z", + "iopub.status.idle": "2024-07-30T16:36:32.528462Z", + "shell.execute_reply": "2024-07-30T16:36:32.527887Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:31.032605Z", - "iopub.status.busy": "2024-07-18T04:06:31.032254Z", - "iopub.status.idle": "2024-07-18T04:06:31.191251Z", - "shell.execute_reply": "2024-07-18T04:06:31.190718Z" + "iopub.execute_input": "2024-07-30T16:36:32.530759Z", + "iopub.status.busy": "2024-07-30T16:36:32.530398Z", + "iopub.status.idle": "2024-07-30T16:36:32.692452Z", + "shell.execute_reply": "2024-07-30T16:36:32.691890Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:31.193870Z", - "iopub.status.busy": "2024-07-18T04:06:31.193450Z", - "iopub.status.idle": "2024-07-18T04:06:32.501314Z", - "shell.execute_reply": "2024-07-18T04:06:32.500719Z" + "iopub.execute_input": "2024-07-30T16:36:32.695108Z", + "iopub.status.busy": "2024-07-30T16:36:32.694738Z", + "iopub.status.idle": "2024-07-30T16:36:34.079949Z", + "shell.execute_reply": "2024-07-30T16:36:34.079473Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.503635Z", - "iopub.status.busy": "2024-07-18T04:06:32.503261Z", - "iopub.status.idle": "2024-07-18T04:06:32.915426Z", - "shell.execute_reply": "2024-07-18T04:06:32.914838Z" + "iopub.execute_input": "2024-07-30T16:36:34.082291Z", + "iopub.status.busy": "2024-07-30T16:36:34.081898Z", + "iopub.status.idle": "2024-07-30T16:36:34.326676Z", + "shell.execute_reply": "2024-07-30T16:36:34.326094Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.917986Z", - "iopub.status.busy": "2024-07-18T04:06:32.917468Z", - "iopub.status.idle": "2024-07-18T04:06:32.930644Z", - "shell.execute_reply": "2024-07-18T04:06:32.930084Z" + "iopub.execute_input": "2024-07-30T16:36:34.329162Z", + "iopub.status.busy": "2024-07-30T16:36:34.328791Z", + "iopub.status.idle": "2024-07-30T16:36:34.342431Z", + "shell.execute_reply": "2024-07-30T16:36:34.341938Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.932608Z", - "iopub.status.busy": "2024-07-18T04:06:32.932309Z", - "iopub.status.idle": "2024-07-18T04:06:32.951966Z", - "shell.execute_reply": "2024-07-18T04:06:32.951527Z" + "iopub.execute_input": "2024-07-30T16:36:34.344554Z", + "iopub.status.busy": "2024-07-30T16:36:34.344214Z", + "iopub.status.idle": "2024-07-30T16:36:34.363020Z", + "shell.execute_reply": "2024-07-30T16:36:34.362540Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:32.953897Z", - "iopub.status.busy": "2024-07-18T04:06:32.953626Z", - "iopub.status.idle": "2024-07-18T04:06:33.209964Z", - "shell.execute_reply": "2024-07-18T04:06:33.209446Z" + "iopub.execute_input": "2024-07-30T16:36:34.365426Z", + "iopub.status.busy": "2024-07-30T16:36:34.365076Z", + "iopub.status.idle": "2024-07-30T16:36:34.596927Z", + "shell.execute_reply": "2024-07-30T16:36:34.596358Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.212305Z", - "iopub.status.busy": "2024-07-18T04:06:33.212116Z", - "iopub.status.idle": "2024-07-18T04:06:33.231185Z", - "shell.execute_reply": "2024-07-18T04:06:33.230616Z" + "iopub.execute_input": "2024-07-30T16:36:34.599630Z", + "iopub.status.busy": "2024-07-30T16:36:34.599295Z", + "iopub.status.idle": "2024-07-30T16:36:34.619495Z", + "shell.execute_reply": "2024-07-30T16:36:34.618989Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.233319Z", - "iopub.status.busy": "2024-07-18T04:06:33.232923Z", - "iopub.status.idle": "2024-07-18T04:06:33.400233Z", - "shell.execute_reply": "2024-07-18T04:06:33.399669Z" + "iopub.execute_input": "2024-07-30T16:36:34.621703Z", + "iopub.status.busy": "2024-07-30T16:36:34.621342Z", + "iopub.status.idle": "2024-07-30T16:36:34.761643Z", + "shell.execute_reply": "2024-07-30T16:36:34.761053Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.402401Z", - "iopub.status.busy": "2024-07-18T04:06:33.402059Z", - "iopub.status.idle": "2024-07-18T04:06:33.411545Z", - "shell.execute_reply": "2024-07-18T04:06:33.411006Z" + "iopub.execute_input": "2024-07-30T16:36:34.763998Z", + "iopub.status.busy": "2024-07-30T16:36:34.763799Z", + "iopub.status.idle": "2024-07-30T16:36:34.774206Z", + "shell.execute_reply": "2024-07-30T16:36:34.773713Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.413706Z", - "iopub.status.busy": "2024-07-18T04:06:33.413388Z", - "iopub.status.idle": "2024-07-18T04:06:33.422844Z", - "shell.execute_reply": "2024-07-18T04:06:33.422288Z" + "iopub.execute_input": "2024-07-30T16:36:34.776254Z", + "iopub.status.busy": "2024-07-30T16:36:34.776071Z", + "iopub.status.idle": "2024-07-30T16:36:34.785886Z", + "shell.execute_reply": "2024-07-30T16:36:34.785435Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.424928Z", - "iopub.status.busy": "2024-07-18T04:06:33.424591Z", - "iopub.status.idle": "2024-07-18T04:06:33.450139Z", - "shell.execute_reply": "2024-07-18T04:06:33.449701Z" + "iopub.execute_input": "2024-07-30T16:36:34.787902Z", + "iopub.status.busy": "2024-07-30T16:36:34.787724Z", + "iopub.status.idle": "2024-07-30T16:36:34.815725Z", + "shell.execute_reply": "2024-07-30T16:36:34.815298Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.452187Z", - "iopub.status.busy": "2024-07-18T04:06:33.451788Z", - "iopub.status.idle": "2024-07-18T04:06:33.454639Z", - "shell.execute_reply": "2024-07-18T04:06:33.454072Z" + "iopub.execute_input": "2024-07-30T16:36:34.817795Z", + "iopub.status.busy": "2024-07-30T16:36:34.817615Z", + "iopub.status.idle": "2024-07-30T16:36:34.820486Z", + "shell.execute_reply": "2024-07-30T16:36:34.820013Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.456808Z", - "iopub.status.busy": "2024-07-18T04:06:33.456509Z", - "iopub.status.idle": "2024-07-18T04:06:33.475334Z", - "shell.execute_reply": "2024-07-18T04:06:33.474761Z" + "iopub.execute_input": "2024-07-30T16:36:34.822391Z", + "iopub.status.busy": "2024-07-30T16:36:34.822219Z", + "iopub.status.idle": "2024-07-30T16:36:34.841825Z", + "shell.execute_reply": "2024-07-30T16:36:34.841320Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.477330Z", - "iopub.status.busy": "2024-07-18T04:06:33.477157Z", - "iopub.status.idle": "2024-07-18T04:06:33.481414Z", - "shell.execute_reply": "2024-07-18T04:06:33.480961Z" + "iopub.execute_input": "2024-07-30T16:36:34.843927Z", + "iopub.status.busy": "2024-07-30T16:36:34.843742Z", + "iopub.status.idle": "2024-07-30T16:36:34.848323Z", + "shell.execute_reply": "2024-07-30T16:36:34.847833Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.483270Z", - "iopub.status.busy": "2024-07-18T04:06:33.483101Z", - "iopub.status.idle": "2024-07-18T04:06:33.510551Z", - "shell.execute_reply": "2024-07-18T04:06:33.510000Z" + "iopub.execute_input": "2024-07-30T16:36:34.850257Z", + "iopub.status.busy": "2024-07-30T16:36:34.850081Z", + "iopub.status.idle": "2024-07-30T16:36:34.879946Z", + "shell.execute_reply": "2024-07-30T16:36:34.879477Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.512640Z", - "iopub.status.busy": "2024-07-18T04:06:33.512331Z", - "iopub.status.idle": "2024-07-18T04:06:33.880625Z", - "shell.execute_reply": "2024-07-18T04:06:33.880120Z" + "iopub.execute_input": "2024-07-30T16:36:34.881917Z", + "iopub.status.busy": "2024-07-30T16:36:34.881737Z", + "iopub.status.idle": "2024-07-30T16:36:35.259340Z", + "shell.execute_reply": "2024-07-30T16:36:35.258831Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.882759Z", - "iopub.status.busy": "2024-07-18T04:06:33.882433Z", - "iopub.status.idle": "2024-07-18T04:06:33.885582Z", - "shell.execute_reply": "2024-07-18T04:06:33.885032Z" + "iopub.execute_input": "2024-07-30T16:36:35.261459Z", + "iopub.status.busy": "2024-07-30T16:36:35.261275Z", + "iopub.status.idle": "2024-07-30T16:36:35.264720Z", + "shell.execute_reply": "2024-07-30T16:36:35.264247Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.887734Z", - "iopub.status.busy": "2024-07-18T04:06:33.887293Z", - "iopub.status.idle": "2024-07-18T04:06:33.899883Z", - "shell.execute_reply": "2024-07-18T04:06:33.899389Z" + "iopub.execute_input": "2024-07-30T16:36:35.266610Z", + "iopub.status.busy": "2024-07-30T16:36:35.266439Z", + "iopub.status.idle": "2024-07-30T16:36:35.280154Z", + "shell.execute_reply": "2024-07-30T16:36:35.279707Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.901737Z", - "iopub.status.busy": "2024-07-18T04:06:33.901564Z", - "iopub.status.idle": "2024-07-18T04:06:33.915004Z", - "shell.execute_reply": "2024-07-18T04:06:33.914529Z" + "iopub.execute_input": "2024-07-30T16:36:35.282287Z", + "iopub.status.busy": "2024-07-30T16:36:35.281841Z", + "iopub.status.idle": "2024-07-30T16:36:35.296091Z", + "shell.execute_reply": "2024-07-30T16:36:35.295529Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.916796Z", - "iopub.status.busy": "2024-07-18T04:06:33.916623Z", - "iopub.status.idle": "2024-07-18T04:06:33.926482Z", - "shell.execute_reply": "2024-07-18T04:06:33.926021Z" + "iopub.execute_input": "2024-07-30T16:36:35.298365Z", + "iopub.status.busy": "2024-07-30T16:36:35.297955Z", + "iopub.status.idle": "2024-07-30T16:36:35.308443Z", + "shell.execute_reply": "2024-07-30T16:36:35.307980Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.928354Z", - "iopub.status.busy": "2024-07-18T04:06:33.928187Z", - "iopub.status.idle": "2024-07-18T04:06:33.937453Z", - "shell.execute_reply": "2024-07-18T04:06:33.936881Z" + "iopub.execute_input": "2024-07-30T16:36:35.310642Z", + "iopub.status.busy": "2024-07-30T16:36:35.310307Z", + "iopub.status.idle": "2024-07-30T16:36:35.319369Z", + "shell.execute_reply": "2024-07-30T16:36:35.318850Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.939664Z", - "iopub.status.busy": "2024-07-18T04:06:33.939220Z", - "iopub.status.idle": "2024-07-18T04:06:33.943065Z", - "shell.execute_reply": "2024-07-18T04:06:33.942490Z" + "iopub.execute_input": "2024-07-30T16:36:35.321481Z", + "iopub.status.busy": "2024-07-30T16:36:35.321145Z", + "iopub.status.idle": "2024-07-30T16:36:35.324693Z", + "shell.execute_reply": "2024-07-30T16:36:35.324231Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.944962Z", - "iopub.status.busy": "2024-07-18T04:06:33.944790Z", - "iopub.status.idle": "2024-07-18T04:06:33.995866Z", - "shell.execute_reply": "2024-07-18T04:06:33.995310Z" + "iopub.execute_input": "2024-07-30T16:36:35.326670Z", + "iopub.status.busy": "2024-07-30T16:36:35.326496Z", + "iopub.status.idle": "2024-07-30T16:36:35.379645Z", + "shell.execute_reply": "2024-07-30T16:36:35.379123Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:33.998159Z", - "iopub.status.busy": "2024-07-18T04:06:33.997771Z", - "iopub.status.idle": "2024-07-18T04:06:34.003397Z", - "shell.execute_reply": "2024-07-18T04:06:34.002868Z" + "iopub.execute_input": "2024-07-30T16:36:35.382058Z", + "iopub.status.busy": "2024-07-30T16:36:35.381569Z", + "iopub.status.idle": "2024-07-30T16:36:35.388152Z", + "shell.execute_reply": "2024-07-30T16:36:35.387714Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.005349Z", - "iopub.status.busy": "2024-07-18T04:06:34.005044Z", - "iopub.status.idle": "2024-07-18T04:06:34.015924Z", - "shell.execute_reply": "2024-07-18T04:06:34.015375Z" + "iopub.execute_input": "2024-07-30T16:36:35.390322Z", + "iopub.status.busy": "2024-07-30T16:36:35.389885Z", + "iopub.status.idle": "2024-07-30T16:36:35.401052Z", + "shell.execute_reply": "2024-07-30T16:36:35.400566Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.018073Z", - "iopub.status.busy": "2024-07-18T04:06:34.017731Z", - "iopub.status.idle": "2024-07-18T04:06:34.230278Z", - "shell.execute_reply": "2024-07-18T04:06:34.229718Z" + "iopub.execute_input": "2024-07-30T16:36:35.402986Z", + "iopub.status.busy": "2024-07-30T16:36:35.402810Z", + "iopub.status.idle": "2024-07-30T16:36:35.583541Z", + "shell.execute_reply": "2024-07-30T16:36:35.582923Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.232505Z", - "iopub.status.busy": "2024-07-18T04:06:34.232146Z", - "iopub.status.idle": "2024-07-18T04:06:34.239448Z", - "shell.execute_reply": "2024-07-18T04:06:34.238981Z" + "iopub.execute_input": "2024-07-30T16:36:35.586049Z", + "iopub.status.busy": "2024-07-30T16:36:35.585823Z", + "iopub.status.idle": "2024-07-30T16:36:35.594126Z", + "shell.execute_reply": "2024-07-30T16:36:35.593611Z" }, "nbsphinx": "hidden" }, @@ -3725,15 +3725,14 @@ "This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels.\n", "These correlations could lead to unreliable model predictions and poor generalization.\n", "\n", - "\n", - "By providing an `image_key` argument, we can analyze image-specific attributes such as:\n", + "`Datalab` automatically analyzes image-specific attributes such as:\n", "\n", "- Darkness\n", "- Blurriness\n", "- Aspect ratio anomalies\n", "- More image-specific features from [CleanVision](https://cleanvision.readthedocs.io/en/latest/tutorials/tutorial.html#What-is-CleanVision?)\n", "\n", - "This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.\n" + "This analysis helps identify unintended biases in datasets and guides steps to enhance the robustness of machine learning models.\n" ] }, { @@ -3742,17 +3741,14 @@ "source": [ "### 1. Load the Dataset\n", "\n", - "We'll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:\n", - "\n", - "- We'll artificially introduce a bias by altering all images of one class (e.g., darkening them).\n", - "- The correlation scores range from 0 to 1, where:\n", - " - Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.\n", - " - Scores close to 1 suggest little to no correlation between the property and class labels.\n", - "- By introducing this bias, we expect to see:\n", - " - A decrease in the `dark_score` for the darkened class, indicating an increased correlation between darkness and that class label.\n", - " - Similar effects can be observed with `blurry_score` or `odd_aspect_ratio_score` by introducing corresponding characteristics to one class.\n", - "\n", - "This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels." + "For this tutorial, we'll use a subset of the CIFAR-10 dataset with artificially introduced biases to illustrate how Datalab detects spurious correlations. We'll assume you have a directory of images organized into subdirectories by class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To fetch the data for this tutorial, make sure you have `wget` and `zip` installed." ] }, { @@ -3760,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:34.241391Z", - "iopub.status.busy": "2024-07-18T04:06:34.241211Z", - "iopub.status.idle": "2024-07-18T04:06:43.025032Z", - "shell.execute_reply": "2024-07-18T04:06:43.024474Z" + "iopub.execute_input": "2024-07-30T16:36:35.596219Z", + "iopub.status.busy": "2024-07-30T16:36:35.596032Z", + "iopub.status.idle": "2024-07-30T16:36:36.032446Z", + "shell.execute_reply": "2024-07-30T16:36:36.031724Z" } }, "outputs": [ @@ -3771,409 +3767,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/170498071 [00:00] 963.58K --.-KB/s in 0.03s \r\n", + "\r\n", + "2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "\r\n" ] } ], "source": [ - "from cleanlab import Datalab\n", - "from torchvision.datasets import CIFAR10\n", - "from datasets import Dataset\n", - "import io\n", - "from PIL import Image, ImageEnhance\n", - "import random\n", - "import numpy as np\n", - "from IPython.display import display, Markdown\n", - "\n", - "# Download the CIFAR-10 test dataset\n", - "data = CIFAR10(root='./data', train=False, download=True)\n", - "\n", - "# Set seed for reproducibility\n", - "np.random.seed(0)\n", - "random.seed(0)\n", - "\n", - "# Randomly select two classes\n", - "classes = list(range(len(data.classes)))\n", - "selected_classes = random.sample(classes, 2)\n", - "\n", - "# Function to convert PIL object to PNG image to be passed to the Datalab object\n", - "def convert_to_png_image(image):\n", - " buffer = io.BytesIO()\n", - " image.save(buffer, format='PNG')\n", - " buffer.seek(0)\n", - " return Image.open(buffer)\n", - "\n", - "# Generating 100 ('max_num_images') images from each of the two chosen classes\n", - "max_num_images = 100\n", - "list_images, list_labels = [], []\n", - "num_images = {selected_classes[0]: 0, selected_classes[1]: 0}\n", - "\n", - "for img, label in data:\n", - " if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:\n", - " break\n", - " if label in selected_classes:\n", - " if num_images[label] == max_num_images:\n", - " continue\n", - " list_images.append(convert_to_png_image(img))\n", - " list_labels.append(label)\n", - " num_images[label] += 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find image-related issues" + "# Download the dataset\n", + "!wget -nc https://s.cleanlab.ai/CIFAR-10-subset.zip\n", + "!unzip -q CIFAR-10-subset.zip" ] }, { @@ -4181,24 +3808,48 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.027804Z", - "iopub.status.busy": "2024-07-18T04:06:43.027169Z", - "iopub.status.idle": "2024-07-18T04:06:43.094948Z", - "shell.execute_reply": "2024-07-18T04:06:43.094485Z" + "iopub.execute_input": "2024-07-30T16:36:36.035427Z", + "iopub.status.busy": "2024-07-30T16:36:36.035017Z", + "iopub.status.idle": "2024-07-30T16:36:38.005904Z", + "shell.execute_reply": "2024-07-30T16:36:38.005342Z" } }, "outputs": [], "source": [ - "# Create a datasets.Dataset object from list of images and their corresponding labels\n", - "dataset_dict = {'image': list_images, 'label': list_labels}\n", - "dataset = Dataset.from_dict(dataset_dict)" + "from datasets import Dataset\n", + "from torchvision.datasets import ImageFolder\n", + "\n", + "def load_image_dataset(data_dir: str):\n", + " \"\"\"\n", + " Load images from a directory structure and create a datasets.Dataset object.\n", + " \n", + " Parameters\n", + " ----------\n", + " data_dir : str\n", + " Path to the root directory containing class subdirectories.\n", + " \n", + " Returns\n", + " -------\n", + " datasets.Dataset\n", + " A Dataset object containing 'image' and 'label' columns.\n", + " \"\"\"\n", + " image_dataset = ImageFolder(data_dir)\n", + " images = [img for img, _ in image_dataset]\n", + " labels = [label for _, label in image_dataset]\n", + " return Dataset.from_dict({\"image\": images, \"label\": labels})\n", + "\n", + "# Load the dataset\n", + "data_dir = \"CIFAR-10-subset/darkened_images\"\n", + "dataset = load_image_dataset(data_dir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 3. (Optional) Creating a transformed dataset using `ImageEnhance` to induce darkness" + "### 2. Run Datalab Analysis\n", + "\n", + "Now that we have loaded our dataset, let's use `Datalab` to analyze it for potential spurious correlations." ] }, { @@ -4206,36 +3857,99 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.097002Z", - "iopub.status.busy": "2024-07-18T04:06:43.096662Z", - "iopub.status.idle": "2024-07-18T04:06:43.137694Z", - "shell.execute_reply": "2024-07-18T04:06:43.137236Z" + "iopub.execute_input": "2024-07-30T16:36:38.008499Z", + "iopub.status.busy": "2024-07-30T16:36:38.008189Z", + "iopub.status.idle": "2024-07-30T16:36:38.487271Z", + "shell.execute_reply": "2024-07-30T16:36:38.486659Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding class_imbalance issues ...\n", + "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ed4efbeb1874db0a5e2316cc6fdcc53", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/200 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# Function to reduce brightness to 30%\n", - "def apply_dark(image):\n", - " \"\"\"Decreases brightness of the image.\"\"\"\n", - " enhancer = ImageEnhance.Brightness(image)\n", - " return enhancer.enhance(0.3)\n", - "\n", - "# Applying the darkness filter to one of the classes\n", - "transformed_list_images = [\n", - " apply_dark(img) if label == selected_classes[0] else img\n", - " for label, img in zip(list_labels, list_images)\n", - "]\n", - "\n", - "# Creating datasets.Dataset object from the transformed dataset\n", - "transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}\n", - "transformed_dataset = Dataset.from_dict(transformed_dataset_dict)" + "from cleanlab import Datalab\n", + "\n", + "# Initialize Datalab with the dataset\n", + "lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", + "\n", + "# Run the analysis\n", + "lab.find_issues()\n", + "\n", + "# Generate and display the report\n", + "lab.report()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 4. (Optional) Visualizing Images in the dataset" + "### 3. Interpret the Results\n", + "\n", + "While the `lab.report()` output is comprehensive, we can use more targeted methods to examine the results:" ] }, { @@ -4243,28 +3957,208 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:43.139729Z", - "iopub.status.busy": "2024-07-18T04:06:43.139403Z", - "iopub.status.idle": "2024-07-18T04:06:44.587790Z", - "shell.execute_reply": "2024-07-18T04:06:44.587181Z" + "iopub.execute_input": "2024-07-30T16:36:38.491380Z", + "iopub.status.busy": "2024-07-30T16:36:38.490234Z", + "iopub.status.idle": "2024-07-30T16:36:38.508457Z", + "shell.execute_reply": "2024-07-30T16:36:38.507923Z" } }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correlation scores for image properties:\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZBkZ3ku+n5rzFw5V9Zc1V1VPbdaas0tQSOEGLyFDfiKbVk6+8TdtsKEj8Pm+hCKwBzjCAMmuNd22NiYwAGECQw23gewD+MWm8FIYjBSax5a6rm7urq65sp5XOP9A1B45fMaClvZuDufXwR/1MvKzJWr1vetb60uvY8WRVGkiIiIiIiIiIiIiPpI/3nvABEREREREREREV35+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CDyZzQ/P680TVN//ud//rK958MPP6w0TVMPP/zwy/aeRHT543xDRJcK5xsiulQ43xDRpcL55j+ngXgQ+alPfUppmqaeeOKJn/eu9NXnPvc59cpXvlKl02lVKBTU4cOH1YMPPvjz3i2igcL5hoguFc43RHSpDMJ889nPflbdeOONKplMqtHRUfW2t71NbWxs/Lx3i2jgcL658pk/7x2gl8f73vc+9f73v1/dfffd6r777lOe56mjR4+qixcv/rx3jYiuMJxviOhS4XxDRJfCRz/6UfU7v/M76vWvf736i7/4C7W4uKj+6q/+Sj3xxBPqyJEjKplM/rx3kYiuEJxv+CDyivDoo4+q97///eqDH/yguv/++3/eu0NEVzDON0R0qXC+IaJLwXVd9Qd/8Afq9ttvV9/61reUpmlKKaUOHz6s3vKWt6i/+Zu/Ub/7u7/7c95LIroScL75oYH4T7O3wnVd9Z73vEfddNNNKp/Pq3Q6rV796lerhx566N98zV/+5V+q2dlZ5TiOes1rXqOOHj0K2xw/flzdfffdqlgsqmQyqW6++Wb1la985afuT6vVUsePH9/Sn+d+6EMfUhMTE+od73iHiqJINRqNn/oaIvr54XxDRJcK5xsiulQu1/nm6NGjqlKpqHvvvfelhwJKKfXmN79ZZTIZ9dnPfvanfhYRXVqcby5vfBD5I7VaTX3iE59Qd9xxh/rTP/1T9b73vU+tr6+rO++8Uz3zzDOw/d/93d+pD3/4w+rtb3+7eve7362OHj2qXve616nV1dWXtnnhhRfUK17xCnXs2DH1+7//++qDH/ygSqfT6q677lJf/OIXf+L+PPbYY+qqq65SH/nIR37qvn/7299Whw4dUh/+8IfV6OioymazanJyckuvJaJLj/MNEV0qnG+I6FK5XOebbrerlFLKcRz4/xzHUU8//bQKw3ALR4CILhXON5e5aAD87d/+baSUih5//PF/cxvf96NutxurlcvlaHx8PPqN3/iNl2rnzp2LlFKR4zjR4uLiS/UjR45ESqno/vvvf6n2+te/Pjp48GDU6XReqoVhGB0+fDjas2fPS7WHHnooUkpFDz30ENTe+973/sTvViqVIqVUNDw8HGUymejP/uzPos997nPRG9/4xkgpFX3sYx/7ia8nopcX5xsiulQ43xDRpXIlzzfr6+uRpmnR2972tlj9+PHjkVIqUkpFGxsbP/E9iOjlw/nmyp9v+BeRP2IYhrJtWymlVBiGqlQqKd/31c0336yeeuop2P6uu+5S09PTL/18yy23qFtvvVV97WtfU0opVSqV1IMPPqjuueceVa/X1cbGhtrY2FCbm5vqzjvvVKdOnfqJjdbvuOMOFUWRet/73vcT9/vH/5nS5uam+sQnPqHe+c53qnvuuUc98MAD6sCBA+oDH/jAz3ooiKjPON8Q0aXC+YaILpXLdb4ZGRlR99xzj/r0pz+tPvjBD6qzZ8+q733ve+ree+9VlmUppZRqt9s/6+Egoj7ifHN544PIf+XTn/60uvbaa1UymVTDw8NqdHRUPfDAA6parcK2e/bsgdrevXvV/Py8Ukqp06dPqyiK1B/+4R+q0dHR2P/e+973KqWUWltb+w/v84//pNeyLHX33Xe/VNd1Xd17771qcXFRLSws/Ic/h4heXpxviOhS4XxDRJfK5TjfKKXUxz/+cfVLv/RL6p3vfKfatWuXuv3229XBgwfVW97yFqWUUplM5mX5HCJ6+XC+uXwxNftHPvOZz6j77rtP3XXXXer3fu/31NjYmDIMQ/3xH/+xOnPmzM/8fj/+7/rf+c53qjvvvFPcZvfu3f+hfVZKvdREtVAoKMMwYv/f2NiYUkqpcrmsZmZm/sOfRUQvD843RHSpcL4hokvlcp1vlFIqn8+rL3/5y2phYUHNz8+r2dlZNTs7qw4fPqxGR0dVoVB4WT6HiF4enG8ub3wQ+SP/9E//pHbu3Km+8IUvxNKLfvz0u9epU6egdvLkSTU3N6eUUmrnzp1KqR/+S/4b3vCGl3+Hf0TXdXX99derxx9/XLmu+9KfJyul1NLSklJKqdHR0b59PhH97DjfENGlwvmGiC6Vy3W++ddmZmZe+geOSqWinnzySfUrv/Irl+SziWjrON9c3vifZv/Ij/+1PYqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6of/Wn/HHXeoj3/842p5eRlev76+/hP3Z6vx70opde+996ogCNSnP/3pl2qdTkf9wz/8gzpw4ICampr6qe9BRJcO5xsiulQ43xDRpXI5zzeSd7/73cr3fXX//ff/u15PRP3D+ebyNlB/EfnJT35Sff3rX4f6O97xDvXmN79ZfeELX1Bvfetb1Zve9CZ17tw59bGPfUwdOHDgpYbp/9ru3bvVbbfdpn77t39bdbtd9aEPfUgNDw+rd73rXS9t89d//dfqtttuUwcPHlS/+Zu/qXbu3KlWV1fVI488ohYXF9Wzzz77b+7rY489pl772teq9773vT+14elv/dZvqU984hPq7W9/uzp58qSamZlRf//3f6/Onz+vvvrVr279ABHRy4bzDRFdKpxviOhSuVLnmz/5kz9RR48eVbfeeqsyTVN96UtfUt/85jfVBz7wAXXo0KGtHyAietlwvrlyDdSDyI9+9KNi/b777lP33XefWllZUR//+MfVN77xDXXgwAH1mc98Rv3jP/6jevjhh+E1v/Zrv6Z0XVcf+tCH1NramrrlllvURz7yETU5OfnSNgcOHFBPPPGE+qM/+iP1qU99Sm1ubqqxsTF1ww03qPe85z0v2/dyHEc9+OCD6l3vepf65Cc/qZrNprr++uvVAw888G/2NyCi/uJ8Q0SXCucbIrpUrtT55uDBg+qLX/yi+spXvqKCIFDXXnut+vznP69+9Vd/9WX7DCL62XC+uXJp0b/+W1YiIiIiIiIiIiKiPmCPSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7c6sbvu4XboKalc1Bba1cglqpVIFat96B2tAEvp9ZHIaaZvU8PzXweapX96C28NSLULNyNtS275mEmmNqUAs9C2qBj9sNjSahNrkDv5dh4q8jDHyomRbuc62E33d9ZQ1qXhjfv1fesh+2ibr4md/85nehNj03DTXHSkBt6cIK1AwnA7VsOgu1f/7st6FGV77/+X/dDbXja3g+f/fZM1BLp1JQO7RnO9QKEc4bUbMNNS+Kjwcr48A2uo7vVavVoZZI4PhQugGlagv3o9rtQi0wcS5IZnBuKTVdqK2s4/FUbRz7OQvnL4XTnPJVCLWmF9/nhIPHzvfxdaEXQC2TwP0YFa4PC6uruB8uzo/CV1BfeQavEXTlu/vX74FapCKsRVjzfeEareHZZQr/7mvbaahpvdtpeO4aFtbsJI7xdhvnDK+L843nYi0McG7xA/zcjt+EWhDgvoQhjvMoEtZVgXSMpRrOEZ7n/cSf/61a6OHvMBL2Vxd+r10Xv6svfIZ0nqwtCXMwDQA8F4IQz2dpvgmlC5dAx5cqTaj1foYwJOX3F9Y80v5qwpjRpKvvFj9XJH0vqSiQ9u9l3A2lQqwee/Z5qG1W8N75Fbe9Cmq2jfPy1o873rPSle/I598Mtc2lJagNTeB62usK6/MGzl9+iPdd9Saeb34m/szBSuFzhBsPvwJqup2H2tOPPwe1X3jzW6Fm2cKzFWFcBgHOwWG0tXlZmtOkMegHeDzFeyBhDdUK4+uKXBKfmaUcvE8SdnfLpNdKazmJk9ra3zryLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1ZgYbYDqjQ1DLCIEKpXIZasVxDCaZ2IUhMZWO1BSzpwGoEPLS6jSgFoTYQDyfwwaoo2O4b2YkBMRUhcamBn5uZgSbuHpCU9RuG2uBhw1LE2mpubLQgL6L39e042ERw3lsdtpqVLFWa0FtfWkTao7QSNmIcN/SuQLUXOH702CyMnheugsLULtp/xzUigUhCAlPQaUaQhNiB8dqIR0fM2GAQTJSk2MngfOSpgmNijs4Z+Ysoam48BnNLs4PhoHhEVoHw8Fs4Z+hOkK7dZxFlNzyXOhqbPX8W1ejjHNLKDRvzmdxDk4lcG7RInxtOomBQKZwPCPhtTSYNF24pkphD1sMNpDOLalfeCQ0Qu/NrgoiIQzFxTGuTHwvyxaapXs43yjhe4VK2E5oyG5o0r9nC+NNWH8JOYPKi4QwGSGYRgqBiHrDdITP1EJstK8JQSFKasguBUAIrzWF80kKmaDB5AvnTCCEGZ08dgJqI2OjWBsfg5on3Ds88+hjUOu04+uZV7zmdtjGtHAt44khXTigQ2HNI115pSAoKVwnlGdSfO0W028iMThHuh5In/HTCkppQhDF+WMnoXbm7Fmo3fiKW6EmhZqK+yZ8B2m+pStfGm+nlNsR1tPC+VGvCddt4XJpmDjfZJP43KDdeCr2c3npB7DNkeoTUAtSu6FmpzCE9NR5DOGR5gzLxDVKp4v3SfNL61Bru8Kzn1AaXDgGG8JzmVZXWAcG+Nys04wfz1ddfwC2ueWGg1ALhABAcY4TSME8Uk22tTUPpyUiIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7beliNEGpiCeEBmRyGDKRLuN34tiLUnGwaalUXw1/M3iajOn6NoI2BEqbw2DUthPBITZj1yIFap1nDmou10B/B7arYFLW0UoGaYWND1dEZ3BdTaErfbWLz2KQTP8bJBL5/0MFkj04LG6y6LWxYOj6Mv9dkDsNDPOEZ+LLQZJYGk9+b2KCUGi7guTUxiY3b3S4GObi1OtQaXWykbNg4BwU9wQOhi/NDMoEBKVJLdqkhvZST4XVx/koJjY9NYVKzDSFwxsR9WRe+f7ODTZMNDecIS5g3HAvnpawR/z1mHZxHksIcJzWulxqydzvC71B4qS4EVOhiyAYNolAIJomkMBSh6XkobBf2hqYopUwb54hQOC9rtVLsZzuJ+2Ym8P07wpyRSeN8li3geKvX8LVeA2tKx7WcHmAtEI6JEhqmh0JYT+Dh2kiTmq0LIRBRTxCPJvxedeEzDWESNoRm9lKD+yiJa0gp/EgK8qDBJLf6x3NmY3kFagkD73fGJjCs5sLCOaideOpJqBk971e95hrYJjOEoZ5GCs/72loJanYK5wdTeG0oBWFJB0rMlsGi2xHmL2FeslI4R0rhFpo098McJMzVFq5li0U8nmsX8PfaqGJgRcqZgpoYHrHVPAm64rk+rs11G88328Hr2/i0ELhSwnusZhnP81AT1t09STcTmFGsTrbxedPiMo7TbRN4LX/8f2HQjSuMBdvA/Y2EaM5qE+cR38NruRR65brCcxNh3eIJYXyuh68t2PHa9fvxGY+U8CWts6S/Q5QCvrYeTPPvx5URERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsJj+KzZDrFWxMnMykoJYdwrCSwiQGTzS6UFKWjs1Tk3a88aonNCT3O9jw3BZCETQfG3GWVzAgJyk8su02MABDadgUNGVgY+ZsGo9JKDRA9YQmzIaJv7bQx8amupDaYFnxY2AIoSBOAvd3Yjs2SN62fRZqk9N4nnSFIJ3F+UWotdrYmJkGkxdgk+Ox8QmoJRM4ZixhvIUtnA+UhvOGIzRrjqJ4Q2BTGFdOEoMoAmFM2iaON9vB/W3UcQ4KhMAGy8Ym1PVaBWpZXWi+HuCEW28KQRHCZcISmrJrQlNj04o3qi+k8PqQFoJ+AiHEw4/wMys1DAfzPZyDCxkMUdN1/jsc/ZAUdhAJTb+lAADDwPPIF9YV0nZSwMzSyoXYz7t247yXTuOYbHWwcXlHCNbKCmMhV4CSUga+ttPEOSNwcU7zXaGZe4RzqwpxrGpCY3UpdMYShq/txOcbQ2hIrwtrHsvAQA1DE14rnCdiWJHwvaSgDBpMoXAtk/LZpPV5eWMdaheO47n13a98FWrVixgIOTIdX9s/9ci/wDapPM4Zh26/DWo/eOhBqO3etw9q+64/CDVPClQQQp86TQzKsG0cv2dOnYZaV1gHHjr8KtxOCIqwhZCgpdX4fczG5iZss3PfLqitri9Dbf38Gag9+a1vQO11d/9vUNOE80S63gjTIQ2AyiqOmXYHa4ZwP9Vu4jpAE7I5C6P4WreNY6Y3YLMtrNefW8S1wpoQQCw9b3noOXy2EAkhcwnhtUrh+sYXAlyE6QFCv5RSKhDuYz1hbegHeD1oCcGm+3tCnh999Bn8TA+/wy2HroWaY+O9WBDgMbkU90m8EyMiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkhJAFTaiNTWCoSa27ga+18KO7VWyyaevYFdUK489PIyEkwXWxcTu2A1WquoEBKU46DbVOUghAGC5ALZPF4Im60IS55WPT5CCF31UTms23qy2o2TY+U9YsPC6pnjChhI5hF7kxbGK6//r9UFPC7z9y8DN1oWlySggFufEwNlSlARXhea8UnjPlKgZGWTael67Ql9gRQmIyKeGc7kmoMAIcM5EQrpJJ43ZSQ3rfE4K1HJwfOy2c06TjNJbHICxLaGA8Oz0JtY0uNsJ3hWbSQv9mpYR5uF6Jh8mECdyPRA4b4RsmzhlSz+SEjcdJ2A0lvJ0SpiUaUL7QpFs8kQRS0I34GT6OX6lmWfH3CyPcpt7ANUC7WxE+Fbuq1xs4xtMZnAt1E79/IoXHydAwKKLbEdYjQliNYWAtn8N1kC78ekyhObwUTtMrEoJvDOHaoiIhwEg4J3yhqbwndLN3u8L8TQNJvHwKYUZ+B6+X3/v2Q1DLCqdv0sPAO79ZgdrZk/FrdPkCBqnYObwn2ncQQ2iipvCZHZyrvC6Oj64wtoSsGnXs2Weglsvk8P2EObJVx4COoIvHOJT2T7jfadTi689WCdejy2cWoPbCY49CbUQIz7j41BP42p07oDaz5yqo5aQEMuE8oStf2hHOcSEIOBQCPBsVvD+JhLEQCGMmaQlhwz1hn4YQ/nlhcw1qyxs4t0ykMfT4/AK+Np3Be6KEcO/kdnHO8IV1gJbGe5ZEEu/3pIdOYSitK3BDzxMCO3tCbY6enodtXjj2ItTOXcA56Jd/+Y1QKwjHyRdCUsUlr/SAbYt4K0ZERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqupV6tQ04Sm3xcWzkMtbWHz8dZmDWqBhw3TbaGharNSif2sp7BZeuhj41Rd6LBpJ/D9h2cKUEsX8lBLZbGxp5SoEHjY7NNrYPNYTWiK2lgrQa26vgm1A4ewcfTwxBDuX8+uJCw85gWhMXW6iM2g2wEeY0/oWDqUKWBtO54T9QY2o6XBZDvY+Lfr4vhYXcXm4FPj2MA4IQTTBGJABZbMnmbKYjiFME8pIaRKC3DcS51/bRv3t93GsIOa0Ah+aAy//3CIc2QkhEL4QvDExjrO1duHh6FmCwFkm+uV2M+W8P6+MFeHwr+RRUK6jJPA45S08XiGQhCAbbJzO/1QIJ2DwjkjDn1dCLgSghdaLRyrQYANyfM9YVP1BgbqRTqGLugGzi26lPIifK9mC99PCroxNHytk8R1xvjEGNQSJtZ0DcegLnyGKUzMoRASo/esv8SG70JNF1IcAg/XMl0h2MJ3seYK20mvpcH0+LMvQG1p4SLUvKVFqJXPnoJabgzH4PAw3p8YQijVai0eRtGq4zo8FMbfQ//0Fai1L2IQVnkFwyOef+I5qPnCnKkpHKtLC2eglhLWHlkhwKbZwfe7ePIkfq6P86aVwxDPZiM+bzaF8FNTuMvOBW2ojRUxAMPzcQ46+s2vQ211cQlqt//SW6AmLKtpAJiOsA4Qrp9K4fq8UMRroyeEXzZc3K4tfEapFJ+DrDSO06KB89Tw9gmoJZN4T1DI4ndwhPBPXeH9j2ljLRRC8ZRw79AVggfbQsBoJNzb2Da+XyTMfUHP/aOREga0hu//9X/GcKzzy6tQe+ub/gvU9u3ZDTVDiFvz/wNpNfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivtt6WE0TG617OjannH/meahNz05BLZvGQJRCGpsBR0J/72q1p7G61GjexUafGeEzd1w3A7WR3RjEYAhBCZrQFHT1PIb6XDiGDaeLWWwuffU1B6H2xAsY/lPZwGbS6SyG6egGNn/uduNNa1MFbJCcTGCT63Qam8c6EW6nBfiZI4VRqD3/wlNQO/EiNo2mwZTO4xhcPodjwQ1xDCaTOI8EntA0WJhvVCg04e15rSOEY/k61mwN58dQCGSybWE/TCEAQ+g37bYwSKYqhCckNJzqi0Kj55tmR6BWzuLYj4QArsgUAjrs+E67nvAlhASQZlMK48Bj4qTw2EnbGcLx7A0hosEVCqExYYTjNxKCXnoDUpRSSshbUY0SntObm9gwPNlzSR7aJsw3JoYdmJrQfF7YESkMxheCVBI2jplsApu560IAl27jPJfJCPts4PhttHCO8EOcv6Xxa/X827rXFb5rB0rKDYXgPWFd6bv44kBo3C/VNGkCp4H0vx76AdQ2VjHoZa+N5+D+EbyPySZwrPpdnA+k4NChRPy8vNDGc7fj4xxXfRbv9YQpUyUbeJ+QagpjRhjjysc5IyMENNghvl/UxuCYRh2PSa2B83K3jrWh7ZNQGxmP39vMnzkN2ySF7zU7gYGCVeGYJAwMsTAqGP6zEB2Fmvu6X4CawlwQGgAri3hura7hOT67H58HrNSnobbRwet218f7/JaPY1XT47VxA+ez3VMYyLt7Nz5HOn4Rn7fcePNOqIVCEJa0bouEEJZAw+t21sOQVF8I5lmt4fy9fHEeapXyAtRC4T4uGN0T+7lp4TxScHC+TQhhfE8/fw4/0/sa1H71l++E2loJj3smj5PL619xA9Qk/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23JYTauDTYPdEJtzdiOhQfIUBk84ITZNDoTmnLqGTZgzyXh4wnoJmxJ3hIbLu66Zg9rcDdiItRthc2Ehl0bVl7Bh58kfYNPgRlUIl9mHzUMDhfucGxuDWkLYl4QQluHhIVbZ6Xij2LVuCbfJYMPatIPNac0QP1P52K068HCHz568ALXVM9iEmQZTVwg1Ob+ADX1nZ+fwtW0MFNBDPC91ISQlErqtOz3N0U2hMXzkYjPkhPD+miGMU6FBsu/j90/bOKC7IY7LUJgzIwNf2xvsoJRShtBw2RDCec5dXIGanREaU/dMcx3hOmKEOBfWWxiOlhCCMmyhJjWmtixhvg2Ezvo0kIIAm4prwvhVSghpEmqhh+eWLwToRcJ4a/UENdldHH+Bjo3mTeF8tiL8Drowx9lSGJ8Q8KSHQmCUhcvIZhebzZerOC+n0kKoi4lNz20L90/6Ho3N+JrMbwu/w0AI3xJ+h1LQjxSQYwrzaCQsGKVzggbT+dPzUCvVKlCbGcXggTEhjK1p4xjUhjF4zhCCWRI95+p4EQMQ0kP4XulsAT/TxrFlpfE7TG/bBrVkEq/lvUGBSillCN9fUzi2vC6+dr8wH4bC+ktaz3lCGJ/Zk6a6eBwDN7XaBtS6wj1cVce1XM7GdUvaxLWR5uJ3dYVgRIW3kzQADCE4M+/g2uP7z+CJ+cQCXo9dA58RRBoGZwZhBWq7Z+NhMpqJ+3auiudztoVrtIX1i1BLCYFMoXD/FwbC/ZmwXJACCjUfv6up4dy3bwbnuQPb8D7pmcdxjnj8ke9DzZgZjxdSOC97wv66wnyTTGHAcUYIPQ6F4L1vPHwEasPDOLkwrIaIiIiIiIiIiIj+0+CDSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyj0gng/0rGhv437VPTON/Ez+3ayfUhpwhqC2cOQe1pbPnoVYcjfcnsITeiu4E/rfu2/ZPQE2Xeg91hB4kPjYPOPvkItSaJezBsu9a/P77b70KassL2DcxJzSE3H9oL9T0HPYScQrYm9NKxd+v41Zgm9US/q41hX2qDB2PSaDjsavXsS/c+hr2kAqF3gY0mBYuLENtYmwSani2KdVsYA+djDDOQ6HHrSX0APN7tjOEadNQQr/cOu6HJfUqEfo7tVwcM4GLPVJcoS+cK+xf3cP+bPkkzhkp4YBmHexpUhzB+Ts9jHNuS4+P81KrAtsEQp+8QhHfX+oRGQn9IE1hDpK2I/oxfYunhyGcW2Lv0hSOwbltU1CrbOI1+tjpJ2M/R0L/Sml/0w6Ov2wS+7NFIb6fLcx7Qkm1u3XcF13oTZnE+dYLcA5qtLDvr50s4PvpeIxNA4+x5cQPTIBLQ5U0cH1jC/OoJ/TpDSKsKaFXpZ7AudVMCj21aSCtLuC9w7nz81DbvhvvWWZHsT9bMouN0aziOG63DfuYOU469nOQxHlE6nkaCHOQoeN2bhfXQbrQs9kW+tBnC9iv0hR61yqhz6NUCgIcv1InYDPCucUz8AtXe3rUDWdxvvWbq1DTA2HtmcDfjdQP0/SEPt517PV/5ulHoTa1cx/U6MqXTAk9RP001I69iBdMI/oO1MaFcX5xBT+j7uFcte3Q7vh+hPiZyRSOSs/EsZsQblgKaVxnBCG+VuylL/SF1oX+mqHQt3ttA/fZrZyB2swUzq979uAznWPP4/htNeLrLysn9B1P4twlLW+jSHjOpeO8XBjBNaohvGO1UhE+ZWv4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH239bCaIjYdtctVqOlCfEQmiY2UnRw2Jt55FTbSXVlYwdpqPABhIoNNfq+/FsNgtk9gs/goxGexvo7N3E+9cBpq6wvrUBvfMQq1/bdeDbXsMH7/dhubrOay2KQ9MY4NnHULm6d6QoDG6un4Pm/fiw2t2z4GZZhSd3xd+MwQG7ZurC9BrbyJQUeOjseEBlOkYdNcQ8fzuVHFOWgsj/ONbQotyQ0c55aGTY3rjUbsZ18IPslYOO+lctgM2vPxtfUAv2vXlsJ1sBm0k8O5IHDxONU2MBzKq+J8M57Ded4I8NhZFs65VhLHb7KnmXJ7sQzbOCZ+fyshBDsI4VhSwJVmCEEZXTx2UiN4GkzZNIYMOEJIUy6Hc0tOCIrICmN/KI9j6+nHsSG5dT5+XkrX3khYZ5k6jsl8DhuNm8JcmEjgUtDtCuEyFZwzAx2bzUsBNtJwi3wMv/FDXH/oER5PQ1gvJHuOsRbgh+otnOMNhfurhIb8mhAooSlco4nt4YVAHBpMFxYwpKnbwfP+mQsXoTaz41aoXX891uxRDPfreDh+a258/PodHM+hcO76Pr6XKQzySAgF9IXQvmq1BrWlpeNQ84Tv4Lq4z/l8AWrpNM4jm+t4H+d1cfwGwrw57MRrlTrOZ5qL75W18TskwwrUdFe4PxVCBpUQfvPI974HtVf/yq/ja+mKt7GB1/LFJRyrhonX1O2jWBsp4vhtuVhLKgzbGul5DnPyFAa6ZNJ4TfWE+xop4CoS/rxOuO2Sg6CEADxD+Hs9N8L5RtNwTGcL+H6vvmU/1E6lMKj4y0JIYb0dvxfNCHOrRMjqUWGE81m9hb/DWkv4rsJBln4/W8W/iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkpUABIZjE97ArptToWBOCB5w0NgLfdTUG2Dz53SOxn49fxIbOB2/DgJiuhR1LrSru23CE+1FXBahdvXcP1Eb2YPiLJTRebbaaUBudxc+w87gvbexhqooONl498wwG/SwurMV+vm3/Qdgm1LGxrZAJoSIdG/x7AYaHhF4La4FwnghBITSYNjYrUFtbPAe16w7shVrSxjHju9gIPpXYWtPvQm/IhIbj2RYCG7oRvpcw3ahNJQQxpDDYwknjvxsVJ4T5po7BNC0Xx3R9o4Sv7eAYbEc44fg6XjoqNfyMciN+XNarOO9tK2AwTUOYHwOhwb0lhHRpwlxlW/i71jUhwIgG0lV7cZ2RyeD1TQo7SCRwPjBsISRFWG2VhYCGqKcReEI4x5tdnFs2ag2o5dMFqGXz+B1MG79DJIQ+qRaOoyjCOSMSgl7CQAqMkq75wnzj4fcNFM65vhmfIwwLf4fJJIYQZZL4/bUQf2GBsBDyhfVtIHSH9xXXN/RDXRfHQiSEv0zOXQM1fRuGHTQTeaj5wo1Cs4HXVb8nFGGoiO8lhcFI4QS+ENIURlIQFM6P3/z6N6D2/e9i4Eo2V4BaRwije9XhV0HtwIEDUPvBv2BgWLOLx04Kd7j9UPz+aXJmG2xjpnBuSTk4t5SFdZbp4bGzWzjPd3z8/qV/f3YEXWGcDJ67nnB9jwy8NkYanltdIUTJsPA8nxibwe3M+GurwrplagTva6QgqIQQLmMK4ZqhlGCjSTV8bSCMy9DHcdkWQr6GdDwmo0MjUNscwmOgCYGtQc/0Kq1HhCxVce6KhOctvvBcplbH378vhuQIAaNbxL+IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLquy2H1YwbKajNtzCcIBDCHjyhkXDgY1NMPYENjLftnYPa8vz52M8rG9g4NDGFTVc3fWwMP1bF/cgG2Kx5yMGm57tf+3qoFaeKUKu2McCloWFQRDfAQA17SQh1aeL3bTgYCGNpeDx33xBvyp8cwVCMzc0y1FoevldGaMifMPD3n8TNxKCIRgOb0dJg+taD2KR8qoghC/ksnr8ba2tQawnn1sz2MajlUhh009v8NxRCDEo1/ExfyMIxR6agtn3qeqi1qtj4eOkMhvX4TWyknE0JgRppnA9rdfyuoYPHsyM0eg48/NzSGs5zR0/F97njC02zhYbLUpiZ1Ejal0IhfJyDDKFZM8Nq6McmJyagZkkBR0KDd0MIXhBy/KDRuFJKGSaOQbcb39DScO2VFcIOmsL6IRSCZHQTd26ttAG1hBCyoCewIbnfwfFmC4Femob7HAbCusXE9U0kjN9mF1/rq/jvwhIOejLC/bBNodG6sH6SZoxQCOgIInytL4Tw0IAS7n+SDl6jr7v5JqjlczmodVrCOBLWRtJ1NXDj+3Lx4hJuI4QYZIUwL0MIgDBMHAurq6tQ++53vwu1Ww/dArUdO3dBbbOE91MTQpDf2DgGRdz2ujugZgpzvxSWZ/ZcDwJ/FLeZwUDFUMf3N32cv4OL56HWXpV+Pzi3rJdwPUaDyQ9xfmhF+Jyj5eF9RyEQ1v9CMEvCwWcfhZHtUDN7bqjSDq4VCnmc49YW8R6rmClATRPW9ZEQKBcJ4zkUkl4iA8dWZOCc1nGFUC5BbxihUkq127iG0oU1VOjHXxsJC00pKC+U7rGEdUsqg/tmCetFT/iuboDPA7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raZQx7KHZaEJN6O+tqmUMiYmE5sdj27FhvO5gM/drXnld7OeDHWxebAgNRtsb2Lx33MaGoKlAaElebkBp5exp4XOnoZbTsdm8EeD36nrYANQuY1NY28T321jCgJndGWxW3VXx79upY4NR08RGyrXmJr5XhMd4ooD7Fgrfy7Tx1Jsax0bPNJiOLmB4wvTMDNSG8niOGyGOmfSuHVDL5bDZer2G46jb05hZalq+0cGJz0ni+xcKOMdlMtiYubU5DzXTwLH69FPPQG1zcx1qc9PDUOsKTahNA8dlLi0cJyHQqtzG5sehijfgD4U5Y6WO15FCEvfDkf7ZTAieUJbQXFtoVi3tCw0mQ2g+rgnRJJoQmuK5eB55Cs83IadJTUxsg9qLz8fHjC/MLSMjeK2cHMM1lZPB9U0mg9doKSiv7eK4tISwnkjD9YJl45wWCKGFvi8k+IRC2JQQghEIQTehF/+MbAob8ocV/K6uh8ckYeG8J/R3F+eWtoe/i0YbazSYPCEUYmQc7x1MC8dvx8VxJAXHRELwghT4ttETHLOxhkEySgjk2r1nN9TMtHCvo+N3eOrxZ6DWbuH3Gp/E+fF7//Io1J575jmo/eIv/iLUWh4ek8VVDMGQxrlQgrHvCcc8IdxjDgtrqkwK1zJDaZy/FoV51O5gzZQCuGggVWt4/VwtCeeHLwQLBxhC0zLwmp8exbGaK+Bro551VVJ4FiAFAGoR7q+WwNdqrhD8IoxLN8A5WNfxOGk6fkZbCGsxdLy+t2oVqC1euAg1P8DjLgWL5Zz4cRdyfsTnSKEQIh1FuF0mh8c4mxGCeYR7vZbwGVvFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVaCnsijmxbRxq3S4GKgQeNrF0O9gotLyCIQtjc9uhNjQcb4CaLuHX6F5Ygtq00EDd04XG5Ro2n5+aEl4rNAX1LmDj43WhQXIoNMfPCg2M0w42KzZtbCiq61jLJfA588ZmPLDHnccAn6iIQTop4TMNKT3Cwia23RC//9y+nVDbMYPNumkwjY+MQC2RxEboq0IAlSWEQmQKOI66QshEZOA8Zznxc79cxzHeFUJTJkamoGabDtSqFxeg5paWoVZwcM7YvxuDup4Vvtew0PRdambfdXFetoRwi/Y6hgnV2vhatyeMois0klZCg+iUj9slTPzF6row3wjXG88XmkubQrIaDaSucH6oCJuPa1JYiXCuhkK0gVQbK2KI1Ny2udjP5+ZPwjamwnN3bAbnOC3AeSkSAmKGsrj2WC9hQJ8mNCQ3hSAZ3cTP9UMcv1GEc0sQ4TwSKvxcIXdDBT1hNXoGNwocrNUauA5M6ThXtz18baOD8229ie/XamGNBlMoBN6NjmIAldfFc8vMpKFmC+tz6TMiIVgp6lmzp4aHYJuUhePZEmqRhusnLcL5oVLGdZsUrlKv4Rx07uw5qFVLJfxc4fsnEsK9k3AvtrGBYXzNJoZ3dXrud20H54wx4XiOjOFcPVLAObjbxmN8oopz4agQMuIM4/05DSYtIYReBfhMIyNctxPDs1DbHNkPNXsVx7QuPOdZWI0/5zm3hEG4xSE8d+t1fP9ECseCY+PzCzOJc5Dt4NrDEcKRpaVhVQihyQifqwvz7RNPPIZvGOL+eS6G8XlhfE0qheZIQdC+LwTlRXjslhcwSGd1L4bENlx8zucJz3m2in8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq0kWhAbJG9j418lhw05baIBqGlgrL61AbWxyAmqBEW8Y7tewIapXxkafawE29LWS2MQ1l8HvkMRMBJXKYrPXTgsbgHZb2NhTaijaaNSxZuJrDVPYGQMbr9pCk+Tt+XjQTxjiMTl9YhFqQ+NjUOta2OS50cb3M4TTzElgzY3wtTSYXn1wH9SyKTzHn3zmBNQOCM11x4Wmvp6HY7AjnL+JngbkyUwWtpkQ5oJiEQN3PA+bz9eWMKwmaGJj5vwwjsGRcQzzGpnCRs/ZPDZRr9VqUJOa3m+uYoiYZuC/YVlCI3ilx+fqlBB8o2v4ezAtfP+MMC+3O/haV2hSLwWKWEJYDw2mWguDCDTh/DCEf7uV/jVXF4JULOGcdnK4rnrlrbfGfs4Ka5SNTQzMOvrUWahlhnBMTm/H+ctKCoE7Aa49bOE7iOF5wtrAtvF7qA4e46ArjMsQ501NCP/RehqmN9r4e7VtDIqoehiK0Q6kICys1et4nHpDLJRSShOaw9NgSibxWrZj5w6o6QZOJEI2lApDvA7qwjVa6ThmZpx4LafhfUgkXFPbEY6jpsK5xRDG6cTkJNSOn8C1nBJe26zj/oVCAJfr4VquXsF1VaWE66Djx09DTVq7dTvxca7bOD80R/E47c7g/NjUcH5oCXOQH+F823ErUCuVVqFGg2ltFeeHxRaGw7o+zhkrJ/FczWxg8FpxCNcymWQBau1u/Jp82003wja+EPKSTuB71aq4b3VdeG0S5wdLCu4S1nyeEDbcauHzi1pTmKtCvO8KEzjOo/UzUDOEEK1Wz2cMCfOyH+E81W5jTTdwHnn0UZyDz53G53INfOSmcgWc+7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raTYx/MV3sQGmj/01lR9ic84gwMaeZgobe7Zq2Jg4mc/EX5fDJpmH73gN1I489RTU/uWJp6F2cO8eqI0P4WfUN7HBeb6AjYm3jWNj5nYTX7tZKUFNCs9QBh671U1sKJrKYjPS2d3xEBCtg7+bHUID1PkSNsc3c1NQa3Zwf+dPYSPWcyePQ21y7lVQo8G0o4jhL8trG1Bru9iEOVRCeIIuhCdYGJ7QUtiEebNUjv2cKRZgm3QGGzVbNjakT5i4b0Mz2/AzV3F/rRR+hungdmY6AzXPx3GZz+J2uo7/NtVM4j5PTmOj66rQEDnZM6eHLs43bgeDHRxhHp2WPrOG16WFJZyrJJoSEkVoIAVCMIshpEJoQk0K3ksKATOJBAYPeF2cb/KFeKDTa1//atjm+PEXobbxL5v4/g2cH3OJItSCANdZmhCoJ0xfKungus0W5hYPlxVK6Meu2kKAnis0R9eEF+s94RZNIazGyOC+dTX8gHYDrzfKxzldCuMrOHigLEMI66GBpAtpViMjBaiNT2DgXaOF4SpKw9f6kbA2EgIhs6XzsZ+d80/ANp6G9xzt60eh5to4towIv+vxE0IYjI8ThGHjfBsqIaBBGINLG7gOSAiBCusbZaiVKxX8XA/XLr3hWJoQaFO38dhtlvH9N4TwQJXD378hXFtMF4/xeh3XRjSYNldwzCxX8H6i1MWas4xrgzfN4fo8JYzV4hBup/z4tdHJ4jXV7eD5nN5/FdQeenYJai+exnGU0HAsWDo+g9ETuL+BsOhxcJeVE+Fn5Cd3Qm3HTgwdfWEVn9/smMP7nbqKrw0TaQz/FHLLlIrwdyOtxzoBvp93EQO+pKDmlPPvX9/wLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1bhubqqdTQkNyhc16wyR2xXRy+NpUGpsfBwE2CA57mqhfrGKT9j0pbEp8y8EbofbkU9j0vdXFz3QcbGKatIVm6UIT6qWlVahJjetn5+agFoX4fpaFn7u9gU3Zl4XPPX0s/n33Xn0DbLOreDXUSkfWsVbG5qyewn3brGGz0/wQNmHeuWsX1GgwZYTm6JNCAMJqDUMGWi0Mnuh0cLsgEJqee9jpt1SOn7+GMHcNC3NhMokhDvUSNka3hRADQ8fXum2clxIFnG8jIfwlEoLFggiPsWXhvDQ2hOEWYYj/hlUXArhanfh1Y3WzAts4Fs5xqTQGfCWT2CE6V8B5ZHEDP6P3d6iUUiNCmBcNJlMITXFsHAtJG8dqUmhmblq4tAp8HL/lMq5d1tYuxn4+cNVe2GZ6bgJqb0q/AWqlEgbgZTP4HSIN10ul8iJuF+I60BNCbSIPQzEiDY9nqHAOUsIaKtLwF6QZ+H66Hp/TO8Kc6Qa4b7oj/Ju80PS9YAqBYa7wWiHYoinMjzSYpPC8tBAyl89jKECjjWEMvfdESimlNBxHQklpPQE2fgfnDMPG9YgSggJ14X4lEtZyrTbeO7jCGsUwcYwXx/A+sVXDfbGEMLpGC++TGm0cl7kcjvOEsDZyeq4HLSFVK5PF91qq4/wQCeFCmovXh4ZwLz4pHHcDDycNqEi4x5i2cR5JCkG1U9fg84DxIoaafPNbD+MHd3CdsrAQX1fMCc892l0cp4GwpnjDrbjmOXXxBNTWasJg8PG67beE8E8dx2rBFO4ncsL9pLSGTOF60W/jvFFM45rM7llrDudwXm4LgYoZIRzaFebvIIHf1fKF8FdhzZt18LtuFf8ikoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio77YcVmMITcVTGWyunBvGWjfERpy2jc9ANxaXoZYewaCE2lJ8u6TQEPTRF49D7VXXHYLaW//rW6G2eH4eaoHQSDmZxWaiQn9klc0IjetDfL+lxRWo2UKT6NDH15pCo9DxbdjUuboZbwK7sYIN6U9XsYnt5MQc1BZX5qEWZbCJ6cy+GajNv3gOaiuLG1CjwWSFON8MOUJQhFOAWjGHtSgSQp+E4Il8AcfR+ZX4fFNtYiPlfTlsKv/ic89DbWN5DWpX79kPNd0SmtSXcXysnXwBapqJ3yuTKkCtKXyPQGh6X+/i/H1qCb/HufMLUFspxeeSthAGpKdwf0OhabaUa5EQfoe54WGoXVjDY2c3sWE+DaZsGgMFbAOv25aONVPHtYwtBKk4WQy8yxdwDdHq1mM/D0/gdXz/CAbYHH/mKNQmRvC1J05iM/e5HVNQs00cg8vVs1ALhTCKjhDaYFh4nIRRrpQQ5GEJ6yBfyOcIw55m6zo2uHcD3DcrietW5eN+JIVQCK+F4RGlNZwfK3VscE+D6aoDs1CzbRxHfoQjxBDCCKLe814pZQkBT75wDXWT8XnJGcfQyECYzwIN9y0SRnQkJORIYZ3CsFeOgwF1b3j9HVBbmMP7mEwa54yFC0tQO3/uAu6fsNjwbdyXWk/gn9us4zbC3LKk472uIX5/LO5JC+FotnAvnsZzggbT958XzucsjsuOEHQpnG6qUsFrme9i6FNbCIcqrcWDb3dvx+cDC/PzUFtbxcDcV938CqjdehWOhQcew2cmxRSOj2kb1zcnWjhXtwxcL1ba+F1zDTyelS7WWgrvYy5s4v7tvSr+uVOjGBq0WsX9yCeENVUG5zNVGIJS5ONn2Akp6FO4uGwR/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWk3KkZuHY7HSoOAI1vYuNQjsuNuxcu4gNh4eE/pe+F28I7EyOwTYlCzuZ/+DZp6H2ptf9F6hFHWw+vnDmNNQSjhDM42Jz9KkJPCaJBB76Sh2bvSaFMAYtwOO5KgRZBAl8zuyk4w1K200MpvG6GOLwnadPQW2+hY2ZM0LYR34Yz51t+7ZBbWR8HGo0mFJCY/BAaIZbruI5qOkYVpLIYviLG+D48DvY6LfTM39dOI3z1MED10OtUcaGziM5DKcoCoFci2exgfpTzz4Htfw4NhfeXNuE2vgohlFsNHCcL6zja6stnKuXLmIYQ7uFIRDJVM/YFzrS59P4u9GEJIpcHhtEKyHoZkgI6HADDC+rCnM1DaaEgfONkxCCkDI4foeHcPxOTOL1TVobpdJ4vRwZj293/DSGXk1M45pneKwAtaSJY+bosRehFgjrLCeNTcqNFq5bXCFYSmpbHgnBG0KOhTKF8MFQCHKQkjdcLz6naUJAjhfiuLeF92/X8FqwXsKaW8L5sd3FNaSmC1+WBtL0OI6tnI3jw/LxmqoJ533Xw3sCKSTG9zEAoZqOrw02d+A8ZQmBVJEQ2GDrOHYNA1+bE9ZBY2N43S4WcX2Tz+B6IXBxvRAKgaB37LkVanu24/c1WrgOSjq4rvRT8bnfVTi3mCYek9Es/v6LGs4Z0ry0KIRHPPX9f4ZaWwhRo8HUCnDMXLVvH9SmJoX7JCFg8umTOD7MJJ6siSSuF155yw2xn8eHcIwfP46fmRSu5RfXMPRp4QLOcd0uvp+n43zbruGcEWpYSw/hetFy8bvmAlwbZBt4Xzg7hUGGWgvXlRknPpfOTuIxGR8S7pOE8FdPCGBu1HF/pZBBX/hejSbOX1vFmYqIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO/4IJKIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO+2HFbj5IUGwRE2J9WFZsVL589BzU1jI+XQxNrqAgZDbJuLh5q4bWycWRSaub/4yDNQS3/3e1C74Zo9UOu0MUjGTmFYzcgENmF2W9ic1HWxCfVIEZshh0LD6aWlFagFrvBM2RWaVfe8XxBiE1cnYUPtwhqGU+jD2OS5tFHGz6xUoHbj7a+C2sQIw2roh0yh0Xa1hc1wS+US1EY6eF66SggKSGGTZOlz8z1hFF/9n9+FbfbM7YfarrndUAuEcKhqBb9DubQOtUKmALXbD/8C1C6cPgm148extrSJ+3J6Dcevq3Ce9wOc5yeGcP+cTLyp83IVv2vKEho/C3EXhtC4vTCFITxVHy9rAfalVlUhlIwG0+5d2Lh9fATXEKMjOLfkctho3DTxnO52MMhAOqevv/7m2M+nFzAo7sXTJ3A/hNVcuoABEJaD1/fFlSWoTU5jyJwphOx1QlzLSHE1obDW0BUOTNPAzzCEedkw8TOCniAaw8TG9Z4QbNEVArlaQjCNvoGvtTzcX03HY6wJ+0uDKVXA+SGfxxCSbBbH4GYFz7eukDbltnG+8YRQG02LX8t9TRjjUFFKj3BNpbcqUDMNXCsUh/FeJ5fDe8yJiQmopR0h4GsU5+CNTQzw3DE3C7VD1+Dc3zqFAWFGHj9j2Yrf7506dx62CTycg0IT54eacB+rXFyjtJsY0Dg5gdcqz+F8Qz+0YxbHWyaLi4/pIo79C6t4vi2W8Zq/q4ghKQsL+OzH1uMhgItL+IwnsnBuyWRw/H3/GQz1XFzHZzBvPoTrNlsIAt6s4GdUykIQlrDW0kLc5/IKzkFlWwiEifB41jbwuKxeiIcmH33iUdim0xYCzoT7X93ANVVOCAfrdnH+SgprSEeYl7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww+ryWAj5XoHm3ieO3Eaas0yNuxMp7CJuic0bm+2sWG40RNucHZ+AbaplbDB6vRBDI/42re/D7V6F0Mcbjl4EGrdDjZ+TqWwCbVt4WGuCgEuUuiOIwTi6BY2sE442PTdEZq+uz0N47tC8+pugM1Jt+/cBbWGic1Jqzo2SB4ax9+1SmCj2NXOJm5HA0kTGummHJyDZrZvh1rSxHPLd/E8122hCbFw7vcGcC0uYZDMxz79Wai95c7XQG2kgI2UnTUMwqperEBN1fE71OaXoTadw8bU62n83OPnMKBCa7SgVhwTQqTS2Jha6o1uafGi4WID/Ua1ArVgFOc428Lfa8bB7SaFoLLiGDZhXl/BAC4aTLccOgy1hNDMXIvwJNc0nKuaLVx/PHoE1xqRiWM6PxKf56odnG/KVTx3x1MFqFVquJYx8jgGWy0MqWr6uJ2p4yLNFpaRkSaE1WhCWI0QeGFFeDylfzH3hNf2huREobAfPq6VojbWMibOLV0DwyMMIczLEM6TKMTfNQ2m7O4ZqHWF+aa8LIQd1HFuqW7MQy1t471ISrhuW078c00hrFLXtxYgJY9IrCaEz1hbw3nuu9/9AdTmZnE9Ytr4vaR7seqxx6H2pX85CrWFhrBOEe7ZStX42q3WwvtVaU0ZCTNaTgjDGcrgHLRLWGhd98ZDUDOLeIxpMAUWns8PPIL3Dv/8L7iusFLCqE4UoFTAJbZSDZyrHvzuY7GfazW8/7nt1bdCbWoCnyMc3xCCuyIc99fuw7CayTSOy5ow7suP4nOZFQ/nailY2LBwXZFwcI44+cJZqD31+NNQ27FzW+znShWP3fIaPkcZKhSgls3jPeF1ezF0VXqWlhOC1RbP47O/reJfRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oSQgDE8voFqJ0/fgJqBw9dDTXDxAbf9UBoGC408O204w1Fh4tF2GbhwnmoTe6dhdqOmw5A7fT8ItR2zmFz6V2z+H6dBjYi9QNsLjw2MQ21pUXc53ING4XaCo+TLzRCLwtNRhOp+O8xCoVGyj42lbeT2Ii1WcWmqNt24HGaPYBBNxfLGDDU6GCjWBpMSSGERMPTXrXLGMbQEhr4eu0u1AJVhVp1fQVqCwvx+cAUmrRvlPC9Pv+Vb0ItLzQIHh/C+WvUwCAovYKf0WpiuExuNAe19SbOBWFCavSM80irjE3kIwPnb0cIj5gcis/fI8L3j4Tv6glzUL2OQRGjXZwzUkn8XkNFPCbl5VWo0WCyhaAIKXohEhqS60IoXKuLc9D3juB8sFnFczCRi88v7QDnuFQa97dTwcCZlluBWjPE7ZSJk+vKOjZpj7rC2iCN41cTjlMghNWoEOcRU6iFLu5Lu4PH2A3i85cv7K/q4L7ZnhAekcO1Z11IVGzXcF6yhI/VA/67P/1QZOGYCSI8t1wf7x1WLmLI3He+9g2oWcL12BSCM/VkPNQkncNrdCFfgFpRuO+amMAgGSkg55nHn4BaXVi3ZYRQy1oe14ZBA+9Fh6fxXiRRxrlv8/SLUCsZGG4ReLiGTPbM/ZlhfJ0hHXMp6EeomcK9nqnhPZvr476ZEZ5jNJjufMOdUBs6jvPNZgPX/2GIF7PNpZNQa5fwvFxZwvsp3Yuf02khAO/0yXmoXbN3H9QSm/iZgXDv8D++js+lMibOrVYC92WjhXOQnsbthhwcb6ZwyW/UcT23a88c1K6+Dp+bNWuV2M+jYxhM6ggBV6EQ2pfOYhCyKazRshn8rlqEc7UuzFVbxZURERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsplrBBpuNagVqmZTQuFwIREkksHlmcSgJteUNbATedOONeed2YVPi/OgQ1M6cOgO1/bMYpKKbKai5EYYitDoYTJMTvn/dx0brroe1VK4AtY3KGtTaQsPlXBYbq6csfM6s9zQjHUpjY9N6gI1I00IoRkFoJJ0fH4PaehfDLho+hmeoyMYaDSTDFhptd3Ae8To4jjTsrasapQrUwhw2Zq7VcJ7bXI+PwavnJmGb/PAo1BaFRs0bZQycOd/CsdVNYyPhUSFQoyU0Vz4uBHWdWd2AmpbA+bYmHDu3K4RWCGEM611smO71hEdMCw3upfAfT2jSf/YsBlyNjE1BTcvh9xrK4jzHVu70Y4GG55skDPDEbzZwzjh3Hs/VMMDBlUhgMITZk8rVqODYLW2WoOa7Qk3DuUUTgqbsCNcPzRUcz906Xrend2IQlCUcztCQgvFwO80VQoKE465ZOB+mE/FRbQkhDn4LP1QTQm0SDi6P7RFcVy5LQWjCmteQOtfTQLKEUADDwFpxCOeHThvvifLDeF31Grhdo45re60n8O3MSbxPcoTwQEsI3DF0HLuGibW6sB9BiNutr2KY14TzWqjtzOK9Q72CYZpdIcAnkcDX2koIaLDwvrA3BCKMhMAGoRZ4QuCoh7//MMA1ansW5+p1IUhHVXDdRoPp8E23Qu2VN+L5Vuvg+VYS7lkq6zhmFubxfse+YS/WesJkWj0BLEopdXQR3+vcwkWouRV8bSHCwCjP3w215a4wZwiBO6bwlCyfwQWOEeF4C9tYK5fwGI8M41pmZtcOqL347POxn6enMfRYF+bg558/BjVDCscSrkuRje+XFAKGTGkxt0VcGREREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2paTWzInkpgs+LDb8BGwvuv2gm1C5vYEHlRSEpon8KGy+1WPCSm7mGTzNHMMNQ2Q2z6fuyF41C7/erroDaSwYbs9U1shpwTwhg0oWF6tYXhN0rDX4cu9D5Op7GBdSqJzaTbwu+stzFzqGEz1VZC+F23cEd2TmKj1E1TaM5axeNuOdic1W8LCRg0kHwhnKAqNCbOpDDUxbKlJsT4WlPIRooUNiGe2xY/z/fO4jbLSzgXJHM4Z1w1Mg41Q2gGHPnY0LiQxfdbEwLDXljEBu8LFWwOH0X4WkNoQG8ZeKBMHber+UKQR0+oRqODc+FYEt8/NY2BQBubGNJ17vgJqO04gNeb6SKGTJwwhWQeGkj1LgbPra9hyNq5+XNQOy8E0zSkucrBJuqOg9fySIuvDUohBsTMn8PP9G0MtjNsISjQSENtLDMBtdEiBnCdXMXxdvToBagVt+Fn6A6uIRxhrs4lMYwh4eDcJ0xLKnDj4Tx+V1hnNYQgGQ/XXqGFr005+L2yOayVNyv4uUQ/okcYIrVaOgs1rYvr5EIGw9gKQ3h9qwv3E5GG1+1sOn7+VoRgUulvVoIA10GNBs6jurCm0nXh1lMI0arU8Tj909cfgVpB+JOaKI/zyOwEHqeyh59bbeJawwtw/nJ7AmaCCL+rJwSTqhDfyxJCJq7ajyEbswcxYHXDrUDNF447DSY3wGueJYSnpQ287/CEYOGhnduh9tUvfxtqmjDfDOXjzypGx3Bd9Lb7/jeoJWwcp40mzjdugN+r3hBCn4THDW0PFxVHz2JYzyOnMDjn3Dquv8ZSeL8zWhTWMgHOEUlLWOBo8e/m+cL6TrivsYWbXd/DYzI2is/Nqi18BieFkmXyp6C2VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LfeILE5g78PJPXuhdv3eWagNjWCvjlwRewfY2EpQmRn8b9E3V+P/XXwo9FBaOL8MtUIK98Maxd5Ia218v+1p7ANk+Ng7IRB6oPku1gKFfV5sA38dtobPittCX4DJMeF7YMsC1WjGv1tF+K6dCI95u4Kfud5ehFok9MDTXOxFkEhjbz89gdvRYNosYc/FstDncdvUNqjlC9gH6HwFB0NlGeeI2R3Yf2d0Lj6nbSwcg20unsBes7N5oR9kiPNeKoHj3hP6FtUa2C8p7OKYKeax50orwl5TnjAuu0It8nA+aAa4nW/id9Os+Py12sTvMJ7FuVUTepqsr67gvnXxd5FM4fEcH8LeJ3t34++aBtMXvvQFqK2u4PnW6WIvn1Do92WGOH6lsdoU+jh3uvF+rraO/Z+3D+O5e24Dr9GdFl7fnQy+X3YEa6YmrDO24TpwU2gppwv9p2ycgpRlC2seoQ+jbuF6IVTYwzGZjH+ulcY12uaK0C9X6G/bauB2ptDbbqhYgJor9F9q1LGfFQ2mfZkpLAo9F1MFvGfpLOE1NHn1NVB78fhJ/IghvJYnrJ5z+iSuZXzhnkPT8L004X7FEGpKw/kxn8O5xU7gvLS5iT3b1jWcC/T1CtQSIY7Lu+9+K9Q+9vFPQW3xIq4Xw56/5UmmU7DNnn3Y5zHl4P3fiRdfhNpmGdfBpdIY1Cw8TMrk7RT9yNHnnoLa9il8ZqA6eI1qt3FsTe/FPuy3veE2qJ09i/3qaz396ucv4oOfinDe75zDTApN4aJiduceqEVdXAeZUg/GAPshpixc8z36AtY6Po5p38e5Op/Gz73x2qugVqo9CrUwjF8jFs7jMxhdmG6DCNeo1Tou3KT8kVXhvtsTeo5m0vj9t4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtpt7A552LjItRcD5uTzu7YAbVt4xiosG9qH9QMoTm4Y5diP3e72Gi8W8f9rVWxe++1ezFwJ5nC0IXKGjZPHTWxOefiOjZevbiJr40sbMi+cwLDLbIp7EKsGdjoue1iQ1lTx6aojUa8aasvNFUfz2Az5Bebp6D2wrlzUNsxi81OUzYeT6+Nv58L5xegRoNJF/6NZHIMm5kndDzvmzUcbwmhYXpVaMK7quE5aG+fjP2cmcRG87M34H6MDY1CrXRxHWorF3DOyFg4t+SFBudhChvG6w6Ot4zQwbjm4T5vtLBZdcvFxsSqI3RCD/D9HD2+z1ZSaOhs4zy1XMPm0mtCk3o3xO/feeYE1GbmZqA2ux2DjmgwHX3maajphhC8IIwjT7iGdprY9NxvY2idZeK1PNET8JQUmqrnRvHczWYKUCttYuBO0sJxGgkhVU2FzcztNH7/VIj7p1m4JrOEdYAljP1cAed5K4mhHbUGzvPdTnxd4QiN4UemcV6un8e5JRIDZ/CYFIoYhJUXAmzqQlAXDaZ9OVzrd4SgS+m+y3TLUJsax+vbC5g5o3bsmoNaOhEfl49+73uwTRBg2IEu3IfoSgqwwe0sIbnKFAKuduzE76UU7svzLz4HtaQQutlt4jE++iLe2zRb0ljFMKGoJ/xGj3DOyCTw+wfC/VokhJ8+/dizUGsIITz3v+O3oJZOb/n2nq5wH/nQ30Bt+xQ+g5kcL0DNsvC6PX4cJ5e5HRhUPH0jjl8rEb8HmJraDtukLRy79SoGs2jCXBC4+PzC6+B49nUMNY2EEJaucE+USwhrmYIQsudhSKqh4TiXgmPCCLez7fhxuXhBOCY6zjepND5Hcl08dvNnz0MtK6ReGQmcv4oj//7wT/5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3225m+3mCgYq+D42JH/xOIY97FjFUJvDrzwEtZFCBmqzI9iU3ehpxnmhgg1Bt1+FDUvXFrHJ8+nTj0OtMDQBtZzQOLSO/ejVwgI2Dz1x/gLUxoZx/0ZS2Fh9tICN0IcKOahdWMbjnhOCbgo9TdSbzRRss14rQa3UbECtKgRKKA2bzLaF82Tl7GmoOSEeYxpU+G8kkRAU0RUakiuhGfBwoQC1VA6bCy9u4FzyyA/iY+umV9wM2/gGhrA8efRFqGU0nHJ9IRRjaAwDFVJCM3ejKjRQF46JHm0trCafxfkgFI57q4WTX6uJTZ3T6fgxNoQG956L7yU1lR8fKUBtegKDg8anJqH24osvQG2yiM2qaTD5bWxm3hUCBTyhFobY9DspNDN3UjiOLBwOSg/izcE9Yd/qQpiC28Wm4ikhU6oqhB2UbdwwOYrrh2Qav1cCL++qrXD8BsIcJM1VhoGfYdrCUtXAua/T87muh3NLIoGf6WSEILAq/l49D8NDegMAlVLKTuE8ms7i9YYGU9vHUIR6G8/VcgXvWZQwZxw7imEt505iaJtl4j1GIR+/nwiE9bqwylK6sNZXQihgJNw7SS/NCuOj1cL7jh075qC2vIQBVyuLS1A7UcVQiKOn8F5ECuKJhDWp1vNFOk28Pjz+yFNQCwKcb/PCfd1rX/cqqF173TVQG5/FwA+DWTX0I5aB4VCrGxjQVu/gGt628bx/5gTOLSvLuCYxhGt0YSgeaLt9Ep+3TI/hc49MBsfkqBB6vL6J82hOCCDOj+BnZFN4nCJhzVeMcF4aHce1QauBE13vPZFSStWFNUTg4Rqqd4oo7Mc5w3GEEDHhmmFb+LwtaVSgNj5cED4Dv4MUSrZV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23I721YbG3bmktiQ+9T8OtQWzq1CrVHDpqiHDh+AWnEIAwUmRmZiP6edPH5meR5q4TZssNlI4n7Umhgu4yexmXk9FIJZRrNQM01sJFxuYLNTX+r1KTR6rpUrUBseH8d9aWAz2nI1XtOF5tUXNzGY6KnT56A2cv1OqNlCs+rFkxjgkxGCeexI6KxPA0kKwoosHIOrZWzymxD+eWVHHucRXQhHyiYwoKHsxxvGzx+fh22GxjF8arGJ38EXmrQnTWykrEfYzF4PcIIYMnF/SwHOaTmhCXPRwkbHgTCndTrY/LkjhHFoRXy/XK6nEX6Ix6TZxv2VGtxbQsflbBrnkbQQ6pO2cbtQ+F40mEobeM1TEYaVJITzKCXUErYQGKXh9c1v4zqgW4vX2kIoXKuOr7OE5JuiEMgUCuu2jWYFap0qjtWkhrWEh8fJx5JSCl/bCrHB/VIHQyaconCcIiHkqhM/xponzMFCuI4VCNcbIfxHCQ3Z28JaLhBy99IZhtXQD9W7OD/UOnjStEMh9MrB6+xoBoMSbtg1DbWl5XmonXwhHuASCGNB4glhd8JlW7zHkKaHTAbDE+bn8b6j3cE5IyeEEW6u45yeyuMacnwC751qNQy1WVnB+9h2p/e4C4E2QrpQEOLcsm0bhuy97Td/HWpJB9dyvhB+42PWBQ2obbMYzBKGOGfo0vVNWJ9Law1XWNvXNvEz5i9UYj8//sQp2MY0cYYwhM80TawVsvgMppjHuWV0COfRYgGfJZXbQtjuagVqtTQ+TnOEa35jCn8XplWAmqHjPWA+E79u5PMY1jNaxPc3DLxPTCfxOA0L7yflwQaBEEq2tcuGiH8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq3FS2ORX+disWA+ws+XqyibUvv3l70Mtl8fGo3sO7oZayow3Gd2WHYVtEjo2Oz0RYmiKhv2Bld3FjstRF7+rl8QGweMjGFox5uOHNEvYDLkufEYmEhrVu9gA1nSE0IYENjUu93STPrd4FrY5Pn8aaiqFzU7HprdB7bnvHIHaa26+GWqHXv1KqH3vwW/i59JASjp4vrlCI+VyHRuXFxxs8N6FpuJK1aoVqDUaON6GkvGGw5qH88OZF05ALZ/ARsWzYxNQawlBEVGIc0EY4feydZzCh1IYRuFauJ2l4fs1qxi8gL8JpcwMXg8sC98v1TNveD42YHaFuSsIcf4OhfAQ6fd19tga1MaHsAnz3ATO1TSYDAvXLbaO57MUhKX7OLd0Kxik4nax6Xu7iuevW49vp7k4Zkyhg3hqqID7puMOW8L8mIlwrZAWgruCNZwfVAu/qykE04QWzpuBht9jQ8M53RouQS2Zwf1L9DSv1wKcp9wm7m+7hrWEEB6S1HF/Qw1/P01PCBNKM6yGfihUeB5pBl6jdaGWcvD6PjWN9xhSUNVsCcfR2lr8/qwyh2uUdluYz1xcozSbOHbbwnrJE0LxpLSD/VdhgGlZCO+6uIxBMm6A4/J1tx2G2uwMhvqUS3jP2mph+svjjz8Z+/n8PN5jRsJcmBDWPNdcsx9qgYvHvSaEh5hCkJ8pBIfSYEqncCx0u1irCyHClZowptv4WkNhrZjHtUak4ud+5ON1sdXFsVZq4r51hcCsehMDkxdXMbhKF8aHFH6TEsIvk0JYZ8kUAkGHMfzmKm8f1Fwh2LSQxn1Jz/UE0Zj4OiMphSfiNcNK4vt3wjLU/DZu53t4THT73z/fcKYiIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVWGl8ZinkDihrCJtizhaw+fHisRWoff9bz0ItlcOG5Kl0vAF52sF9G8vvxH1LDUPt/AYGs9RaGELTcbApaLmKTVHrLtY6a1WopVrYRN0Li1CrJDGgwU5koea6uF25gY2pLzbi+1KSGshncd8mhvH3sH7uPNRMYT9mdmegZpjYDLqQwcauNJjWVnF+SKRzUBsV5oeJERznbgebH1tC+M1QCseWMuLzSyKH2xjCP+kkhCCZpIbjTfrnoEjDcdRROC+ZwosdB5sma4EwpzUwMMsTgidyWWwmnRTmXE0Ixkj2hkfY2OS53cV9k3rZeyFecHBvlRrO4zwyMoSN+zM2NnWmwZQSQiEioRF6pyU0bq/jOHLbGFYSCeF+KsBxrvz4WkMXpoxQmkaEoh5gTVP4mWlhLGgd3F+/KgTT+PgZfiCE1ehYs4T5QElBNy4GVIRCWGBoxN9PE0KvpODBqIFzi49vrzwdt4s0PHc6QqBgxxd+1zSQbGEd4Bt40dOF4IGMietpLcQ1uy+EQEyM4Boq2BkPa3G7OMYDH8ekK8yP7Tae9y0hHKpSwfnxuTMYMtdoCKGFXRxHtQreY2nCfPj0E09B7cVnnodaKo2fm84I66CeEEDbFOZbIWRvz+x2qI0V8P2Xz+P9aSqF26WSQpissP6kweRYwno9wFoopPFFWTyPEsLSWVN4P6WEz2j3rBfKQohfNxQCeYXQmFAIRzZs3A9DuEHThcA/JayrbOH9Mhl8zpUT5ofhYgFqgYdrSFOYv4tCtp3eE8zcFkJ93AhrgVvB7UIhwDQhBJ36+P2DSAhBtPC+c6v4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH235W62UYgNNiub2GR0+SKGtVx16xzU3CZ2Ba1sYkPyh77xBNT8nqbn7l5sID7lYW04hyEW+yauhlq5jo2P11obUDOEpuopHZt9du0C1E4+/SLUltewWfPktl1QK509AzW3gw2hNYXNWJ2x+L7MHNgH2wzNzECt2cHm0rrQPHZ4cgxqkYO/i0odz51KTYqeoEGUSmGz8FwGOyRnhe3sBDb+LZWxsbpt4vRnWPgZYU+z8SjAZsAjQqNxx8T3sjycM6R/DmoEuL8bQuCO38H3ywoN7kMhKMMQxq8jhP9EUhN9IdxD03G7SIvXksLvJhBCzwIN38sXgjdSaWzcH0bYXNkSulC7QvAIDab6Kl5723Vcj3hNvA6GLo5LW+iDnjLxvNSFOcjtCZMJhWCLQAiDiVwc42FbWBfoGJ6QEPatVsUQHkMIpjGFcWkIwSymLcwZQsN4zRO+bxO/r24Kjdr9+PcV2ucrS8eqJjS9D4Q0xq7we5Xmb18IynBdXPPQYHKEmDXLktI/hZNLCDYIhXPVE2q+h+e+H8THpZeURg3SpGu0cN/lCWF0rQaOhXQK752eObkovB9et8fTQlBCJMyRTby3EyLEVFDH79a2sGb3hHtcu2sctskJa5TxMbwXNT3hnPBxPeZouL5LCsE0CencoYGUT41CLZvE66cq4JjxhFCqQAi/rDdxvdDu4vstrvSMQR3HbtsV1gVC8I0UOCrdOxhCJl4kXPNNHTdMOzgGR0aFYJphDALLp3CsOhrOQd06rit9ISDMMuNzf8LCYM6hNH6mH+Hvq1LGObjt4ff3hWMsxe6lbSHodYs4UxEREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oqq2WoHX/yJNQ6TWyAaiSxufLw9gLU3Da+9uIpDIl5VD0b+9lysMFmbbQEtVwJP3NqbCfUCtkRqNlC49+U0DR4NIWvHZ3DJsyzeWzs+Z1HMZjnXHMFahvNi1AbLkxAbXpmFmrbtk3Gft4+tR3ffxN/1w3VgZoSAiCy2SGodUOhSXuAx2RsWmobTYMoITQIzghNv00bx2WtjefbYq2C21UwjGIkjeMyl483Jja6+JmrtU2opVLYhDmBQ0bpITYD9gycW1yhmXlFCNSIhAbnqQTuS1I4xp4QMqEJYRl2AvcvioQgi54wDqnBvWHg8ewIDbIzwnfICNcWN8Qmz4aGnxEJAT40mJbnz0NNE8IeEkIgkyGcbwkL1yRRF9/PFYIcQjP+GYHwmX6E4zQQzmdN2DdPCLUxhblAF5rD+8J3iITgHE2YC1QkhHEI4TeG8NowxH3RQly+RmH8M0IhNCYSjqeQO6iEr6W6IX4HTQjzioR/44+EfaHBJJwyykxIiQrCi4XzSBhZytSFc1CYl/yetDjPE0KlpOunMAdJC5wwiQMpn8W13IgQ4HLNVXNQq9cw2KHTlQI18HN9H+dbXwgQlNYpphDu17t2sW1cFxnCMU8mhbWhsL5JpTAUIynUbOG10r7QYBrfhs8CfOF5iybNJFJeljD2vS4+c3F9HKtT2+Jjv9HCMVkWwqK6bWG97uN3kMJqEgn8EgkhTNQQgllc3D2VK+B4S2eFzzUxWEsXJnVPWGvpGj4j6b0gCFO88lz83RgmvpfjCKF9wht6beE7CMcpEgKTt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdaJCUMEBEREREREREREb2M+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRP6P5+XmlaZr68z//85ftPR9++GGlaZp6+OGHX7b3JKLLH+cbIrpUON8Q0aXC+YaILhXON/85DcSDyE996lNK0zT1xBNP/Lx3pa8+97nPqVe+8pUqnU6rQqGgDh8+rB588MGf924RDZRBmG8++9nPqhtvvFElk0k1Ojqq3va2t6mNjY2f924RDRzON0R0qQzCfKMU76eI/jPgfHPlM3/eO0Avj/e9733q/e9/v7r77rvVfffdpzzPU0ePHlUXL178ee8aEV1BPvrRj6rf+Z3fUa9//evVX/zFX6jFxUX1V3/1V+qJJ55QR44cUclk8ue9i0R0heB8Q0SXEu+niOhSGfT5hg8irwCPPvqoev/7368++MEPqvvvv//nvTtEdIVyXVf9wR/8gbr99tvVt771LaVpmlJKqcOHD6u3vOUt6m/+5m/U7/7u7/6c95KIrgScb4joUuL9FBFdKpxvBuQ/zd4K13XVe97zHnXTTTepfD6v0um0evWrX60eeuihf/M1f/mXf6lmZ2eV4zjqNa95jTp69Chsc/z4cXX33XerYrGoksmkuvnmm9VXvvKVn7o/rVZLHT9+fEv/+dGHPvQhNTExod7xjneoKIpUo9H4qa8hop+fy3W+OXr0qKpUKuree+996aGAUkq9+c1vVplMRn32s5/9qZ9FRJcW5xsiulQu1/lGKd5PEV1uON9c3vgg8kdqtZr6xCc+oe644w71p3/6p+p973ufWl9fV3feead65plnYPu/+7u/Ux/+8IfV29/+dvXud79bHT16VL3uda9Tq6urL23zwgsvqFe84hXq2LFj6vd///fVBz/4QZVOp9Vdd92lvvjFL/7E/XnsscfUVVddpT7ykY/81H3/9re/rQ4dOqQ+/OEPq9HRUZXNZtXk5OSWXktEl97lOt90u12llFKO48D/5ziOevrpp1UYhls4AkR0qXC+IaJL5XKdb5Ti/RTR5YbzzWUuGgB/+7d/Gymloscff/zf3Mb3/ajb7cZq5XI5Gh8fj37jN37jpdq5c+cipVTkOE60uLj4Uv3IkSORUiq6//77X6q9/vWvjw4ePBh1Op2XamEYRocPH4727NnzUu2hhx6KlFLRQw89BLX3vve9P/G7lUqlSCkVDQ8PR5lMJvqzP/uz6HOf+1z0xje+MVJKRR/72Md+4uuJ6OV1Jc836+vrkaZp0dve9rZY/fjx45FSKlJKRRsbGz/xPYjo5cP5hvMN0aVyJc83vJ8i+s+F882Vj38R+SOGYSjbtpVSSoVhqEqlkvJ9X918883qqaeegu3vuusuNT09/dLPt9xyi7r11lvV1772NaWUUqVSST344IPqnnvuUfV6XW1sbKiNjQ21ubmp7rzzTnXq1Kmf2Ij0jjvuUFEUqfe9730/cb9//Ge8m5ub6hOf+IR65zvfqe655x71wAMPqAMHDqgPfOADP+uhIKI+u1znm5GREXXPPfeoT3/60+qDH/ygOnv2rPre976n7r33XmVZllJKqXa7/bMeDiLqI843RHSpXK7zDe+niC4/nG8ub3wQ+a98+tOfVtdee61KJpNqeHhYjY6OqgceeEBVq1XYds+ePVDbu3evmp+fV0opdfr0aRVFkfrDP/xDNTo6Gvvfe9/7XqWUUmtra//hff7xf7JkWZa6++67X6rruq7uvfdetbi4qBYWFv7Dn0NEL6/Lcb5RSqmPf/zj6pd+6ZfUO9/5TrVr1y51++23q4MHD6q3vOUtSimlMpnMy/I5RPTy4XxDRJfK5Tjf8H6K6PLE+ebyxdTsH/nMZz6j7rvvPnXXXXep3/u931NjY2PKMAz1x3/8x+rMmTM/8/v9uG/RO9/5TnXnnXeK2+zevfs/tM9KqZeaqBYKBWUYRuz/GxsbU0opVS6X1czMzH/4s4jo5XG5zjdKKZXP59WXv/xltbCwoObn59Xs7KyanZ1Vhw8fVqOjo6pQKLwsn0NELw/ON0R0qVyu8w3vp4guP5xvLm98EPkj//RP/6R27typvvCFL8TSGX/89LvXqVOnoHby5Ek1NzenlFJq586dSqkfPul+wxve8PLv8I/ouq6uv/569fjjjyvXdV/682SllFpaWlJKKTU6Otq3zyein93lOt/8azMzMy9dICuVinryySfVr/zKr1ySzyaireN8Q0SXyuU63/B+iujyw/nm8sb/NPtHfvw0Ooqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6odPs++44w718Y9/XC0vL8Pr19fXf+L+/Czx7/fee68KgkB9+tOffqnW6XTUP/zDP6gDBw6oqampn/oeRHTpXM7zjeTd73638n1f3X///f+u1xNR/3C+IaJL5XKeb3g/RXR54XxzeRuov4j85Cc/qb7+9a9D/R3veId685vfrL7whS+ot771repNb3qTOnfunPrYxz6mDhw48FJD0X9t9+7d6rbbblO//du/rbrdrvrQhz6khoeH1bve9a6Xtvnrv/5rddttt6mDBw+q3/zN31Q7d+5Uq6ur6pFHHlGLi4vq2Wef/Tf39bHHHlOvfe1r1Xvf+96f2vD0t37rt9QnPvEJ9fa3v12dPHlSzczMqL//+79X58+fV1/96le3foCI6GVzpc43f/Inf6KOHj2qbr31VmWapvrSl76kvvnNb6oPfOAD6tChQ1s/QET0suF8Q0SXypU63/B+iug/H843V66BehD50Y9+VKzfd9996r777lMrKyvq4x//uPrGN76hDhw4oD7zmc+of/zHf1QPP/wwvObXfu3XlK7r6kMf+pBaW1tTt9xyi/rIRz6iJicnX9rmwIED6oknnlB/9Ed/pD71qU+pzc1NNTY2pm644Qb1nve852X7Xo7jqAcffFC9613vUp/85CdVs9lU119/vXrggQf+zf4GRNRfV+p8c/DgQfXFL35RfeUrX1FBEKhrr71Wff7zn1e/+qu/+rJ9BhH9bDjfENGlcqXON7yfIvrPh/PNlUuL/vXfshIRERERERERERH1AXtEEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd+ZW93wFfuug5rvhVCLQg1qmhXhdjq+1rYs3A5fqtyuG3//EN8rmTKgZujC1/XwA1yvC7WuizUnZeN2nQC3s/Fzh0bxtaaVgJplp3E7hd+3VKrivoT4nLn39+N3PNy3Au7b+Cjumx8Jx9jCz5wr4HfouPi5msLP+MA/PAA1uvLd9b//JtSi+hrUdDsJNcPEecQU/smlE+DYDzR8P9eLv9g08P1Dr4Wv6zagpqcdqOUyGaglNRzj41n83DPPPgI1r1aGWn5kH9SWx3fg/k3MQU2r1KGWMnDsl1ptqBk9E7jbrME2Y0M4P2Rt/N2EwvFsVEtQizwfarv34fcfm5iG2h+88/+EGl35/uD//O9Q27Z9EmrSmmd4eAJq2SKe041OBWr5oWGoJdPZ2M9dD9cUSuFcsGPn9VAzItxubGQMahcunIXaqRPPQu3sqedxV0Icb5lsDmpWEo+JZePcl84OQa1WqUBtJJ+FWrEYf+3I5Axs4wzh988WcD9UhBeNs6fwOH3sr/8KagsXXoBat4Pz18MPPYOfS1e8//b+q6Hm4dJAFefwvDSqeC9SW8RzNTRwu9Esjhmz5/Le1puwTWTjvKeHuAaoVPH6biVwDsoUca3fKuP6ob2J27W7uNaa3D0KNdXBdUt3RViTuXjsCtM4B9kzOKdVmpV4oenCNlZC+K4LOGd2dZznp185BTW3ht+huYmf26p0oPb3HzgBNbryHZ7Fc3B02zaoDQ/jesSt43ywsTgPtUwSP2N6DK+1kR+/96818H7FD/H5QCqJE2TGSUHNEu5NNBOfwWRyOJ6dLK5RvBDHZauNc2s6XcDP1XFuabVx/mq08BibJj5LM/R4rdPFMe52hWdVwnFyUsLzJuEzV9Y3oXbi3AbUIhOP5z8/cx5qEv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYXAgBcF2tOEsMeMjmsdQJsqBn62KDUFcJfEk68GWk2j++fTmGT57MnV6EWCYEVqTSGtfgRNmtudbBBcMLEfQkVNk/tCA2SNRe/a9bCz03n8P2m09hcudXFzzh/fiX2syWEfSQ0bGK6bRibJpd9/P1vbK5DbbOJv9e56QLUPOF8osGk+djQVxcCrnwhKKHbxXGUTmLD9Fodz9V0fhx3piecph3guE+lpKAt4d95NGwGrISSEgKpOi1sUp5LYQPnrhCc0wywiXxSCNuqN7H5sWrg981ksPlxTmgmrav476faxN9NJISDGTbOcUN5bCR988HdUNsxgyEjO3ftxM8QQo1oMOWH8Nx1fQw7aLVwfOh4qqrNBo7B9fIFqNkpHEfDo/E5SFpnFAoYkHP1NYfw/U18f1eYH+p1bBi/urYEtUCY+7wu1mZ2XQU1ZeGabLOGxzPycVlqC43gixN4DMqbPY3VUzhnFp0i1FIBzoVeF9ctThK/Q7OJn+ELa9mEENpBg8mMcAyOTe6B2mgCQ1gatXNQ8yt4fZ9xcG1fKGFtYyN+Te52hXlvP65lzGEMJzBruJ0vBIe6GVzfeCUMbAiFALxEQQgoFMJ0uj7e25ljuM9GA8dlfQ3Hb07DOVJPxOevzAj+vlob+DqVxN9/MoXHri3cT+nCmtfK4HfIDRXwc2kg5YVrz2QRx0LHxeuxZeI4yuSEkBghEVRLCvOBF7/hydgYoGXZeD3OZgv4/r5wPyF8B9PGZxqFkRGoKSEwOScEfOlVvObbQvCeZeD31xM4v2oWrnkMIXTHC+LznC4EBqeS+HtNCMcz5QjrEeGWtRng/m628Ka1UsPg0K3iX0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfXdlsNqXA+bBieFZpfJLDax1A0heKGMzXpNoaFqOodNNhM9YTJ2Ap+nekKz8CDEUIQowkasSQdDEVwXm536QriKZuO+1FrYSNo0saFoWmjI7tWFQBiheb3URL84hE2dt0/Em8ymHAy5GR7G77/Zxf2oNbC5tCb8rn0dz51jJ6u4bzPboUaDyVBCw2EL55ZmWwhXMXHOaLZx7LddbMJrhUID5zDeENnFU1xl0tiouIunvSrmcLxpJn6vRg33LfSwQbLQR1olkthI2s9gGIey8DglhaAqM4kNobuNCtSElyrDiH+33XMYMHHjwX1Q27VtDGqTo/i7sYUD4Ll4nNZXz0OtKYT/HDx4C9Toynf81PNQy+VxzIyOYJhVcRSbmbddHFvPv3ACaomU0PS7shHfRhjPY6MFqBnCtffMmWNQG8rjHOR6eC3f2FyGWtLAuaDTwbl1fRPnr/RwAWq+sA5yhYlk+zYMgXCEOW11oxL7OdTx99AJcI3muvh7SFj4/qaJS2bPw2tQSwoWywpzMA2kUS8PtVckb4NaVggjqAZ4vnXHcRzldDzPN57Fe5HK8/FxXhfGeGJOuDfT8NobaDgHhRXc31C49XQKQgBGHe/jGiG+X6WK38sW5mW7gYuy+qqwUGsIgYcGft8wH6+FBXyr7ATOt00N7381D79r+YwQDiaE1aSzWEvm+XdG9ENpA8+jqIHhIuPC2qAhjMFyG69vyQw+N2gL2xWG4nOVHuLcohlCwLHC7RJp4VlNhPvb9YUgrAqGF4fCfJsW7jE1HeevIMLv2hGeQ5lCMM3oBK4r2y2cI6Jm/HsUCwXYJiUEICYSuKbqtHCNtiQEa1U7eEwK4zNQm189CbWt4kxFREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rGZvGJqa6wgbf7SY2RQ09bPybtLChZiAExwQRPivtdOINQDUPv4ZuYG37zDDUDBf3NyWE5oRtbPbZ0PD7O6O43bTQPNQrYRNTv1WBWsvHY5ebnsTPTeNxMoTvMTK2LfazKTS+Lozg/q6X16FmBtgguZDGpqtJoem7XsQm8oU910GNBpMtNEwPQymACpujR74wFoT3s/D0VWkN542EHR8Pho0NksOuMMcJDZf1JL5W6Tjv+QaOXSuJDe514ZjoNo63agsDJVI49SlTOE62jhtObsNwnp27MWxq757dsZ/HR/A6Yir8DpsrC1BbW92AmqZwfyOhSX9+CI/d8GgRajSYMnkcq8k0zgVSzY8w7GBoCK+DI0Vs8B0Ia6hGM35Ndhwca0kbz+fzi2egtryyAjW3g43bT595EWrVGl7zk8P4ufmhAtSsBO7zQ999DGqbTRz7TkoIqxEC9EYLGEYx1LMvgYWvC8r4+6oVsXH77BT+Dg3s265MC+ebXA73rVbDRvA0mMwqnjNrjzwHtZqw1phK49ogMIU1tnAdVGO46Gkn42sDu4Frhb01vG77K7j2soTAzZUmzjfdCo7BzBTed+ij+Bm5At47mGlh/hZCr/wqBkBkxnEODnCaU66Dn2vMxkP1uhZOEJoQrmO0hPCIOh73ZArfbzSJ97GRifNop4pzGg2mHVMjUIs0Ye1cxwAbVcEgqAkdx4wmhPdGNRzn1Vb8fiI0cJ6qdCtQqwthNaOTGGrpNzE0ZkoIPXaFecnz8F6sui5ct4W51RCCiiPhGVFCWM/lA/z9tBs4V3Vgn4W0UmE91qjiPHpxCdeGz568CLWmjkFokYnzbSAE82wV/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWo0XYdNNtYXNKWwhZCDxs1ptMCttp2HjTFcJarJ4QlvImNh3VhK82OYoNnSfHsbYhNFI2ktg0eKRQgFpG+F6+i99B1/HYtYXgCU84JrOjwrETQn0iIYjH7GmmbNrYILrWwMam6fQ01PQEHifNx4a1DeH9JmeEwJ0Mhl3QYDI0PGc6LjbzjoR/S9GE8JfAxTkoJ4QoaW0cq6qnqfPoEDZubwgNkjs+Nhtut4WQKgv313KEMC8lBIEJoV8JocF91sTjOTe9DWqzew5Abdd27Nw+M4nNn9tC2JZpxueqtRUM1DCFOa4gNKR3kvj7Cnz8Xi0P5+r1UhVqFy5gIM6NN70RanTl80OcWzJZbNKdymKT7lYHx36lhg3ek2kcv5uVCtSaPWEyk47QLFzHIIKl5XNQe+yJJ6GWz+D7ddq4v5q0RhGCbpIJHJff/e6/QO3sEr52zzUYUHfo0PVQS5u4rhgr4vdwkvHfT9PF+eGZY6eg9j+f/SrUtk1imNV9v/5foTY+geERtfoy1BLC/EWDqR4IQZ8VDApYOrcJtWUDz6Pxa3dBzR7C+abawACq9FB8DWU4eD22XVxnmes4tjIXcS6ccPB6vCbkxLVaOD/oQtBpOoEv1oTAC28dgze6bVwHpueE4IUW/n6sTSHcoyf4Kkji6/Qsfv/cNvwdDm3gPDIc4L75Hl6rykJon5MTghFpIF119UGoBU28P2k0cB3QFQL6LCGYZKON5/npNfyMVs+9XSgEv2w08Ry383g+N5YqUDO7OO8dmN4DtfEsjkFXuE+st4X7OCEkteMJgVEdfEbSFr6b565BLZnA75uw4kE3QSSsKcsVqK2t4XVkaQV/10sb+P0jB4O1ui2cW4vCebJV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23J3yUYNG2wmTCEoQmia63rY2FP3sMmmrwlBETruYq3U06g9wEbmuTTumxFhM9FugI2Z0xkMShgpYihEV2iEfvEihiIIOTJqbgoDIDxN2Gch/MY28HMbDWwy2u5iQ/tEK97stFjAhu/JFIZxGBr+Hjol/B222tgU1dCFZtVrK1CrtB6FmlL3CDW60oUejmkpMMtzcUwbIW7n2Hj+ekJIjBQY1XTjY9oJcax1NJwfXQ3fywnxewVtHEeRwibHmTTOS+Ozc1C77ioMnJma3QG1sWl8bWTifLO4+DzUVpdwbsmncY7Ugvicdvb4s7DN/v37oLa+XobaseMvQu30mXl8bQmPe62KTfSDAK83b/8//i+o0ZVveHQEalYSm3RLoQi2hdslHBznyQyOD0sIsDHL8fN3Zf0EbFOqY7BFMonf4egLOHZHi6NQ27N7FmpBgOuMSAgCqwlN7xcvLEFtZGgOasPCMXnj618DtaIQEmQqKRgvPi+tlnGeKtVxbs0lcG71uhWovfAihv94Pr5frYbrQCuB5wkNJguzZZS6iOEEt9yagdoLP3gOat/5ZwwemLoV54PtuhD+2RMIYxfx3kQK1DNs4Xw+X4FSUgiPGN8nBG5mcQxu2Bhg0ziFY9pKCcEO23GuTtlYCzt4f6JqOLeoCq77dCv+PZLFLO7bkBA8qON6xK1VoLbewECNVgO3Uzg9KstkOBb9kCsEwuSEsN10EsdgEOAc1MFbLPXscxeg9sIGXge1VHzeMIVnPNksBjcpYZ21uYnPG7Qu3ot97ykMydwzi5+xYxs++xgdw1DPTAbDdn0DD0qzhXNVKATMrK1juF2rheuqyIjPw64QmrNRwbllcbUCtc0Kvr8rBCs3GhtQc4TwZsvGc2er+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+Wwmm4LAwC0pNC4PY0Ncm0LP0YTQmKCUGqUic0+dRVv0Dk2jA2Cc3nct0IeG2yOjGOtXsPvungWm6KmHGyeunMOG8F3Qmwe6uvY4Hx8GzaFtYT+n5aODZxH89igtTiGzaqvuvZg7OddO6+GbdaXsdH8D76PQTL5JP5uxorYhLrVxN/rwtoa1Grnj0ONBlOrhY3BPR8biFsGDhBxvomEgJkI308XAgXazfh4CxQ2+XXSOJ/VhYCUXIhjfHo7Nj7esRsbJE9PjUFttFCEmvJxvBkG1mrr56Bmp3A+/MoXPgm1bhPnr1+/59ehNjEeb3w/OzkN2xSy+B1OnJqHWsvFfbv62luhNjk6I+wHHuNsHhtT02AKcfiqQCgKm6kgwmrCxDXJ7Axea6+5WmgE3xMeUanidXajhA3Ea60SfubsFNTcDq5vNkurUItCXGdIc7AKcL4dHsK1RyaD3zUhhBtGXfxcP4HH2BQyJlr1SuxnQwg4k0IWb7wRfzed9jrUvvXNL0ItlcY1TyKB6+DNagVqNJj0YTyfT57EAMfpwn6o3frGw1B79O8egdrR7yxC7Zb9GNBgd+L7Mj6BYTVJ4d6suo7zjVI43tyqcO94VAgZXMVxOXUTzqMV4f7HDXAM6gVcQ0UZIUz0DK7nNCFgVQ3jWjM9HA/J8YVQz3oZ10qGi9t1s0LQ6xwG3agqTnzuAt5Paev4vWgwnV3GMJTpAq5/ZwsY+mSEOC43Ozh/bVbwPNctvOan0vHPqFYwaEu6x8oaeN6Pj41DbX0Fr9unVzH8crWBz3RW63gvcvuNON9OCvcsvhCe5yRwXqo1cN5M2rhds4GhNvVW8yf+rJRSG1WsNbtCULMQdJN08Hc9NoHniSmEFjbruE7dKv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYy8JmlJjzH9D1sYhkKzdxN7GmsErrQ9DuLDTULQ8nYz7k8vi5dwMam+Sw2/h0exUacXoCN29cq2Iizu4ZhFAeuwkOaSEJJVasYLnPoemzsetN12PS80cHjPj23D2ojo7uglh+L1/K5HGxzzMUmrtuEoIw9cxg8MTaBzW7PnrkAtc4j2JhbbBBNA6nVxvGhCXOGJTQDDgNs+h10sIHvzjSOt7SN421Vjzf6nWrge9XK2Cz8lZM4Zm581SuhtvuaPVDzDWwu7IXYDPnU8Reg9txzz0Ltv/+/3wy1lInN1w0hFOLq/Rj+8uV/ehBq/9/3/gXUxkbinzE8hmFeEzM78HWzWLvt9ldBbXICwziKFp4TpoHzcmTgdjSYmkLTb9PC66zrYi2fxwAIv4OhV9unXgG1PXsP4GcE8XFumHjudjxs5t7qLEDts5//H1Cr1XAts7gwD7WG0PRcEwJi8hn8/lkhtHBmGudDQ8drvuZhsJgR4ViNAnzt6Ei8ifzCCob6GDpeH/wQP9NJ4XGfFBq3RwE2lV8cwe1qXWzmT4MpSOFNgY7LAPXM2Xmo/dLN/wVq178C10uP/8M3oPbwGoa13DIW3xd7O+5H2BDO3TLODykhpKuh45zpbQpjvIzjOS+E0GRmsDYv3J81KngfN3YY5yDXxGPXNoQAmyL+ziI/vk7rrOHc0tXwe4XCDXCYwOPkKDxObR/Xhnoej7ue3/LtPV3hfCF478nnjuGGe/Geft8MXt/DOl7z2kIIXq0hBIz2hPwmbVwrNds4/sIA5yDXwWc6+Tw+0zCTOGd0uzi2Ti7hMx0niSG6poFjWvdxPgwjnA88F49d2BbmUuEeMNDi+9wUQlg94V7XFz7TSeP9X1LD82THrBRWAyW1tioEGW4R/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+m7LTSR04T8K9wP878ndBv4367bQ+yIM8b+xTwo9mcYnsffF0Gi8v8b4NPYldNtCDxZd2K6L/5382gr+t/lK6CuUH8Y+H5aNfQwyDvZAGM5PQm3PHP469u7HnibJ3F6s5bEfpOdhv4fSWnyf1y5gX6n1dfwOu3ZdBbXdV+ExHh7C378m9LY7ehx7N21s8Lk4/YjQbiIQeu0YJo5VW+G8VEwXoJZu4Pu5a9hXaP/IROznRA37l7gXLkJtSOhL0jzxItRazQrUcjuxl+LwXuzVuDGKvdj27t6G+5LFOUj3cJybER74W27YD7VyFee+Cy+WodYux+eX8+eXYZsXTmAP2ab/HaiFOn4H08ZjPJnDYzK3HY/d/3H//VCbgAoNAk3D81438PrmJLGBWjKJfUrbQm8vL8DrWwenEhVo8TnNF9ZKto3roloF9/fZZ85ArTiCPZ/SmVmozW67FWqmVYTa4oVFqHnuOag16jhH5oeEnm0dqUckjn1h+amMRHzsZ4bwOIU6/q7bHvaJy6bxeO6ewTXVw9/+OtRaDVzfJGz2bKMfapTxHO+k8Xrc0rD34bPPnYTaDbdcA7W3nDgBtc2TeI32avF7m/nzFdhmHJcUanQ7zoW+jvdTHaHHbfncOr7WxbVc5Qz2tExt4PtNWPi5lnAvOjyE/eP8JH65toH7t3zxFNSq2UrsZ2MCVxBZhfvWamDPtkATekSauJaplGpQU6UCvt+c0NCXBlI+h33+mgUcb0fP4vp8oojPTZLCM51cAc/VgnAv5kXxzx3KY6/+rovXY7ctXLcbFagNFXHfhobzUKvg1KI6LZyDnz6JayjXwz6M187hPVvKFBYpER530xRyDSJc90HfciE4QUraMBM4ZzaEPBdfyFfoCuuxRArXY8n/wPqGT36IiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy90lPaF5qGHgyz0Pm/BaJja2dGxspJtK4efa2P9UZXLxDR0Lm4r7TWwQPDSC23ktbEo8nMbvOn0bNj3fdwAboOaSUoN7PE4zO+agVshhI/hEDhug2pk9UDOTuF2o4XHfuHg+9nOrjg1g53bgeyWMCtQWjmPT7E2hse3ionCaYY9VtbyCjblpMPlCx91Ix2LUxnOmITTzvtjGBsGrLWzWG/k4Hn5xLh50UlrEIAYng/PNs+tLUBuaPw+1+ho2SLb2j0Bt9399LdSCDE6Q24YKUJs/vga1bFSBmraMjZkff+5ZqD09j6/12zgf2j2NmQtZbBa/eyc2eLdtvBh0uvg7XFzH72U4GGBz06FXQC0axjmdBpPQ81vpOl63HAfP3yjC861Rx7CSwMfzt1ptQK1UjYe6WI4QYpDAtcK3vvV9qDWFhuybZVzzNJs4t05N4BgsVXBO67bxQ+obuJ0jLPC0BDZCr0ghE0EBakpYf3b9nl+kjvNjJIRHBCHWMlkM0ikUMZjIF37/mQKGA5Q7JajRYAqbuG4JhDVPVQjte+rE81CzcnjfccthvOY9tvptqNXa8cSss+fxmuppOI6SNoZMJISohKIwj0Z5nAvqdTwmYYDjsl7BdVvCxprl4vtVHsawQGcUg+yGJnH9NZy9EWprzfhcunoB5/NGEX+J9S6uUYcKON8ETgFqURETztprOGemMXeEBlTk4bic3oEBt2dOnIXavzyJ9zs3HtwJtaGCECwc4vOgSi2+XohCXBcVhPdqNnA7IcdPKSHkpbyJ195cDu9XEkKw1toarpeePIHrm1IJ10G7p3EdMD6Ec5om3Nt2PPy+jW78eDbaeHy7ws1zqOMa0hKCPvMOzvOtFu6H28b5JhKCbraKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rMU3s5h4E2ITXtoTGxEIAhJnBRpnJAgbYbJvDBr65bDwQ5cxZbCY6NDIJtZYQTFMs4me+8fpb8LU1bD6/uV6GWn4cm6yOj2Pj406AjVJr6hqoTWQwyEHTsNmpCvEYp9L4O9u2O94k2k5gM9V8Ad/++ONHofaDJzCsZnTqAtSuuRq//+e/tAm1lRI2QKXBFBWwaW4gnOONGjbuXlzFpsGhgfNNxcb3i0xsev7cerzrd62ETdBtoRl0Mo0N5Ic0bPzbqeC8FPzgNNS85zFIxk8IARBvejXUlmz8N6fZVgVq2UeegFqijsd4uI3HzinO4udG8WN1roxz5rkI5yk7gb//dBqb46skBnKNTW2D2i/cdAhqHeFaRYPJEOYHXce1QaWCc4smBKKsr2Lggy+sg4Qe4mptNT4fZDJ4nn7ryMNQe+B/fQtqm2Vs0l7vCusxB6/R5xaxcf3yOl7fd23H1+6Z2wu1QMf5sOHivLmwimstJ4/rqlD4d/RON94wvSUEXOk6Bg7VathovdUW1qjpaah1Iwzoq3eF497CUDIaTI1VDMSsLGLwQLOE65GFNQxKsOdxbfCqA7dCbfv1O6B2+rkXYj+7FZxvtBDvE5SJ43nj/CJu18Ex6AzhtdzJFKAWCuuqbgvnr3YHx5aRxPskU8N7jObiMaitncRjkJ/AoKqDN8Xv2eY8DKE5v4IBhatC+I8XNaEWebheStu4b4mrcA7qLuO+0GA6cxLv1QszGDijUjguzy/g/Yn74kWo1T1cx9dqQihTz/ObrhCEXBjG5z6ZLM4F1Qq+f9LBe4J6E+eHpRVMcxodw88dHcfwXmkdeGYd7wurHZzTt43gPdv4EM4Huo7zXMeN13whrSeZwHnPSeP7JzL4DEoXFqRVYQ3ZaOJcZQvhN1vFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LXfrj0Js3K4UNiGOdGz6bRr4vNNOYhPmye3YRHx4eBxq5eV4k9F0FpuTzsxi49SR4m6opZztUNu2HRu2et1VqGWz2DR6dBTDZYanDkKt1sBGpOmUEAjUXYBavYENSodHZqCmJbEZ6dSeeNPprtBMtSI0pD/yNDZnrXSxWfW+FDZX/p9fPQW1oy9is1M94nNx+qHAx/NS+neTjo81awSbiieS2Mw7Y2Jz4UYNa0EQH29GCoMTNtZxfOSz2JS4aGLTYM3BzzQDbK48WhGOiY5TeDWJ4/K6W6+GmvvoU/i5TWw4PF7Fz7hJ+Fyrgt9jxo9/DyOBc3wohNWEIf5etSbOe80WziOuj420j33tf0Ht6t/8b1CjwdSoC823EzgGwwCbo+fzQmP1DK4hbBubiKcyOC9pRnyt9egjP4Btzp/Btceendh8frKDc+HJc/jatTqOrfU6Bjv4EY57O4Hz4a/86n+H2tIirmVOn8VAnO8/+iR+roFzWkporF+txH+PXSGYx7JwvSj0fFdPPoXrllwG56qWj/t2+vwK1JotnB9pMG2cwuvbwtM4B3VdvE/SR/GcvtjBMX1+Cc/BvbfgvUiyJxjwme9ieEu9jHOBYeO4Tw1jcNXZkxhgEzZwbp2bxrlwaEwInhDWGVEDSiqBw1J127iGMoXbYMvH/Tt15GmoBdX4vtx8B95PZtrCPHoBa4tFIVjroHDfncD9ra/idam+JK2haRDd/srroXbkOK6Tx7fvgtrcNK5v/uU7R6AmrRc0ITgl0uLndEsIvnTXMMw2l8f5QTfweZNh4DXaFIJUulWcRy4u4TwqhWSOTeJznrbwLGWzjMF7tQv4jGRdmNNmJwtQC734HBEp/K7XXYdz/OQUPh9aK+M969IyBvg063itSqRwctU06Rnh1vDJDxEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMbzsaGo1CjT97F5aHYIPyY/jM1Dh7LYWL3VwC7EgR7fl5ECNg7dOTcNtcnte6GWMLDBpt/GJp4dvwu1sRH8XkaAzU7XF7GJ6eg0NoVtNLD5cza/DWqTcxjgE2n4+ylv4L6cfOpc7Oeggc2wh4bx9zpWnIfa7CQ21166iMfpwYfx+wcedocPI9wXGkwJVwi9MnG8lT1s8O3i1KJsW2ik28Dz3PZwO7Nn7rOVEGLhYVPiXAqbK6dcrPlCUkJ6BENdOn4LagUL9/fi2fP4ucKcseTiWG07ePC2mbgv48J22vI61LLV+D5L82ikC78bQ7g0afj7GrJxu1IVm0GvPf441A7++n/Fz6CB1BYCBZoNHG+2gdeostD0e7NUgdr/8yUMTHJSGBi1sRkfv8vnX4BtbrnhENQ8HB6q3cbxVigOQe3pU9ikfKmG4TJBhOuMTgdr/+Pv/xFq5RLOkekshnflRkehtryBv5+pCfweVk+Ahqnj9aHTxnWLpuO/yfshzi2VBl6X0nlca1YaeNwDha+lAYVDRllZDHYIhfPN2MDr5UID56DuyKNQc6+fhVoxHx8z2w/sgG1WzmDwjbCEV06hALXcKI7djfMloYbzQ7uD66WkgwE2uTweO9vCHYyEELzAx7WMncWa6eB9zImeIJ6mjyEbNx7E+7pbirhvczqeFAt1/F5rFtb8KobV6ELQEQ2myfFhqA0v4rkqPfuY3oMheNdcdw3UvvXdJ6CWFkJCGz0TR7OLY0Hr4D1WEArBcybOhdJarivcTzopXHuEAW7X7uL7razgemliAu+xzDEM+ilt4DxXauI6JVPDz80k44u8iYlJ2Ga4iL/rHXM47+/Yheub4ydPQm1tFed+KWDINP/9f9fIv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVhCE28QyFBt/pFDb5nRjDZr1zQpiMJoSVBEK/3b3XXB37eWoSm4SmMkIIjRC4kxLCDswUNkPudjGwYfEcNlzevRubs2o67l8ii81DrSx+riE0AF26eBZqbgubpy4ex6aoRhD/XczOJWGb1RP4XlfvwgbJJy/g+3/l69jstlwVwmoCbOYeRkK3fRpImhBMY0fY1NgKhOCYCGue0MC4vILn6p5ZnJeu3TYS+znh4b6tCSFVw0kM2lpr4Tm+EGG4yrTw/SMb56+cgfNy6okXoXZmZRVqtQM4B7WuxxCtoILHKSphMM2sjQ2XgygeDGEb+P1DTWgqr+P3klqvhy6+dijAY5cL8NhlhWbVNJg8D8+3hhBWs7Z6Gmqbmxg444d4zUskt0MtncM5wknFr41zOzFkb3gYG5J7Jp7jjonXbSeFIS9DE9iQ/KnjJ6CmBzjGvQbOtxfPLELNFtYyvnDJd6ZxXC4Kc3VvMI1SSuWd+NjXheuDY+LvJpPF9zq3gOubyMT1rZXAtWE2i8fY17a83KYrXHESx31+As/BpWO4bvGauHauV/HquLiOYRRnV3DArWrx+46JIq4LDk7j3JVM4VzQ2liD2vAs3v/oCRxH7TVcB1Xqwv2ZEOJQHBOCBzN4b5NKpKCmKZxvSiUMfwmTuC9BEF9/LC/gdeRsEo/T/h14fzorzA+5Ms7pJ0v4XV0f5/nNYYbV0A/VQzwX8gU871dLOAa9Doa77duN90nnL+IaYn6lDrVELn6u6glcF+ghzg+h8HdzSScDtUYdPzMSnl85No4Zy8bnN9JzibYQprO2hvdEk1N4nHbtwfXcGSEkZrGE65Tpsfj3nSlgsF8g7G+lhr/DoWEMeZ6awnl+ehIDd06dqkAtnfj330/xLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy92zkw42DxXDX4TGo9PbilCrV7HZZ7WOgQq3HtqH7ze+M/bz8Bg2Q14vYUPjMMDvkEtjE9NOF7+X0rDZ69AYfi9XYYPkrtDYtLp+BmqVGgYvGCY2Xi2tX4Ta7Cw2TM8l8P38np6l1eULsI0uBPg8/jQG2Pw/X8PG/RsV/P1nM9jEtIM5AEph/2YaUJUIG3xnXRyrMwrHqtHBRuOFAE+4IIvNimcNnDdu8OKvrRzDxsLXuEID+Ys4PlYaOAeNb8cGyb9w9RzUisvPQC3oVqA2bWBDdqOE+9cRpn9vGhsTezoOzGQbj2fCx/mmrcUbJ4dCIJkUUhYF+F6hEGwhXsAiPCfKm3ht+fZD34baG/9f/7v0jnSF6w0dUEqpzU0Mo1sVQlNaLZyrNBvH+WROCDUZxebgMzPx0IqdI3hNHcrhnNHovbgrpUwf58y0EGBTSGDNFgJ3lDAGcwZ+15TC4D1daphv4XrJEgZ6s4Hfo9XE/SstnYv9fO74E7BN4OL1YWIC572TZzF4Y2J2P9TSefwOkxNTUKs2cN1GgymxA9fE1Qu49ugqnFtsIegl4eAc0XXxtX6E80ZtI35/MjqE9ytCnpxqtHA/9AIGIOQtHLtWEueHsiUEVAhhdJ0ajt9KCe+TWm38HgkHx2oygeuFbhd/F/lJDBOKNuKf667h3HXuLP4eOl3ct5kx/N1MF3BeukkIwhqqYLDW6ZTwS6OBdHYVw7HSQyNQS3TwXC3VcV2RSOI9htLx3L94AQNsRqfiASvFIXyO0m7htd0Q3t8X1jeZDAbYeEJYpZ0UntV08fvrQijz8DAeu1IJ14vnzy9AbWYG13wZYW24torrjzCM/x7TKRz30u/m2Cm8Z7XP43pkxw4MKhsewUCcCwv4WtvEOX2r+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+WwGl3DTTtCY1NL6Ff5xJPYsLNQwOboh245ALXi2F6o1dvxpsYpoWn5aDEPNT3EZqKtOtaOP4f7m0ridx0qYPPi2iZuNz+Pn7FtewFqG1X8HmPj2KB1+wQ2ffe72Dw0VcAGrXpuV+zn5YvYsPWpoxiy8c3vPge1ktBA3hAa1xshblcoYGPmSOH3osGUFM6j2QD/3STdwnPmWhvH/nQTt7OEUJPEGo7V9PJm7OdtVWz8bAuN4XUhuMoWGi4bVdyPoadxPCdDnINXhYbkto+N1pNZbI6vpXD/yjVsTD1nYyPlyW27oOafwUCrhhZ/v0gMpMLfjRhqIwRlCLFiyjfwOL1wEps1//3v/H+gNs+wmoGUsHEsRMLySNO2ds3zhBO9HeD7bTbwDD720CPxfesIDc+HCsJ7YWCDE0gBMdjMfK2O4Ql6G+cWy8X9zWj4XdMaru+iQJgjW/i59Y1NqGWFwJ5WA+fh8vpS7OfS2jnYJmXjOqtRxvAtVwjkatQwrMiw8RgPFzBQ4sKZZ6BGAypdgFKnsg61yXGcl1SI43JsN463pI7j3FqoQM2ux187mcbPzGL+g6ps4vjLjGC4SlLHOcMT1kuJNN48uiaG7KUTuB7plnBx0O0KAX1C/tZGu4KfIdzvOkmc5+1CfF3V1fF7NWq4b0vrOJ+VhDn47CqGfUxMV6A2PIzHJFnn/RT90DMn8H4i5+A80hSuqd5SBWptITi0URPWH0Lw7fpSzz2WhtfKnPBsxTZxneG7eK8jZGsqUxjPmnBD4aTwPkk3hXAwIRAmEu5ZPA8DZ+bn56E2MzMDtZFRnEtLq/FrxPkLeM0oFjH8Rzfx9+WWy1ATlnLqwiJ+h7U1/F2nU9Ld2NbwLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1zQ42BbVs7GyZsLCxZ7mCr92zE7sf50xslFrfxJCU7PCO+Db1Kdhm5cKzUGu3MUzBCLF7cUpoRBoIzZXXLmKzT2Vh0+iZGWz+rOkYCjFUkBod16A238JaLosBHZqGv4uLK8djPz/w9fOwzbPP4fcKhCbMhWFs7Bp0hUQJ4dg5aTx3DB+PHQ2mrMLzQ1/H89LZxIbkmoP/vpIoYfBALsTXOglsmK6H8SbE7aYQAmXiuRsKISzTOjYNTuNUoLw6NgPuCE3kNzScv6aEJsyBMFbLITZHL9fw/YoBHpP2CDZHV+PjUPKW4+EOtnTJEcKsdKGmhHAhPYHv52cxCKsZYGPuNeF8osG0f88+qJXKOD5CFwdru43XN2EYKUMIunG7GH7SG8FUq+P1fjXAD1hdx+2SeNqrpoPjoxvhnGFJ4XERfq4urA08H+fbwMWd8Rr4GQeuwyCsro3rxU4b98XvWWsEHm7TEo65kEOh3Db+riMf5+WsMwq119x1D9RGkltebtMVzj2LY3V4VDgJhZI0ZeQDHL/DwhqqnsOxWu3Gx6AnhBhcsxPH5HkXg1TOr+M9VlQsQM0VQhFCIdjCtHDDbhvvJxNDOD9YAa7JukK4RdfHdWBTCOqqCvNwKhPf5317RmCb9WWcR5bP47y0KcxnayH+vi62cA7Kr+D3OhkJkz8NJiFFuOvj85aVVRz7G5t4LZ/bNQ213TN47us4tNTzJ+PzRhDgut5xcOwmbJwMN5s4GSZsIQhXw3VGTXi2kssXoBYEuG7rCM/Dcjm8J5Jeu7yMc+TaKgbCTG/fDrV6Lf47WxHWfI8eeR5qTlYIehWCeRYWMPymUcX5KyGsIa+6eg/Utop/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hdb7p4t5B+opI0NRVtNbPA+M40hC4cP3wi1IbFRKDbwHUnHP6NSfgG2WV3D5p/jwzuh1sSeo2q9chGLHjYFLRawkbJmCUERSmh22sTv1e5g89hSGRuFTk7OQG1sYhvUfvCdY1B7+DtnYz8fO4eNYjtd3DdPaFJvJfA5diGDDVBzBQzSuW4fhgOkDeEko4HU0fG8VKMFKJWFf0ox5zA0pXYW54Oqi+Nt2zgGDxi1SuznYTUE23hrq1BLukLwiycEVhg4ZpYn8DOyqSy+dnkBah2hSbkmNELPJfBzJ8bwc6edItRCoYm+vms31Jql+DH2NGHO9IUADKGBtS40fg6kpvcJvC4Np/A7/PLhQ/hiGkgHduL1qFzFJu3jRbwet1p4/lYbODFF1jDUChNYe+zJU7Gfj59agm3aJWF+1HA8n1/GQIlQGEemiQPaEIIHM1kMhVht4/45CWzc3vbw+p7QcL598UwJansmcV8qNdyu0xMk5nr4uqSOjdbDUAgUDPH6YAjrwIyBjfC9Nk5MU0WcH2kwVedx/Np4iVLFGbxFayzidr6P1/xuDs/B9QxeG1O747WzRzdhm0O1a6E2WsAxvpLE+WwjxH2zhFDAZAbXHs0ahmd0fAxwsYRwu0jDe1Fd4WvTQjBGK4H7bLo4l0QqPm+srWM6R9LEfUtl8HdTGMb13bb9OKc36nhd0oSwxFJdSEyjgaRFeA5qwr1TUgjbTZk4V+2bmYCaY+L5ZrgFqJWq8bAlI4HjSnreZAvresPC+THwhXsHAz/DFe7PVlfwPi5SuDO6sF4aGsL5KyUEwkihNtWqEEi4jvesuaH4a6WAq46wNDR8PE61lQrUhDxQFQnz9+REAWqhEMa4VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyWE3GwWbeuvAc0zKxCfHeHdNQy2UnoRbZGGqiAmzM6+TjDTtzw9hhcyR3DmqGhs3HV2v4HdzUGNQyDu5bvboBtcb6OtQunMEGyZsVbGrccbE2OjoLtbt+5U6oqQADdpZXsFnzQk8vVs/FRqymgcfEd7HWEZoh+4bQPFZo9mp4eExmxrARPg0mWwo9mpqC2vK5eag5szi3rLhCI919N0PJFZqIV154IvbzXL0O24wI6S1J3Ey5VWz8+3QBmzCfzOI4esUozqN6G+fHbgWbzadrON5GDZyr/QDHaiqJ+1cP8P0SQkPolhXfrqlLYT1QUotCw+lQ2G48EBrhr+EcbM1gI+n/3x/8Ib4hDSg8x90uji1dx+1Gx0egVq5igEt+SAhosDHoxIjiYyYpjD+/hWuFlLBGs4RG8J0OjsGW8F2zFoYnVIWAmKoQKDE5uR1qQ6NY89o437TaFahlHEwVzAkhEydX4vsSajhPeQrnlkAI0RJyxVRxGMM43vLLb4JaqYJrr9IKNp+nwZQw8bo1JoTgNc/h+Zv0cKxmduPauWzia6MSjrew55rvjeKJf9HDULxtGfzMiQIGBY5M7oKa0vH7BxX8XmtnT0AtWsd9MXy8t7OTeM+WcHBOawn3YvrCBaj5G/gZ3Uq8VjXxPsnegXPGgb24b1oXg9C6qzjfhqu4v2Yef6/DNh5jGkw5C8/LegvXHmPjOH4jD58tRF0cC6aOa41iDu9jXn1zPFj3+IUKbON7+GzBjXD9pAuBem4DX9v18XpsmbhvoRCE5blCsJjw7KtZr0Kt1RIC74TnK6k0BuhVq/h+wyPxuSRXxPmsXqlAzXJxreT5uObRheC9oRH8jEQKj93FRZwzt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtRGj6zDDRsgDk2gk14ay1sxPnMMyehNjWBzdY1E5uUq058u/HRUdhkaBgbJDe6NailIww2SAfYfN3vYmPPZHof1EJ1BmqPHTkGtXOL2HA4ITRw/m+/djV+bgKP01M/eBZqzzyLzUM3NuNNjaMIm7NmHGwKm0rgqSI1NnVdrL3yxj1Qm8U8ILV797VYpIGUbWLD9JMLOI7CTRzTURmbnmsNrBWTOdzOxObCjhtvdOxvYuhAQmikHAY47x3LpaD2j1YFahcXV6H2/AVMv3njXgyAyHTwuzaEECkniftsHcOQr41FDOXqzGBw0ISHY99Z6Gks72CDey+FTfofa1agttbFptFvv/4GqN160wTUSsLnZq2tX/7oyvY/PvslqLWEUJdcAYNpCkN4Mfv2g9+HWqmGa5lAw3OwUIyvoVK4zFJDRQxAiCJs3C4Fz5lCoEIUYc0QtrNs3JnZWQzU04Xvdd21+/H99CLUjjz9PNQcAxu333HHK6BW2zga+7ndwtAzFQjN4vM4B80mcC07uxPXMoaF67ELi7gOVEJQBg2m/Ha8Z1EFPFfHhRClyK9ALbkX56BUBq/HpaO4djn98ErsZ3sHjoU1ITihGOG+ucEK1ILCDNSchDCpObhecqbxPi4xgnOGreH3ymTxfspbxUCY6im8F60s4D1gtYzzdypfiP08e3AnbJPMYJBMbQNDaDpruJZtb2LIRqOD92xKuE2u5vh3RvRDpdVlqLlCuExHuE/w8fRVrS6ecLaB66UoxOccQ9n4fcdQGj9zuSXcwzSE0FsL55GWj2PcF8IvIw3fr9PB/Y0i3C4KcW7RcLpVbgePUyj8/V8kPF+zTfxujWp8jkin8H4y6eB1pNPF76UJa7SWcNxNA++Jtw3h9Sv08LhvFWcqIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23K3/qkpbLS9vlGB2vI6NrZcry5B7cRZbB56263Y1PjAPmxM3GrGGwkvtjdhm66PjX+rdXzuOjKJ75+yMcShWcPmxWaITYOnJoUG6nVsdnry/34aanYGwzMOHpyDWnUdmyuvr2HzYysjNGDf/f9v78+DLUvL+873XXsez9lnnnIeqiqzBqqgBlWBGCUVsiQLWhKY9m1fQlyFQq3r0OUGVljua4EdRNgOG5lQyCERJiRhy90guYWEhJiaQSCGGqgxq7Kycjp58uSZh332PKzh/gFUeO3fI+kAtYumzvcTwR/5sIe11l7vu961Muv5xRuZLl/R3yYMtOlszgh2iFxPaq+8Y0Fqr3+1Npwey+pv0c5ooAQOphFjDC5tXpNav6YNclerOlYzSW3MnPmGBjzdawS4TEXx72iWtBnwjhE01TfmlpW2bsdaTRut+0bT6I0dbXz8lK9j8NhhDbBJH9Vay9dtzm9pc/TxEd3f+bMa1JU5pvP38VvioTZpzdtxX93QMJxrf/YxqWV9bY5fOHun1G77h6+T2lcefUxqN/b0umFECOAAaBjhWH1dorgnnnhOau3eM1IrFPRalvC0EXino+ul3c2BcW4EXHmh1rpdY3BZHdSdjvsw1J3tdHRuPX78uNTSab2W93raHL3V0Xn52GENvcqk9b21zWWpFTP6veNj8TXPiR//SXmNtf8TRghRKqHN4re2dB++8dCjUrPCfy5cWjS2BQfRu/6nX5BaUNBwpOeufl1qT1+5IbW+r2Om3NU5aPrIjNQ698TnpStf1nlkPKHzyNFX6rqg3tI12oVnNQBv94bOe7lx3f/Zm2+S2ui0hkN1nYbptG7oumr9rzVEqnpBtyXo6fidNdZQM7fG569sXt+3Zuz/1tWq1CIj6DNrhIR280ZQhq/vXasZKSM4kBoNvW6FaZ0fCiV9zlMY0Vp5QueRiZLe2zR3NXQzn4m/bnZcP3+vr2PSM0J6QyNwJV3QdVbY0jHTNcIvEwkjHCzSsdU3FoeJhI63Xl+fESVTepxCT7cvm9J963Ti92dtI1xmbEzvO7e29B7L7+k+jI7pM6NsWrfNuBy4m4z5cb/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTUjRX2p72mTUa+uTZNLRhPTfEobj27VtVHoyo42AJ0dide6PW2qvrl+SWr9rgY7uJ42XC4WdF/7oW7btQ0j7KCqjZ5nxzWEZmFWm83v7Glj0/reFanNTOixO3TkmNTOntEAm0tX402d9zZ1X3s93Y5MRhuWvuLWo1J785teL7WpSW1I/9QT35SaG7kupdv1VTgAckkNCqhMa5TIutE0d7OmjcvbfR37NzIaUHE80LF6ohEfD4mqNlJupbTxb2p+QmpbRiCVv6bvLRmNlHtpnUeXA33d0X/401IbP6Jj8NENbSzfshpC+zofnKxUpDZ/6JDUDp+Ih9osfV5DY57ceFZqk+VpqR1L6fXms5/6nNTGP/sVqa15eh0ZTesxcW94UGt42Ssa4TKtjjEujWbubSO0L2uMo2JR1xqNhs5V6Wwx9mejV7rrdHRM9o05rlQqSi2KrLAaoyF5Qv+e2tqWWl2DAY23unpD10tZXQa5171OA/+OnjwhtfVlbcB+ZD4ejJcr6/6PjOhvnTSaxY+U9XWTU3oNymX1OzJp/f0/9scflxoOpuLOOanlmxr0uLSt162+00C9ZE2D7OrXdJ3SaeqcVpyMBxSEnt7D+KGO8d2mvq5u3FJeW9ZwnWee1fCM0bTOj7NLGnZx6IiuocpZnUeDVZ1v3HUjZCKrc/r42Vn93sO6JqltxEO01lY0/LO1q98ZGWEXPWMt50KdRzzPCNFq6X33tT29L8bBlCvqNWpjR4MpPSPIrVLR925ua0jKkSkNsisbIbfjpfg57aX0OcX1Xd22jtO50DfWLZ4R8FRIGIF/TufMTFq/o9PRsWWtg/pdfV3KCKYxP8+4P3EpY9/C+Bf3jM9qtHTezxvrwPq2zo+JjG6HlzPCwSJ9Xd5YG+8X/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zm+oo2vh2b0Aago0Zow9628d4TFamVxrWx541do+HwQNDNXadulpd4vjY7bbbWpBYE2vS9WtMQi2pNGzNnPGP/k+NS290zmoIazU53qnqcrl7dlNotp7QpbDLSBqW1DW0Sfe1i/HWpjJ4ClTFtbHpifFRq99x2VmpRXxusJo3PO3nHSal5JQ2/wcFU62gz5H5CG+SOzGlT8XZBx2WxoA3eM1kd+648KaWd3fjYLxkNnU/PayPztZR+58WnL0htKqPNgO8Z0897NqWTxlpd57mdjIYsTGV0/Gam9dj1zuoYnDECGjyjCfWFz39Vap/54z+Nf2db/+7rSlLnvR89eZPUpjsaGPbFlaeldtFoVj1yVMMupm8+JTUcTKdPHJHa9o5e80fLOo5mp3SstgNdQ0Sero0qZR1vrWZ8TEeerosiT8/xTEbnh/l5DWTa2dHm8JHRfX2vqgEQyaRui+8bixljgbNwaE5quZyOaevvx+dnda5qGU3ZpwfmqsjTz0+Exj6E+lk7WxqGkzFC1J698ITU5mZm9HuNUEUcTM9d0bX51KjOD62Gnr+5pM43nrFe6uV1ndK+ruNydyDA8ubDul6/yekaxTdqe0bI3m5bv7Pm61quYYRtLT2joaM7G7q+u31O11q5thEgmNXjeehmPZ5TMxqIs3ttWWpbF+O1blN/h44RLuQbc1wqpXN60ggWa+mSz11u6X7VnTW34iBKpjVIZGZW1zLdtvGcw7g/2d3TtcHSqj5fOWsEdo4W49+by+l1MQz13iw0Ap4yOb3X6Sb0+h46nYMyeQ3H6hiDK5/TcVnMG6GexjIo8HWbc8b9iW88iuv29L3ZZHxMt42AnHZD92F6VtcjubTOQVvGmmc8rfd/7Z6xvvWNMOh94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfVNHraPHRuTBv63n67BqmYjZQjbVbc9bQBZs/X7+0OvGyrps1Ot1aNpsHhmNTGRnU7csZ2NFvanDRb1qbOVaNB8tKqfl7DaOo8MqLNhS89r/u28wp9b3NXX9dtdqQ2NRr/jsJYRV6TNHoczx1bkNqxO18rtZGiHqf1pUel1g/097ntljv1i3EgPb9yXWq9ljEHzR+W2i133CG19XUNfSq09RwsntKQlDf/8jvjr8lrs/S0Eeb05S/+tdRa594vtfsmNcThrpx+Xr6sY+svl7SZ+3NL2lR9ZkGPU9WYgxp5DWOYuk3DwOZPHJOa98wVqTWz8WbrnYzOt5HRlPn0dEVqY219b3NFGyRv3anb9hPv+n9J7eSrH5AaDqY7bzsttU5Hr9uh00boK2s6t2w19Nqbympogefr6y5fjI+jp85flde4pI6FbE7HbsK4lieMv35ud3Q7rPemjQCulBHg0mxXpZbPaXP4trE27HQ1oKHW1Cb6U1PaCH9paTX25wsXNBzs1Cnjt+5Wpba8tCi1WSO469mnz0ntnKe/T3V9SWo4mJY2NBwpU9LzuZ3RwVq/ouGXU/M6L3UCTU/Y6WiQQasTv3c4NqaBm2NOx26tq591bXVXPz/Q8Tw2rfdOmaIGT2zf0PCEmYqug6amNIxjd1MDNSbndK01fUgDCusXdM7dW65KrdaIrz/aRgiPS2ut7+kx8XytpYw1z1UjCG3L+DdFY8f0mOBgsv7F2cKCjoVMTsPzrNC60On1eKehIXguYQRdDpzSa0Z4XscYC0kjWLfZ0PVD4Ov46BtzYWi8Lp3RRU8pp2uedssInsvofeFIWZ+RNep67Pod3V85UM45NxDYarzCBcb9VGtPrzflMZ1vDx3W+8R5496xt61ha+mQsBoAAAAAAAAA/zfGg0gAAAAAAAAAQ8eDSAAAAAAAAABDt+8ekSNl/e/kg1D/C/WVmv534jnjdelA/5v1KNT/Pr+c115p4VYt/p1N7QN0fVO3d0tbHbhsTp/F3nWL9moJ0rodlSnth5krGP+d/Kr2kDp5c0U/b2RWah2jj9sXvnpearMjur9nTul/2/+a++Zjf97saO+EZkt/m7Ex/Q39UHsdJMKu1MpJPc1297SXTH3tsr739Jukhpe/w2dOSS2X0N5As+M6Zvo97bexdPma1Dyn881aQ/tQXtuMzze9zrq8ZvXGmtSefOoZqfkt7at0dmJeajfPzkgtYXQE+Upax1bC6HOyXdLXjTid046VpqW2+NTzUnvoy1+RWsXoTbJxMr5vW7WavGbxmh7PC6t6PI8YPbRGyhX9zqUN/Y7z2kszmdC+V69+8Kelhpe/uUntp5VI6flRHtV+YpVR7Xf28DN6vqWMHo6urfPN1Hi8R1shp2OhY6ypikX9/JbRy6jX12t0va7jMp3WvnPJhK4zckbvx05Hv3d5eUVq28aibGdP1xXX1rTv7cK89rjqDfS6XFrUef/Jx3XueuD+H5HayWO6fvrj//3/kNripYtSO31c14ZT43qccDDVtnXc17U1owsy+rr5Ke07linoNT/Y1jFdzuh6fzqMj/PxhjGPFLS2tleVWj+lc0ZUNPrh57U/24jRA/vk1BGpnS3rvhacvrc+ottczFaktvW0zksba9qbsrqrfXR7/YH7x7TRp9do/5YM9XeohXovumJkM2zpIXZjhzX/oLSg34GD6dC8rp2TKaN364jRuzWha41OV9cBtaZey7eMfohHBnqy7hlZFkGgn58xniOMjupgkDHpnIuMsdWs6baNFI3vTel80+rp/FWZPqTvNQI39pr6jCiZNJ6beTp+i4X475NK6n7t7lal1jF6A3v6CMZli3qMVzd17eV2dX70x/RefL/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTXptDYs3d5clVp1T5v15rLasPOQ0UjYedp49OT0gtQyvXhjz77TBqNlo0FyOqXNP/sto1n6pjZxTZa1mX2vro3QQ0+bJhdGtbn0ycmC1CZGtBH+letGI+W2hskUxjTcYrW+LbUbnVb8O40G6rVtbR47NqK/zeULj0mtO6Kf94pX/6zUZjxtwtzZ1e3FwXT2zjuklvd0nBfTOo6efORxqc0f0WCDJ67o+E1fXJLab/x//rfYn/eMxsKNlo4Z3wi+aTe1gXzVCOHpzUxJLVsqac3oR764fEVq5z+lY2tv8YbUalcXpXZ9U+egutPAi2PTOgcFjfhxWWvq3JXM6LXg0av6nRfK+t7Mgjazd2N6PJ9a1d+6Z8xVr9ZPwwFw8uhJqZVGNQAgSuh1cHZW55bylI6Fx57W8KpOoONoemDs/+hrNEhleX1HaovXNFSq29XP9/u6vikVKlJLG+PSOZ1wwlDXWp6n68VmQ8dv3wi4Mnrju8aeBvZ0K7p9/sD+fv1vPqvf2dW5ulHVz7/9Nr0Gba1fl1rQb0mtkNelte+0wT0OpvU1XQfk0novkj2pgXLFsgZKVFf0vemanpe3jlekVrtUjf257+n9WjPSc/fqigYg3NAlmstM6DgtG0EMga/jciSjCT75MV0H7S3pesFVdW65vrUotd6u/hYtY05rhzqmvUT8WHmBMRcagRVBWtcoqw39vdbT+m+Fxo7re6dv1lpxlnAsfMuUMe4jY5x7xiUqa7wundfzrdbW+eCxZ/ReJD0QOrNrBRwX9HlLrqD3eg0jjC9lbG9kjMFi3gqW0vFrPZeantPnUp2+7sduXddf1bpuszPem04Za4ggvi1NY/8jY53R941jbIR1urYG+ETdqtSmS/pbjFb0Odd+8S8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNq/L428czktOFws67NLqfK2sRyalqbMHf6Gu7Q7evnBal4w87Ryqy85lhBG3Y2axtSKyS0ienatu6X1cT0wrMa9vCqV8xLbWNZG6FXKtqM9c7bNKCiMqnbcmVxS2rPX9J9m53V43LxUnybTx27VV6TPaoBEDs761Ir5zalNnL0AaltLmkT/amb79bvHTc6XeNAGi1oQ/Z0QqertDF+X/36+6VWM5oBf3HxWal99uFzUhsMx6pn9e9vsiPGHJfUffCNEIdNI8zriXUdb9uRzkH1qgZAfPJzn5Jas6vvzfaM8C6nrzN6tLtkRvdj64bOQdOFidifb5k7Ia/x0toMulrT5vsLJ3ReevM/eqvURkb0eJZyOrdkjKAfHEzFgobLpFJ6zviRnjTptIa/3HbmJqmNjekc8fyFS1Lb3oqf+6WyNjyfnda1wuxMRWp7NZ0fuh1dG3U7Ou59X/e10diV2taWjvtkUueHXFaPpxWmMz87LbVTx7U5/PychgSNDMzDS8+dl9c88sjDUmvu6j6M5HWev+fu26V25fJlqV03wrHSxjyHg8nIrHO1Pb3mHU7qfcJ6TUNdDrd1bE2Geo/VXddAiSt+PCSl5nTd0lg1Avr2dDvKhzXEIFnUUISoZyRSBXqv53V0/uoF+h3djM7BfkrnuXbXCMlJ6/Z1ukawlpHk4ffjtV5Pt8PLG8czr7/XSkqDJ8ojGsyTL2vIRnJEj+eR03qNwMGU8vRali/oeiSX11qzrpNVvaXhl6mMnudr2xpo/PyVeNBeq6vbVhw1wmqKGpCztaXbUa8a48gIUhkt6jjqt3Rft3Y0RKrv9FqeDnWOTGWN+1gjOCeb1XHuIp1LGo34HNnr6RyczegNWyKpx7gT6HtPGOHFdy3o2nhkVPcrbwVQ7xP/IhIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0O07rKZS1gabXkabBnf62nA56evzzlJRm11O5rQBaN5osnnhWrxh525DG42fuvkWqWVL2vxzY6kqtXRWmxLPT1WkVk7sSG15XZuzHp3XZp+Vin7H1rY2Xg0CPe55TxsuT1W0kWuppL/PicPxpqjlojZYbbe0iWm7ptt275nTUqu29ffa2TXCehaWpVaYOSs1HEzT5YrUvJSOhcjoeb50fUlqj5/TEBq3azRHN2bEaKBYNoJPUkYQQdeaXTPahPnxTQ192juqY/fixStSW21oU/VcQY/TdE7n29mMNkieOamBMAu36Tg/PK2BElYoWWks/r1jed2vvhEE1nc6x5XSOsf5aSPAKNSTwmvpdzinczAOptBYZ1hnhzUHecbf5yZCXWscOnRIajPTGriyMhD6dPnyorym3tCG7LkRYz3W1et7q6W1Zl2v+bu72ri919daOqP7n07puMwZAQ2bRtDN8pKGv5x73AgIM8JvCoV4s/VmUxvNz89roOD9998rtbe//eekFhq/69qarm/OPa3Xm+1tDRnEwbS1qfdJmZyuDSb0dHNRX8fC7qoR2lDTsRrUdewnwvg1entHv3T9ut7ruIRuR66t4z5T1xCDelXXXv6e1raM0JiU0+NUnD2pr/N0XPZbGgLoBzrTpyPdt62+vm7Djx+rnhHiF+Z1bm0Z8/fEIQ2XseKt6tsaOJSv6Vx48fyi8W4cRJtbOn7Hx3WsppK6xm739Fzdaes5uL2hc8v07JjWjozH/rxuJHeVSrodzgj6DIwQ5Y1Nvc5uGPs/Oa73K9NTWksbqZaNvarUQmcFcOl78wmtZQs6ftMZHf3ZdrzW8/WYj5T0vi4yggc7xu86WtTf69RhDT3udXVd9f1kf/IvIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DaiZGtXFms6eNQu84MSm1Q+PaiHMmo19dHh2X2vrWitRGC/EGwaWS0bB0VRueLxw6LLVOUhubZka1WXM3qc05/ay+7uplbYY8WdBmzZXbdV9rOzekNjGl4RHrgR67x89dlNr8YW1ketPp+O+TSFeN92kQRTbU339xaVFqS2vPSa04epvUbr/vdqlFPW1MjYPJC7X1bRQa8RFGyERxxAhmmZyQ2pkZbcK7kdWxurIWD6DqtvU8bRlN1V1RwyPKJW20fq2mjZSvnq9KLTCm64VjGrzwxte/WmqvPKXhXfNlnYPKU9qsOCzq/J1NGKEdSaOpsxefN1OdrrwmGepvWDAa4ac7+vt3ejove309TmGg14iQsBp8h7EeidLWOa61REKblOeM8zcIdL2QTunrTp2KzxFTU3o9rhkhVVtVnUdWVzWwwQqhaZd1XI6M6Ljvdnal1mpqLWnMy92WNkf3jDl9YlznoFxaj3HGCAjL5uJN7icmdI7L5jTY4tTpY1JL66XATUxooMTCIQ0jvP2OM1LrGA3+cTD5fStESsdgbV3njJ1Iw0+icQ13CLo6tnpNHUetTj/250ZSt2P6Fg1xCJu6D+u+jvFgQ7c3NAIxUx2dW/eaui3eJb0nnN4zArj6OkdeXtG5r+UbIRNG9ELb0/mmFsV/n5mjev87cVonkqVv6r1er6v7Gkb6+0dG+GtrQ39rL92XGg6mZkfXv3ljDupsadjuXl2fkXgpI5xztyq1o2f0ejkzEAhz8ZKO+7QR6LJb03VGP9QxM2s8v/AiHYNNIxxr6Zqul8ZGdG4tGqmmvpGc2m3rMe51tGZFaeYGgvecc67vx8d0aVTvMYt5I3BoR8PRxozgvaJx//vMihEsbIQRHskvSG2/+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E145WK1ObS2nTz8Ig2MS0VtPbkijYcPpHRJptLq9rUd2tvoAmv0VR+fEwbnvuRNi9OGc05mz1tuNxpaaPxWl2DEra39JhMzer3ri3r9x65RcN0QqPhdNTWpqgJXz+v1dLnzKPleCPXtKdtUttGw+nbX/caqT37yBNSu+uwNkDNFXR7N5aWpBZeW9Tv/clbpYaXPy+rc4Zn9BQPjbCD6TENKJi+7z6p3X/v/VKr1bWB8fnnzsf+vL21La9JGiEW4+O6HYGv4+3xxx6XWsWYb0/fdJPU7rhDQ58mJjSYxxlhLZ7TAxo4o8F5V9/bM34MbS/tXHKg2XoUWSEe+k7faKTcNsI+usa2+X2dq0Mj/KjX00bXOKCMNYRVi4xx7hnBLAmnr0sZrzNOcxcOFKemdDxPTWsowuFIm4WfPHFUaptb2ny+uqvNzKvVqtTKRnCV0bfctVu6Nsqkdf8PHZqTWtKY51NG8/pcTrclPRBgY82F09PazH5yqiQ1L6E/ThDonBEYP6IVYFQq6/oWB1PBuNcJu3rdynh6jvdSOrcUb9HQgvQrKvreZWPsfyM+9nvGvNc27uvaK7r2SmV1Mpid0aCb+jVjDRVogE3+iI7fipExt7asIROXq/p51ZQxjyxogGCU1P3wmsbaaDM+p61c13nPZfV3zef1fs0K65ya0HkpMIJjGx0N4XFVPXdwMM3NajCntW6pN/U82tipSi0I9fxNZvV822voeHvsqcXYn3dqek1te/oMomasKSpGkF/JuHfqdXXsbq/p/vcbet0uGM+IekbwXNpYG3Z8I5jG123J9ozwH6f7Gw0sjkoFDWZN9PV4Hp/T52G3TOn9aSfS9z67qgFG+aQG6WSy+h37xb+IBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0+w6rqWhvStfY1ea6iYw2zyznteHwTEabmLbr2sA4ndFNDMJ4s8/aujZY7XS0yW+3q5/vktrQOJ3R5uNeS7djZVkbqh45ok1hy0ZYy+Lz16R2xytvltpuTZvIt/Y0oOEnflzDZJ567mmpzU7H9+Obj2po0PrartSOLmxI7f43vE5quxtXpZbOaIPsZF8bsSYjbRqNg6nZ1HFZKBiTkBF+YgVAREYxaTRlL5d13njg/nioTb+vzYYHQxKccy6X04b0fk/f+7rXvnZfn2cF4kSR7pdvbF9ohdUYgTP7rbmEHvco0jl9sGa+xgiSscNldL/aRtPoXk8bRFtJR9Y5gYMpNE5x6/zwjBASa1y60Pg7XqNmDCOXGkh/scZ4aNTSkW7bxPio1CYnKvqlRtRUt6uNy1dv1jXK6VMnpLaxvi61dkfHahBo8kQ2o83hyyVdVxaLWhsbCCk8dEgDAMfG9JikMkYgV0/XKNYxsebHTEYb93tWmhcOpPnbb5FawrjX6c/quTWS03VQ1NZztV7XOaKxo9fG9Xr8PmZ0ekpe013S95VbekKnk/qdM77Oj+mcjt3ri3o/ubqt92wjRd3/lY6uF3ezOqanZ/R7C0U9xv2+vreW1+8YPx1fL/oNI3ijqp9fzOp2dFp6H9swwhhHR/SiUfL0ddsXNXgRB9POuobD7jX1etw31udhpPci23XjfiLS9Xm0adQGQqmyRvhWu6rjPmuE64wYoSl5I/QqXdS5deqwhqs09NGHSxlrrV5Wj1PHyLLKF3QtE0R67DLGMcgWNICs7cfHedDSeTkbae3MzYekNmqE8Fzd0Dk4ndWwMd8IY7y+p8/D9ot/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6PYfVjM+J7WpioaLjBpNLAt5bQ4+NaINUOtG4/JjM9o4eau6FvtzN6eNQw+NaefQmWltxLld00akxw/pfq0sayPhibLu60hJ97W2ZzRhrmlT406gz4U7LW0AemXxhtQWThyX2mvv1YbYzXo8/Ob6Df0sf0ubqa488ozURl6nIUSdlobrjE9rM3uX0EapzTU9TjiYzj/7vNSmpvR8G61oI10rcCaZ1KnOCk5JGOkR4UBohRVYYHyUGcTQbWsj5UqlIjUrEMeqWax9MANnDIP7+rex9s16r3WM9/Oa/W6vxdoO69j5vs5zOKCM09ScH4zzMuGMgCfj73iTSV3zRNE+xpGn57ORmeOcsfYKjJAq8/OMv5LOZ3V7jx5ZkNrEmDZ9t+ZIawxa4T+FvDagtwJsskYY2CDrNwyNAIjQac26ZmSzeqAyxrZZAUOBEYCBg6mb1fFRGDFCU9JVqQVdDSEJVnRsVesaWrCzru8dLcTnjWTHuDepGeFxWWMSyuqYuXpuTWrtvn6HP6bjKG3MD9s9HVu5Y/re2aSGPYS+MS5zus25ipRcKqnbMlqOz1UTuUl5zca6hoKsXNrR7ejpMd41AkXazggOmjeuLaP7vr3Hy1whreM+zOlYaPf1+lYpVaQWOX0ucXRB1wFjOQ1tC5rVgYKe46m0hjmlEnqOF9L6+c64vgfGGi1t3Cf6ZZ1HnHEt7xjX8qVdPcZbTT1OUd8IHfV1m/tt472d+LbkEvpZt57QgL6jk/rb7DZ1e8cm9HnbRF5/i6qxbdni378e+9vwLyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADJ0X7SdNAAAAAAAAAAC+D/yLSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg8jv0uLiovM8z/2H//AfXrTP/NKXvuQ8z3Nf+tKXXrTPBPDDj/kGwEuF+QbAS4X5BsBLhfnm/54OxIPIP/zDP3Se57lHH330B70pQ/PRj37UvfKVr3S5XM5NTU25d73rXW5ra+sHvVnAgcN8A+ClchDmG+ec+9jHPubuv/9+VywWXaVScQ888ID7whe+8IPeLOBAYb4B8FI5CPPNQb+fOhAPIl/ufvd3f9e94x3vcOPj4+63fuu33C/90i+5j370o+5Nb3qT63Q6P+jNA/AywnwD4KX0vve9z73jHe9whw8fdr/1W7/l3v/+97s77rjD3bhx4we9aQBeZphvALwUuJ9yLvWD3gB8f3q9nvsX/+JfuNe+9rXuc5/7nPM8zznn3AMPPOB+5md+xv3n//yf3T/9p//0B7yVAF4OmG8AvJS+8Y1vuH/9r/+1+8AHPuDe/e53/6A3B8DLGPMNgJcC91Pfwr+I/LZer+d+8zd/073qVa9yo6Ojrlgsuh/90R91X/ziF//W9/zH//gf3dGjR10+n3eve93r3Llz5+Q1zz33nPv5n/95Nz4+7nK5nLv77rvdJz7xib93e1qtlnvuuef+3n+ee+7cOVetVt3b3/72F05i55z76Z/+aVcqldxHP/rRv/e7ALy0mG8AvFR+WOcb55z74Ac/6GZnZ92v/dqvuSiKXKPR+HvfA+AHh/kGwEvlh3W+4X7qW3gQ+W21Ws19+MMfdq9//evdv/t3/869733vc5ubm+7BBx90TzzxhLz+v/yX/+J++7d/2/3qr/6q+43f+A137tw598Y3vtGtr6+/8JpnnnnG/ciP/Ig7f/68++f//J+7D3zgA65YLLq3vOUt7uMf//jfuT0PP/ywO3PmjPud3/mdv/N13W7XOedcPp+X/y+fz7vHH3/chWG4jyMA4KXCfAPgpfLDOt8459znP/95d88997jf/u3fdlNTU65cLru5ubl9vRfAS4/5BsBL5Yd1vuF+6tuiA+AP/uAPIudc9Mgjj/ytr/F9P+p2u7Ha7u5uNDMzE/3iL/7iC7WrV69Gzrkon89Hy8vLL9QfeuihyDkXvfvd736h9qY3vSm6/fbbo06n80ItDMPogQceiE6fPv1C7Ytf/GLknIu++MUvSu29733v37lvm5ubked50bve9a5Y/bnnnoucc5FzLtra2vo7PwPAi4f5hvkGeKm8nOebnZ2dyDkXTUxMRKVSKfr3//7fRx/72MeiN7/5zZFzLvq93/u9v/P9AF5czDcAXiov5/mG+6lv4V9EflsymXSZTMY551wYhm5nZ8f5vu/uvvtu99hjj8nr3/KWt7iFhYUX/nzvvfe6++67z/3VX/2Vc865nZ0d94UvfMG97W1vc/V63W1tbbmtrS23vb3tHnzwQXfx4sW/s/Hx61//ehdFkXvf+973d2735OSke9vb3uY+8pGPuA984APuypUr7itf+Yp7+9vf7tLptHPOuXa7/d0eDgBDxHwD4KXywzrffOc/i9ze3nYf/vCH3Xve8x73tre9zX3yk590Z8+ede9///u/20MBYMiYbwC8VH5Y5xvup76FB5H/g4985CPujjvucLlczk1MTLipqSn3yU9+0u3t7clrT58+LbWbbrrJLS4uOuecu3TpkouiyP3Lf/kv3dTUVOx/733ve51zzm1sbLwo2/2hD33I/YN/8A/ce97zHnfy5En32te+1t1+++3uZ37mZ5xzzpVKpRflewC8eJhvALxUfhjnm+/8J0vpdNr9/M///Av1RCLh3v72t7vl5WW3tLT0fX8PgBcX8w2Al8oP43zjHPdTzpGa/YI/+qM/cu985zvdW97yFvfP/tk/c9PT0y6ZTLp/82/+jbt8+fJ3/Xnf+e/63/Oe97gHH3zQfM2pU6e+r23+jtHRUffnf/7nbmlpyS0uLrqjR4+6o0ePugceeMBNTU25SqXyonwPgBcH8w2Al8oP63zznSbxlUrFJZPJ2P83PT3tnHNud3fXHTly5Pv+LgAvDuYbAC+VH9b5xjnup5zjQeQL/vt//+/uxIkT7k//9E9j6UXfefo96OLFi1J7/vnn3bFjx5xzzp04ccI5962/WfuxH/uxF3+DDUeOHHnhAlmtVt03v/lN93M/93MvyXcD2D/mGwAvlR/W+SaRSLg777zTPfLII67X673wn18559zKyopzzrmpqamhfT+A7x7zDYCXyg/rfPM/Osj3U/yn2d/2nb/9iqLohdpDDz3kvv71r5uv/7M/+7NYj4CHH37YPfTQQ+4nf/InnXPf+tuz17/+9e5DH/qQW11dlfdvbm7+nduz3/j3v81v/MZvON/33bvf/e7v6f0Ahof5BsBL5Yd5vnn729/ugiBwH/nIR16odTod99/+239zZ8+edfPz83/vZwB46TDfAHip/DDPN5aDdj91oP5F5O///u+7T3/601L/tV/7NffTP/3T7k//9E/dW9/6VvdTP/VT7urVq+73fu/33NmzZ19oYPw/OnXqlHvNa17jfuVXfsV1u133wQ9+0E1MTLhf//Vff+E1/+k//Sf3mte8xt1+++3ul37pl9yJEyfc+vq6+/rXv+6Wl5fdk08++bdu68MPP+ze8IY3uPe+971/b8PTf/tv/607d+6cu++++1wqlXJ/9md/5j772c+697///e6ee+7Z/wEC8KJhvgHwUnm5zje//Mu/7D784Q+7X/3VX3XPP/+8O3LkiPuv//W/umvXrrm/+Iu/2P8BAvCiYb4B8FJ5uc433E8dsAeRv/u7v2vW3/nOd7p3vvOdbm1tzX3oQx9yn/nMZ9zZs2fdH/3RH7k/+ZM/cV/60pfkPf/kn/wTl0gk3Ac/+EG3sbHh7r33Xvc7v/M7bm5u7oXXnD171j366KPuX/2rf+X+8A//0G1vb7vp6Wl31113ud/8zd980fbr9ttvdx//+MfdJz7xCRcEgbvjjjvcH//xH7tf+IVfeNG+A8B3h/kGwEvl5Trf5PN594UvfMH9+q//uvv93/9912w23Z133uk++clP/q39mwAMF/MNgJfKy3W+4X7KOS/6H/8tKwAAAAAAAAAMAT0iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAxdar8v/He/+zV9cyoptUTCerbpGZXIeF1ofJ5+RzqdGvhz2niN1pJJ/axUSrc3Y9Z0HzJJrSWT+l5rH7JZ3b5sTn+OpPEdkXGcXKjfmzR+C2/g48JIPysMjZr1cxnPscNAX9jrB1rr+lLzje/98R+dtb4YL3OX/n//X6lFSR0f/UDPraTxOj/Qc8s6pT1jrmqH8XO1cs+r5DXZY7dKbWu5IbVrm1tS22npWOimRqTWK85JLTWmtVyhIDUv0mPihTovuVCP58q1Z6RW3V2VWmm0JLV0Jj5HjI7oawq5nNQmxnX/xyu6X4Ws7kMxrb9hIWNcq4Ke1BYWRqWGl7+7XjsttaCZldrm9brUMuaaR+ebsTE9p2dmJ6V2Yy0+R2ztNeU1oyP6ncW8jq1OW8/xINnWWqBjptXQucBzGa0ldF89T99byOo479R17kvk9LgHTl+Xzxnrr0J8W7qR7qvr68wftPR4dvu6X9b67q6bTunrSvre88+uSO3C+XXdPrzsPfjjd0ktNNb667s7UvONuaWQ03E5WxmT2kylIrVcLn4v0ui15DWdhs57QaTjKJnU7RjL67yX0unBhUn9vERar9utps6HobEtqZSuebrGfJjP5aWWTut+NJu6nqvX49uSy+i+jo3p7zA3p+s2q5bO6JzZ7+nBC3xjDdnW4/T//t/+jdTw8vffH9FalNCxYDxZcKFnXPON8ZaIjGu58brAmOe+V5Hx+UZJnns4Zz2Vcs4z3mvfJ74EIv2WhDe4/tjflnjGjtnvNB/0GB+o83JkbO/P6a2yiX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WYwaYGAEpVgdMqylmZDXFtLqMGu1Tw4HkFLs5qRUaY4W3WFunr4sCI5jFacNOz/iOyPi8fmS81ze22Xhv2mgInUzoftihMwPHzuhO6xuBM74RCmIF3fi+1no9bWJrNVy2wmpwMHnZotQSkRFMY7zXOn9TxitTRniVMYxccmDs54zkppxurjtyZkprp7XW3O1IbW1Lm8PfqGqwwdaNG1JrZ8tSK48dklqxrAEdYUbnlkJewyNc7qiUOkl9XTEfH9PTE9p8fayoB2+krK9Lp/S4FzI6P46kjSb6YVdqflePsXOE1RxEVqBcq6PnTNIIQOj1dPyOj+t5lDKClfxIG8a3/XjAipfR87nb7+vnhxoyEfWMZvHGqi9lhDOkk8Y131gHJYy5tW9sX9dpLWMERXQ7ug7o9zV0JmUs/LoDc39khAy6jhFmZgQTJY1EDS+hv/XG5obU5kcmpJbO8ff++JbEPiMQRkoa0Na3AiZ9HVtJ495mtKSBVpmB4MzAGUkyGZ0Lm20dk+mchnBai6rAuE8IjECFbMYI2fP1OxrVqm5Lyggx9fTzMsaaxwq6saQHwnQ6vT15zfUb21Lb3VuT2ubWdall8/r7l0t6bRkb1UCcQl7nVhxMXsIIKzGun2FDQyizns4tUXFGaoHTucXz9HqZkGcf33v0ix2tst/EGSNE2Xp+ZT6X2ifrA/f5eXbAzsB795muY4VDW8Gs5nM5k/WsZn/P0iysjAAAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DajodbTpqNfRNWgEQZkiM8SVGE2YrTCYYCE6xQlkioyFoxmh8bIW8+EbQjVkz9tXr6+cljIbpaV+3pWs2SDaCF4zjmbJSNoxjEATxYxVawTRGI2k/1AbWgfF7Bf7+Pi8KjUapPBbHt20VtPFxwtdgh3SkQUhZ4xw08h6cZ4TfREYt3Y5/b+/xi/KaXqDbkTmkDZ2LeW0qXhnT183MaqjNbX2dg3d2tBH68mZDakurj0ltd0Xnm+zcEamNFYwALl+bqHcSGjqTHnhvIqHHyYX6u7rAmFuNxsxeqPsQetqkvtvTxvr1qobVzOuW4AAoFDQcqepr8ECpOCK1TlLHR72lY7VlnIN7Df2OYOC6nckaATGBXj9rdT2fy3ndXiutptc35kJjqFq90e0G71rzQ216b4b7+Xrsbr9Jg7Xmj+m+XV7Ziv15Y1s/q93XHTNysFxkHOMg0lqjpUEeG1s7+nmsb/Btga/nTNcIcLTOGWPISICnc86ljACukZIG2UUDwQP5rM6FGeM+xAr4Shd0DWDNI7mCBqn0jLVBs6NzZrdnrAPzus0JY6x6xphutYyQL+PeyboHzmbjQTeJpN7rJKx7wqTua3VvU7ejpu9dWdVty2d0PTY2omtIHEwJI0Mq6up8s3fjKamNu0WplY/eLbVWUWs9KzBKvtaOM/6eGeN+v6x1i/2war8faNT2vX3G/DVYMz9qf8dzv7tlZusYz5ui7+O4szQCAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHT7DqvxfaPjsMEKjrECZ6xGmVbeihV0M6jfN5qgmyE3ug+eGQaj35G2Qm162nB6feOG1LL5jNTm5uakVioZjeWNRqFWIFBkNnfVbR7MnAm0X60LjYbOvtFxOjCCPTzj2XZoBNOYXbi/j/60eHlZymrTc+f0vO/UalKrGN11R5J6DuaMRsq5tI7VpBefJv0tDYhJPdnUbbuyKLUgrSE87tC4fufopNSyYzpnzB89LrWF0zovHbl4QWqXvvms1GrnNYhnO9RG6JnyYamVC9ocvZSL11JRVl5js5orGw2SjVo3NMJD2jp/Wa/DwVQq6znuJXRuqe1pLZXUeaQfGOeWcRnsBxq8kC/EP29kVOeMZl1DHEKdulyUMq7HbR1bVlBGwriWG5l95iIiawQDzh3WwJnl1TWpFYs6Vn/sDSf0a9MaMnF1LV5Lp3VfK/O6bRmn61bn6fVmfVPnr35fD0qtYfw+kfED4UBKGEGPCeMcDIz7Lt94bzqh51YxZwTCdHVtMBjQFxhhMM4KnAy01mxoUF5lRAP6Cnld33Xqu1JLGROO3u3ZoZvWPVFoXPOtucq6j91POGu7o8cuZczBVjha1/ht0mm9tnSM7+h0dS7c2VmXGg4oT0dNFGj4UmNnUWqF1FWpjdQqUsunbtLvTevrBi+rnhly8n0ExFj2+WzBeh6076/Y71v3uWsSTOOcBN3sN6vGOsTW/dR+g26s+67vB3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1YagNKwOjSbnV5DeR0KbfViCMlWnyvYqMzqHWdqTTRqBLqI1d17dWpPbM049L7dJFDYA4c8vNUku5V0lt4uazun0pbY4eebpvbeO3MPo3u1Qm3iQ5aZwCVoCNM7KKPKO/u3WeOKMJt983zh1rg3EgZeY1nKBd00CYbrIutZWuNmFeNUIhEoE2B/daWnONeEDF4UAbsh/uGPNjSuebZl23I6pe1680AqOSIxr20D6uDaLLCxNaa+9J7WxK99U3giKqoe7vjeY5qa3sGPN8Px6mk8rqHBflNZjHN7ore0ZzfNfV4xkYIWKe8ftHfeO3xoFU39I5I+wbgUnGJSowwkoSSb2u9n39jnRaAyUGm5SnksZ2JIyxkNIxU2/pdyaN0K+RUQ2PqNc0cCWRsLZF54x5Yw7KF/Q4HT6iQTyHxzS8qxdoqM31GxoMOFWKH/es8XftC0dGpXb0qH7n2oruv/+EBpV1jfSMvrGG3NnWORgHUz6r4TK9jgaO9I21TN8IqykaYVvjYxoSE/SN0MkwXssYIX4ZI8Sv0dbtbbW0NjqqY8uYvVy3qeu7bEa/d6qin1c3Qgv3rGCxrM63ViCMxTeOXWZg+zJ9vV+zQiGM22TX6+nn931jXWnUJsc16LRc1HMCB1OvYdw7VfVa1mnqmKkXjPPNWIun2stSyxbKUuun4mMmaTyrGQzQ+lZRx1HCMx5hWZ9nLdyMYJbIfNBhfYUR5Gd8Q8JM9zO+19g88xnWQMnI2TKDoPtWmJd1PK3EaM96IGQEgX0fAUP8i0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ7fvsBqrcaYdTGM08TR6WFrBMamUvtdqJKzNf3Xbkkaz+FRKa72uNld+/uKTUrtw/jGprSxf1m0LNQDh2OEHpFbI6rEbKVr7r8epYzQ13qpXpVZvaqPrXDbeHD6T1mbxmYw2OU5n9HdIG41Yu0bn9iDQ7Y2MBqh932qKioPo/vt+RGpt43zudvR8q3X0dbW6Bq609qpaa2j4zfXHvhL780JLvzPK6Fi4KhXnqiltvj7mG83Se7odIzsa2ND2db/8G9rMPRXoNudCbWCdShmNqfMaZFFK6lidM+a+C8vxUJtrXQ2AOPKKH5Va0mlTeT+tc2Y2rXN6qajv7eQ1rKavpwkOqBsXd6QW+FZzdOPvbs18Nh1vnmeEEXSM1AJv4JpvXI9TOePau6drGecb4QxZ3eDRMQ1ZqNd1fkga4X4LhzUoYWJCPy90Oj+cPKzBMXnjOLWNoJ8jC3NSu3kgJOfKos43z165JrXAaOZ+43rVeJ3+XmMT2pB/fdMI4+uxvsG3FIxrar2t52ponG8dI8AmKujr0gm9NmaMMIJkciA8Iqv3HKGvY7JU0nEfZXS+6RuBcnvGWMgZ81zPCJ5r+DoveYNzpnMuawSB+Uaw1PaOBnQ4IxCoZYTz5DoD6zkjZCM0PqvX11oQ6nsLBd2HwNiJ0Lg/z2T3fXuPl7kd497B6+v5nDDCcbMZI3Cma4ReeRromxrX0NEwGf+OpLGA6jaNbTOeGXlZK5DJCHmxHkIZ4Sqe8W/zPGPOjEJ9nTVHNutGYJYRYprN6X1hOmPs78BNS31bf9dWW+fHickF/c6ChplZIaGRGUJjHbvvHf8iEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQfRfdbK2O7Nqe0gqESVnBMUYISyatDTsLeW1Gmhx4fJo0mn8afU3djeXnpfbXX/6S1K5d02bmkdEs3WlvUlcytnd0tCK1XF6bwiaNzIpcXo9x32iEnzQawfttDbzYrcWbwOaMEIdsVncsaYRCJJLGtvWtEBqjSb/RwLrbNzpJ40CaHtVm7lExJ7XQ6JBr9AF3ga/zV2C80Mjfchcy8S/xHv6qvCZnjPGx40el1vU0HGprd1tqfmtPam0r4MnT/ZrJ63eMFnRure9tSS005oxWTeeW9d1Nqc2nde6LGvHGyeer5+Q1U2fvllohpQ2yE3n9e7OsEWaWyei502lrqE8mq8cEB1PPuLx7RjBNZDTzTiW1sXrGCN4LA72GZnN6/vrp+HXQSxhBcUkNMQh7eo4nAp0zJqd1fvACDcrIpfS6PVbR7z12VOdlI4vDeZ6ONy/SAx8Y60Vr/Zkz5v6ri/F589lLOnctreq+bm3rfDs9o2EcC0e1trSsDenDUPd1fGxCajiYskaoSyLUmxa/pwsS31j0pI0bHt9YT+/1dN09Nho/pwtpHbzrjarUWm0dk5GxbdY9QWTcO3iRjvt2R7e3Z6TMZTN6PxUEOm/2jZAc6/6x39d5o9nWbdnZjc8bWeP+N22ExiRSRmhQRl8XGMETRePc8X3dtlZLrwc4mEpjRoBj0wiWTRjBNEZgVMcIBC3kdRwljXEeevE5zXiJyxqheDkjRCtI7+/f0hmZX871df5qVDW0sFrdlVq7rfPI5g19brS2vCy1iekpqc1OV6R2aEFfd+6xh2J/vvzcU/KanjHvT8wekdoDr/8JqS2cOCO1KKFzqxX6ZT8j3B/+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE3S00ahZgiNkbhiBdgkEkazYqNpaWgEs2SS8W1pNTRg4dy5x6X2yEOfk9runjYpTxphBwlP9ysKtWGpkcvirAyWntGEereq21KrayN0IyPI5YwwmXJBm8hvbsUbGKeKVvN9bTra62rD2p7R+No3DoD1+6eTRsBQ4rvITsLLW2Q0QjeCFwIjrMWFRrBByhi/1vxlNAL38vFx9MjaurzmkNENuW2EU0SZMamdvfdmqe0Z88gnP6shOZurGnTzrn98l9SOvepWqTV2tQlzZIzzh//yL6X28b/8vNTe+oYfk9pGJ/5bnHjFHfKadFGDHawG1lZD/rYxV2UT+luk9NRxib7xJTiQPKfnlmf8PW0Q6sDMVPT8zRd0HmnV9CTMGCFSXhBfMCR6GobTb2qz+JwRgDC3MC61V7/aCNHq6dqjuqON63MFHVuZsm5LJqtrjyg0ru9GgE02q83RW1Wd59Jd/bxzz8dDtJ5f1N8w4fS3GR3ToK3Z+WmpnX/+stTWNnSBN1aZkZpx+cIB1WxpYFLKWP+mjHWLM+ag0LjmNfv6HWnj/my3Hh+/axt6z7G2pcF2XWP9H/j7O8nHx3VeyhsJV72uXt+7PeOanzHWd5ER7tfTsZrL6dhPGyF4CeOf7TQH1pDpwSRV51xobIcVVhNY95Md43pj3It3nP7+xTxhfPiWkbxeyyPjGUTKuD8JPD0Hi+MapJItjOp3JHSsJqP4GIyMIBkv0PuQ+uaG1Kot3bYbN9aktrOj65ueMQfvbGjgTK2m90l+X8d5v62vy6Z0LZNLnpXaE1eelNrzWZ0jRovxtUvaSI3pG0FCl849KrXq0kWp3Xb7q6R2/J5XS23m0EmppdO65jMfVhn4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu3035UkaDjKTR1NGsGZ/nGT0tvIT2yOgZfU6Wr6/G/vzYIw/La1auL0otn9R+AqNGf5BOqPvQN7Y3NPofeEbfuXyuJDUX6VHpGz0bvIx+XmA0G2o3tafC4lXtd3B18Xrsz6Njk/Ka2bkFqZVKI1KzetqkjUfb7WZValavlkbL6IfptGcBXv58X8eC0TbS9UOjz4nVYNDp2Pc8a2zpOLq2Fu858nRNz9OdUWN8GP1nF2a1B8vIxITUfF93dq2mvXBH5nWsZufnpPbhT3xSt2XhmNT6xve2RualduyVb5DaRlb7PgX9+PG8qaz7WjTm0aIxj2SNE6Cf1N8/SBs9mayexPw9HL7NmFpcFOk1Kmn0JJ1dOC619e1VqaXy2lOt2WlK7fTh+Dg6e0r7MV1b3pFaY1bXGZPTOt/4kb43ndM+lFPzRp80Y7xFRv9sz2l/svKozg9bW1Xdvp6u+aanDkvt2QvaN3J5c+C9CV3f+UYfO2Nqdc+d155U64Of75wbn9I5uLGnfZo6LaNZOA6kjtHHK2H0FyyXdExXd3Ss1jp6Ate6OrfkM9rHbXMlfp7vbFblNT1re617QqP3u7Wve1UdR+Wy9rELjX7f1rXc6uGfSRv9Z41au6HHKYqM9aLRh3O8Ep9fR8rG72X0mEtk9Nj1jLWnHxj9+YraSzM0evPX9nS/cDAl+jpnWB1ECzkdv72Gjt9e1zinAz33U6VNqeUnj8T+7BvPW3aNdcFf/clHpLa0tCg16zlKNqvbljfyADptXRtZc0E6rWMw2dP7wnxen6+Ujf7h1TX9fULjWdrU0Xjv6c6efla5rGueUlp/1+DCBak1jV7AXzyveSuzd90rtXseeKPU3EldG1u4EwMAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kZzS6dkQmRdNoI3Aqw8TxtAFrf00ahVxevSO38M0/H/tyra6PmqbI28cwlslJb36lKLTJCESIjAMP3dF8D45AmEtoW1sjYcNWq7ke3q41i19fXpLa2qk1hF69pWM3axnrsz8m0bm9lrCK1Qk6bs1bK2vjaaqS8vaO/69qq7sPq2g2pve+f/89Sw8tfs63n/e62nkef/MynpXbmzGmp3X+fNte9snhValtVDZjZGAidKR3VBryrxvyQTGsD9eO33iS1zISGUfRWdCz8L2//B1I7fcxoBmyEcnlGGke7pQ3jb6xoQMOhkgbM3HLna6W2tr4itXw9HtpR/9zX5TW1i8tSax4+IrXpcd2OwjGtJWe0Vm81pOZZBwUHkmesW0KjSXlpRK9vnV29bpciDQq4804d566ra5ITs/FQl0JGP9+f1HN3u6f70I90XbChJZcr6N9Jj4xog/fIWPQVMnpMchkjmGZdG9znjbDAU7MzUruyrI3gv/Gs7kiYih/PdFJ/h9CYq1strTWbGi40MaXzUqGgIRu72zqnMd3gO0olHTMNIzQl7BkBbX0NPao1NOzgxpqOj5TT76jvxtcBhYyO+2xa76fyuZzUQuPeaaSsNztWgI0VRphIGKGexv5XjXVboaBzy2hR9yMywjJ8IyTHCoRxLj7fjI7qPVGro2uPZld/LyvAJpvU60OxZARwdfWYhMb1AAdTf0/D8/o94zrYXpdaffu61MpZHZezE/qcw2sZQZzdeMBToVSR12wa42NzRbcj62nA0/S0rj1OH9fr9okTJ6S2vaX3P4tXL0vt+g19XdsI8IlCnQ8iIxpxzljz3HJa14uJgUDn0Tv0XjfwdS64+I0npVbf02NcammtfEi349Llp6X2pW09Jj91329IzcK/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOqxkpaSPSREKfY6ZS+pEtowHm6o0lqV24fE5q14zXJV28+XExp985XtBGypGvDZKTRuNQF2pT4sgI3Ikiq8G91qpVbWJaq2tz5Xq9KrV2W49draaN25t1bYhcKmsTdRfFG5neMI7vteu6/4lIf+u0pw1rMxltrpxK6euspta1WlVqOJiyRiP0YkmbqN985mapjRphS8mMft6Fq4tS++wXvyQ1L4iP6cee1sa/K7vaBH5mRpshX21r43bf14bLf/UXH5faxIg2Ka+89S1S+8o3HpZaIm00Pc9qrWCEkqXzeuyu3diWWlTUxsxT6fjcN/PoRXnNzrMaqnVjQZtcr3Z0bq0c1ybP2UNa6x+eltqxV+i5g4MpawQW9I2QuU5fx29lT5t0/+xPzEltdEzPwaUlvZYXyvFrea2la4V+Tq+fhaIxZxrzaDah+7C1o2ujrR0NsyqMadhDcUzXGRsbul+1us6Rrziqc+TSqoaS/fknn5FaOzTmtHR8fTM9o9s7OqnN7J89p+F5Qajvbbf1uHe7ur0ZY23UDbWJPA4m6z4pbYTb+Q1di4eBEabp63uDrq7Z+30d54mBf49SNoJ0IiMAIZ3Sz08k9bwfKY9Ird7QAK6xMX1d0vi868saWrG3p3NkFOoxCQOd05Oe7odnfG/eCL8pFuJzRNcI4TGDeYz7zl5Xw7FyOWN7jfvuwLg/HRvTeQ4H07VLev3sRjoHbW7qWqaY1fO+09FnGt3QCJhZ1dA2V4uvPzI5vc4uX3xOagszs/pZxn1NFOmYOTSvYTUP3K8Bpp22zkte+Gqp/dknPim1x57Q+8KpqUn9PE/XX4WCzlW3nFiQWmpgzk0l9DfsVPXe7PnPfVlqUUnXbXuNLam9ItK58I77fkRqi9/H8xv+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM3RI9p0s93SZubb29ooc+XGVa2taBPThtFwOGOEJ+Sz8eamBaOB/IQR1NLzdXdTu9p01RmNmRORNgNORPq9UaDNpXd3tQFo1mhCPDKiYRxz81NSW76uzZo3VrWWy+mxy2XjtWLBaPbqac0Z4TJ+X/fVS+kx6QV6PPt9rYWRfh4Opn6owSSpjI6ZyWkNJpmb06AIL63vzY9WpBYZYUuVgTCG1HUdpwueBrW8+Q0/I7XL3arUWk1tkHx15YbUvv7YitTuulsbLn/kjzXopjxSkdqP3Kdz3xe/8HmpvfMf/6LUCtMaJjMxOSa1owPz4exzOu97ef37sNW8zg8dI2wsbwR5FC/oe6duOi21UlF/RxxMfWMp5CX0enRkXNcB//j1t0rt1CkNXvjY556W2m5bz9WRw/Gx5WU1cCZtBJ+kjKbiUUdf1zPCaqy1gt/TObjX0Yb01RUdl2lPj92hGQ1PeOZRnQ8efuKC1LqRHoOMEZaRSsa3eXZOrw+bWxqk4/d1feNp/3jXbOh7R4razD+b0utNzzgmOKCMjExjie2aTR1vWSN4b6ys9wmJQNcyQU/HamFgXdUyQjNHR/V+KpnUubDT1XvC3aqGsBjZKi5vBDZYAT7pjI77TEY/MJm07ll0W/pGSEzSuDOeHK9IbTCcZntH7/WqxvFMZfULMsa9mGccqHRa3+v39hdqhIPp0ce/LrWE9fjHuA6OVHS+8et6z+I8vT9Zbej6/OpGPDjHy+jawxnr+rCmoXCNvs4P1ZquW04dPSS156+uS+1vvvIFqY3l9TidOn5Sahvrm1ILjDmy2zECcTydl7vGXBoF8bkvmdZgsWZNP6vW0lrfuNeNjh+X2s6ly1KbO3tWaqfvuV1q+8W/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kb+SWXLmoTy42NDal1O02pTY5ruEOrra/rO208mh8Iesk5I1zG16arfaNRcdIIw/HaRnPlUD/P6IXsQuM78gVtXH7bbdrss+/re32/K7WrV5+X2rVrF6XW7mhj9eRAaEcyoc+iEyk9LUIjmCdhHLtcThvbRsax6/Z0X7vGscPB1DZCEbY3tRH4H/yXP5LaT/3Eg1J73RtfL7WnLmgoQkdPc5cqxMOxjOHhxhI6FgId9q6+oQExlRENUkkWdBylnDZmLqTzUstmNIQlCHWjWx0db7WWzsHFrO5IMqvbYjWw/uZ2vIH1fEp/19kJDZRYKBvzyIy+Lml0lS+1jVAyozl+ir+Hw7e1M3rOHNFsFffzrz8stROHdAx+5TFdB13da0jt9EkNeMp58fCTwFgDzZQ0IKXR1ObmqbyOo55xza9uazhWKqnfkU/r3HLTIT1Q1xc1tPCrX9DQwqUb2pR+dF6/I9HVNUQiYaz7BgJsFq/pNWNzXec4zwjoi4w1j/O01u3pdmSzRnCQ8XE4mNodHdPXVjSMYXNLz9VSWeeblHG/EwYaUJBL6Xk5PR6fg9odnUcKBf3OTkfvTVpN3V4rmca6T9jc0DnDOR00gTHe8lbwghEcGhrXfC+hx86KeanVdf7uDITV+L5+Z7+r+2Dd61aMhWXO+K09I4Qm7el+7VX1fMLBtLaqoXB5Yx1QyOm1fM9YJjf6utYvjRrhxXs6HjIT87E/33HvXfq+RX3Gsfz0E1I7UtFg0vYFXcvkizrfbO3ovdiTT+s9Yd7T+6T52VmphYHO6fWmzml7dT1OlZJunwv1wIcDgYRrNZ2Tnrm+JLW+8bytYDyX2zDmuEJW56+ttUWpveqo3nfvF3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1m0ZQxI0bRoPztAYbjIwZXd9DbYDprWizT+e02WnCi292ynicmor0s8oZDVjIZ4ym4p42QzabHFthNaFur9Ef2qWtjY6M5qSBNno2chdcJ9DG0XtNbQQ/NR1v7po2fodkUo9Tp6efHxn7b/SldoHRpT0K9YWJhJHugQNptKyBBXkjNOV//dVfkZrX1xMz6Bvj0hhJJWP+2rq2Gvtza1MbNY+lJqS2vqLhDP0dDbFot7Wp/N71TalVIt02K+ApNOabrDEJFdLa4H22NCm1nKff2+rqHOm1tAnzjY212J97TsNqjp05IrUpq1Fzymjo7Ol+ZctaaxtN9KO+zmk4mJJZXS+cOaphLbcd17XM//FX56X2hcd1jjh7V1FqR0c1jKC3HT8v0+Mj8pq8sZZJBXred4ywu76n4/TIIR2Dm2s6Zz77xLrUnn/WWBuuVaW229TPy06XpeYZjdvDtq5lxkb090kMLEBWrhnBNM6YRyyetR5VVghNv2+sb425CgfT1Wt67/Tc1RWppbN6izZe1utx1lh4p41AuUJBx0wqGb/W5o0gmUZDr9vNptaKRZ2rxsY0kCtlBLNYQS/JhO5XyjPC6IzbqcBYG6Uyum/j4zqnD4bQOOfc3p7OQeVyJf75RnieZ4SC1Ft6fbDCKVLW+iapv3/CuJNP6OUGB1TSeLbQbeg6IAg0XCXV13GeTeq1sdrStUajp/cYx286Ffvz3MkT8pqNGxq4sm4Efba7xjooadzXlXQ7Uim9T0wZ90mT43pPlEjpGOwYIVqD6xHnnGs2NUQq6+n97nZNj/vKRnyttb6ua6+V5WtSa/V0X0eMxy3RhhFgM6KTS/7ys1Kb/fLXpHb0+E36JQb+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE29ro0zI6MBatIIe4iMhrt+oI09Ox1tlNk3mq13uvFGqZWsduWtjFWk1u3p5xda2sQ03NFGrEY/cudFZjKLlKJAmzBHRkhMKmE0M0/p9o2UtCF0JqOv63T12J255Uzsz76v27GzrU1h61bYg6fv9Y3QHCvUJ1vU36zfsY4yDqJ6VRuD93rafPzzn/mc1E6dOCW1nBF0k+zo51WMrt+NgRCIs7e/Sl4zUdDQBSMHy80fmtHXtRpSu+P4gtRmShWpLRiBDW+884zUillthnz7zdpI+LARYFPM63fsGNeDkZQRBjb4Z0+vGaMjo1LbvKGhPjkjHctqPh8ldP4uGGFbyVCvQTiYRvM6F9xzQseqkX/gHr2gwQblgobQ3HpEA6221mtSW74RP1cPn9BzfG5c57OJypTUNvd0HE2Nz0rt+Ys6B33tq89JLVXQMV4uathD5bCO6Yyvx2lHp3m3s6tN9FO6hHIFIxhitxp/b0JmIOecsW5xxpwRGas+z5i/rL/P941wNCuMEAdTGOn5MVrRNXFkJCGVjMAZa/0/atwneFb4y0BAQ9sIaul2deIrGmv4hQVdtxSLuvZwzrhPMmou1HHpG/c1kRES2m3rGiVtBN4VjPtHzwiOqYUaMFMaWPcFxn1tqaRrw65xXxsZ6xsrEKhnHM8o1Pf6/f2FbeHlL2Hc5wehsZgxwlq6TT1Xx2Y0gCqX12t+sq6ft7O0GPvzjbyuKTIdHUc3H9X7um6g43R6TOfHE0eP6nbUNOhlrKLvnZjU9U2tqXOBFeibN+ZqZxz3Vkufr3zjiXNSu7K4HPvziDHEM7u6qJooGXNwyngeltbj2avqemxtd1lq5z76x1J74P/5Tv1eAysjAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEO377Aav68NjDtdbaTbtxqgGg2Sq9vbUqvXtAFoq6ffEfjxRu07gX5+2FuRWrutDdm32tqwM3D6eZEVTGM0CLaaBq+trRmfp68LAu08agV01Pe0wf2JOW0SvVfX47m3tRP7c6GsjZQt2Zw2w/YSug/ttjaZ9Y1DVzIaXe8ZTVZxQBnNx5PGeZRLa6PjotEg+LGHH5Hapae1GfD4aEVq5YFTurujzXszOT3v7x/XsIvpnIZMtJ54Wmr/ONSpuVQ3Gpz/lYb1/OyGjvus0/nbbT0qpRkjMGutcF3fOzmt22IENKQGAiW8LaPJ80MXpFZbXZdapqjN9/2S/tZJo/m11TO6uqu/j3Ma9IOXv5+454jUbjp5SGqf/vIlqfXbeh388ddqIMyCZtW48w29rkYD12QvbUx8Ts9x32jcvnBYm7Q/d17XXl/58rNSmzpUkdqcEZzTDXVe2tk1gl46utZoJXVNVm1XpXazEUBWMgI6rl0e+H0SekwizwgPNAJsCkUNugmMMMJOQ9dogwEgzjnnzKAbHESeced1622npba+otdB674jaZxbpbIGFOzs7Egtm42Po4kJnahSDb1PShnhdNa9TsIYg2lj3WbV+j1dt3hG0GdghZq29N6xUtZ9u35Ngxd2dzWws1jQe5bpqfg6qOXrOjCf0zkzZ9xPNTo6FwaBvrde19dZ4ae+bwRm4UA6lNH7jvnpeam1y7rG7qd08XzrrTpXzR7SNdQ9ns5BhYH1+dh4RV5TMQI381kjkNcItYlCXS9NTet3rK7qeH7HL7xVavNzupZbvrEktdJTul4wHvOYAVztlt5T7hqhwYko/t6+8Yynf+OG1MYqGi5kBWaNGGueateYb+q6D8GmzqP7xcoIAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zmyhUNFFhf0xCDfqANcgOjY2ejqk02rRCWnqdNMf2BIIvarjZgTvpGM00rDEYqzjmjCbPn6z4Y/c1daDQNthSNsJaM0VDWavR89JAG09xx8rjUrKCbmcPxhrLFMW1iWjMapz70yENS+5uvfElqfaMBamD8FieP3SQ1v2v+GjiAJsfHpWaNrXf+L/8PqXlJHb9//if/p9SuPve81C47PVddLz7266tb8pJ5I0nnJw7dqtvmawP1qKXBWiM9HUfZtjGn5bWRdFanUZfL6XzTm9BG0gkj6MUb0e9IzU5JzXf6+/RT8Tmtl9aG0/6oNsjOzU9KzS1ouExmYlRq3kVt1pwxGl07K1ACB9LpaQ0F+PTD2nz7k9/QsX9iXN87Oa5Lq16g17dyXt/rufiYyST1fY2uhkLMHjkptXPPrkrt//obDce6+W5tNJ8paiP4WrMqtZaRg1Xb0202cl5cp6PrxUJex2omr9uytW0ENIQDgTjGsbNyB6NI11nZrDZuN/Jx3HpPw39Sxgt7XatzPQ6ijq+DJoz0mn/k8JzUenv6Os+zAjb1fMvl9ZzOD9RSRmjM1KSuAfZqutDY3NiQmjO2LZnUa6+1D/2uHqfJcb1nKRuhdWnj3mlsVAOzttZ1Lt3b1TE9P6sBfRNj8fVHyggW6xhBr05zKFwqpdeMkRHd3lxGf8NWU8OEcjkjoQ8H0l0zx6R2/MQJqdUWNJglN6Vr8ZGirrvLJb3HOH5M56/x0fh9h/WMw5oz9sua91ZWdC03O6fjeX5eA3xKJb1PGjfuOz71qU9JbXtLn03tN6i4mNXjcuhUfJ3W2dGJJLICPI3gqowxB6eM4x6Udb4pN/XY9dPf+/Mb/kUkAAAAAAAAgKHjQSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHbd1jNN77+Zam1O0bDZaPHaBBpU3HPeGGvqw01o7Q+K+0NNPYMA21knvL0fWFCvzM0+odHRuBOOqGNPaOk7pfVdHRiYkJqJ09qY/luV5tQDzaSds65hHE8Lz35hG6fEe4xORFvPDsxq81pm8Z2PPzQ16W2sa6N8INQf4t+T49J2mjMPD2pxwl4gXHeh30dq8mE0Wx9QsNV5o1zf3lTmxrX0/F5LjurARPFXW0WHl65IrXyhDYf7/S1ya9fNhq8G3NLuKnNkHuVQ/p5I9pIOkjpd/hOx+/68lWp1eb0eE6WdfymJ+Pzzcydd8prcjed0u2oaMPlT517TGp7G7oPs4vawPmNr7lXaiPT2nAZB9Mjz+o587UnNIzvyJw2bv/xe7Qhe5TQMb2zWpVawum6oujF56+opdfK4oKO0+cv6Xzz+c9o7cTtur1BqAF121UN1moa/cgbNd0WK5il3dbP63eMEEBfg17OP6OBEv2mHrswqgxUjL9rN0JBrLCanW0NVExn9BqUyeh7M1ljfWuEB+JgihJ63nd6DanljeC9iYoG+Vn3CcbU4kpGSOag3R1dUzQ7xny2W5XawiFde8wa66yLFy9KbWtLg8AmjGAa636q29G5ZdQIeikW9XiePav3YqdPaXjX/LzOm8mBcBorY2N3V68tW9u6r3OH9ThVKrr/KZ1uXT+t62DPfe+BH3h5aa/omF48fFpqS9c1bCq8tq61vo6jm07o2D9+VAMmEwMhKVZ4izNz3ayi3hNt7+jYahghexMTOrayWZ0frZBUMxzMeJjUbutaI5PR+8dcTo/nA/e+SmpjlXhwTscI+O3VdS2329iTWrVWldrerr6u29JjUt/W1wVZ3Yf94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfV+H1tBry9pU1M+6E2D/WS2jU5ZTRhtpJuMlFGX5eINw/1jIalvtFg1EXGd0b6nZ7VEzVhPbM1wjOcEbhjNGNtNjXcotPRJqOBsR+dpja19o2N7oe6LYvXFmN/zpW1obN17Not3V7PaB7rGYEiCWPbImPbIuO9wAs8nUe6fT1ndrc3pTY6pY3Ax+a0IfnipgZUZAaCr44dOS6vOR5qcFP5um5H2hhvqa6GM/Tq21Jzob7Onz0qtQuT2iA6KGj4y5236X5Mjer27Z0/L7X11RtSmxzTJvoT5Ur8zz295ATG79VyRqiPMd/e2K1JrVTR5sregjaa7wf8PRy+5fHLeu3t+BoAcddNel7eepO+bruqc1XWuA5mslorlOLjvG1cK2t9Pce/8PnnpHb6jJ73aaOp+PqejqOWsW7ZrhuBKz1dQwU9I2Swa4y3rrF2C3SO8EINRpwcMRZqAyFBW3X9/CDU7YhCI9nDeF3oaVJEIqnb4ftGk3ojwAYHU9/XMe0boXV7HQ06mZjVwKxMVtcGrbZxj2EEUVar1dif02mdH7ykjkkj+9PNGAFwt916q9SCvo6jbEa/97WvebXUVm/o2uOZZ7SWN0KkEp7O1aeMYJqsESixs6NrsquLl2N/3t7T++Rnn39eav1A57OTN2lojt835se2Ec5q3E8njftuHFDH9J7gohEet7Ot841nBP/2jUDQiXEdW4H/99/TW8Evf8srpWKFzJVLJal1jDAr6/OsbbFqBeN+qlQakVo2q6EuRSMwzAqyu3RVgwY7nficXm/oHN9o6POhRlP3v5jTOS5h3GPvNjS0rzhekVreuC/eL+7EAAAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqEp42zQ1DbXzcMkJYAqPpecpoiGw1CDZ6OrvAjzf2DCN9USplNVfWZqqe0+acvq/NgLtGP9XQCojp6nsXFxelNjo6KrWs0XC639d9aza1eWiqqPuWS2pj/Xwp3ig1ZTSh7na1sWmvo82Vw8D4cYxACSuspt3ShqqtpgYG4ICyxpvRHb1rNPPeMhouJ9M6tyRLGq6yW9PzspKPj5mFW++S14wWdKz1Qm1ovHdiQWqZvL5utKLjqDx9QmpPtHS++T8feVRqya6O1VuOz0vNyvjKj0xIzWq4HDndltZmvMH7xacv6Psm9djtHjFCNlIaXJZP6byXnteG+a0JnW9bqztSO3tGG8bj5W9nT9cy02W9Hh+fp27i9QAAISNJREFU0/MonTGWUZFeQ48uTEmt19H1Ur0VD15I5LT5+mc+pQFPhXFjTTGi2/aNRy5KrTSh47ljhAc221pLBMYaqqsTSWSEQxlLSOeH2rj9+Jxu3y+/4xVS63Xj65Q/+OjT8pqlbd1eax2YMGpJq5m9EdrXM9Ztuaxeg3AwZVN6/5MO9fpWKeq1d2HhsNQaRjDNdlWvb1bwQm/gJitrhBiMj49JLWPcY/WMUMuN5WWpFYwglTNHdb+mRnTuy3gaPJjP6eeFoa5HSll9nRUIurikoYXPP3dJasur8cDW5R0Np2i19L7mtltPSa2Y1X0NOsa9rRGcWrLWY8Z9Nw6mhfteJbWlSxqw2TPC2DLG9T00rtGR04t50ni+IJ9lnKZWfo0VaRMab67u6RjMGPd/6bSu75w1ZowvtsJqcvn9Xd+t4BwrvPhrDz8ktVotHioYGftfLutc0Gzq85u7br9TaofmdG69ek1Dc04e02CahVmdv/eLfxEJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj2HVYTGYEw5ZI27Eyn9dlmu6uNMr2ENkDNZKym59oANRHGAyoGw2ucc843Um48/XiXTGrT6H5fG7YmUkajdf04sxn0U09rw/StrS2pZYywmmxGa4mk0TA9oVsTBhrkceJEvEly1Qjn2N2tSm1l5YbUPKOxq9kg2WgGfX3pstTaLaNzPQ4mI+DIOO2dC7Txb9DSZsVLq4tS297ckNrUpIakTEwMhEzkR+Q1R372Qamd+V/1s/ptHW/JtE5Mqbbu15bTMIonvvyI1JZ9bY6eGWhy7JxzX/jIH0rt3r42zL/5dT8mtSOvMAJ7JjR0ppuOh8lcNQJtvlrX4I3Hv/k1qZ04q+EU3V39rWfveaXUWsY1yBnzIw6mXELPywdu02CpnBGot1vTZVQY6pjerValNjM+KbXB9cylVR27tZ6e92Fd12PdGzrf9I3Qvk5P10Gdro6PbtNYZ4T6Os8IukkatVRorL98nfunR3XOfdPd2ljd68bDsW5cOSKv+chnNYjCCpeJjLCaKND9TyV0jWYFZViBODiYRkoaTNJv6zk4Pq/zwz/82bdILfD0vPzEX3xCaovXFqU2NhYP7bPW8HtGAERkXD/XVlek5vn6uoIR7FAs6Dja3liTmkvpOJqZ0YC6dlfXQZub+nnnntcwhuXldamt3ND1Yq0RX6f5xv3fqZPHpHbmllukljRCrwLjPjaV0+Nk3e9aga04mKodHYPFjK4D6jldQzjjup0O9JmLdXVbM55zRGF8LV4x5sJE3jjHjcDNv/jLv5DaZz7zaamNGWFbv/jOd0ntljNnpGY96YmM8RYaIcfLy4tSKxZ17ssk9b4rnTDCkDvxoOKdXQ25SYQaitgxti0wnhnlyvr7j4zpfWe5qL9ZKm3doO8P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtv5utp81OJya0iWUUaVNxq5Fus6WNhLttDSvp9LUpaq8Tb3YaGGEogdFAPZnR5p/jk9p000rF8Iykm0KhKLUTx09KbWdnR2pXjabRvZ4RuhPosUsYDZEzWW126hsNSp89fyH254WFQ/v6/K1Nbd7szGAaPU5epJ/XMcI4+sZvjYOpZzRCD/oaOFLd1fPy8nMaDlUe1WCD173mfqldPaTN4bc3q/HtWNPwiEZRmytf3q1LLfXEeamF169KrfLMstSeOXmr1FZndA5+44++SWpXHn9MasvPPSG1ubQ2K860dH9Lgc4tF557Rmrf+NKXYn9+8qnH5TX9vP59WL+lv3V2Sq8tKesSFuo8UjfCemYnZ/S9OJCOHJ2QWs9Y89Rqet3Kp3T90dPljWs19HX9voZAjI3Ez/OFMb1+3nOHjo8vftMIZ9jRZuajU9osvdPRMdNqGM3HAx2rRs9zM5glMtZpzgpo8KzAQ/0t2nu6b8cq8c/7n+4/Lq954mldjz18RUN9oowxtxjhaM7pnBn1jEbzgRGYhQOpmNOgiJqxJl44pIFZp2+5WWrlsYrUxqY0tOBrX/2q1J566qnYn61gyvpeVWqjRsiEFUy5saEhL9mMEVJV0bC7TE7va7Z2dfzu1nUe3Wvo8bx8XcN01je3pdYygjNDI6hqdCR+DI4t6Jri0JzWMkbgjt8z1jzGcbLuu6yAIcJq8B1t4znCkSM6t8xMj0ut2zXuy43nK6Mj+jzk8195WGpjqfjnvWFet232Vg2mfHJD1wWf+tSnpFav61r/4sWLUpua0Hu9Yl7nm5UVnTOWljTwbntT56V8TtdajbquNfb2tJbJGM9NBkI3fWNOMp7KuISxpkomjJoxZ+Syeq1aOKzPjb4f/ItIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEP3XXSzNZqKGw1QPSPoJJ/Xhp2FvDbA7Hf181JJfVba6cSDIUKjQXK3q82GXUob/06Oj0lte3tXasWiNlIOfG3YOlLWxuW9rjaR397Sbc6kjSbtRmiDFWDT7+m+pYz93d2JN2bOZTVkw/q9At9qPq/bGwTadNXajqSnjW3TCT3GOJiuXLkitdDXMd1s6PhotLRJeSKtDYyTaT0v02mdEv2BNIYRIzQl7OlccP2cNkie/eYFqXmrl6W2t6v7cH1KmyvvasndOv0j+rrxValdzj4lteWuNm5PP/V1/ZLrGgh0fvF5qfV68d9sdFTnx1njeBayumNTRshGPq8N87dXtbl0ypirkkagBg6mdFbPjyevaGjDVFmbdB+b1TCCYlE/by+roQ03VrZ0W7x4yEQxr9foY9PTum2jOsb3VnXtsberIS9BX+evqKdrI6sTesJZIXNGE3UrZMHIw0mltLi8rGuyx57Q2sT98W0uF3UeffBePXZL23p9WO1oIFcqr2uUdsdYa/ra9D4grAbflkoY4ZdFXRMfP6Xhl9mC3jtFxuedvuWs1GbmNKAiV4hfQ7/0pS/Ka0ZLum0zRhhOY0/H0fK1JalZwS8pcz2mtc3NTak99pSuZTZ29F6k2tXvNXJIXbGgc+7RQ0ekNjcTPwY5Yz5LRPqdOSuExpj3PCsQ1AiesOZWKyQWB5MVwtLpapim8QjChaFe3zxjvsnldMxsrWuIlOfH54h6UueMwpSG5lx8Ttctd999t36+sUh59tlnpfbkk09IrdPW76hWdfus+86EMZFMjet9zNWGfl7beF6Vyui9jZeMzxujFT3m2aLeY7V3da1kTFUundbzpGoE6UTGwi2b0fuz/eJfRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYun2H1QSBNjPvdPbXfNsKkykZjZmzJW2yWShoA8wwjG9Lv69NxXtGrWu9rqPNSb1QXzdZGZXa0vVlqZ1/RkMcWkZ4Rq2ujWKLRpNRv6fN5stlbZh++qabpLZsbF9+ICRoYkz3K5nUpqspI4RofEIbm6Yy2nS1XK5ILePNSu38+atSw8EUdjUAoWaOIx2rV65raEP76qLU0jmdW8p5nZcKhfjf1/gF3bYLW+tSa1zRYJr7RvU7FyZvldqlrO7XJ68sSq29rg3JdzZ13DeMxtRrkc4tyZJeEsK2hmxkOnqMp419q4zHgzyKxnxeMYLLRko6LxXGNDyjaYQEpXt6THp1bbjcM+YlHExJ4+9k620d55sNvb5dXdWAp3xRr6F33HlKal3j/N3ejs9zvTFt3N5o6tidm9Lr8U5N58xcsSK19Q0NzfF9I9jB0++IPJ2rrLCa/Uqn9L21lh6nv/zqdX1dIj7P7W5r4NBNJ05I7Vf/0R1S++unNBTjqes6j2xsGCE8kTaRd8nv/Zjg5SWX0XGUN9YjR48fk1pkBHhaASaeEZ4wPqlBTW/48Qdjf97a3pHXXDqv9zV14x5mfX1NatVqVWqzRtiWdU9ofcfGpq5HusZ6MZvRMbhQ0Xus8YmK1MbGNEBvcmpCav1u/B44aOs98dSkhvqEvs6ZuYyuvYzbLhcaQRFhaIXJ6pyJg2nxigZnPve8hkta913FvI6ZdFbnqtEJHR+5gr43NXCaX0tqgNYzz+o8cv2q1qZm5qXW7uja6PjRo1Kr1zQ0ZmPLCOtM6TyyU9XwF7+v9x2BEbBqhfpMTuoaL2sECbsofjw9zwizinQ70oMH3Tm3sa73rEGgc0u7rfvw2JMa/pNK6vb+2E89KDUL/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ7btH5H4lElavEv3vzvs97UXQD7W/Riqtmzj437tnM9qHIHL63853uvrfulere/r5xuPZleVFqdWN9zbq+uYg0m2x9r+X0uOUSOh7iyXtqTY/pz0Xq7vaxyCTjfemOXLkkLxmY0N7I/VTul9zM9rX4Mwdk1Kzfp9rF7V/yeJVoycCDqSi0atxY0fH28aW1hIF7e8zP1GSWqGo59tIRsdWbSXeZ+zLX/trec3Dz5zX9y0tSe3qPfdK7Sfue4PUeqNpqW1f1d6PnaUVqX2tqNtXq+lxGi3r/s+OG/2MCnpMPKfzVyGhPamymXgtmdL9KuX095oe0flsr6nfGWrJ7dW0h1S9rn1jMuM6V+FgSqb13M0bvZg7kfZG8oy+yMlURWrnzmvvnrlDp6W2W3sy9ufFVV0XXVvRc3xsSq/Rd5/RcRQZvXxGi9qz7NJV7Z/tG/2HjKWWWbPWgZYoq70Uo7zOEV+9of2clh6Nr13Snv42o/P6W99/i37+TWO6Rnl8Udejf/Il49ht6nGKki/6chs/pDLGufCKV75KakeOHZOa1Wk0MsaWZ/QF8wN99+xcvM/aL/yjd8hrPv3n+llf/NxnpWb16z9+/LjUJif03sFL6D5Y65ZcTtcjZ8/eIrWxce1Zl05Y9xjG/Zmv64VuS3vKdQa2L5/Xa0Yhr9eMbEbXQcYlyPWM+0SX0P6iCaOvPz0i8R2XLmo/yO1N7fOeM+alblv7IgeRziM3Vq5ILWv0f08O9CF89HEd9x3j8286elJqlTEdHxNGT21rLORy+lxid1f3NZnUdVB1T/voZowxfffdd0ptelrnJb9rjFWjx69z8XVFFOj++5HxDM7ptvX7Ou9V93Rf08bzm41tnZeNqX/f+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu392zrSbEVjCNVbMahfpGgEvGaFZstetMDzTmtRr/esZ25DO6u+WCNi8OjH7stZo2Mc2n9Xu7vh6nZlcbH3ecfkm/p6/zPD12CaNd9fqaNp7ttFu6fZ34dzTrdXlNu6UNS7u9qtSabd3/889oE1PrV2zWjFMvqduCg6naNcZRW4MHmnUNLDh+7LDURic0mGRlRcNk/uaxh6QWNKqxP2+vrclrVpcWpdb2dYx/7qnHpfb08lWp3XXXnVIbndRG6CuX16UWGU2j56fGpDY2PiO1nKeN0Asjo1LzjLkvndL3un78Nyul9TXlvH5+5On8XTPms05HmzUHXSPgq6jhR/7+sjNwAPjGX8nWWzoHXbumQW5vPHNMaqvrGhT3hW9ow/g3P3iX1DJj8bnqsUcuyWtGijqOijmdH7ORtfbS1911dk5qezWdH1e29L0JY85w7nsfXEkjoC9nhHfVOsY6qBP/IXMJDd965FldZ82Fuh65ZVL366fu0euI39P3/u5fabBYzRHGh2+ZmtJr7y1nz0rNCnAJjTFtvi60AhB0ohscRdMD4TXOOffWn/9HUpsx9uGhv/kbqWVTuv4PA51bGx1d/69XdX0XeDo/TE/ruJyd0TmtVzcCS3c1eCLy9XVzk7qGWpiJB09sbmugTc8ISS0ZATbW72qF+1k137g/H6/ougoH09qqrkf8vq6nU1m95mWzGlaSMJ7fJJLGIsq4B6o14+F7KeN6n8rotdIPrQQ8nVsuXdb7n/GJitTSWb1uNzd1Djp6WAN9p8d1bE1OagjNzWdukpr1vCphrZeMfRuc5j0jaKtnHHPjsZRLJnU7rO/s+zovBYEV8GWlFu4P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6wmn89LLQy1WbgVVpNMagPMrFXbZ/hNcqCxp2c0+kxZ7zMCFjyj0brf1/3KGNtbLmgTVz/S93b62qy40dRAmEZDA3FqNQ1/6Xb0vTtb2kS/Yby3WIiHNuxsb+nnt7WZe884Jteu6HvbRsPpvNGYOZ3S8Agj0wgHVKPVkVrBGG/Hjmkj4a7ml7haVZs1d43x5owm6ovLi7E/b1V1rI2N6LbNlUaklsvpWBgvaWPmybzWRhZ0rkpkdFyOjuj3lvM692US+t6op7W00Ue5WNZmzbl8SWr9ZvwYp4ym6ilj/rbm/bJxDZoYqUitu2PMQQV9rzOa3uNg2tzRa2XSaNy9uaXnViIcl9posSq1s7dpM/NHnnxOaqVS/No4PaOfnwo0FGEko+Not6rjbWSsIrW0Md+k07o89IygvMj8+2xjbBkN7s1Im44RxpHVNUnG6evCVnye22vqaz5/XsN/Rv1TUku/Sue4lK/XkTtv1XCPE0/p7/P0Dd0HHEwjFR3T4+M6P/h9XczU9vQcTBshcNb1WNIOnHNBFK+FxjgdnZiV2pve/DO6HUaQyt98/rNSa7d1Hr20puFY129o6NORQwtSyxiho76xlusbtU5P15qlsq7nSiMaFjg4z01E1pypx7zV0rmgXNbP94zfwgqmsWbgY0eOGFUcRIV8RWqtUMfgxsaG1NJpvWfJZnW8eZ6e55mMFWQX50dGSLHxbCkIdC608mvqTb2vm5zWudW4xXCnTh+V2pmbbpZawZhvS0YgZiKp84Hf0zVJZDw3skb14H1RZMwPVjh0FOox9szPN0Kkk8YqzXgelk5+7w9w+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1WaNxud1q3GhI7hnBMVanUOPjEkajzEQy/l6jR6pLGE2ZE8YLrWaf1l5ljP1Pp7TW6BhN1T1t4Dye0Uboo0Yz5HGjsXy9pk1m93a3pdbvGg2Rpydjfw59bQDbbGjj/qbRXLnb0/da4T9eVpu4utBodqqHCQdU2PelZo3LvNE0OemMQJSynpetPf3E8ZK+rjkVH6vFnDYWPnRIm7lPjU/pthnzXiatc1Ai0P3PGPPNTYe1cXs6o82lXahj1W/pPGI1Vh+zwm/GK/p5uskuGpiHMxndh7EJ/SwrACPy9bj7vjZIzleM7Z3QcIBchgkH31LfbknNCtnrG2uZzz2+KLW3/rg2OD99dkZqTz6rwVePPBYPbbj7dg0dmB3TMIXl6ytS263rmNkI9PoeNHW/msaATib1dX6gtTDScZkw1lpWzUU6B7ebRjP3tBFQMbAfka9BgUGg4/6vH7kqtaNHNMBm8bwGhWy1q1LrBRqAkfeMFDUcSGMVXf9b9xjWPUvLCNnLZXU+yOd13W0FjOoNlH6nFcKZK+l3nn3FK6T2yb/4U6k98vA3dDvyOt9Oz+gaygrA6Bv3It2EjsGUcYxnZqelljPC/fpGcFAqFd/mUkkDggJjjWJdW6ywD+vn6nb18zJWEGtC50ccTF5Cz7dkUs8PKzPFCtHtG4FJaeMctEInB+cgaywUjeAXa/w5Y50RGfdO3bau70pFDbCcmpnU2pTeO3iBHqjQSM4JjbFvsca5tdYanJutZ2vWo7XIekj2fYiM53x24M7+8C8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqrBdazTQ9M4xBm5ia7zUaYFpCF28A6gdG40xPG2cm9tlL02q6mkrp9qZS+rpMThvA1lva7LVR15pvNFy2QoIyRoBNMa+Nmf0xK/wm3kzZahRbyOl3Wo1tk0ltKJtOayNps4mtEUL0/TQ7xcuL1aQ9MDr6dnsaRuAbIU1Ws+JGdUNqzT0NjygMNC5PJIwm8F1t3pzo63ZYASlp4++DrCbPXlLnOd+Y5zLG3Jo05qp2R49x0WhAn9pnw/yM1TA/F58Pysb8GHm6X829mtR6TT2e+Zw2nC6PjUkt0GnOeeH+Gknj5a9Z1/GbzRpzkHHKXDPmm69eWpPafYf1vDw5bgTZPXAi9uevPPy8vKZ9RBuor9U1pOrx68tSO3WiIrV6Rxu8d4zAsK4RTOOZ121rLWc0c3d6QNPW/JXRWsdoXh9149tizbfWqN9p6Gc9cVmDaTJpDc+4ePGK1EpjGpiVIKwG33b8qAZQGUtiZ9x2uNAYR72Orv/7HT3fkhm9/g4Ge5oBE7oZrhfonLm8dkNq11a01uzp9p65+RapFYu6poj6OoILWV0HZI2x74V6kAtGqI8VqtfrW8FX8W3pdfWYl0p6H2aF2lgBIM2Grlu7ff39682m1D7xl5+W2s/9yq9LDS9/gRH0mDLu6UtlvW7t7Wm4ncU6p61gKSsgWLbNCOa0grZCYw46e0bnEWfcY4wZ1+jyqI7VyAimsYKlBkOUnXMuMuYb65mLFa7sefq6waWW9cwkldR5zzeCB819MOZ+a3vNn/D7CMThX0QCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGLp9h9UUC9o02Gp2abFeZwaTGB9nvdcbeGFkNG8ebCLsnHNGr1MzFMNqimo14vR9bZRq7UMuqw1bXaTHs93SN1thHEGgjUeLRW3WnMtp8/p8Pv691k+YyxkN3o1jYtXMhrLW8bR+s9BIlMCBVK/VtRjqed9uaKhJs64hA8vL16S2samBEmGoYzocGOeh2fjZavKrgytrjK1CVptGGxk0rmc0Tc6XtNF6vqhNmFuNqtQyRhBWOqVjsNnQ38IMeomMubQTD/Lo1nQ7UimdH0Nf54e8FYZT0Hlvr6HNtbNGSI4eORxUkxNzUmsZ4UguoWEEtT2dlx5+TIOwqosa8HT/nRo6ky/Fx9bclDaBr+7q+Nvt6fg7e89pqZ2Y1M97dnFdam0j4Cs0rtFJo3O5Z8VbGA3jMzkd+15aX9f39bfIGiF46VR8nLfrug9BaIRxRFr7ymMrUivldDtSCZ1bGh29jvhG43ocTIfndb4JjbCSwAhkyhrhKoHx3n5X7x2sa200MFatwFHzPkkqzk1MTEjtla+8S2qTE7pGSRshmbW9qtTGyqNSKxd1TrOOp2cklrbaOi93uzrPDd47OedcNHBcjIwNlzXWdyMjuv/ValVqOeO+u1DU0LPQmIOLZT0mOJgCI9A36YygWmNuSRtBl77xDMJ6VmPd+1uBKIOsQBvruUetpmv9+blZqTWNwODRUR2DhYLuv288S7KefSQ8K1lM98MOhNGJwzfCAgcPi2d8p/XsyzqedmiOEbhjJ9Poe6393yf+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM1+Gox+NyKjiaf1WNT63sGa2fzTqFkBEFYjzpTRcdj6jv2GsKSNUIhk0mhCbAQvWN/RNZpQ93ra1LpvNGvuduPN1otFI+wir02OA+P36hmf325rM3drHwIjeMM6JXAwNWoaQpM2AmG67Y7U1tY0hGZza0tq1viwzlVvIIQln9Gxm0lb85R+VmTsQ69nbEdfGw7ni2WpjYxq43Jtcexczzea3hsBLrmMBlz5CZ1v+sY8FxkBNn4//l7PCPhKJXR+zBf1GCeNRvtrO5tSsxK4EqMVqfW6eu7goNJx2W7rmBmp6PjYW9O5alMzUtzWqJ6/9aKOh2MDvdaPHZ2U1wR9XSs8/7Wnpdaq67ZNG8F2q6v6urBnhFlF2rg+Ycw4gwEYzjmXSOkxLo3qnLa9p0E/WSPwL53U+atdix/PwLcasuv8EBhBW7W2bu9eQ3/YpBGilkjqnOk5wiPwLXkjpKnR0nPGN8IqzUAFX6+9PWNtlDUC36KBUD3remzlEETGWunQjIbw/OSPPSi1z37mL6VWbValFhpro4Rxn1AyQl1Gyzq39H09JjVjrdlq6dyfy+l3JBLx+WXHWI+ExrrICvbwfZ1HrPs6YxlknhOjCd1/HEyJhHWvY6zhjYHuGQGWCSN4rmsEa3l9Pc/TA89XrLFQr2tA5uD7nHNub0/H7pUrV6Q2Na1rqMgIXOkb86i1XjCfEXl6nELj86zj7hkPp6xAnMGQGM+4D0sY95hmoLMVOLrPPL3ICt7bZ3i1hX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WY4U4WEEvnhUuYzSxNJt9Jo2QgX2E5CSS2iQ0adQi32j+aYVTWGEH+w3rMTope8Z+OaOxqdX82Q7T0W1JGWEZ/Z7RPHXgO/p9bYYdBNrY1jMaWJvNbq1zwmiAmzCOk9+3YjZwEFnnUWDU+kbD3ZLRpHw6nJLa3t6O1HZ3jfCTKH5ehkbQUt/pWCvmNdgiERnj1GhSbmQ92B3jrYbLRghLZGxzxgjHSiStYC1jf41wByv8Jwjiv0/WaKTsjLm1H+gxaXT18ztGUESxPKLbYZwnnVZDtwUHUq1W3dfrgkCvl8m8jo9UQcfHbqTn29PLek6v1+MhLLsTGsoyktbzOZXTMJSNG9tS+/Luc1Lb2TOu+b4GIKSNJuWhMVmFOh26pDH2q8ZxTxvBNMmUhuQ09nSeS/jxOddqIB8YQTJRZIWU6XE3l4EJfV1ovS7g7/3xLd2OhjqmjHPcGedlaFwbPWP9YQVHlkd1DZUcWFdYkQODgX3OORcFRlCCcQ9z+sQJqS2dvklqDz/+iNQKeV2j9Fo67q37yelpXfNt7WiQ4UR6Qmvj+nnF4qjU0un4b9Yy1hTdroZ4NBr6Ouse27ouJbLGGi1rhIJkmW/wLa++/xVSazSbUusZ4Vi9nga09YznBtb5a90rDT7nsJ8Z6PlcMO6nrJCm2bl5qU1O6hjvGwGeXePeKZcz7uOsZ0TGxGllulhBfr5xnBJGSNBg5owZrmpsW9KYHwfvzZyzA3Ksz7Nq+w26sTBTAQAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6L7I6hQIAAAAAAADAi4h/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj+/3m5SdhyMQ74AAAAAElFTkSuQmCC\n", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
propertyscore
0dark_score0.000
1light_score0.180
2low_information_score0.015
3odd_aspect_ratio_score0.500
4odd_size_score0.500
5grayscale_score0.500
6blurry_score0.015
\n", + "
" + ], "text/plain": [ - "
" + " property score\n", + "0 dark_score 0.000\n", + "1 light_score 0.180\n", + "2 low_information_score 0.015\n", + "3 odd_aspect_ratio_score 0.500\n", + "4 odd_size_score 0.500\n", + "5 grayscale_score 0.500\n", + "6 blurry_score 0.015" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Image-specific issues:\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edBkZ33mfd5nyf3Zq55apSqpVEJCRrJYhEBgLBv3C7bBg9sY9bwx3a1oxq+jzfTLEEF7Gk/Y0A5muju6cWMHDkOYoKHt7gHbAxi/eIEG0WAbbYAEJbRLpVKp1mdfcj3L/CHQOPO6gMQoC6ue7yfCf9TPJ/OcPHnuO+9z9PC7orIsywAAAAAAAAAAExT/sA8AAAAAAAAAwMWPB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeR36fjx4+HKIrCf/pP/+lZe88vfOELIYqi8IUvfOFZe08Az33MNwAuFOYbABcK8w2AC4X55h+mHfEg8sMf/nCIoijcfffdP+xDmaiPfexj4eUvf3lotVphbm4u3HTTTeHzn//8D/uwgB2F+QbAhcJ8A+BC2QnzzUc/+tHwohe9KNTr9bC4uBje/OY3h6WlpR/2YQE7DvPNxS/9YR8Anh3vete7wm/+5m+GN77xjeHWW28Ng8EgHDt2LDz11FM/7EMDcJFhvgFwoTDfALgQfu/3fi/8yq/8Snj1q18dfuu3fiucPHky/PZv/3a4++67wx133BHq9foP+xABXCSYb3gQeVG4/fbbw2/+5m+G97znPeFtb3vbD/twAFzEmG8AXCjMNwAuhH6/H37t134tvOpVrwqf/exnQxRFIYQQbrrppvD6178+/P7v/374V//qX/2QjxLAxYD55mk74n+aPY5+vx9+4zd+I7z4xS8Os7OzodVqhR/7sR8Lt91223d8zX/+z/85HD58ODQajfDjP/7j4dixY7LNAw88EN74xjeGhYWFUK/Xw0te8pLwqU996nseT7vdDg888MBYf5773ve+N+zbty+89a1vDWVZhq2tre/5GgA/PMw3AC4U5hsAF8pzdb45duxYWFtbC7fccsszDwVCCOF1r3tdmJqaCh/96Ee/574AXFjMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4zDcALhTmGwAXynN1vun1eiGEEBqNhvz/Go1G+NrXvhaKohjjDAC4UJhvnuPKHeC//Jf/UoYQyrvuuus7bpNlWdnr9YZqq6ur5d69e8t/8S/+xTO1xx9/vAwhlI1Gozx58uQz9TvuuKMMIZRve9vbnqm9+tWvLq+99tqy2+0+UyuKorzpppvKK6+88pnabbfdVoYQyttuu01q73znO7/rZ1tZWSlDCOWuXbvKqamp8j/+x/9YfuxjHytf+9rXliGE8v3vf/93fT2AZxfzDYALhfkGwIVyMc8358+fL6MoKt/85jcP1R944IEyhFCGEMqlpaXv+h4Anj3MNxf/fMNfRH5LkiShWq2GEEIoiiKsrKyELMvCS17ykvDVr35Vtn/DG94QDh48+My/X/rSl4Ybb7wx/Pmf/3kIIYSVlZXw+c9/PrzpTW8Km5ubYWlpKSwtLYXl5eXwmte8Jjz88MPftdH6zTffHMqyDO9617u+63F/+3+mtLy8HD74wQ+Gt7/97eFNb3pT+PSnPx2uueaa8O53v/v7PRUAJoz5BsCFwnwD4EJ5rs43u3fvDm9605vCRz7ykfCe97wnPPbYY+FLX/pSuOWWW0KlUgkhhNDpdL7f0wFggphvntt4EPl3fOQjHwnXXXddqNfrYdeuXWFxcTF8+tOfDuvr67LtlVdeKbXnPe954fjx4yGEEB555JFQlmX49V//9bC4uDj0f+985ztDCCGcO3fuBz7mb/9Jb6VSCW984xufqcdxHG655ZZw8uTJcOLEiR94PwCeXcw3AC4U5hsAF8pzcb4JIYQPfOAD4Wd+5mfC29/+9nDFFVeEV73qVeHaa68Nr3/960MIIUxNTT0r+wHw7GG+ee4iNftb/vAP/zDceuut4Q1veEP41//6X4c9e/aEJEnCv/t3/y48+uij3/f7fft/1//2t789vOY1r7HbHD169Ac65hDCM01U5+bmQpIkQ/+/PXv2hBBCWF1dDYcOHfqB9wXg2cF8A+BCYb4BcKE8V+ebEEKYnZ0Nf/qnfxpOnDgRjh8/Hg4fPhwOHz4cbrrpprC4uBjm5uaelf0AeHYw3zy38SDyW/7kT/4kHDlyJHz84x8fSi/69tPvUQ8//LDUHnrooXDZZZeFEEI4cuRICOHp/5L/Uz/1U8/+AX9LHMfh+uuvD3fddVfo9/vP/HlyCCGcOnUqhBDC4uLixPYP4PvHfAPgQmG+AXChPFfnm7/r0KFDz/wHjrW1tfCVr3wl/MIv/MIF2TeA8THfPLfxP83+lm//1/ayLJ+p3XHHHeHLX/6y3f6Tn/zkUI+AO++8M9xxxx3hp3/6p0MIT//X+ptvvjl84AMfCKdPn5bXnz9//rsez7jx7yGEcMstt4Q8z8NHPvKRZ2rdbjf8t//238I111wTDhw48D3fA8CFw3wD4EJhvgFwoTyX5xvnHe94R8iyLLztbW/7e70ewOQw3zy37ai/iPzQhz4U/vIv/1Lqb33rW8PrXve68PGPfzz8/M//fPjZn/3Z8Pjjj4f3v//94ZprrnmmYfrfdfTo0fDKV74y/Mt/+S9Dr9cL733ve8OuXbvCr/7qrz6zze/+7u+GV77yleHaa68Nv/RLvxSOHDkSzp49G7785S+HkydPhnvvvfc7Huudd94ZfuInfiK8853v/J4NT3/5l385fPCDHwxvectbwkMPPRQOHToU/uAP/iA88cQT4c/+7M/GP0EAnjXMNwAuFOYbABfKxTrf/Pt//+/DsWPHwo033hjSNA2f/OQnw2c+85nw7ne/O9xwww3jnyAAzxrmm4vXjnoQ+Xu/93u2fuutt4Zbb701nDlzJnzgAx8If/VXfxWuueaa8Id/+Ifhj//4j8MXvvAFec0/+2f/LMRxHN773veGc+fOhZe+9KXhfe97X9i/f/8z21xzzTXh7rvvDv/23/7b8OEPfzgsLy+HPXv2hBe+8IXhN37jN561z9VoNMLnP//58Ku/+qvhQx/6UNje3g7XX399+PSnP/0d+xsAmCzmGwAXCvMNgAvlYp1vrr322vCJT3wifOpTnwp5nofrrrsu/NEf/VH4xV/8xWdtHwC+P8w3F6+o/Lt/ywoAAAAAAAAAE0CPSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATl4674e7FOanFqb68N+hLbdDPpJZnudSqdX2/qFLVg4mj73CU/39lXkqts76p75/qs9hGq2Z2afZZaq0stFap6T7qTfO57D70c0Rmu2yg2/V7PakVI8c8Pzel+ywKKZ0/vyK1erMutSTSz9rt6nFEcSK11FxP559a0uPDRe+lR/dLbaunc8vKxrbUkkSvrblWQ2qVYMZvrvNSOTIG3Zzhx6TOe3Hi/tuPvnZgjiMz47I04y1OdW4Z5PranpkfQqHzSBrp+XTKoK/NyuH9uu+mMPt0815i5oxapSK1jvlcmZtHda/hjPmNwMVv/6UHxtvQXEej80MIfj5w11tsx9bIlpF7fx3PcaK13Ix7t0YpTC2UOrcUpb5fUbo50+zXDHPLbFeMed7LkbnEHe/oNt/pvewBm9Pk5q/SzdXm/XpmbYSdwNwTFd977RFCCG6oOrG7fO1lPlw0tzX+/WOdH8afC81Oxtyv5T6XKxru+J7Fw7Brqvvv/YbUltf0Hutlr3yF1KpVXd+Nf951vYSL3x1/9DqpLZ86JbX5fbukNuiZ3/wtnb+yoim1zW293rKpq4f+XWkelG1edNPLpBZXZ6X2tbu+LrV/9Lqfl1qlqs8W3O92bu67/PrG3U+Y8ebuC82aLMvMOc71frddDIb+PVOfkW2aDX0uM/bay3CvLcz6xmk0x/tbR/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4wIa4qo2Ik1NE8tBNJBataa7rpnwk4ELMpBm7toQNO/rPl2D0TTVZvFV09g0Ms9ss8w0KQ/a2DStmoAG12jdBOy44JjYHLPr9OyasUYj4RbVin7WPNNz58KF+l1tpuoaWEem+3ViQiYK9/mxI8WpuT46HanNTmmD5Iq5plPXj9yMXx+iNFwrx2xeHCfjBVaUpkl9xYwj1wk9N/NDZBouB1NzmV/mlcG1JR73v2DFI584c/OyeV3FhNokY4SUhRBCYgKBXJP+79BaHjuQHZd2w/EC5Xx38DEDGuRiNY3MC20W797LTSNuznBKO/Ldbm0Mj6n9APu159htVowW7B7Gen+fgCGiMUNtYhMshp0pM7/5eaZj+qH7H5Ta7j2LWtu7R2oDExx6z+13Sq07sq562Y+/SrZJzZpqYI43Ndd4YYK17JrChau4WyI7M48XHuGUdl4eMzj0exZCiEwQxRP3PyS1Rx97TGovetmNUktMqOe4oaY2KxEXvZZmmoR+V0OP3E/U5oau2RNzo5CkOt9M19tS62x9dejfq6f+Vra5Y/1uqeXNo1KrNi+V2sNPaAiPmzMq5h6z2+tK7fip81Lr9E2oTTFeEOlWT89nu2fuz/JVPb7t4fP5iuuvkW1e+sJrpZa7ZytjhnTZUMCx029MKLPBtAQAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4r6PsBrd1AWTuEa6idmu1tBGoYkJYclMU9BIQgu06WZpwhlcb87EhPC4Rpyu8XFhmjXnpQljKLRhZ2GaVfd7+n76WUOomiAH12S2ME2SR4NzYvP+pQv/yfW9XMPamgkwis01UZjz2Wtro1jsTK6BeLWi46hW05oLf3Fj1TWMd2E1o7OBmx/cHOcaqI/b5Nd9BhdRZRu8mw7vJi8q9F3DfDOmIxO64+Z+F8aQjhxfYeYu/xnGaxbv5lHbgtk2c3cbYifyWUZjjlX7UvN76eYWs102Mle5qSWKXYCNmTPMb29a0Qs/M2F0uVk/2IWGm1zGzH5xaRSlC9PxJ9nUvndYjQuXcfONCyh06zH7n/NtLhETDp7mZxa9PpZOn5FaLdExvWefhtU8eeJxqT341a9ILRl5v/UXvEC2mZqf1deZcNGNcytSqzZ1jZaa17p7gmTczC8zfvtdDTcMJsCz0myZY3H3gGb9IXOkueeq6Ly/sKDn89yT+r1urWtgRbNxQGp2XUkWH76lnzWkFptQ3qp5LrP3oAlcWdmW2vaqCeWN9L4rHnlwsG+/bBIe6mi6zsnTOk4v2afrlrv+QoNu+mYsuOcoZdDnN+vbOo9kA/PcyExMfRPO2TfrqoELAx7oa+eqw7Xrr9aAILemKkzAqlu4uDXK+ME0f3/8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rKZSrUkty7RRpgucSSu6m4oJmbC90U0T4jga3kfpQiFMw3MbimD22e+Zpu+mQXKRayNWJ3EhDqaJfGmavttezWMGObjNRkMm3HslpolrvaHNpet1bYBbb+h1kpvj6HY0mCYvtDkrdqbChDjUanptJTZsycwH7iI02yVmoJcjDcjHGVch+CAK9+LYhFhkZm6JzWTgAmJGwy5CCCE1n1WCHUIImQmlct3h3X/BcudgVMXMLS7oxzVIdvP8wHzW0jWkN/Mt4RF4NrjfUDv0zWsLs07p9YabozdNsEOaukA5F+akv6mpCbtItUe9b3pu5qW8cA3O9e3K0gXdjJlqY7azc1Dyvdc3dj6zYTU2FWOsY7sQDd7x3OXWNzZM06wNVpfOS+3JB/R6++Kn/kxq60+dktrug8PhJ1/98t/INs3Zaand8KpXSu1vb/u81I5edZXUrrr+WqkNXKCCWd91tzUoo1rV+8lHH35Eai4Q84abXqHbmaCIqpk3T509OfTvpeVl2ebIVVdI7ez501I7/8SjUvvKZ/9Kaj/5xn8iNReymCQmTNYlHuKit3ZWx0ynq7WkptdMZ9uE6OqtWJhb1Nf2O2atMRIQ3BnouP/6SV2QnOuY8KlIX3vb109KrTQLnJp5bQg9qWRmHWCmBwn9CiGE3KyXBpnO1e6+q23uba6+ZGHo37fffo/uc6Cf4aU3XCe1RrWprzVppePc1/2g+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3dlhNbJoGp6a7sguUGOQaauOaEBcmrcaFMYxWTDaBbQLv2ocP+tp11AXuFCYpolLRBqhJasIjzJ7zQpuClqa5sPtwhWnuak6Tfcw8GkQTB/2scVVrUzNT+mauSb/Zpw3EMd//7PyMvhg7lButenG5sJLIzS3m7VxIigurkfcvXcdvF3yj29nACtO4PjbBVYUNktH9Vitmv2Y+bNY1BKNf6FxduJPnmICGLBueq0rzGWITZmYDQMwuXciEzZgwr7U5FtiRLkS4iBvnhQ2ZG74wR8OyQtBxFcJ3CHsz482HDOpcaEO5kvHmZTPdhNhsZ8MIE11Xuawt99pxAqhc6FU07n+Ttzk6Zo3mvms7f2MnclepC1nLuho88KXP3Sa1aRM2VR9s6fttr0ntsYc2hv69+qQGqVRnWlK76loNoSm3zT67bakNejpX9VwglTlR9997j9RmpvTeobel+21vakBH3tNzXLjjM/eFWxubw++/sinbnH70hNTuu/N2qe024RlPffVufe2Ry6V26MrnS21mZk5qwYWS4aLXaphrPNaLoTDpvVtrGvBUmrGQmzFTN89I6iP3WO6e68nlc1I7vaRzy77WgtSeOKGvbU3p84taqfeO/Z7OGZm5F4taGt5VM+G9ZukWChvupxsOBnp8o6E2xx45Ltvcd/83pfb4kzoH/dzPvVZqc+Y8ZSYE0d47/QDLG/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1MI3TTuLvT6ehOTChE3tdGnGVhgmlMCks+eiwu5MU0/7TN10035GrDhdDoqXI114XaHIoNbXCynjaWz0zAztScNpOu1r53Z+LYfDcV91mrWstNc2nXCL6S6nFUGk2pZbleE9iZYhP04gIQeqahb91c9+79bD6FDUX47v9+uujmIJdsMN64j2PTDNqcABd61ahW9fDcHGkCKgrz36b6Zr5x+3DBMf2ReT42E6Rr0l+acDB34hNznuzPgZZ80A12JBtW42o2CGm8YKU817Hq9lEZCZvKcx1/ZTAhXabRvE15GffYTPdxN2IS0/Q+rrn5wcxLNsDGhckoN2+MBtjY0EIXEGSOw72/C6EpzT4KMy+7Y8HOdNe990nt1ImnpDY4dVJqq489LLWZPfNS27VLgweSKQ2oO7sxHEbR3tRQiMLMaLf9yaek1nnqvNRWz2h4xDfu/rrUMjsudZ47deJRqTVN4N20CbDZ7ur7PfXQQ7pfEwZWmdF7lu2t4fCb7aVV2cbdJs7kep+8Z0EDMAYmwPXYZ/5SamdPnpLaq37m9VJrmDwNXPzShvl9N0GfIehv9NyC/r4PBhp+s9XX7TpmHysrw3NQpaXjdCHReWrXpfukVq/r7/bctH6GRkMHYRw0WDmtaq1IzAA2zzR6JgSw09ZaadYa1aq+n1vj5fnweU+aZkCbe9G//B8ajvXE6bNS+/mf/V+kdtWVR6WWmBVZ9gOk1fAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGtPM3LVBb29sSK3e0MajaaohAxVTK02P1cFgpGgbiOvRJabpaHNWm31Wm9o4dLQJ+reKUuq1tbF8d6srNRfgMj2tzYrXNrWp8cAE/aSJOWaphFCMnBcbwhObmgn7cA1L3UVRrWjz2I3NdaltmybZ2JmSVK+ZbrstNTPMbdCLCxQIZr5x1285Mr/EJg3FNSCOXOCKad6cmuMNpQnAMJv1g843AzMfupCYignqmmvqeR+YUBsb9GOmg3zkHNi8BjOP5qZZvJuD3bzk3m/M6Rs7lVtDuO1c8NyY4SrZ6LolhNDva9P30WVKxTRkL2M3kNxxjBdW4+ZHF+aUjhkMGMf6WdPEBQjq+DVD3wfMmEMZZ0i7vLDcff9mny6Exv62uLDEMb8LXPz+4ra/ldrSWQ16eV5Vf9+v3q3BlNM1M456utZoVTSMYb42fE0/2dE5qZvpYFu/9xtSc2OrvqWhOc1t3UdeaLBDyPT+Z8oENFQLfb+yo8ExW5t6TjZGAmdCCKG3qbX5S/dLbffexaF/H3/0Edmmbj7X4X0LUls356Rm7uuSNQ3/OVEek1r/J/+R1ILmgmAHOHNSr62z5/QaP3y1PoM4s3lQaktdDW7qZYtSa2c6VqN4uLY30fns6IFlrR09ILUHntLnCC96yRGpFea33AX1lmYFkUf6mz892JRaZu7tzm7o/H36qeNSW1s9IbXCrA3zxSuH/r1d0XlkrqHzbS3oPPK1bzyu+xz8udR+8edeI7VzK3rep2Z1cnn1y14oNYe/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1eQmrKYwzbddLa1rAEJSugCEv1/D9H5fG4IWpoF4c1obrDZnNEincB3pTRf0rKv73V41TUwH2sQ0mTJhFGa/lao2lzbxDCE2ndsLs2G1MXLuCv0MqQmwSU0oRGS+Q5di4RpYt7e0CXWvbZpVY0dyzYU7Hb1mGk0d00XughyUDzZwIVfD135kQl5cOJb7rzyRG6fmSFxQQmqaKxd2NnDJLPpad3wueKFqAiraXW2kHJlQm9FDKWyIgx6vC0dzzaVdzXH7IDoC3+bG2w/0fja/xCZhSWl0rRUX5to1DdRNZo6d41xoiguzCokLozOBUS5sygQ09E3yYJJoM/sQmeA9l0llPm8+GF7PmGyZENy6xTLnySVcud8Dc55sshp2pCceOS61lY01qR1a1OCBPWYtvl3VNXu0a7fUEhPMUhtZG+xd0ACE1ry+V2t6TvdZ1fupSks/w8FLLpFava73OtlA5xEXUBeZe6dBT197tRmXdv3V17E6SM2arBxeB5184CE9to0lqfXMFLQe61p2pqpzYSvV0Maob+bbLRP+uUdLuPglkY6P2YY+l/jre/TCvPuEhpD0Ew21KSMNKs6LNakdPTwcJhOlemyPr+v1PG2CgE+cf0pqTRPI5J4HFfl4oZZu3RZl+lnTSOe+qw7pPHfNJbrmuecunSPu+vJfSy05tHe40NR5eWCOt2/mm3pzVmpT01orBnqv91dfuENqu3bp5EJYDQAAAAAAAIB/MHgQCQAAAAAAAGDieBAJAAAAAAAAYOLG7hGZpNqXIzd9KWp1/d/JN1ra+6ISa++LTlt7X3Tb2heuMtIPxfUHKWr60RpT2oPEPop1vQNMe5/2Wldf2temRFMzLa3Na9+UXkffz7Vdm5rT14bU9G6qaG/O0V5Leal9F3oD24VS38v1UzA9WLJMv5++uXae5TZdeA7rmLFQq+nc4nqguX62tt2ZueBcD7DR7Vy/Qdd3rchMn0N3jZseY7npaeKO140Z1/MoM+832ms3BH+eEtOHsWJ6FyWmT1UehueXQa7zjftc7v1/kH6QwLMhMvOD7V1qBlKjYXqg9fU3enN7bejf4/avTBLT2zl2SzzXi1u3cqOoME0XI7M4iuyEq/vNc13fxbH2rrJ9HU3f22hkgjWbhKjU9U1szrHrd17azrLm85vrJIrdugo70dkTJ6X2+BPHpXbp0X1SO7yo/dnq09oYrbKwV7e7xNyfNYbvT/K69gkrzUDKzVBwa4V+T+/r4or+vlcbep84Paf9KlNzL+r7YmvJrQ3dPJeWOm8OEv3A6yM96nZN671Ztn1WanGuc1zFrG9dP8zUZQ5srkjt0a/dLrUDR66SGi5+9abpIZrpc4n7v6n9AJPyf0ptrxnnT53RfWwOdK665Iajw8dR6D7rTR2Vg1THbq2p42OuZZ7LmHVLYRpPl2YtE5v+mkVP123nlvSY+2uPSu3QAZ1fr7zyeVK7/xs6fttbwxkklRmdC8q6zl121WLWQZF5Lje3e5fUEvOO62trZi/j4S8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc+GE1Fd00Mk1zXWiDa5juwm+aUy7ARRuZ9nrDTVFrJtFlZkabpDZMkI7r4lmYhqXbG9tS65tjqzW1iakLpkkrJvwn11rFnKe4pg1FI9NM2jVb720PnzsX4GMb0rsT5fZpmrT3e9o8dmDCamLTPBY7lQkiMNdgPtDwk6pphO7CGFx4gt3HSINzN65Sc90nqc57hQlFyEwQQ2H+E1FZmEbKqX5Wt12W63grzPxdM8c8dkCHCWNI0uFjyYMeR2LmER9MY4KEbFCEvtKdE/e5sDOlJuglMWFOqRkfqRmDLlChYtZQG2urUos7w9elm7tKG5hlQqXMsUXmDWNTc+uAfKBrntKE37h51AXHlK6JvAvTCaaxuqnpOtWcJ5OyYfrRh8TOD+Odd7uwJIwP3/LkiRNS63U1uOmeJ5+S2qHLb5Ta9ddrrbq4X2pds17a6A+P6ayrY7zIdYBkmb5XasJVykLXGS48b319Q2qnTj0gtYH5DP2+HvPs7JzUWi0N6Fg+f1730TPrQBMIuqsxXFvb3JRtor6+13RVP0O9WJNa3Ne5JavrnB5M+M2Xv/Qlqf3YL/xzfS0uektLeg9+8pRbr2tg1KWLWtu9oOO33ddaPWjY1u59B4b+/dDDGugy1dLnEoO+XuMu4Mrl2mUuWMsFQbl1oPl975c630SRjunpOX2/H3vp1VJ7uPmk1P7UBHtudraG/j1l5lbHLLNCYYKFN9v6HW60zWc1J9l9P+PiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATNzYYTU2nMD14zahAKUJaDA9v21z+Na0NhdeW14b+vdWVxuxzixoWI0LoYkyPZCqacSZBW0QPGXCdaotDauJTVPU0QCMEEKoNUzIhgu1MY3Vq4l+ju0NbTLaHQnYWZjS8+Q6t/s+63r5lKU2WHUN6d0lAXxb3zQk73XaUpsx84MLPylLvQYTF4hitpOACheuYgIWXKjNwFz3ffN+kWuabGbrak2bOrsm8rkZg1lftxuY+duFR7hQqiLT7QYjk1V/oMdRr5j51syP7nfE/S5FrmaOl6gafNv0lJlHzIBzYQyxWbfYICQz3QxMYFQYaSLurvHMjNN+pmOmkuqYdOGBbsy4kJw8d8k5JkTKJ0bpfs2aLJj5xq0r89itU4a3iyL9rC5UK7W/BeOFY7m1jJur3GuxM/VMWGNpfrf3X/YCqcWXaNjBdm1WallH3297S0M3s5FQhPkFfS8XBuPCCTJzjRdm3AczBj/zl38ltb/+ogauTM/MSa3b0/P5ipteIbVrrrlGan/7N7dLbbun586FO7zqhmuH/r3/0CWyTdrUNVqzofPSqrl3Sgd67qrtLal1M/38K3//7AhcZBpTeu0OzLqlTBpai/Ta6pkQpaSi1/m+PYd0u5Fw4fUNvZ4P7N4rNRcEVXNrNLNGKVyCjUvPM+uW3IxLd6/TMSFf87Gek8X53VJbntdzEEX6PGg0Zy+3z9ukZOeuMjL3hOa+a2NTv//MhuTos69x8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaWtDmwm2XmuKadI8ZYBOZ7uj1VlNr7c7Qv3t9E2JQ1+Ptl9pgs2bSI9JSm4RWTZP61i5tOlqt62sHue43Nw1gcxOUEXdN59HRjqUhhCw2rzVxDM2Z4YCdpKqXgAsKyQt9rzTVWmyaz5scHdcTNmTmPGFnOr+0IrW6CW6qjAbJhBD6pnF5num11Whoc10XRjGqNI1/+6bRvO2PXK3rcdRmpJabZsjdbQ3rKTIzf7lAjVRrpQm3KE3zZzPd2Dl9YM7B5sgx2/fSkmfmjML9jphjc3OQ+RqxQ9VM6FM8ZjNz91vmrlWb2Wf2UYxcv5FZe6VmreTWD+MGBfZNeIYL4Qkm1KU0gzqy/43bnRQ9Znfa3SThAv/KkYHuAhXduig2jeHd8bq534Uglva1Zr2Mncn89tYbGhTxoy95sdRmZ3S90G3r2qAyrUGU7h4r7w8fy1NPndJtzFibNmGdLigwMWuPs2fPSu2LX/yi1G684aVSu/zIFVJbXtH14r59GnixZ6/es73yJ2+WWloxQRGFCf4amSPzbFG3OfQ8qRWxvn+adaSWP/WE1Dpn3feja6/zK+tSw86UFTo/tEsNpWoPNHBlLtcxnZtgllpjQV+7+1KppSNrklZD115zszrHnTt5TmoLU3NSc0GBpXlWVZrx7O4nysTc25l7rG5/vN/30twYdjp6fxpHel6KbPi1pXku44JJR9eUIYQQmUVVc0qPrWKe8wzMZ+3nGho9Lv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1M4IppYOz6kQ9M+Ilrol4zTUsj0xx9en64kelM0TLHYRqR9k1YjXkUm7j0hIF+1l57W3cbaRhFGmlj06g0gRKm12ls9hvHJoinp+e4aYInijDaXFl36hroZ7k2sy+CvtYFithgItNQtmnCQ7AzbXb0eqs3tLmyC6uJTChAYkKvUtNEPTOBK8VIo+PSNPntm6bBSazHVkt1jktT0xh9oM2lIzOnbaxrQ/L+QM9ds65jqzDBC7EZl/Y89fU8DVx2mQRt6Lnrmsb9FdNU3wXOWGZOd5kdLnAHO5P7PbLbmZq7jgpznburrVbXgIpoc2P4dWaZVTW/lXHNhPalOhjceC6C7sQ1PbeN4F1AhQljcM3h3bgMZv6OXPiLOebRfaRmDeQmqsLsMzbzt+MyaArzWTOX1IUdaWBCIXbvPSi1tKLrha4JlnLBMT6oSsfR0khwzNI5DZIJ5p7j6JVHpZaadVYS62f46l33SK3T1s+1d/8lUvvS39wuta/f83Wp/fRP/7TU2iac9ORZDcFwk7UbvfnI2nDg7mur+vl3tfT7mmrqfDPf0jXvSRPGWO1qLU25n8LT1jf0N/rsirk+MhP0mWsITTvR3/fWoo7VmTl97WiQW90E5iZmvolKPd6oZu7/zHOe2IzLfq5zcGyeN0VmHdAxYS2JCQxub6xJ7eSTT0nNPV9xwWIzjeHzbh6ZhZ5b35ggYBeeNzWj53h6ygTzdPR8tn+AsGH+IhIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxI0dVhMl+syy5gIQXENy08zdNS4fuCa8DQ1/qVSH95ua4ISiq41IXXhEEWmDUddovlbX19rPZfZr+pqG0oVCmMbqqWkK6wJ8quaZcmqanfZHgoOKjp67YAJnEtfE1aVHmMb1LhOiOaVNrRvmu8bOVKuaMAbTwLhnGhO7QImaCbUpbFKCXr/xyNzX6+kYd8Ev9apez+4zDLodfb++7qNixttUS4O6Nrb0c1Vq440tN39HiQu30Lk6y10IxPd+f/eNmewf+1/NXHhG4eZlG5hl3hA7kr0sTRibY0Mh3HamVq3o73uzPvzb2O5syTYuvKXWMGsFMy+5A6mYtUe/0Dko8idKucFl1galmQ/tifJF3WqkAbtr+G5yAkNmQvsS872aKS7kZr5xc6ENd8SO5H4HFxcXpTYwIZTplP7mV816yd6LmeuyHJmDmrvmZZtmReeHiqmVkQkcLXXcr61qyJ4LV9nc0Lnv8ccel9r6yoru13z+Ws2sK836ZmlpVWrb2xpO2u11h/5dbWj42B5zPnfv0RCa3XMaYNPr6Dl+cF3XvIsmZKSxa6/UsDNFNRN6lc9IbcrcJ9V2HZba8u6rpVY9q2M6Ns9DTpw9P/Tvx08tyzYL83rtbm7q+9eaOhYa5r4rrZtnJo3xnkGYpUFYNyE0U+5+z8y3d999p75hocc36Gtg6WAkQNCF5pRmnZGZQNBQ6rk7fUKDdM4+75DUtvpdqQ1+gPBP/iISAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMSNHVYTmwCTuK/PMZPUbGcahruQgUFXG2BWTZPV0f7rhekmWgxMw87SBDGYEJZKaj6XOd6kps3hcxfY4Dqcm0boWa7NQzOT2hCZpu8hMuc91eNrjDSmHm3uHkII7S39HiqmyXNhzknmwi5MY313TZRjNqTHxW9hWhuyp6ap+LppZj7V0obhLpjGhU25Bu+jATOxa+hsaqOhWt/p/TMTVlOauaBS0ferNvWzVus6Z6Zm/h4MtBF+bOZDFyLmAmbcXDq6mft9cMz0EFLzWhcU4WaRws39NtYIO5H77XXcNTPuVeSGR2Lmjfn5ueFtTFBg34RZba5rc/OkakK0TPBenJhRU+oayq3b3JzhQmLcCYjd0siGTblm61oarbnvNY7Nus00bk/M2qswTeVdI3gbyjVmqBEufvW6BhtcfuRyqcUmoM4t/4tCr8HRkL2ni3oNHmoM12aiTdnGhYt2Sg1c2Q7TUkvMQN23f7/UHnjwQam5Qb69qcdXZLpdf6Drls01DbxYW9nQY3ngEam59VJv5J41rurcsr2o5+nolK5ltiOdg9q5vl9W6jqw21+T2srKWalhZzp3VueHk+2DUutnOmeceUiv1aklvWdZmNd7tqn6nNQ6veHQp1e++EWyjQt7a9X0vTbW9dg2zaKiVTcBni64y/xGDwZaa7d1DbWxbeaqwtyL1nScl+cflVpi7nfbI/uYd/eTpc5THRNKHCc6j9x+u87Bjz9yRmpbuvwMM3M694+Lv4gEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFjh9XkuTY7dY09f5BaZJpz5plpIp5+7/CI2V27pLa2ro2KV0zz4pkpbbpaq+g+sr4eW2q2a9S0MXVumqj3TTNkG3QT6bnr9TVgJkm10XWjNTX8Vvl4DdTbA+1OGlXM5zLBQe1tbaLf3taQkXpzYaxjwcWvWdVx1DWhKS4TwP33FRtM4gIVcq2Njsu0og3EXQiLC29JTdhDtaHjqN8z483Mj7aZvdnOzbcVM2+6MIrcNL2vmWMeFCYsY+RYXLhM4QIlzDl2Df5dUESnazopGzFhNfiWMowbZmTWLTbAZbyxWpp11Wiw1O7d+ru4taW/n0srK/r+JoMnjbVJudvQBXy5oIzEhdWY+dBltZg8GBssVYwZnDP6/bh1a2TmvcJ8/3lmQrpK99tiAg/NnGkPFzuSC2vcvXtOanv37ZbaVlvDVUKkr83MmClKvaanV54Y+nfjibtlm4G55+hcvyi1fnVKasloumgI4YEHTRiMuXdIqjqO3FjNzK3sqaVzUquZQIXzS6tSW11b0/0OdI6MRtYzkbmH26zquVte1fdf2jDf64x+/4kLI+zrOT6/qesx7EzLZ3TMnF7T5xwrPa01Tms41M9epgFMTTNWF+Z1u5ANrz8a0+b+p6vXc+vq50vttntPSe2bj+g4qkU6FiqxrqHimh5vnup6ydz+hEap+5jdf0Rqlx/ZI7X7zmogzOWXaZjQZmgO/bvWaso2JrfMrlsG5t65m+v7DZ7SZ2TN6RmtNXReGhd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOq3GhKaNBBCGEUJpm7qZPZkhMw3D3fq7D+Wipm2mD4Fai7z83rY1I19e1EasLVIhjc7wu7MJ0JO+a8ATXrLrRbOj7mUbPsdlH3QQ+9Mx+tzeHG7ROuaajpuF0f1Xfa9A3AUamwf/AfD+VijaAbTa1US52Jjcx1c2c0TMNzl1AQWFSbWx4ghn7g5EG5C7soGLmm8QEVmSmmXkcmaAbUyvNsQUT7GDnTPdaM1e7NIqaCY5x5y43wTGj30XPfn6dM9xvQWxCMeoNnUc6fd3H6HcYQgjVlP8Oh6e5HBH3++6uwcSMmci81gVGuYC60eC5aROeVzeNwfcuarCBu+4Te93r/DUYdKRWuiAZF+BjU8TGHG821GW8tdZoJTfn3IXhmOnWTo8Vsw6M3Ec18637XcLO5MKsWi1dd8/O6vp8q6NhDIW7ttz4cMNoJMAm62roVVI19yZm/R+b9KnSBN20Oxrs0De/20mqa4+FPRqS097QY6mYOWOrva21joZWzMy4wFI9lkZ1eB5u9/U+aWpa3+vUpt6vlS6Qq78sta2Ozsv7zXlP9HRihyoTXS8crOo8Uje/2wde8CNS27ugoSaf+ewXdMfdfVI6ceLk0L8vu+wy2abT03GaDzRo66du/CmpPfzUg1I7t2EGQ6brkayt83Ia61idSzXAZfeMCdGqmtDNpt6zZB2dNxZaGqxVHQnO2TWj83LHrEenTChx38zfeU0/ayXT441NgM90Qz/ruLgTAwAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fVRKZzd2ICGtKq1grXhNc0c+93u1JLqtoUc9Ab3s41i1/d0gbECzNzUtu3T5updk0zYNdo3gXY2J7qpuGya/reMw1LI9PU2gVURKaJfq2uDWoHg+FmpP2envPtTBuW1mvanLbb04bTpWmE35jShqrtTX1tr6vNaLEzmf7moZLotRUnOrYqdryZxu1mDqqYhuSd3vC4HJhgqCkTYLO5oc2g+z29xqdNk/oo0vfLTLPmXqZhWy5wJjXnyYUnuHkuMw2st00QVtvMm92R+caFAaXme7VpOIYLD0nNb0bHnPfYhOtgZ0pTE47kQmjMD3xkEiDca2Ozj9TMG/nG8Jip1PR6dgEIWxs6F9TMWNja1kbwzaauFWIzCXcz85svlRBKM2fYAB/zWreI8usgUxo9ZnMcLqzGreWixHyvbp8myLHf0/kxM+sq7EzPv+aw1KpV89trrlV3v1MWJmTAJDBl5vrt14dDPBt7r5Btcrd+MClNZTA1Mz/Wavp+bog3GnWp/dSrb5baictOSm2qpfcdJ548JbUnHn9Sj89MLllVj2VjZJ3S39Y5eKOu67tT8WmpuazWRkOLV7Z0Tk9NwOhMi/kGT/vrb5jredoF6+rzAHO5hbU1DWvJ+vrMpWPCoVbOnR/699FLD8k2J44fl9q5s+el9oqXvExqNz5fx8Kn79SwmoWmjo+D1cek9mBb5+p2ouuvtY5+1pktPZ9r5plLO+j668llPb7nPX94vwcW9bnM2XU9jtmaziOVKZ3Pwty8lMpM91E1a9LvtJobB38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6rSUwnXZcnUK2YJpauYXihQQE90yi14pqDl8NNPJOaCWUxjdZXNrTB6t7di7oDc7yu6Wpiuivn5qTUTWPP2DRud83MXRiDO/E9E2RRmmbro99jboI3ShNisWw+f9u8Nk11n2lFz5MLsKma7xE7U2Kue9cKd+ACACIz3kwohJu/XLBWMTIfdLZ1npqZ1jfLB3psVXMc1aoJyGlr8Mu6Cb9JTdP3gQlmqdW0MXHfhLV0+trUeWDmg64JlirMdvK74QKCzDlxX07FzCPBBN1UTECH+64HJggAO1Nsgh3cHJSagL6qCbiq1fX3rWLWRon5vRxtBL61reO+boLoKmYecWuUTRPk58ZHYsJ1otwEzpgXm2ywMG4zcxdqE8rx1kHlyLrS5HrYoEAXMpib35ayr7VioO+Xm/Ut8G0H92oAwExVr6NKZgIsTeJMb6C/2y4kxt1jrLcODP17+fLdehzmfqo0gQ3V2MxBib52ZmZaanv26L3YwoKGJ8xOzUgt77t1m56Tm6+8UWpXXqqfN2kvS63e2CW1rLkw9O9+0HVRasITF6f1+1+IdM1XNUuekyY84qt//T+k1nH3jtiR2rmOmedfdZXUDuzX7foDHVtfe0jHR1rXi7VW1/XSy1/6wqF/753XMf7AA7rPekWv56fOaejTiSd1juv19P0GsXnOs6FzRhFprTWv91OVvn7WmVzvFae39DnU4QOzUovaC1KbagzPpYf36znZO6/zcjAhoQNzr7e1aQKjzXnPzOfa2tb5a1zMVAAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGhf24Dp8mwbJ3Y42tixNE17X4LxnXttoDjdqHw2TCCGEqmnmvrWqTULT5RWpzUxrs08X6hKZxvWNitaKXJuCuowNF/Tjzkm3qw2sbe6CqY22LHWN5mMTctPpmabZJhSibxqglpnWZhe0EWutSlgNnha5RusmDGVgmrRXCxMy4HaSaBPx2Ow3HQmjOHtW54xWc8rUdB4pzVzgPsOgr03PK6bp+cK8NnjvtjWMYmtLw6a6Jnhh2wTdFGaeL83EVKvo+B0Nq+lm+v6JSZRw/4XMfDUhNSE81cIcr3k/dz1hZ3Jj1f0eVc1vngsjiExQQJHrD7K7pmdn54b+3e7o2N00Y9zk3oQk1eONzO971/y+1+pmXJrXZi7pxvCbaTFy84ELy7BBhiPn2Jxgt+ZxQVs2AKNv1ktmLozMDOYDfLATNef0d2t2VkNIpqc19Gp5Te8xerlel/2O/ta6tUYUDc9fWaTvr3dh/rqP22tSS806a2GXBr/MzGhQxr59+6TWauj77V7UsIel5SWpXX7ZYand8AIN7Wg//A2pJbO6j9OV4dCdhx9/QrZxoYWFmZc3zL1u6GsARGd7U2r79+2R2qAx3ryMi9/lh3W8TU3rQ5iDCzr2nzyr19vJVV0vXLGga6gTJx6XWjUeXledPHVStikrOrdMTen4++t7ntRjO69BWK+7QQOpqmZ9t7ym+1hbNesA8+QsMvcdq2d0DlqtmkCYUs/nxpKel7NPPjL072N33y7bdDvmWY25h4tN0OeMCQfr9XT+qjd0/mqYeXlc/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6wmTrWxaVZoM9y2CUXIByagIBkvmCUvTKDASCP4dlsb+mapabA5o81Uzy5p8ERmwi7mprUBamE+f2IagEaRftbMNI12oTtxouc9irSWJOZYTNP3YqRRe2FSbka3CSGERlMbaWfm/V0/9kpNP//odxhCCL1CrxPsTC7EIYn1um/Utel7PMZ1H4K/Vl2QwWh4Qqer1+kTTz4ltb17tEF01YR+JUHnuKyr80PIdKxmpsF53TRC7yUm4CozzdFNaEPFhUi5z2F6o4+GTERmzsxMcldZdfOefq+pmW/rDT3eSlUbKfdNQAd2prk5DU+LzW+U4+aRzITbra3qWqOMdTxURq79gfldHAxMuIwJhRiYsRWlus/chGjlJlHQNj13gTA2mGW88AQbVGX26/L5xtmlm+Pdm6VmnVVELuDKhdW4QxnriLEDTB89JLWe+Z1dPW3CDjY1PGJ96bjUWlVdGzVbeg9UGfm9TM16PY7N772ZH/11b4LtzD7OnTsvtS9+8W+ldtnhvVJLq/q5mk39/Ov33yW1T/7NMamd2NI5d2ttTWor68OhYRttvf8tzG9BaWa5GROGMz+lYUVXmBCaH33tDVJLF8x9F3akvKLX86e/fFpq/+Nvzkmt0jSjujYnpTnNOQlhS+eqz3/xzqF/b2xo8N4rf+xGqR3Yp8GcDyyZ4K5Sx/11V2lYzf6WjssNM+5Xb9f7pDMDnasLsw5KKvqbX2voHPHQfY9J7at3fU1qlx+5ZOjfa+t67k6fW5ba/Nyc1KZn9ZnWjz7vaqltrOh3OGOC1U4+8YjUxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuPHDakxQQN7TJp4dE1YzPTcltcg09sxMD/HEhCIU+XAD0GpVm/J2Om2p1U3j36Zp2Lltwm+aTfPahtaKTJuZu97o1Zo2VO11db9hoA1VY9OBPTc7GfS1AX08Gu7gDs7U4kS/LxdCVDfnqTGtjU27A/2seU4zdzwtNsE07j+b5GZ8uFppQliKoONjYAJMOiOBMC5Ip2/2efqMNl9PKzqf1So6f1XNTiL3Wc3nSk0wS881TI9NAIQZ+26cu5NgvrFQqwwfS7XithovXCgzYT01FxhmPlelqufdfdfYmcYNprHMWHAhe8trOh+40Jm4Mvx+ealj14XiFZkJnCm0lpUmCCvScdTrm7WMGW+ypgj+v3CXZh8u1SZySTfmfOYmVHB03nDH6zJjYhdWU9F5NDPHlps1n/uosU/wwQ5UmmvLhUP1zU3RmadOSe1//vlfSa1irje3/ojrw+uP1ozeE83NzkltYUEDvvbt0yAZF5Bzz113S23TBC9M1TQUYmNW7zHyrSeltuugBgLVVleltvzIN6W2kmi4RW7m6noyfD6ndunrEnfOXdCPqaVmskojnff6mR5bWuo1hp3pNT/1GqnNP6DzzfKWC9E1a5lTD0mts6LX5ZlTZ6QWD4av6Za513vkoeNSe8HzrpJabdncE5nf4//+lw9KbcqE9lVqeixLbZ2D4pZuN9/Q8ZaahdDW5obUrrjyMqn9yI/+iNS2N9aG/r1oAlEb5jmXC1ZuTetzudSE8U1PmdDCUufq+AcI4+MvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNZkJSshMc/TUhJpENvxE91Gt6HPRrmmYnhfDTTEbLW3O6QIbtrc1SGeqoY2Uo0gPrii1EacLiqiYz5+Z15amlqR6zH3TIDkfmPNuQn2S1AVDDH8XlUS3yVxzfPdZTXPlSk2DN/qFhl24Bvyh5Lk4nuYad4dCx8xocFUIPlgr65vrreICUXRs9UdCTaabGjRVMYEzHROG0jcBUp1cg5uKRMdz1ZyT3ASzbHU1qGu7ZwJnzCScuZwIc95NXlbou+9nZO6vmyb9LrjMZWi1TYiYC/2KTIfoipkLmW3wbeZy89u5MKdM55aOuVZdMEsc6zgf3SozYVGDvtYKE0xTBhOk4oKwzFIw75nxbD5rvWnCGMzosmE1rr+5+zLMeY/MPJ+OzJFu3Vbm7jjGC+irmnVl16yN3HXizjt2pooJBUgSrS3Ma3BMt6Nzy+wuDY4ZbOl2W5saMhCNrA0efehR2aZhgjkr5rfcBcUlqdY2zXHkhW53/uxZqe1r/ITUjkzr+mtzbVlqPTMH18w9S9VE70UVDd0cDYFw801w944DrWUDE6iYm/Xi4VmpnTf3iWFNw2SxM9304hul9vIX6fW20dXrbWV1XWpr53XMnDiuwTTVFz5PayNhMu2RAJYQQjh2Ut/r8RNPSa2/pq+dKzUwapAdldrpnpkzTOCOebQSZqdMSGap463oaG11Rc/x7l0aiHPoisul9s17vzH074MHD8o2sZmDv/GN+6WWuHAs87tUVvX96ubeMXXPdMbEvRgAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rCbPTYCJaYq5sKiNQqemtMlvp6/BMZ3MBLNsm7CakebgmWk0Xku0kfKg1AbvrnnzwvSM1KqmY6lrIu9CK1yz4oEJ2dA29V7igmlM6Ixroj/6nRWmgXweu7Aa3a5Z1wbW/ch8VnOe4kSfgReuiTx2JNfsf2ACs1Jz3bsQg8wEPLk8HKfZGA5Eael0Fnpdc42bcTpd1abELsPAhVlVTJhVz4TrbHZ0Hu1kLlBBX+tCglz4T2Tmqsx8Z9lIqEZm5r2aCYVI6hpCY4N+tnT+bpjfGxeSs014BL4lK3Ru6ZuAp3ZHg6A6JjzCzTdJomuD2IRSjSa4JKYJ+JYJwyljHfdRbEJYIhOEZebRqlnLbPd03ba5qQ3ZK3UzLyemwbtrmB7rWLWhPmb+LouRec4FbZk5KCr1eG2goGvSbub5gfn+x49EwsUuLnUeObvymNSinq4X5qb0t3Fufl5qm2acl5GOrenWcGDn2tqGbOP+ZiU36/WtLZ0fYnPdu/EczBy0tqnn6U/+8stSm3NzwayGuhzep+dpdaD7Xd9elZq7Z+uPBMzkdt1qQmPMvFQx99PPv1pDNg5fe4XUlvprUsuYb/AtffP8pmJCHVuJ/m4NanodzR+5VGp/9qefk1pk5pv52eHnBot79JnRm2/9J1KrVXWcbpkA4n6un2tzy4WESil0BrrmOfaYhvV8+WENznn8/Dmp7WnqmmxxQZ8vJbnOEXX3LGlk0TMwz3hqJpizmup7uTXqnsVdUls3a0337G9q9mGpjYu/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFj94is1L53b5EQQpgx/bkqVd1NWtH/jXmsLZmCayXS7w33LChND6WO6ZOWmn5MsenZ5vopNFwvOtOCQ3oUhRBK16fIPAN2ve1i04stN+9Xb+jn0DMQQjbSU8D1xjItN0OeabFfaO+AYM6n64cSm353wfSzws7UN31FXd+tRk37lKamH2BnoKOh39Ox2mjqnFZtDu+j39G+hN0tPd5GavpBmvHs+m2UhenBaPo8un5nrk9tHsw4NwO9cHOVmw9ML6TS9Vwc6QHXz/Uz1Ez/EjcX9nv6HW4W+l3EpudkzZyTlmv2iR3p9JkzUnPXW25+3934cN1HS9NTzfXezkd+k6NI1x6Nqs5T7f547+/6M6em/1JkPlitbnpv6y5s/0bXk9f2pDVrreD63QWzrhgZ+6ZldRiYNU9p5sK81O86SvWbrVT1nBSmv2Tu5m/sSFdNHdCi68M+p30Ou6e0b2L9R14gtW8+8JDuYt79No6MrYcekG1G7xtCCCEyv/fudztxk4GZ02ZnFqRWNeu75WXt2XY+Mj26z69JrVboGvKNb/x5qb3/Ax+W2smnTkutGLmPq5s1xZVXaZ/H0b7jIYTw4De/KbXl1WWprazskVpFT1NIXZta7EjHvv5VqV16YJ9u2DXZHR0dWwefd0Rqr/ypV0rtscfOSm1jbXjNfvypJdlmzVz3Ry47KLUo6D3W4SNXSq3sbUotdT0Yc32m0axo/8bb79NaN9MxnWU6V8+2dL8vuu75UlvZuF1qo/dsJ544Kdu4dVZu1iPrm9oLuNWaltrZlTWpDcy6cqqln39c/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMKEInVwbdhalNnhvNLWBb6NqwgPqU1JzDZHjaLgLrwtd6JjG4Fmmn2Gmpft0YQeDvjZsrZmGy52ebtc1IRuuWXOzpo1XU9u43QXY6DmIzHPm0eb17tzVTMjGZqZNbDf72oi12dBLKjHdU+311DHhN9iRXKhL3cwZsUkjyDPTuNyMmUFfx2Uv6DUYjwRBpTVtytuc1eOoVnQcDbo6P/ZMM+jEzA8u36lmpoeQmzAKcz4HpoGxC5Nxc4sLoArm/eKRz+GCMkozP3RNc/y+mUddDFixrgE2jaZ2c280TId37EibGxqAYMMYzGsLE9xUmPWHC63z65vhfydmm0pV56DEhPENTEiXmzPdeHYBVy48MHH/Pdsk+UUmlCs2Y9+FjUWx1rJc581iZH2TmPmmaoL9srZZo9nAGT0nFfO7VDGfITNzK3amq2b2Sq1r1gadtt5jpf1VqR3Ye0hq92nmTLj8isuk1hoJIr39S1+SbXKzXnehUi5c04VtVUyoZZrqWL38iH4u96v/jW9+XWr1Uo+lt63n+Ng3H5badlvvbVwqWTkSfhOXOo9MmUVabu4nSxMI+rU775Xalgnhedtbf1lqrdbYt/e4yL3vvb8vtUsP7Jba/r1zUnO/ZXsf0MnlsssPS+3gi3T8Vkbunw4cuFS2aZkw4811DWaJzFyQ9zXMadDV8ZzF81IrTQhLr63PPmZMeHNlTgME48E5qSVmbeSCY9y6slodPi9PPWnOSWyeLbX0Xqff13N3/LEnpDZtUq+Sms5fC7uvkNq4+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3djfbvglhKU0zza0tDXto9rTh8vz8nNSqFT2cRtUFCgw37OyacIrGlDZD7nW16eZ2e01qFRMykZq8hqzQxqYucGW7rbWqadZcdY3VK64Rup6nTk/3kZr3G208G5km1P1Mz9PANHEdmMbtrp1/bq6T3rY2gE3MOQa+rTShDS6sxKmapJck1aa+XdNEfHVleGzNzs/qcZiG7Oubm1JzoTGF+Vz1mo57F1oRZdp83YmqOmekJoSmYs5J6ca0C7UxtdGwLRfOUZT6OhdmVa3qd9gwwUHVus6tW+a7qJkm3NiZShvSpNdg4UKajNgFs5gQPLNZCCO/l4U5NlcrzXh2v6nZwPyWx/q5kqoJozCBEqY3esjNzFya/+5tlgYhinQ7F3QTTPZLMbJfN7eYfJwQm3kvDEwIkQmwycw6yAV5pCZMCDtTx1wzm+beYXVNg2mCuVTvP6ZhLY8/9KDUKqmuK+ZmZ4b+nZugLTdNuQDAYMauu090L52e1rCHdluD5y6//DKpnT61ILUzJ09J7cF1DYU49vAjUnPj181fo+uZ7rauH+/68lellud6jzU7NyO1n/jJV0jtuh99gdT2HtbAD6YbfFsl0TXx2SUN6Nvs6n15tarX/T0P6txy5rQGwiRmATI3Pz3070v375NtDu7ZJbWpKR2Ti3s1cOf8ss6jM01d68/u1n1MN/U8leaecKHUeWlxrz7nam/pRNdq6Ty3uaX3J7kJGhydIuau1jmj0TDrNvObUa1oUHM9WZPa3l1zZh/6GVwo2bj4i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2O9vchAeMBhGEEEKvrY09O21tupmZhsijTUxD0HCVEEKojwTYpIlu0xlo49Syrsebx3ocWa7NTkvzWV1US2FCIaJIA3cG5vOXriN00Gavrtl81YRb5KYhtgTMmK7RLrBjfVvPZ3W2KTXXU76zpU1cXZBONHb0CC52hW1wbsJlzFhw/3WlacJqIhOUkLgkg5Ht2iaQq2LGXzczYQdmfNgQGjPu3fFWzDkZmIAGN1dXTPCE40JoChO84X5O0nS45sIpchP6ZT6+DbpJzXGkZjv7vY4ZPIKL38D85rmLMDZhDLG5tlxYjft9K826qhhZG+RmjstNeJwbH1WzfnJrmTzT48jN/BWbSSg2ITk2d868X27mqm6h64XEBPS5QJzRMKHIHZs5uNgUSzc/mHPs1lnu87twNOxMmz29jja6etV0ChPQ1tCAgsUpHTMvvOKg1E6dPi61h+4bDnBxv/fOYOACTHW72ATkuF/eqSkNTzh+/HGpdbp6LzIzNye15fNLUmvOarjd3n17pbaxoaE2Z86cNccyet7dfY2ZbwsNq7nkkv1Se/Mv/XOp1RsaqJGZ8JsxcwyxA1xyWINZCvM7G5v7iU5HA2wqFd2uX+i8sbGs+zj+5NrQv++6+2HZJk1NeJ7ZZ2p+U+em9TnSwqzOLYvzOo8uzGkQ6WpHP9eZs2tS22iZsOUpDXXZOqDfRVqZk1oS67pidmr4d2N2VsN6Fhf0/ZNEn0G16nqedpn3c8+l8tyEko33s2HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7ssJrENDgPpWk5bJoV93ra1HjpzIoeTKpdMVsz2uwziYYPu26aIbum6mWpjVMj7V0c4kI/q2tcXsZaq1X1Daul1vK+aS5s9pGYRui52S4yDfNTUxuMdJNudzV4Y6utzWmD+f5rdW2AurG8JrVds9oAdm7XvNSWl87rfrEjJbFeb4UJCuib0KeKCYpwY2aQ6Rh0wQPV0WvfdGRvb5qGzuYzNGpmLjCNxt3cWgb9XLE5JxUzVhMbnuGCF/R8uv9aFZl9uICO0d+NwoVHmLAxF/ZQmvPuGuu3NzelVqvqb0TTBAxhZzLDKEQumMZtZ8ZqMTABT6aZuwuiKUfnIBfcZTqIu0AX98HcOHXhcW4OLnsmWMqMQRe2VZr9ujmt3zPrtKqZ00zYlsyHpW5TmIAgN+8lZnkbm+MtzVrTfa9RMvZyGxe5wlxH7vqITa3Z0JDIAwc16GRhQdfYh1f0vuvcueWhf69dtk+26XT0PqFvAr62TahlZ6DjY+BS+0zawdXPv0Zqqxv6+/7UaQ2S6ZtAr5985U1SO3xIQ31WV5al1jahq3fd9ZWhfz9x/KRsUwb9XLWGrj1e8IKrpZb39bxvmPCQ1MzVqfn9ws7UaupY6Jnf8s0NvbbWNsyY7uhrExPfuzDr1vbD136Z6TOedk/H2sq2HlvPBGZtbutzhJNnNbjKBQ+68JumWWfUa/q5VlINkVrYpc8+nj+4Smr9bRPe3NJjaV02EkSTmnVLXeeWWlV/MyomvLlbrEot65ig5oFZe1X//vMNMxUAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e3ZktnRZNXHFBDRUNKChu6UNyVfOb0gtMc1Dk+nh56dpqaEp1VSbc04n2sSz09cGqFlumo+bhvGDgTZUzQptnpqbprBJbpqol9oAdZDofuNYvwwX5NAdaAhGd6SBs+k5Gkpzzmsm+Kbf1kbKkQmjaLT0eKNIj61iQiuwM/VMs+I41euoZhoJu2ASFzblggcqLlBgJAAhNuPDtF63zZBjG8Pi6HZmurWBM7EJnnCTdWECGkoTPJHaJvrmWFwwxkgtMcdWuCAwc0KLMcNqKia0o1rRuSUxcxp2psSM1XLMMeMCrkoTlODe7zukMg39080t7vfebWdyVOxO3ViIzLh0nz8yH8uG1Zh1VWz2W7iT0jXn08wl5cj3GJnzFMznCpmZb+2E675DPY7czdalCfrBjlQ1AzNLzO+nCR6YSqekFhV6j5WZEIh9u2eklh8ZDmvp93Rd78Kc+iYootPR+7r2tr7f2tqW1L7+6DmpbW3pvV2/p2NrY21dau5e5Gt3f1Vq37znG1JrtnS/rSk9n/WRtUY1dcFierxXHr5Uanvm9P1PP/GIHltTt2vWXeoq4Vh4WqNift/dM4ia+U2dNvddJucxCuamwOyjM/Jbu9ozITSFziOpudcrchPa54LtzFohdjcZZrlQNe83NaXPl2bM/LBrYU5q+UDDf1Izfy/o24V4enHo3x1zn9wvtZb313S7Qr/XSk0/Vz/Tz5+bNU+lomE94+JODAAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd/NttRmxYOB1rpdbWA8Na+NfwvTuHzQ12bey+fX9FBGGj2XLX2vWqoNgqsV0/i5Nq3HYZrP93L9XK4he2Iathaxvt/2+qbuo69NRmt17Vg6aGuz08KENrj29Ult+CtvTGvj60pDv6+8MI3WTThFtbYgtTLR78Kd44FpiI2dKUl0HKWm4XBqtotNksrABDeNBqmEEELkQitGx7lpPl41ASnu/WMXHmFyDXIzt/RNAIYLVEhj3a8NtzD/GSqOXAqNKbkXu7SM0fd3ARPunLh9mvPurhP3Yvdf3PyciZ0oM02/czfezO+WG4RmCIbEzAfuN9RlpIySOek7HIcLn4pMUIYLmsrMnOmDaUzNbJe4k+K4nBc3f+UmTGdknWpDxEzV5FrYfbrt3If1GTmE1eBpjaABLpWKuT5MyEQwwQZuXnJr7Gygv5dZPrx2GdTdb6ryc4Y5jp7OI+0tDahoNTUo4Z6HTpr30/ufvS0TlGDuWcttDbXRO7sQ8k39bJ2Ku98Z/n6uu2KvbDPT0nusvXt2SS0dmGsi03uxRqT3sXUTTFNz1w52pNnmotSm67rmCXPuOY8J4M11TG9ua9hwp6fvd/LMyBiMdex2+ubezATfVMz9Sm7mJZeDW5qgmzTWDVvmecjuRRNMs0uDwGabOlYbkc5BvU0N78rM85BKOjz31yqzss18S/eZlfp9ra3qHNwZ6OfPzDl2a9RWVZ+ljYuZCgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4xoOb61rs8vCNBCPTHhEta5NMUvz2u62NkpdPTfcFDXer01HB1U93srANPStadPRSqrNPl02Q2KanlcTfW2tqZ+/acItllfXpNbOtKFsP+vqfiva8LVumqw2GsPNTus1bXzdN03q87Fa6IeQpvq95qVpwl3qOanVXSd47EQu1CRN9ZqxDdNNKEDHNm7XWjXVcTm6XxfE0Mt0nkrMZ3D/5ScqTXiCC7Eww8M1pA9mv0lsjsXMyy4Dw4VyxS4QR18qoTY22MIUCxdMYz6Dq9kgD8fsAztTt6NBAe76cL/57sp3gSgu/MReqyMvNdODfy9zvG7s5ibUJjFzgZuXSpeOZdOmDJsIoyV3zH5IuxPzvV9XugnHfQZTciFi/ooY49iwYyXm8khrLlHBvNiMIxeDlLrfxooJIxgJ5RqY+yQb4ud+P2sm4KmuoQuzJiRztwlwecHzL5Pa5oYGO3R7LlBD95tlem+TmdBVt65MU7P+GFlrVat6/5eYc16v6/1araa1ZlPvT+umVjWvdceCnWnvJYellnX02ULkZhKXl2XG/qC3IrV+pmP1wCXDY3+rrWNy1YRF9TomVso8H3FhNbWafoiaec6TmGCWvh5emJnT8daaNvtNNVgrNpP6wATxxJGGd43+IJgpPgz6Zn2X6ns1GmbNZ95w0DGfwZynsmvW0GPiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATFxUuq7nAAAAAAAAAPAs4i8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIr9Px48fD1EUhf/0n/7Ts/aeX/jCF0IUReELX/jCs/aeAJ77mG8AXCjMNwAuFOYbABcK880/TDviQeSHP/zhEEVRuPvuu3/YhzJRH/vYx8LLX/7y0Gq1wtzcXLjpppvC5z//+R/2YQE7yk6Ybz760Y+GF73oRaFer4fFxcXw5je/OSwtLf2wDwvYcZhvAFwoO2G+CYH7KeAfAuabi1/6wz4APDve9a53hd/8zd8Mb3zjG8Ott94aBoNBOHbsWHjqqad+2IcG4CLye7/3e+FXfuVXwqtf/erwW7/1W+HkyZPht3/7t8Pdd98d7rjjjlCv13/YhwjgIsF8A+BC4n4KwIWy0+cbHkReBG6//fbwm7/5m+E973lPeNvb3vbDPhwAF6l+vx9+7dd+LbzqVa8Kn/3sZ0MURSGEEG666abw+te/Pvz+7/9++Ff/6l/9kI8SwMWA+QbAhcT9FIALhflmh/xPs8fR7/fDb/zGb4QXv/jFYXZ2NrRarfBjP/Zj4bbbbvuOr/nP//k/h8OHD4dGoxF+/Md/PBw7dky2eeCBB8Ib3/jGsLCwEOr1enjJS14SPvWpT33P42m32+GBBx4Y639+9N73vjfs27cvvPWtbw1lWYatra3v+RoAPzzP1fnm2LFjYW1tLdxyyy3PPBQIIYTXve51YWpqKnz0ox/9nvsCcGEx3wC4UJ6r800I3E8BzzXMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4z9X5ptfrhRBCaDQa8v9rNBrha1/7WiiKYowzAOBCYb4BcKE8V+ebELifAp5rmG+e48od4L/8l/9ShhDKu+666ztuk2VZ2ev1hmqrq6vl3r17y3/xL/7FM7XHH3+8DCGUjUajPHny5DP1O+64owwhlG9729ueqb361a8ur7322rLb7T5TK4qivOmmm8orr7zymdptt91WhhDK2267TWrvfOc7v+tnW1lZKUMI5a5du8qpqanyP/7H/1h+7GMfK1/72teWIYTy/e9//3d9PYBn18U835w/f76Moqh885vfPFR/4IEHyhBCGUIol5aWvut7AHj2MN8w3wAXysU833A/BfzDwnxz8eMvIr8lSZJQrVZDCCEURRFWVlZClmXhJS95SfjqV78q27/hDW8IBw8efObfL33pS8ONN94Y/vzP/zyEEMLKykr4/Oc/H970pjeFzc3NsLS0FJaWlsLy8nJ4zWteEx5++OHv2oj05ptvDmVZhne9613f9bi//We8y8vL4YMf/GB4+9vfHt70pjeFT3/60+Gaa64J7373u7/fUwFgwp6r883u3bvDm970pvCRj3wkvOc97wmPPfZY+NKXvhRuueWWUKlUQgghdDqd7/d0AJgg5hsAF8pzdb7hfgp47mG+eW7jQeTf8ZGPfCRcd911oV6vh127doXFxcXw6U9/Oqyvr8u2V155pdSe97znhePHj4cQQnjkkUdCWZbh13/918Pi4uLQ/73zne8MIYRw7ty5H/iYv/0/WapUKuGNb3zjM/U4jsMtt9wSTp48GU6cOPED7wfAs+u5ON+EEMIHPvCB8DM/8zPh7W9/e7jiiivCq171qnDttdeG17/+9SGEEKampp6V/QB49jDfALhQnovzDfdTwHMT881zF6nZ3/KHf/iH4dZbbw1veMMbwr/+1/867NmzJyRJEv7dv/t34dFHH/2+3+/bfYve/va3h9e85jV2m6NHj/5AxxxCeKaJ6tzcXEiSZOj/t2fPnhBCCKurq+HQoUM/8L4APDueq/NNCCHMzs6GP/3TPw0nTpwIx48fD4cPHw6HDx8ON910U1hcXAxzc3PPyn4APDuYbwBcKM/V+Yb7KeC5h/nmuY0Hkd/yJ3/yJ+HIkSPh4x//+FA647effo96+OGHpfbQQw+Fyy67LIQQwpEjR0IITz/p/qmf+qln/4C/JY7jcP3114e77ror9Pv9Z/48OYQQTp06FUIIYXFxcWL7B/D9e67ON3/XoUOHnvmBXFtbC1/5ylfCL/zCL1yQfQMYH/MNgAvluTrfcD8FPPcw3zy38T/N/pZvP40uy/KZ2h133BG+/OUv2+0/+clPDvUIuPPOO8Mdd9wRfvqnfzqE8PTT7Jtvvjl84AMfCKdPn5bXnz9//rsez/cT/37LLbeEPM/DRz7ykWdq3W43/Lf/9t/CNddcEw4cOPA93wPAhfNcnm+cd7zjHSHLsvC2t73t7/V6AJPDfAPgQnkuzzfcTwHPLcw3z2076i8iP/ShD4W//Mu/lPpb3/rW8LrXvS58/OMfDz//8z8ffvZnfzY8/vjj4f3vf3+45pprnmko+ncdPXo0vPKVrwz/8l/+y9Dr9cJ73/vesGvXrvCrv/qrz2zzu7/7u+GVr3xluPbaa8Mv/dIvhSNHjoSzZ8+GL3/5y+HkyZPh3nvv/Y7Heuedd4af+ImfCO985zu/Z8PTX/7lXw4f/OAHw1ve8pbw0EMPhUOHDoU/+IM/CE888UT4sz/7s/FPEIBnzcU63/z7f//vw7Fjx8KNN94Y0jQNn/zkJ8NnPvOZ8O53vzvccMMN458gAM8a5hsAF8rFOt9wPwX8w8N8c/HaUQ8if+/3fs/Wb7311nDrrbeGM2fOhA984APhr/7qr8I111wT/vAP/zD88R//cfjCF74gr/ln/+yfhTiOw3vf+95w7ty58NKXvjS8733vC/v3739mm2uuuSbcfffd4d/+238bPvzhD4fl5eWwZ8+e8MIXvjD8xm/8xrP2uRqNRvj85z8ffvVXfzV86EMfCtvb2+H6668Pn/70p79jfwMAk3WxzjfXXntt+MQnPhE+9alPhTzPw3XXXRf+6I/+KPziL/7is7YPAN8f5hsAF8rFOt9wPwX8w8N8c/GKyr/7t6wAAAAAAAAAMAH0iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcem4G85PzUitLMZ8ceRqpZai8Z6LFsXwjqNS3ytOdKdRZA5EXyrv/51qSaLHWxTmWGLdb6Wqr43N54/iRGtSCWEwGOixlLrl6NGVuX6uSkWPo2aOtzRHEpnP2kz1M+TmO3PPxR8+edZsh4vdG/7XX5JauXlOanG1LrUkrUgtNVNLN9drMI/0/fqD4Renib5/MWjr63pbUotbDanNTE1JrR7puNw7rft99N4vS22wsSq12d1XSe303sv1+PZdJrVobVNqzUTH9Eq7I7VkZJz3tzdkmz3zLalNV/W7Kcz53FpfkVo5yKR29Cr9/Hv2HZTar739f5caLn6/9r//U6ldcul+qWUDHZe7du2T2vSCXtNb3TWpzc7vklq9NT30794gl21C0Lng8iPXSy0pdbs9u/dI7cknH5Paww/eK7XHHv6GHkqh421qWteLlbqek0pV577W9LzUNtbWpLZ7dlpqCwvDr929/5Bs05jXzz89p8cRSv3ReOxhPU/v/93fltqJJ++TWq+r89cXbrtH94uL3sGr9Not9Cc1VJt6ixaZOSjr6mtLs4aoJub9RqaXIuh8U8bmfs3cXwwynQvc/U9i7jFy87mKgdku1+OrtapSc/NS0dPXmtMUKnWdN+OG1gb5yH1Xpm8WxeYzdMz6xtwT1+d1PVqYc5z3db/ufJ58WOcgXPwWmnoNVut6L1KtmnubTMdMv2PW+uZ5SKOq47IcuSfIRsdQCKE0D5cS8ywkMfchsXvOY2ppqnNhYp5VuMdcbg5KzH2he+bkXpuZ2jgfY+xnVebcxeb7MlNV6PX6Uttqay3E+vnPr+t9scNfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDakoTwlKYwJHEdLt0jYkL04y0tI03v3f4S1rRRpypaWK6vd2TmgurcU1XS7Nhbo7XBc64eBnz0lCYfbiQDdNvOtRNQEee6347neFz4Bopx+b5dMOEggzM99/vaxPTvmnC3Kjrh3DXGHamKNMmt3FsmrSbhuQ905C8ZZqPb2ye1+1m9+rBjDQh7uR6jTeb+v6lCTvwHYi15Fokd9vaaHymqQ2neyY4ZzvXkJh6UxtJb26brvdb+nmnppp6LKb5dRyGv5/1bdMIf6DzclLV+Xt+VsMuXnLtUaldfkhDRo5ccUT3YeZM7Eyz83rt9jMNaWq3dXyYPuBheUvH4PnVJ6VWbeo42rU4PAe1uzr+5uY0IOdHXnCDvn+q798388PmpgZcnT13Smq5mfsGppn5oSueL7VQ0UCY5Q09n2Wma4Nqa05qC/v0HKwuLw8XmjpnLjQWpNbMdS4c9LSJfqOun2F7W/eRZfraWo35Bk+LTCBMo6a/b9W4JrXMrI1KE1bZMPdAaV/XJKNL9n6hv8eFyXKKTbBFpMuxUJrg0NLcw7iQudLcw8Tmpsjddrnbibhqdmz2kfXMvVhwAQ3D67TUhHPkff1uQuLCLsx9Yt/cs5r7RHtOKsw3eFpq7vNrFR0LLujE3bIk5pmLyaQKwY39kYGZxiZAy7xZ6tbrbpCbZ0suCLlixqpLa3GhNgMzV0Xmc9hzEptJ0mzogm70mZuZR9xxuOdy5rtxslKPt2/mTLcOHBd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOqylKbYrpGmDGqWm66d5voO8XmZCY1DThjUe2M4dhg3RK08TUhdXEpslzUZgAG9co1Xz+QW4am0Z66hOTQlNmesx98zHyXM9n1TSUrdeGa0miDWCrJiiibz5rluk+gwmmKSPdbmvbNNduaGAAdqYkaIhBWtGxtd0x4SqpNiHe7mjT705fwygqxYzUusXw9evG31RLu7n3Orrdwsy81CIzZ2xt6LEVAw1FSM0UVKtrQEU2ZcZWRc9TPdLm+Gldx29va01q5qXSEPnoZRow8aJrr5LaFZfskdr+Rf1uquYEDPp6ns6ffUJq2yb859prXyo1XPweePgbUpuZ1TGzuFvDrBYWp6XW6evY+sZ9D0qt1tSxv7a2NLyNGc97FuekliQ6MT366P1Sm5/VOag/2Jba0vJpqdVNyEK3q3Pr+WWdv1q75qSWpTqm+2YiufSSRak1zJx2dmlt6N9FrN9DN3eBHfo91Cr6/r5xvf4GtV2w2DTrGzytWui6ez7REKW0NEEq5l6sqOl16W7u+m29F8k2h8dvZtbwSdOEHZibJxc3WQxMMKm5K3QBGFFmQkJNkJ8Lh4pMME1k7qfynruhMuegbz7dyNdobjtDaoIScxOo6MJa+21z32nuYxOzDjK3dtihkshd4yZQzQTCuPt8+0zDPDfJzXaVkZAcH5liAo5NzT1vKsxcEMyc2c903VKa+TbJTSiXS/AxwanZmME51ZqueQrzTCeM1FzgZmK+h9FnZk+/lQl6NcFaWaGftVLTtUzH3HeNi7+IBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fV1Ora9NspctOY2AXCxNpQ023nmhrno019S32e6nqJNhr6GSLTIDhx6TemeXFmWjMnVX1tPdFGpKVp4FyY5rG5OSlpva7Hp6czROZzVKvD5yAyzVQrLqxm0Nf3d681n9V91y54pNKalRp2pqoJRSgKMz7M+C0z01jdvF9Fe/WGlgmRqlWHwyKSakuPzTQfryc6TuO6vjbEZm4xncYrdR0fsTkncVUbCa+3tTFzU4d0SM15qsa64f5LNJznyNFLpfa8K48O/Xvvbg3KSIN+huUzJ6R27uyS1KJgmr6beW92Xs/drkUNB8DONDWrY7Xe0rnA1bJSU6nm5zXUZvfCIanlZn2ztT0cftJo6FirV/V6fuLko1I7feaM1PpdDaZ55NFvSm1947zud5fud3Z+TmqVmh7zbV+8U2rLLrSuacJqdum8uTinIUHzI8eSV/R1+ap+XxsLGq5z+IB+h6YPfEgrOt/MzOixbWys6ouxI8Vm7dFf3ZBaFps5yAQPmIwFew8Uaib8ZXt4DRWbe7jWQNcjdp9m3dIzoQguwCapm5CFqgl7MOPNBWUkJhTChaSaW5bgck0Lc96jxvCLC3PS3RolMoFZuQnSGQ37CyGENDb3kyZgqBiYiww7UrNmnt+YayZk5qYg0+vIDJkQuYBgc00P8pF9mDFjpoeQmbWSC3kpzXxTN6HHhQnhcfnDmQlwsZOrm2/Ndu55SKXU78cFELtjFiaky3yFNmRwY1vXRvloIlfw91g2vHlM/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6zGccE0kWkQXBbaYDN2zS5N81TXADNOhxuADvquKa82Ca2bEJZaTRtx9k1D4yg2jVIrJoTlB2jiWZjwG1drVPVYSpdWY/Y7+jki87osMyE8JngjxKZxqmlY696v3tBAjTg1+8COlEQ6t3T72ly3NP8tJTLhL3m/K7WZil6DUcdc09FwbXFeA1e2trek1s3aUut0tPFxVtHjrTSaUsuDNpIuKrpdzYTpTKd6Pi87eInUDl95jdSuuFQDKg7t1+bKnfaa1NJ0eH49d0YDNVIz78/N6fs36vp9uQbv7YHOaedX1qX25JMaiPOiF79Warj4ZYXOLVPTM1JrTutvVLurY39tQ4Mn6i0dv8tra1LbHgmT2d/Q4yhjDVc5dfpxqd1591ekNjul79ft6PFGsc5VHRN0U6/puPziF/9Gao+d0tde+YIfldoNN1wvtVaqa7w9C/o5GiNBftt9nR/uuf9hqf0f9/6Z1C7Zr2FWt/7zfyy1vft2SW1j87TUamb+ws6UmaSXfKBrlG5bx2DP3GNVZ/Q3P66YoAgTRjGaLxMl5p7LHG/ZN0GahbkXM/dOfZOdkZuQCReAkcQmdNQERRQmZKJw4aQNc89mloHxwNzHjdwrmtzUEFITOGOCeSrmpFTMG5YmSWfgglNTc0+IHWnarGVKE4aSZTpmKub6jc2zhX6h222bEM/Rigu96ptnS3Gqz2rynh5vZF47bUJCa2Z8uPkhM8+vXIiwe62tmePr93RedqE2o7XSjPu+eR7W6+v793q6Xdesl0LsPoO+n7tOxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDajITCmB6EIfIBa6YHr+u4a5rvOm6EGf9keahpnFommijT39spnlxappBm6CbwnywbtcF56hGXRuvlqbJaJqYRrHmvGemAWpuGkfH+fDnqFT0EkhGu1eHECLzzDofmH2aJqaR+Q57JnhkkK9KDTtTMXCNy/U6GpiG5Ilpmtyo6nU+MCExnULfb7s/HHTSKExT+Uiv536k79UwYzLv6JgpQ0dqUy1tZr738GVS+9Hna+DMgcOXS23PQX1taRpCnzz5DamdPaVhGbMtDc6J8uF547EH7pVtrr76KqmdP69zwf0PfFNqjzx6XF+7oud9Y10DRXLTrPst/9v/Q2q4+O1a3C21Sr0mtSgxa4OKbldr6DivT+n4qJgAm3R1+Po9c/5B2WZl8yl9/7p+hmP36dhdXFiU2pVHD0stN2uK0gSBbWxrKNfJJ09Jbff8ZVLbZc7Ja1/941JbMCFBadBzvLU1PC+dXdV5amVT59aZms6tg96a1O77pob/DDJ9v40NDceq1PQ6wc4UaXZCCB1do8zNa21zRYOlVs7rWKjNm8A3EwwXj9w/RRVzb2JeF0wwZzDhOokJbKhNmRAWc9/VN4GY+bZZG5r7vbih60AzfYdg1ovBBGwGc78zGmSYmPup2ISa5pF+rsIEhfQz81qznfuTojgirAZPc5d46u79zcOFstTt3Putb+jv4Ka5PxsdhC7geDTkMoRg55u+e38z36ys6xql1dB9NBs6Z1arZu2R6m956Z5VmQCuYJ45uech7v5kNIO5MM+++pkJoTGhPi6U2T3Tyk3AmcnRCfEP8HeN/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMI3LI5eaYroBu7CSyDTZNK05Q24ab46qmSCK1HyySkWPo1ozDUZNU+JuW48uMZ/VNTstTFP10nzaWkMP2vRxDVGk71dN9ZirpgH71MzM0L9bzWnZptfVMI7VFQ2PqMSmQXbFhNrkJhSkp81Zs7YGSmBnarf1GhyYuaCSmObCpglzVJqAmdKEOZlAgc729tC/86CNjxstvcY3TUDKTDEltYOX7pfa5Ucv0e0O7JHa4tyC1ELm5iqtbZx/XGrVpnYh/tTHPyS13rY2pv7nb/rnUtu3d3bo34f3H5Rt5qb1Mzz48HGptft6bD9y3Y1S2794yByHnuPp2XmpYWdygXq5KZrNQm7WMrVUf1cPH/oRqb3gR3Q+6I40EV9b18CVpZUlqW20V3Sfhw9Ird/VxuXLK2elVhbbUnNzcMh1vt01r8E5U1P6WWtmHVT2dL9ZzQUS6qG0N9eG/p2YgLOaCcV40Yv0u+l2zkvts5/5hNSaLW16X6s1pLa8viY17EyRCcrb3tI1Sr2iY2Z+j/5erp7Usb+xrO83P2WCKEeGYKtmAlfMzOeCAiVNIYRQuOCXTR33UU9fW5/VQT5wQS9mnEcVHYMh0WMuzb2duz8N5v4xGQkxLc3nd/eTkUn7KFJzP90wk1xmXtvR+6kwGuqKHavd1eujbkKpGiZYyYWE9k1u08CFOcUuDHd4H5lZUwzMPUxqxl/N3K/1zGfdNmEtPROs62oLszrf1lO973Rhy7F5RpaZsCkXEpSbgOjR8JvMBNr0zblza1kXdJOYcOSa+T0wj/TGelb3nfAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywmtg04XVK1+TXtXg3bxebpqixaSxeGWmompomv66xaWq6m1er2rC1KLXZaW+gTUyLvjbnnJ4yn8E87h2YRqRzLf06ZmdM+Euh29Ub2tS6WmtKLa22hv5dccEehX7Wel2bwraadanVanqO29vaNLtY1Vqw1w52orZpvu0a5FZqZvyaBr55VwMQjrR0zLSq2uD8bDzcXPjAlr7Xxuo5qb18v4bLvOgVL5fa0RdcKbXMNFUfFDrfPPzAfVL7+tfvldo//b+8TmpN03A5MaEQP3K1hr/86Z98Xmr/r3f+ltT27B7ex649i7LNvkOX6+sOa+2Vr3qF1Pbv0zCOBdOEO010nisT3Q4703Zbx3Rqgtf6fa3Nzu6SWtbV38tLD7xMalc+7xrdx0hD8sQk73UHGpjV7p6Q2kf/6L9LbWNDw29Onjguta11PSeRyU6YndLPP93SefTQQZ0Pk9gEOQx0bZCUOlZLE6C4uHu4sfyJMxrqk8T6+5AVus9GU8/7/n0acFWaBvcnd+t2Gz0N+MLOVCZmILW0tNHWa2bPnP6Gzs7pNb32lIYtLZnQhvmRNXtkluGluV8JA12PJJGOmczc7JUmSCUy2TepuSdMGjoHdwZmTA90DVlb0Hm5iPSz5SZEK66a72zknqUwn8ucuWA+lv2zoNi8uijNnGl+IyIXfoMdqTDPYNbMOiBM6e92q2HWyWY+yAsTrmKCquKRByKxSeTNzT1cZq57N49WzPo/N2GdRaG1ra4Z97GGjrrwrlC6cCgTEmPOU2k+b2LmpXJkPojM/ODeqzT7TMyzNadpvn93L97r/f2f3/AXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7sHpHukaVr6ZeZ3gGuR6L7X5Mn5n93XqvrIVaq0cg22iegyM1OTf+SotCd9ruup6XWXG/KyPQ8ShLX51L7K7aa+n5TU9rHLU61t11S0X6QRaH7GPSH99Hvag+anulz0nL99Kb0c1UrpiOKuVA2t7SvUr/vuqlgR9L2QyE3PTOSVBsLVc3sstCak1prS9+vf+6s1K7evW/o37UN7c/Wf/Ipqc3XtbfG9oPflFp7e01qM0e0D9Su52mvxqVF7enyvKOX6LFMa2+keKBjPy31xL/0hVdLbXVd56onv7kqtc7qcN+6J544Ldvc9+CTUtvO/qfUilg/Q2p6/O6f0XNy2aV67v63t71Navukgp0givS6jxP9/WzUL5Vava59SjtBew4OzJqkq1NJyEeapWWmv0+1Oi21jTU93nvveVRqC7u1p2Nr6rDUDl9yo9TSyoLUTj55UmqD/uNS29rUOXJ2XvtG9ruuR6SO/dws05La8NifmtfzVMT6XXdMP7nplp7Po4cOSu0Ln/tLqbW3tDdlrTr+chsXt8z0NCxS16tQr9WNDe1ZNjM/I7V929rjtb+l66VipI9bp6Pb1HQohFpdf2dL0++tMDeA/baOt7LQAT1omz6UfV171Mw+ItNDtmrGYBnrh8sjvT/pmT7j2cj6M6qZNYq5ec7NfXJpGq8l5nMN+qaZ5sD00DX3k9iZKqnpm1gx9+Vt/e2tVfT5SmzapaZmu4rrkThSq5rXFeZZQGHGsxtHFX1kYvtGmha3Nl9gw8yjpekvOd00PfftEDQ9Xs3zJTOVhmi0uaxpS+merUWxHohbP7mMF9fTMjXPtBKzj3HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7s7tmlaVgZmW6aZenCSsZrbJmYBqiuYWeSDm8Ym4a+LqymUjHHm2tT4qppGl1f0FM1Na0NUFNzLO6zNpoaLpOahrJxxYRMJC2pRYk2So3Mc+bRcJo80+akTdN0NTbN/Dtb2sR1YBrPdrqmiakpdXumeyx2JNODOJQmCKrsbEpta2VDak+ZBuxn23rtl5legz992XDQycpJDWJomFCpe8+fktr88SektnlOQ2MqV++W2tF//BNSy6e0Yfwl83NSO/7AOalNl2tSi05ruMVdX79Xal87rq/NOrNSq5bD531uWpvqHz2iETHVqs6P3Z5+hyfP6+dKGjqPvviGl0mt3KVBFtiZTE5AiGP9zW809PotS73etjY1rCTP9PpdX9fgiZX14VCXSkN/xxs1DY357Gf/Wmrb61IKy6vndbttnVsP7NMxuLKmc1qvozvZXNLt3Jonqmlz/LUtre3K56QWEv1+etnIFxmbQI2gc3VeaG1qWoN05hY0mCgz3//U3LzUVrsrUsMOles6w4V/DkxtfVPXPFGq6+65eb0G13o69gcjIRDttt4TFcEEVpj1mPvLlopZ7JfmeDOz9gqj4QwhBDONhiQ2YQ+Fvt9gSc/daMBVCCFUajofVFNd3/Sy4dCdngmxyKp6bJk5topJ2ShjnVtCVfeRm3CPSKdR7FTmfqpufo/bW5qet7KutdlpfW0lNcHC5nnQYGQAl+b5kHuv3ITVuDnTpbUMBjqnuecthVkI9nr62rVtHVz9gU5MLRNYWjPPoVwYcmHCu/KR53CZOSeFOSkuCCs28/Los7UQ/Hl3wUH+yxgPfxEJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOLGDquJTLNLF0zjtzONhE2AS1xxoS4a1pKONNR0zZUr1brU8rwntWpV97k4O6evzXQffROekDb1lNZM4+PcNDgPQRvh1xL9/C4kyDUKTVzoTnMk6CfR46iYq2JrTZs8r65pw+VqXYM3pqf18586o+ezN9AmzNiZyjltIJ6bBt9bG9pI+eRZDU8ozHW+VjUN41MdR18/f3ro3xsrOhaqAzPWWjoHzUc6Z3TXtIF8/rePSG3wDQ2SyWomAOJnf0xqp6o6Zxxur0lt+st3S622qed4V0fPXWPhsO63HD5Xj6+uyjaPm4b0VdNAvtWaklqo6/y458AlUvtHL75Bal030WFHSsz8EMfauHttTeeWyASinD+rIUoujMFk24VzZ4fng6kpvU4/e8cXpPbpv/is1JZXNSBl04TCpQ0Nx3r85GNSO33+Saldcam+9srLnie1PNb5cMuELJw4q0E/jVkNlirMf0fv9obXEG2zRotjXWdtbOjao93Ra6LeOii1XqnhgZs9c97bujbCzpT1TIhDV2smSzN03DXd1uDI+WkNq6nP6Hoh3xj+jc5HA59CCJG7XzH3If2OSUjJzb1JVefWxIRHuOxTF5RQuDBVc48ZReYcdzQwrLelr63UdP6amRuel7JS59Z2V8d935y7IugcVJT6Xbvw03hKz2dB+Ce+ZXtbr/FKQ3+3XABcp2PCq0ygnAsYdWue0SAaN3YrVX1mYB5nSPBNCCEkZlGV5Tq2uj39DNWq3k+45zcD87nafa1l5rPVzdxXMyG/kUndyUcCbFw8jAtvTsx8E5v51qUIZyboJzNha26/4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3Pjd+k2ggG2VGWktNgE2rq9lvaGHUzHNQwfd4SajSapv1tD+8aFa0easSaIbNsxxFIUG3aSJNjut1fR4q3Vtjp6ZhsuJ9isNZWEaHZvmz9Wqfo4o6LHUp4Ybr7rGz4O+7nN1Q5vCDgo94KlEgy3OndVG2pub2jw2stcYdiIXDuX+u0k301pl9wGp1eo69qdSDZ3Z2tBaPjJGkqYGJyyd1xCL2WltDL+QmnHa0H2muY7BxTVzTmKdq9br2lT9R2/8Ean1b/+q7ndbGxjvXdd9vNjst2ICrQ5lw58jqelcWJhxXxT6vUbbOldtmyb9/ewpqd3/538htR/5pf+z1LAzbW3qdVSt6Rgs8g2pzc7ukdrUlAYrVU0D9uaUzkvRyELg9i//rWzzxKOnpHblkSNS29/VufChx/W15zZ1bJ3fNA3pSx331ZrOh7/wi/9UaqdOnpDaI49pIM5f3/4V3W+ic1qzqed4fW34e+yZwIZKRddFpqd8+MpXH5bazJTOVe1Mj+2RJ85Ibbut8yN2pv62XkeddRNWYq7LqKbr/465P6l3tdaa09/fZCQoYX1Zgy0yEyQZmfCpxMxxbRNsUXb0/Zp1s6ao6XnKTTBgZnIuTdaYvd+JTEBDXOobbpugsnIktGJ2l67vpk1QxoYJJupWzLHNmHsiE1aTmXkuM/vAzrRrflZqq2Zc1hp6z9Ko65heXVmTWs8MwsgGmAxfv6P3VyGEUPb0XidNdX5wgS5mONvjKAY6ZrpdPSduv+45T24m674Leunos5S+OZZGzYTJuPSuETMzuh6r13Ve6o35+fPczI/Bhev8/Z/f8BeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaYowmmSGEUJbaPDStaBPLtGpCJlJtfpxn2lCzHAnEqabaOLTZ1Peq17W5uen7G4rc7NM0Iq1V9cVRqc0++6ZpcNWEZ2S5fh1pRT+HC/BxwUGDvjar3l4fDpMpTfBNxXyuWkUb9zdqep565rMuLZtmtOY6cX1nsTPV+tr42DUNXh2Yxr+mx2+1ajqXb+l1Xh3odunIHFQNJsRisCS1maaO8WbfjHszt7R2a1P5bqZBUHMVPd6nHntC93vZXqmdMvNDp6En75JUj2Wv2S46fV5q0yPzTTfTfZauq3xifppM6Nl8VbdbWV+V2rm77pLatf/8H+s+sCN1Ovq7vb2l462a6I/U6qqGGCybZu7/309qYFKjqYFRS8vD4/f0E/fJNi994Q1SG5i1TKej421uYV5qX3v4tNRObWi4TF66Buda++9/8MdSW13RObI1rU3UZxYXpXZ6Sb+fA/v0c1Sqw43a01h/H7odDSZyzeyzQueWtS39XWrNHjTb6XnPg0nUwM5k1rqxCd0Mmdmwb4JuMr3Oi6r+DhYzOt6qI+uqhgnZ623r+CvMoSWprgvSqglx6GiIg6vlJhAzMWM1NefO5mSY+9iyNK817xeZuX9r5LzkpX6G2WmdR+bMGrVvgl47JoyxV9FaaUIxIrJq8C21mgbOVLt6zZTm2Ue9pfPBtAlE6S6vSS02oZb5yMRhsmps8EtZ6hwXmQc4LpCqMM8bEpMOXJqJOS/0d7vb0/mwbgJsIhe23DdznwsvzrSWjhyyDUd2oYhN/Q6bJlxma3QHIYR+z9yzueeB0d//7xr5i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2WI3rrlyaZpdJos82azXdjQuTsWElpgH71PRwo1TXJDRJTRNT02AzMUEJ7jMUpnF5p61NR1stF7Kgxxen2jS64hokm4CGbleb6Be5Nk/tbpkGxuVIY+qGfn7XmHq6pce21dHzeea8NpQdDFzjWVOTCnaqyATTVM01U8lNcEyptYEJo1g9oyETVx7W4IHrLtk99O/aQI/tXH5KarvqW7pdW8fziVKbyh80n7+saiPpmUQbKTfv/qbUHj1zVmob1xyWWvv6K6SWr+l5Klc0mOZwVcd+Xg4HQ1QTMy+bruplrJ/LzQ9FX187b0K/ZkwT7ummzsHYmQYDvd62TFjNubOPSG15WQNnskJ/e2v1S6XWmtE5otEcbg5+2ZHnyTa7du2S2iDVa7yRauPyRlNDXub3nZHaVx94UGpxbn7ft3S+ferRk1KrmvVNZtZ3jYM6Lk+auXo0mCaEEGYbw2M/Nr8PjVS/m9E1ZQghPH5Cw3VKE8ZRqWmY1/S0nuMs+j6W27ioVU3QY8XcJ3VNOFJhQgxMpmfomlCEtuYOhN5IyECtYsIpds1JLTHhLbkJwKs2TYiDWQfkPTO3mAkid+tAk9/pAmeSqkmJMX+PM+ibwFITjDEautntmLDWWGtTTX2vhrnZTQf62tiseQoTuDPQqR87VGZDhE0wSV/HYGnCWqbM85tOV3+32ybILh4JW4pshpsJZDJbpSYMJ3MBx+bVsUmzis3zIHvfYcJlej235tPz1GxpYGl7WwP0uua5SX1kDdEwE5/LAR4MzO+NCdKp1/U7rNd1u+1tvU4Sl/w8Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd092zX2HG3UG4JvWFmva9fczDTiHGTa6Hh+bkrfrzbcTLlqwmp65v2TUo+t4houF6bbZ6S1Sk0/V2Ge7Ra5dmPNetoIf5DpPqJIm4z2+xq80WzoV2l6NYdy5FCynr5XZL7DtXXd7vQ5bbDaH5iGy6k2gDWnxAYTYWdaK7UZ7nRfL5pDQcdH0t2Q2lyu4y2f1vF7ONHr/IWD4deu3f+QbPMC06R98ykNtjizpc3S916qzYv/0Y9cJrWF0/dILe+tSe1gos3mkxU9vq6Z/gcH92jNNHCud/R81kwT/c5I2FZhfjMiUytNM+jCzA/2B6zUa2J1WcN6Pnfb56T22v/T/+reERe53Fxvy8srUjtrQlPabZ2rIhOKsH/GhJosaoDNoUPDwSlHdusP+fyMzhlbmf4ep5nOmS0TYDNn1jJVE7jjfqNnEv2szWAC+sy6araizdwrZqBvm9CO9rYe38qpx4f+/fgDd8s2eV9/H/bt03nvocfO6XaHr5Zaa1Y/w/59B6S2vvWU1LAzxU39TR10TDDNmCELJl8z5O53Neh+s97w3Fer6HGY25+Q5TpOIxOeYHJDQ2Q+wyAyH8LMGbkJo3BhDLm5yYiT8QJLi8IE4tTNamMk1Kbo6Ydtt81axnyuRs2ssyo6L8+a+bsy0Llw231p2JHa5t4pMddWbNZBAzPeXKiL0+2a8KpyeL8VcxxuPWZye+39RGqCPt12bh51497tuFLVYx6YMdjpmLC8hgbCJOaY+z09d+XIvU2SmOC9ln43WyYMJzIBrk0T4Fk1n7XT0eON3fw9Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1WE5mGnZlrKGp6fa6va8POSkXfb3ZuWreraVP2LB9+fpqY46hVzEczARh5ps0+tzb1eJPYhNWYfbgQHtfMvtHQ/fYHuo+q9n4ODVMrCm08mlRMMEQ6HGTR7eqz6PVNbWx6flkbvA9yF67jEnLGO3fBNObGzlQ3AQiHc722Wm29Zq6rzkrt4La5Bk2oSe2cBlS0Ti8P/fuS9S3ZptrXMR4HDTGomiCoZF2PY/5rGmxQL3TMnG3qfFPNdC6oT2sT4qipx7e6oWP/sqqGbOy/5AqpZY+eltpWNPx+pe1xrd+NDbUxzar1zIWQJXqe7ntIA4b+4Ff+b1I7TljNjlSr6lgozfIoikzTdzNXDcyF3sn1/Za39Aq+/7YvDx9b94Rsc2h+zrzXptQa5jd6tqJhVufMmifumMCGvh7vVKSftRVpg/MyN3NkW/e7ubQstWkT2NPe0nl49fypoX+vnHtctmlWzZpvVcO3+iaQa2tDw4qSqp7jXXPzUnvy0Xukhh3KzBmFCeusVcf7W5GqSatJXEhMxwRPZMMb1sx7mSyFMDBzQZrq/VpibgrLUmux2W9pXpvGejBmarHBEy6Lol+YwEOTyhWbtVttJBE0N2uZ3CxSun19r4EJ+2ubwIpaXd+wWjXhEboMxA61saUXQ+qCek0wTdE1QVBmfZ6bwKjELNr7vZHB6kIozfOB2LxXWZjUWzfv+aLuI9G1jAvW8mE95j7GBP512rqucAE27uFPfyQUtePCgExQoksbKwcmZNGcE7ePfs981y4xbUz8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rMYF07jmva42MAEuraY21KxE2gAz62sD9rQ63Gw9y7SpZ6+j4Sp5rk03o6DHlphGpKXpctzrmg7JJqyl0dCaa3pfMeEyeab7aJvux5XUNCg13Vi7veEG72fPabP4jU3dZ2nOU6XqzpM5jEI/V2I6aUclz8XxtOmg11Z8flVqjWUzps14q61og+CZQl/bqOlcEo9cv51t0/A91XCGwjQvPhjruG9pPkwYbOq8121poMZSpM2QD5iOw/kubYa8WujYX93Q91vI9Zx0dmuATdi7V0qD08PhDlX3k2MaTseuCbUJF4prJjBsWhvmb5vfr3PmesLOdPWVV0ltZVXHR9HXwdrp6O+lGUYhMb/5/Z6Gn4xGMG1s6lrmbK47OHtet6ub3+Ptho6PXqlzRsWFx5W63zjWzz/IdL7N+3owgy3dxzU/qkFYveqU1LodPZZsJDQsH+g2bXPO62b51O/od11mOi9PNxal9uNveJPUdtfHXm7jIle0zRreBdOY8IAic8F7ul3VvDhLdQ4aFMPbuRCD6abOGR3zG93payhGWTHBPFIJIZh7x8jcixW5CQwz4RYuEMcF2AQTsmGWCyHrm/2mw8fcauk6sN/T1/Xa5rfABPP0zJnqmvVnavZh8hmxU5nnEoUJaeqOBsmEEPrmum+ae5FWQ699N9A3t4fvu0oTfJPYZ0v6Gfrm+Uia2kRMkZlgntQ8R3HHV5i5z79W99vr6hzZM6FUdRNgM3rMPRMas7qqaxST3xkSE8zT6ehxZJm5PzOvnTL3XePiyQ8AAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e7bJPwixaYCam8aWjbo2tpyfn5VaxTQ1dg2Hq8nwPrKBNufs9bRJeW0k5CaEEMzhhnygzURdUEKl4k6KloJp+p5l+rly0zx2MNADrNe0iWm1ps1jV5e3pLa8PNxEfqvtGrGaJs/me4gz0+DeNIpNzfc609Lm8ya/BjtUN9axEBbnpLRqxlt6mYambDx2TmrrfR0fl+zV4IFkY23o37vCvGwzOHdWavW+CX4x47mf6Hg+vU/3Md2c1teePiG1rhmrkQl2mDHzyL49ut+DjQWpFSbcIb7iqNS2V4bP8SDS+SHKTACGCeSKTZP63PSlLmraNHtXUz/Dz910g74YO9I1RzSsZnVdA1f2LmiASbut1+/6lk5MZWWX1Ob2ae3Orzw89O8HHj4l23RWzPwY6Xh+4vQZqbmwB9doPTG/21PT+rt9tqPH16hpmFVnoD/wtUjn228+uiK1K/frsaxt6HajQQ79gb6uHmtT9aLQ9VNU6O9DMtBAoKlE11CDjk5MBxZ0fsTONOiY9bT5Ta2a4L3c3Z6YVIQ81df2TC1pDde2N3U+m810PFfN/NAzH8LkdoU40eOIzRzkwjpz81ljUyuDubkz92KJOZY81u0is105csPXN4FccWT2mepcmFb1drwxpft04REujGRg7jGxU5nUFHO/nZhAmMSMhamG/l7GJmwpKnVMD0YCVyITTOOOzYXVuNe6udA9mHHPOVxojBOZ8eaeX7m5JTXBWgMTmNUz94+jr+3bZzVSCpEJI8xMMJE9daZWMyGhwcxz4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNa6JaeQ7ikqp1dTGpmlaM6813ZpLbcybjDTsrFS1SWY11UbzUTANQU0KT1HqsSWJnqrchCxkJiSnu60NRfuD8QJhqlVtQD+3Xxu8h1I7WHd7eu46I71YbWNTLdnvOjfNkBNzPl0L08h81oZrgIodqTql1/3MgQNSO/34cak1Du+X2pm+afB91Uuk1J/SkIG1++4e+vdlmxqOtdukt9R1s9Bf1+v+a3MarvLQtI6Fly0elFrc0Xmut7YstdaGNiZeTHSey3Idv826Ht9mru9XS/QctCvD223HLqxHSuFkpnN1Ybbbm+v5rJw7r7VDGsLz//61X9c3xA6l13i/p2MrjnW7xb27pba6rgEus/M63upm7ZKUw2OmbsZf1tam6k3TQL5S0zHZ7eoYbJvPOl3RcKx1ExCzvrEqtf37L5Xa/KLWBh2db9qdNalNNXR9M9Mw8+aZ4WMpIp2nBmYdmJsQLZMrFhZ2abjQ63/uZ6W2stbR2hkNTMPO5PIZasGEtbRN+IkJKEhaJgDBhQfocJAFeqnDKnQLvZ4bqe6zVtM5rlrXcCh3V1CaEJbetgZGhb4ei7tPjGM9vtjdx5l7sdDRfZRmDVmMhEwMzBdba+oJnTLfVyjM+5v7ydAzoSCpvrZiQkawM5mMKhvUW62a5zKF/vaWJlg3Ntd+xYQyLcwOr1O2uiY0xTyYKEwonAuNKcw9QVHqPmL77MeF95r9mrGVmWCtyNxPuWcpSaLrj2yg71epDs8lLvgmN6+LzM1TYQJsXCh1paqvdSE8XTNnjou/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwceOng9gQEn2OWavqW2a5Nrvc2NiWWr1mnotGppFwPryda5BcqWiD5LzQJp5J0GbAo83iQwihLPTzx8mUeT9t+r62pqkV7a5pQi2VEA5eog3j41jP5/rKhtQ2NrTJbH/ko5UmNCY1jVNL01w6cg2nzdc1P6vfhekzH1ot/azYmaa3tZPyQyful1qxrNd9uWqCqra0tlCf0e1SbY7eGGmOni1r6EDNBFwVuV739880pfbHlTWpPXXyrNS+8aTOI699ngZATHX1s26ZJu2Nupk3739caksnl6TWPaTBQfsGOh80TpwYKeicOWhqkMyd22tSO9fTBtlvuf6FUrvxxfuktmL2O20aPWNn+u8f/aTU2ibUZWZOg2nm5vdI7XOf/2uprZjf4zzSa3BuYXbo3ybrIMwvaGhKWWrYRWqaiqemc31Zai0x2402Sw8hhMOHD0stNp/rR6+7Wt8vXpDaHV/7htQaybrUbr75ZVLbWDo29O9OW0PPRtePIYTQnNU56HBtVmtHrpRaUtGQoCdPPqr7bbC+wdMqJoAqVHTdXXP3Xe4+Zkrfzyzjw2BT73e2l4fnpbip80jfBDFUTehCUWqIVpnrGHThp8Hc1yQNXUPFZg6KI92vydIJhVlDZNt6L5p1TMiVCbVJKsPnqjmt6zuTmROy0RuxEELRNyFafd1nZsKKgillJigEO9Ogp+OjcOPXhb+Y98vNNejCX9wDgcrIuqJi1ii9XNdeuQ6PEJl5JDdBly78pjTHm5ugG6c0oTaxO5/mPPkIKRMcM8ZncyE3sam543D7zM15j0zoWb1iQo3yv384Fn8RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixu7WX6/ppn3TcLdrGu72BtqkfautjS0X5rSp8fSUNk7OR5pidk1j4aIwTYm1D2eo1kyTZ9MkNDPNmiPTsLRem9PXah/0sPWUNl+PTXflaRNukfU0UMN9F1Gq567RGv5snW3TXNo1Yo1d42PdbnZGG7fvWtCG0xXzCLxwXZ2xI81UtRnuifNPSG1gQq9Or61KrZroWKjefq/UXmoCXBbL4X1sT+k8tRJrM+DBfg1iONXR4zizoeE3mQmXObei8+jXM20+f9mlGmBTOay1dqbH3FjqSG1hRj/vgWuuklr1skNSu/zq4VCbiubthL85p2E4T3zyY1KrZdqEuXnN9VJ7wc/9uNS+dPdXpfbU+rLUFvXwsANsmXCsgWmOfs89D0it079Pas2mhiPFkYZIdbv6W756fmScmzVAVGit1zODyzQad+3n3Xqp29W59fLLL5daxfyY9/u6rmh3dV6+7FINvapW9LUb509KrVXV/S7MDy+2jvyjn5Zt3OffZUKI0ljXhktL+hluv+NuqbnwnwcfOW6OBTvRof163ZfmN3+rrdfbRlvXATZ0stD3q5qUyHxueO7bXta5sBLpOqMxq7/HWa7rhy0TFDjo6D4SE3Ram9J7h7RqwhhKE/TS1Xmkt2yOZcuFW+j9Tq2h66Da9PB6MU70db1N3Wff3LO6oM/E3HcV7l7MvNbk8mCHcs8vbDiUuX4TE+qYVnQeqZpwu3ygYzAeeb5SN++fmfVIcAFXJlwnsmG7Ot+4AJvIhYOZ5yGuVpj3cyExLoTGhQEnNkxn+HOYR1qhUjFhY32dv4M53tS81k037mlQy8yP4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjpIGlqmnhG5uUmACE1DVBj0yi1n+l23YFpGpwON9l0jdb7fW20XuSmo28xXsPWstRa2zQArVX0WGqmGWu9pvsdmHOXDbTRcc00aW+YRqHTU9qgdrs9XBu479U0WHV9YmdMaMeeRW36XjXBI5vrGtYTUm10jZ2pnmgz5Lk9GiVy1mQxnN/Qa6sz0LH6VFVb/V6ez0jtyNbwmInXNGCineq4Tw/sktrSlL5/dkZfO2U6jfdNI+GTuW53+OdeJ7WFQ9oc/+5zGv7TrmnYVGEaXV8xNye1A5dcIrVLjwyH2pz4nIbG3Hvum1LbPb1Hapel01L7zF98VmoLn/mS1M6Yxs+zFT0n4SdeozVc9FomXKbdNeNySq/BztKa1GpmHLVa+nu5taVzVaU2HNBg+qKHblfH5MDMcVMm7MEFW7im6qNN5b/TsWxsbpjX6nabWxoOVdPMnfDjP/4yqR2+4ojUzp7UkKtDB64Y+nd9Wj//zIx+10mkn39mWrfbvai/QfWa7qNa0e//Y3/0CalhZ0oGOmaSXK+ZjskYKN3fjwzcvYMGRYwGfYYQQlodWVdEJrzFhMEMzNojMzEGnY6G62xu6fxVifSeqNbRz1BvmPCM2Bxz15y8rgmoMCGZ1Wm9Z6mbIMOsP3zP0t0059x8Ny4owwVg5Cb0yk2ufXNv2+65KAvsRIkJcOmZ6zIEHUeV1DyrGei11ajp+EjNunv0/SIThNUx71+YuSU3YyYy6SpJ0M8QuQAbE37j1kZuHVQU+n6Re7/cjcsxQ6lGj8O8V+4+v/kOMxdwbF7ramb6smHL4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjdJbtdbYpZqWoDzEqkXSwHrrFpU4MX0qoJqzGBMGGkAehsS5uKB9M4NI+0kbBrEDzI3GfQJq6xaa6cRhqyMcj0M7g2pO48tdt6zFMt0+G91NdmPW0S3dke/hyxa2xqQjGaow2tQwhzpum762IambCe5ow2eA+pNvPHzrTR1ZCmgblWZ/bvk1qnqeOj1dRGytWaNusN0xq2tLK6OfTvqaDNi688oOEqZ1Ld58PfeFBqi1VtUn/DvL7fN1MdW2c2NeBpparjcrE6K7XqHj13/WsOS22vCWhwY/rBz/2N1P7qjz4+vM+O/revxxINFvuxK54ntT1dnW9vO/UNqT1c02ObOaxhF3uuOio17ExXHjkkteWVTanNTus42reoY7VjmoiXJgRiblrHW3t7eEyXkf72uqDAalXnhwMHNJBpZWVF38+sg9bXNEgnSfRYMrNeCrHWDl6yX2r1uo5p99/HD+zTuard1tCwPSNzVWnWaHFhPkOh77WypGE4VROi9s0H75Ha/r17db8mQBE709a2rs2rFRNWkpugT3OP4e53ykTfrzBhLYORAMuWGZMtMyZLEwCRmdAUc1sTssIET5h1VWdTx0yrp/udruvxxSaYx93v1Kd0nVar6vw66Ohaqz/yPbogityeOxMKYW4K3X2iCxxqm+vEBQdhZ3KBTLWaCSExAVQutM49D+l09VnFdF3nqkoyfCw9FzRl5gIXshebz+VCbUJwoTY6j7jwFzdnpIkL8jPvZ9ZVpQt/cWE15llKMvLa3My3uQk9rpmgrcR8/33zvK1S1e8wd2k15vsZF38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6ryQrTALOiDTCnp03giGukXJrmnCbopjDNPkf7ZPZNN+R+zzQNLrVJeaViwlpMY9M8N82QU21OOjCNhDvalzpkptlnmuqxtLf1cwxmzfGZ5rGucXJ1ZB8umMY1Ta43NVCjObNLaq6Ja6+jTe9LE64zPTWjO8aO9NCpJ6XWb2u4zP4Dl0rt6uuuk9rZs+el1uxoIE7rqIakvPaXbx3epqFhOJUFDbH44m3/U2rtY++W2o27NcThhXV9v8a0jsH/48QjUnvgxEmp7T2o52mtp3PGVkMbEy++4CqpHThymdSi+x6T2nZt+HejawLJyr4ex5V75qQ239HXbp/S5spL1+ux/S9v/r9K7YpX3CQ17EzXv+BKqbmAviLo7+WpMzq3LG3pj35a0/VSlOl2jz48PI6+fv/jsk1IdCzUTGN40489mN7zodPV43CvrZgArtQEuGx31qTWqOvasGNCybo9XWtubGtw0OKirj9OnDg99O8HH9RwsKNHzXfdW5PayRPHpbbPBHd98xvHpHbMLKLWzp6QGnamTt+EIpgwutwEG2Tbug6q1XW7gckT6Ltwg2L493e+YgImzN+sZOb+ot3TY8vN/VSlZkKkEq31u/r7Xq3odlUXLtPXY0lruoZy82a2ZcISu/p+2UgwhLn9s3/uU5pz4kqRC6Zx36sJu6g0x769xw7UMAEmUaK/0dlAr/sk6Jp9kJvwTxesNXKp9sz7m8dNITLPFnIXCugCYtxwM0Ub3mv3q58/uPDiVMdgnplnNS7nxWZNfe8AKhfq454PpSZwtN7Q779e1zmz6Ot6MSKsBgAAAAAAAMA/ZDyIBAAAAAAAADBxPIgEAAAAAAAAMHFjN5FIU31m6f53991Mi4npBxmV5n9jb/7372mshzjaU6ybb8k2nZ4er2lFZnsCzE5pX4MyNv0la9orLknM/06+15NSa8q8n+m/lJtekksr+nlr5vuZaun/3n9hbvh/72/aMdn+B6aVZCjNdxiZZ9up6Zc0MH0hst627gQ70qXPPyq1eqy9KvYt7JPaoK8X9YlHn5BaFLSnx5ktvS6fOL8x9O9+96xsc/qpM1K79+v3SS1rd6R2za4DUrtq316pxWZ+/JLp8xFX9XMtT+l2M0H7UF42tUdqx7/+kNTu+OKXpDZnJthzVwx/tqWNDdnm+BN6Ph88refz0JT2hJuZntN9njin+7hfe2kmsc6Pr3jN66SGi9/+3dNSi1O9PqZnd0ttbrYltTvv0+stNb3IQkfnm8WFhaF/N+s6FrqFzgWtlr5/u62/qf2Brkc2N3VcVsyPfhLrGqVuej92u7rfkydPSW15SftHr6xrP8gnzmjf24MHtLduf6TX5YnjOu/f+zWdu256+cukdsVl2lf3j/77/0dqxx95WGpXXn651BYXTP907EiZWaNkbo0d63b1mvnNNz1jS7PGTmO9n6iVw2v2Sqbvlbve75m+f+kazJvXuuOomJ77zZqZg81nTcxaLjM99939ZH9D+531etqbMjNZBMXovW1kG0KOxdw6h665ye6bU1xp6OdKdbmMHarh1h4mk6NqxqD7a7XCjOnMPDfoZzpmRo9l4Po8mr3GZm5xmRSxed7kxqDr1Wjfz+zXPZepmLnKvTYzfXoj812YFt0hSYbHuZtuB6YfZG5yWoJp6el+R7qmH2To6/xYmsyYcfEXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywGpPpEvp9bXo+yLSJZWJeXDfhKu65aLOmTVbjkUahrrFpmmrzT/cZilw7dg76prNpqqeqyNpSK02L0cS8tmkCJaqpaTbfMY2UTVPYxDQK7WYajNEdaQxbNcfhGmlXTOPn7W1tNJ+bZrezCxq8UTPdY4uBXjvYma65/jqpNSK9xlsVDYy6966vSe3AIQ02uOcxDTKoPHxCau/4v/8/h/69nuh1utXWcZqZ4JvOtoZCrJkQnv7eRanVpqa0Zqaq4ycfk9r9f7EstfXjT0lt4/HjUnvyvIZMbAad+y/bo+M83xo+L2e2NWgrqeq8d/fjus8Hp/W11YOHpBbm9Xx+/bR+1/0ZE1aj74Yd4IrDV0htanZeai60bt8+nVumF3UsfPUbGl7VzXUc7RkZ+z/2Sg1SOXl2RWrHn9BQqZ4JyssG+vs+1ZyTWsWMS9f1vShMaJ3por69peN3YAKu3Dpta10De3pzenzZyOf98l9/RvfZ07l6a03f/9oX6G/Q0tknpZYPdB3YNOERWTAN47Ej9Xrmuo91vRA3TWCUWWNnXTMGTVDEtAmgyraH91uatf7AjPt2V+eRrrmti6suXMYFSujxViId44m7Z+noPBfMPNfp6z1R4cIdSn1t4Y55tGbCZdxcGCL9DD0T2tE3r6009SRXp8w9cM3FXWAnqppQSxcO7EJdXOBKnJgxaEJY1jc1tG50PAwG5llN4gK5dJ+5GTN+vGkpMcE09gSYAKpaTe8x3JwxyFzNrAPMa2Oz33Jku8wG/ehnKAuTSmzOZzBrudDT36Wa+Q2q2GtsPPxFJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJG7u7ZGGa8Lqm4rlpxFmraYPkalVrhWsQXJrmmSPNSNOKNg5tJnq8mQvSMY1NeyasJjKff3tTm57Pzuix9LraSNk19mxMaxhHxfSLb3f0c2xv6z5qNX2/7e3hY241p2WbuKkhDoOBvn8a63FUGtrgv9fRhrW11pzut8JzcTxtttmSWiXWMVOJtWnuK25+udQ2TBDSbce/KbXP3HlMatX+8Gs3a6Z58cyM1BYT/QyZmW/Om6bi95w9K7VlMxdurmkAxKc/+xdS2zbN8WtmnhsE3a4wvxKJaUC/9NQ5qe1p7hr699X7j8g2kWmgv7ahQVgHj2gwzWv/yc9LbWZGz+dUXefCqulLjZ2p1dRwmTTVayYz64BKRdctL3j+86Q2P69zxEMPPiK15aXha39qWn979+3RMKt9e+ektr6h80Ovq2u0ngm7yDL9rFtbq1JbWtJxnyQmoNCsR1yYzoF9e6R29PKDut1+DQmaGZmHTzxwv2xz1113Sm17VT/DTEPn+Rtecq3UHnv0Uak9acKxKmaew85k8iZDZkJTGpH++PZMCEu9MAEmwdxj9XTst0dCYjJzW5iZOSMbaC1t6G9vZEIRzK1eKE1YjQtPKEp9vyIyAQ3u/rRw2+m5y808b0MgRrYrzPu7UIjM1LqxftbUBJ3GJug1MgFDjZYLG8NOFJm0liTR+cGFxOSZWRvkej8VmXuxngm+3d4efq3JuAmpeT7irvt+X48jM8+g3DiqmPcrzMTs9lGYv+GLg34Qd05s+I+5t3XBOdnI8bkQmtg8mHMBPi5cp1kxYcPm3ik127nvZ1w8+QEAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1VRMM1zXiLMwDZdNH+GQpqbZpWnY6cJktjrD+0hM49TW1JS+v/m0vc7AHIcecM2E62SRvrbT0wCbpm32qftwTVFL02TWPT2umuahiTnHzZFm0mmiDUvzXJu95iboZ25OwzgGuR5v3wTdVOodqSU1Dc7BzrRnek5qkbmeXUPyE0+ekNrXjmkITVjdNPvQzcqR4rQdzzo/9NzsWtVr/Gvnz0tt/XBTag8//JjUTm9pGEW9qedpT13H6r6qzpF7r9BAmIMvuFJql+7RQInFaQ3jmJof3u98Qz/XwDSkH5hGzVMmlCwzTa0rhfmtapt0gGCa42NHKhITWGC2c3NQ5BqXmybil1xyidT27tHAlVMjoU+PPnpcttnc0gC4+oyOrW5Pf7fbbRN2Z4L3Vlc3pNYfaK1S1c9fMc3h6w2dN8+boJuTJzT85djXTECYCb9pjgTtbW+3ZZsDBw5I7eUvf6nUbrnlF6RWmO/1zJkzUjv2Df29WV5ekhp2pn5P7x0ic4PiAtVMjkoYdPX9skxrpQmgisrh/fYHuk2vq3NGcPcmZv0fZzp2XTBPaUIxTNZFiMxta1LT9U0U6ZxWtPVexJ1Pd4/VNcfSHw2rMS8s3T2WCdSomnWlWd6GrK+vTcw53trSeyzsTP2+zgUVEzhZccFNbn1unhH0zWCtmqDiWmM4RKlnAmISsx5zo2E0LCqEEPpmzeOerVTNPVu1qnNLZJ4HFWZudcxLbchzbD5vHJvayHl3Ac8VEzjkzlNRmFAfE2DUNOu20rz2B8n+5C8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc2GE11dQ0MTUNMGeaVanVK6bRuOnYmVb0tb2+NhwezWVJE9OwtGuaudcbUisibWIamyCZIjLNOU0n0s62vl9uGpFOzehnzQbms1bNMZuEjvVNbUxcr2sj09bUyH5jbbrqmsrHpX6GdkcbwXd6Gp6RphrQMTNngmlMU1zsTFGhY8s1yA1mbLVmTDDL7l1Se/7efVI7V9NxeerM6aF/9zp6jbfNdR9aGh4xPaXX/RMbK1J7/P41qeVmuj54mQYv/OTNr5Dai45eLbUD0wt6fIvzUitaOh/UTFBZZObhrWh4jki72iw+MR3em6ZRc6Wr33+3r3NQNNDzVJiG2AVhNfg206S8NAFwUeJC9vT3uG6u3zw3jcXNuuro0eE5YnFRg6E2TEjV0prOI6dPa5CKC6HpTOu4nJnRcd/rrkqtva0112y+19Y1WWTm9F0LOgfVK3qOXbP5Wn040GrXLp3javUrpHb0ysukZpajYdeuRakdvGSv1K697vlS63YIj8DTCnPv5OaHgcmIGZiAgoEJjCoL8zto7mPykQCmzGxTm9KxFjI9jl5p7pN6JuXFfNbIhMxlJhQjbOt9Um1gAmHMsWz3dB2Qm/266IXcBHlkI9/jaBBHCCHUWvq6zroJ0jFzoTuy4E5nz0RFRGZD7EiZCVlzgXqFed4yMEG1kVnfuKBied4QQqjVhuelpG0CrsyF746jNHOhG4Pub+5yc7ydjgnWNWu0xAXnmL0WZp5zgXfutaWpjn5eF/rs1l55Xz+rmdFDmphw6K5eEy5EulHXMNFx8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAADw/2vvzmMuues73//qVJ392Z9+ene33V7AJjYmGBs8hDU3ZJKgIUqCxZ07c1FQNMqgUcQVE4XRncCMkGaiGTIoSkTQoAQyjESWCYTEIQQBnjATsA1esI2Xtt3d7r2ffTtb1am6f9hYOefzMT7YPs11P++XlD/6mzp1qupU/epX5YfvBwAAjB0vIgEAAAAAAACM3chhNeWyLlo1YS31xITQmAaYG6YBZsM0A26b5XrDTZJN48yyaWSeB23Y6ZquZiY0pW+aJmeZ1no9bURaqely3bZ+R33CNPs0oR0uYyEyATb9vjku8WAD+pLpfNw3TZOnTNP3zTVtej9d1+0tmd+/6xq308wdz4iqev2ay9w2+N49q+fq7ltukdobbn6D1DY2N6X28CMPD/x7eWlZlolNiMXcnG5HP9Pr/t577pXazMyM1K6+5hqp3XDD9VKbn9dgnmDCWiLTcLkfNLwqmAbvPfNjuIbL8VBz5cKEXvX7+knXXLttGj93zbZlqY4juRlHez1tTI0dygTTuFphrvPINAcvBV0uMcuZ01yamS8s6PW8sHuX1C4rDkjtyiOHpba4tCS1tdV1ra2tSW3SBFclZhbZbmmIVMWEFh48uE9qZroQEjPXrNV0W4bnfW4s3L1bw392LUxILSqZuVFfx4zhsI8QfIDRxOQLb+aOS0tsnjuCmcuUzN+K5C7os27GpSnzDNTWwId0bfCeX5jnsL4LKzX3VDenGA6nCCGEvtkOF34TVzR4wmSJhq4Jwds2ATapGVvimhnnzfwmMvOUMPS1HROoF8w4UjL3Avf7Vypm2+xvYYI+U/7OCE+rVc29x1wLmXlO6JlQl8K8b7DvUsxpub4xODfomes0Nu9qXHBV2YSLxokZ98xYlZZ0zMjNBsdmQlKYZxF3QPvm/Urhxs3IBCTbFz2D35G4+aiZjzRqekwmKu4dmX52s+vCasz3llz8zWgYqQAAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACM3ehhNaaXe980MY1ME8sk1oaiVfMKtJ9pUEJkGjMXQ309s55uR57rruW5CWKITINos22RCX5xjYnrddPM3Ry79rYGKkxNa8P01ByTfqaNTRd2aTDGxpYGb1Srg/uxvqZNo7td/c56XRu7zprvTLu6X1FJvyMq9NhFxcinIy5x29smzKpR1wVN+IkLgChMMTaD2uSkXoO3vmEw1CZN9fpw4Vi1mjaIznr62Te/6U0jrc8F4hSF7ldmti93YTWuIfuINTdIFsMDs6nZZUzzZh8uo/vVNgFXvZ5phO/CddyJgh0pN6e4Oz/cfMRdlyF3YQQm1MYslgylv7hrPDe1smkgPz83LbVd8zP6pSZqqtvVe/7ZV7xCaldfdURqF86fl1q7o9eqCwGsmoCKyYmm1JpNrc3Ozg78++DBy8wyekySimnS39PAHXdM3PhYqeg80PSjxw5VM/MM+6yjp1FIRgy6cUERfRMM0R0K3Syb6y9v6+cSE97ipgpVMy6lJZ3rt014XNfcy11AQ8eER6Qm4Kpa1c/a4dvMU7KSCZOZGNyP3ATumKlXSEr6pX2zoMnGCkniBhITxrFtvhg7knsuT829155Z5vrtmXcQNkXXhPcOz2dKZtDom2cYMzyGxIQCDgdkhhBCZEKUqyZcxbxuCZEZC+z0zjxO2LmhOcr2Ect8dvixqDBjcMls70TNhH6Z+0irZ97LmLE6N8E8HRPePCr+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0eVlPW4IVKWT+emCaWsWl2WTHNQzPTZLNR1SabvXSwg6/p+xtqZe0cWq2ahuSm6Wqjptvb6ehnK7Huw3Cj+RBCyFJt4tkxTY1ddEJuGsq2WhrkUWs0pDY/ow2xhwOB2h1dV9HTY9JZ0+CbZN40te5rt9dqVbfNvQPvd2mujKc9/L3HpLawMC+16ZkpqbnAmTjW69IFp5RMA998qAuxCywwq7JBDN22Xm8zMzNSc4E4rua4fbCBM8bwvj4Xt2/us+4Yj7LMqNvruO1wxy5z3fyxM5nT1I4P5rwsmTlPZO5vcazN0QsT2ibnb6Tns2vcHkzjdheAYNdn/pN0varbe/jQAanNDwXEhODHSHcNuoCORl1DyVyATdWEgQ1zv2Fugj1y02jf3TOqJmWxYrbNBQy5cEfsTHnJheeZuUfJ3PPN+Vt0zD3PPGOkZo5dHnqOicz9Mzenbu4GIVNrb+pY0HdzhYqZt+g3uPyLEDdMEJibQ7iwvNiM1WY8tGEZQ0mklZKOBV0TANHZ1t/VDBk2UKS/bZ47ayboqPzC51C4tMQlvYDdvbFvgmncOw0XTFOv6XyhbC6kYnhO4oJrTeixu55js5ybzLmnkMg9EybmwndzCFNrm/t7zwS4uPAft4FunjJ8qMwrqDDZ0HlRo6K/TWrmhuWyjl8VE5rjxqWSO3Yj4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIxdVIySJgAAAAAAAAAALwJ/EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBH5Qzp+/HiIoij85//8n1+ydd5xxx0hiqJwxx13vGTrBPDyx3gD4GJhvAFwsTDeALhYGG/+/2lHvIj89Kc/HaIoCt/+9rd/1JsyNp/73OfCj//4j4darRYWFhbC+973vrC0tPSj3ixgx2G8AXCx7ITxJoQQ/viP/zi84Q1vCM1mM8zMzIRbb701fO1rX/tRbxawozDeALhYdsJ4s9Ofp3bEi8hL3Sc+8Ynwnve8J8zNzYXf/u3fDr/yK78SPve5z4W3v/3todPp/Kg3D8AlhPEGwMX0kY98JLznPe8Jl112Wfjt3/7t8NGPfjTccMMN4fTp0z/qTQNwiWG8AXAx8DwVQvKj3gC8OL1eL/ybf/Nvwpve9Kbwla98JURRFEII4dZbbw3vfOc7w3/9r/81/Kt/9a9+xFsJ4FLAeAPgYvrWt74V/v2///fhYx/7WPjABz7wo94cAJcwxhsAFwPPU0/jLyKf0ev1wm/+5m+G1772tWF6ejo0m83wEz/xE+HrX//6c37mv/yX/xIOHz4c6vV6ePOb3xwefPBBWeaRRx4Jv/iLvxjm5uZCrVYLN910U/jiF7/4vNvTarXCI4888rx/nvvggw+GtbW1cNtttz17EocQws/93M+FiYmJ8LnPfe55vwvAxcV4A+BiebmONyGE8PGPfzzs3bs3/Nqv/VooiiJsbW0972cA/Ogw3gC4WF6u4w3PU0/jReQzNjY2wqc+9anwlre8JfzWb/1W+MhHPhIWFxfDO97xjnDffffJ8n/0R38Ufud3fie8//3vDx/60IfCgw8+GN72treF8+fPP7vMQw89FF7/+teHhx9+OPzGb/xG+NjHPhaazWZ417veFT7/+c//wO256667wrXXXht+93d/9wcu1+12Qwgh1Ot1+f/V6/Vw7733hjzPRzgCAC4WxhsAF8vLdbwJIYSvfvWr4XWve134nd/5nbCwsBAmJyfDvn37RvosgIuP8QbAxfJyHW94nnpGsQP84R/+YRFCKO6+++7nXCbLsqLb7Q7UVldXiz179hS//Mu//Gzt2LFjRQihqNfrxalTp56t33nnnUUIofjABz7wbO3tb397cf311xedTufZWp7nxa233lpcffXVz9a+/vWvFyGE4utf/7rUPvzhD//AfVtcXCyiKCre9773DdQfeeSRIoRQhBCKpaWlH7gOAC8dxhvGG+BiuZTHm5WVlSKEUMzPzxcTExPFf/pP/6n44z/+4+Knf/qnixBC8fu///s/8PMAXlqMNwAulkt5vOF56mn8ReQz4jgOlUolhBBCnudhZWUlZFkWbrrppnDPPffI8u9617vCgQMHnv33zTffHG655Zbw13/91yGEEFZWVsLXvva18O53vztsbm6GpaWlsLS0FJaXl8M73vGOcPTo0R/Y+Pgtb3lLKIoifOQjH/mB271r167w7ne/O3zmM58JH/vYx8KTTz4ZvvGNb4TbbrstlMvlEEII7Xb7hz0cAMaI8QbAxfJyHW++/z+LXF5eDp/61KfCBz/4wfDud7873H777eG6664LH/3oR3/YQwFgzBhvAFwsL9fxhuepp/Ei8h/4zGc+E2644YZQq9XC/Px8WFhYCLfffntYX1+XZa+++mqpXXPNNeH48eMhhBAef/zxUBRF+Lf/9t+GhYWFgf/78Ic/HEII4cKFCy/Jdn/yk58MP/MzPxM++MEPhiuvvDK86U1vCtdff3145zvfGUIIYWJi4iX5HgAvHcYbABfLy3G8+f7/ZKlcLodf/MVffLZeKpXCbbfdFk6dOhWeeuqpF/09AF5ajDcALpaX43gTAs9TIZCa/azPfvaz4b3vfW9417veFf71v/7XYffu3SGO4/Af/sN/CE888cQPvb7v/+/6P/jBD4Z3vOMddpmrrrrqRW3z901PT4e/+Iu/CE899VQ4fvx4OHz4cDh8+HC49dZbw8LCQpiZmXlJvgfAS4PxBsDF8nIdb77fJH5mZibEcTzw/9u9e3cIIYTV1dVw6NChF/1dAF4ajDcALpaX63gTAs9TIfAi8ll/9md/Fo4cORL+/M//fCC96Ptvv4cdPXpUao899li4/PLLQwghHDlyJITw9H9Z+8mf/MmXfoONQ4cOPXuDXFtbC9/5znfCL/zCL1yU7wYwOsYbABfLy3W8KZVK4cYbbwx333136PV6z/7Pr0II4cyZMyGEEBYWFsb2/QB+eIw3AC6Wl+t48w/t5Ocp/qfZz/j+f/0qiuLZ2p133hm++c1v2uW/8IUvDPQIuOuuu8Kdd94Z/vE//schhKf/69lb3vKW8MlPfjKcPXtWPr+4uPgDt2fU+Pfn8qEPfShkWRY+8IEPvKDPAxgfxhsAF8vLeby57bbbQr/fD5/5zGeerXU6nfDf//t/D9ddd13Yv3//864DwMXDeAPgYnk5jzfOTnue2lF/EfkHf/AH4W/+5m+k/mu/9mvh537u58Kf//mfh5//+Z8PP/uzPxuOHTsWfv/3fz9cd911zzYw/oeuuuqq8MY3vjH86q/+auh2u+HjH/94mJ+fD7/+67/+7DK/93u/F974xjeG66+/PvzKr/xKOHLkSDh//nz45je/GU6dOhXuv//+59zWu+66K7z1rW8NH/7wh5+34el//I//MTz44IPhlltuCUmShC984Qvhb//2b8NHP/rR8LrXvW70AwTgJcN4A+BiuVTHm3/xL/5F+NSnPhXe//73h8ceeywcOnQo/Lf/9t/CiRMnwl/+5V+OfoAAvGQYbwBcLJfqeMPz1A57EfmJT3zC1t/73veG9773veHcuXPhk5/8ZPjyl78crrvuuvDZz342/Omf/mm444475DP//J//81AqlcLHP/7xcOHChXDzzTeH3/3d3w379u17dpnrrrsufPvb3w7/7t/9u/DpT386LC8vh927d4fXvOY14Td/8zdfsv26/vrrw+c///nwxS9+MfT7/XDDDTeEP/mTPwm/9Eu/9JJ9B4AfDuMNgIvlUh1v6vV6+NrXvhZ+/dd/PfzBH/xB2N7eDjfeeGO4/fbbn7N/E4DxYrwBcLFcquMNz1MhRMU//FtWAAAAAAAAABgDekQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGLtk1AV/6xN/rx9OYqmVSu7dZmQqhVkuN+vT7yiXk6F/l80yWotjXVeS6PZWbE33oRJrLY71s24fqlXdvmpNf47YfEdhjlPI9Xtj81tEQ6vLC11Xnpua+7nMe+y8rwv20r7WupnUMvO9/8dP7HVfjEvc4//v/yO1ItbrI+3ruRWb5bK+nlvulI7MWNXOB8/Vmde9VpapXv4qqS2d2pLaicUlqa209FroJlNS6zX3SS2Z1Vqt0ZBaVOgxiXIdl0Kux/PMiYektrZ6VmoT0xNSK1cGx4jpKV2mUatJbX5O939uRverUdV9aJb1N2xUzL2q35PagQPTUsOlb3q+KrWir/e3Xluv1ZIZM9zoUq7oNVitVqTW7g6el+7+WTbzETe/yd24F5maGQz75l7u7vl2LhdpLTbzoDwznzXzFjfncXOjKB5cX17osXObW/R1XbmZ9ETDE6gQwtRE83m3I4QQtrY6Wtvs6sbgkrd7Qe8zhRlGummqy5kT2M31q+YZyNVKpcEv7ps5QN/MswozaESRbkfZzMdK7ho0+x+VtNjPzLaYY+KuVfd84p7Z3H64Y5Blg/eDuKT7Wi7rGF+t6f2mVtV5UOTGQjMuud8iN9v7wCNHpYZL35/drbWipPNf82Yh5JGev5E530qFmRuZ5frmvv1CufPezWXMUGBnbWba8hzPiReBGRBLMi6NtiWR2TH/Sfuix6xQ53KF2d5f0Edli7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fV2AATE5DiOmD6Vu6uK+hoATbDTcR9c1IXGuOaErutMw2CTeP6PGjDTttc2KwvLcxnM7PN5rPlWJvHxqapsw+dGTp2pjttZho6Z6bxsQu6yTKt9XraxDbtmcbPZnuxM0VVDQAomeABE7diz9/ELJmYcAdzGYV46NqvmWbhNd3ccOjaBa1drbXtVQ0xOLe0KbXTa+eltnT6tNTa1UmpTc4elFpzcrfU8oqOLY26NlYPtcNS6sS6XLM+eE3vnteG7LNNPXhTk7pcOdHj3qjo+DhVNg3pcw2FyLp6jEMgrGYnciFVfRP0YgMQzH3LBdO44IVRwuLMVMZ+LjK5LK77vA+FMHMP0+DczrVcaJ0JvMjNxkQuwMaFMbi5jJ1DysYpF0xj5nd2amgOcq+rY0utaRr8u5sL8Ax3drg5int2ssExdn0mOGbovLRxBW6ub+ZZNqzUXEg2ZMJ8rX0+M9fRcGjM04uN9rw36nOheQQyQT8mhLOjgUNppnO+Xq9t1u8CVk04q6m58DLsTJFJh3KBM/mWhlBWIxOY1dwjtX7QIMoo0vO8JO8+Xvh90UerjJo4Y8Lu3NzIvpcakVvhiOvzATtDnx0xXccFCro5r30vZ7l3NaO9S3P4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWE2no01Hk0Q/7hrk+mbA5ktcA3bbNHiwa7BrFu+aIVdMA3kX8pKZJse2ZvY1Sk0z5ERr5Uy3pWuOp+s8GpvjmbhG6OYYDDfgz10wjQmcyUzz+b75vfrZaOsrctMoldfieMZSQxsfl7Ke1MqFNgevmnOw4hr4mvCbwtTK7cHv7d17VJbp9XU7Kge1oXOzPiu1mVldbs9eDbX5sVTH4JWVZamdWtyS2lNn75Ha6hkdb6r7DklttmECuLKG1DolDZ0pD322VNLjFHL9XUPfjK2mMXOU6z7kkTZu75pG8JtrGlazX7cEO0Acu0A5PVdjE/aQmwCTzATd9M08JTUhC8MNw4cDEZ5ZSL/TrCspmTmFSatx8wAXZGeN2GvezclC5NJ09HhOTmgQVq2u+9bqDI4l3dT8DmY73NTDba4P99Nit2fGNLJq8IzChlTZlIFRV6gfNc9O5cSF3wyKzUS8ZB8V9TotuYAUs1tuORdm1XehV+bYuVAXmzVltmX4eTIEf+27AC55tjXjWeF+V3NQ0tSMGUanq3OZ2Ox/OdHALOxMJZ0Sh6Kr5/P66e9KbS4cl9rk4Zuk1mpqreeCleRrfZzxC+bS+Ebkxgf/smrUFZrayNtnwnSGa3ZVox3PUXfLZuuYOWnxIo47r34AAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTWuEbrjgmNc02TXKNP1ZHdBN8PSNB3pO/smUCKyYTD6HWUXatPrSu38hdNSq9a1afC+ffukNjExpV9sGoW6QKDhBvdPc03pB/9t+jSHvG/21TTu75um8pF5t52bYBqbTPMi+tPi0vJUVYNPQtDzvrOxIbUZ0113KtZzsGYaKdfKeq3G0eAwmS1pQExy/7Zu25PHpdYvawhPODin3zm9S2rVWR0z9h++QmoHrtZx6dDRR6X2+He+J7WNhzWIZznXYJrK5GVSm2xowM5EbbCWFBo64Y3WfL8wtW6uY8tmW8cvtxx2ptiEOIRIz5ksNXMId166xt3ulueCF4bGqrIJscvMjdtmIrim4iaYxgVlSGP0p4vKhb+Y763V9NrvdDWAK451fQvzOgYVJT0GraEG/G6eWauZQEFdLLid7fbM3MsGB7kQHtJq8LTIhcuYe15ulnOhT5EJ03QBJu75bPheW7hlRstbsc9YiZlnuW0bDtIM4TnGIMcdJ7ucufbdg6fhn2MHa4XbB7N69wznwnAi8/zrvsMF7oRc54HYoSJ9R1L09d67tXJcao3kmNSmNmakVk+u0e8t63LR0Kkf2fviS3yvHPHdghuDR/6KUT864q7ZsW/oWI2aVeMOsRvPRg26cc9dLwZPYgAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGbuSwGtfM3DXIdc2QS6YxsQuEcZkmL5Rr6Oy2o1w2gS65NnY9v3RGag89cK/UHj+qARDXvvIVUkvCa6U2/4rrdPsSbfBeRLpvbfNbmJ70IanUBv4dm1PA9T0OJqsoMj2t3XkSgi6YpebccRuMHamy/4jU2hsaCNONN6V2xgQgnO33pFbqazPvqGUafG8NBuJc1t+SRS7rmPHRBGBsb+p2FGsn9StNYFQ8tVtq7Su0QfTkgXmttdeldl2i+5o19UJfy3V/T28/KLUzK2acTwfDdJKqjnFFXYN5MtNdOTJN2kNXj2ffhIhF5vcvUpq542lZT88tkyNj2WAa1zDcrNCFTAw3KXd9wX2TchMyN2IARLlsAnHMPdp/r459tZoJqDB5QLW6fm+9bALvCr1W2y0d5yvJ4BaWzBa772yYQMFO18xR1nUccVMeFx7YM0FH2Jli8wCUm4l34Z6xzPrKZq5RKes1WJiTdfhcdQGh7i9W3POfC9FKEr227FNCpp91QTIVs75+ps9sqQlYjcwzoB2D7fj9/CFBo4SrPhcXTOTmPC4Uo2LG78QFsGFH6m2ZZ6c1Dd3sbGv452ZDT7hd5rxM2qekVm1MSi0dun5jG8hlXkK4oKnIvMJy6zNzFDebKeyLDvcVbt6mSmZssd/r5hDuHdZQqWJ2341dqXm34uatNrgrci+ETLDaiwgY4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIzdyGE1rnGmD6YZrfGvC45JEv1s2TRcjmSFum1x7Jr3aq3XbUntsaP3S+3Rh++R2plTT+i25dpU/fLLbpVao6rHbqrp9l+PU6enDVWXNtektrmtzdxr1YmBf1fKE7JMpdLQ7ajo71A2jVi7XW0a3e/r9hamAWpqmlVjZ3rDLa+XWtucz92Onm8bHV1uY1MDV1rra1rb0vCbk/d8Y+DfB1r6nUVFr4VjUglhzTRan8302go93Y6plXNSa2e6X9npOaklfd3mWq4NrJPENKauN6U2Eeu1us+MfY+eGgy1OdFtyzKHXv0TUotDXWpZWcfMqmnSPtHUz3bqGjKR6mmCHaqzbcKMXGDSqCt03cfNPMXNq/pD85uyC1gwOQR55tLjzHws1u9MTEBMZsIegmlmXjfhL2WzPhez0TCfjc1x6pugn3pNg/wmaoPja6ut49RmS8cg93N12macN8u5OVq3Zxa0QX7YiWJzTbugFxvq4tIk41Gek0IomdpwJYpNmII5d2PzPFWY8aYwz4mZW585JnnuQjhd6JPbV12fCyBLc7e+0cJZ9Xn3+cOAQniOgCszuMQu4cvshI3icMET2JFWzLNDlOq7j5IJx61WTOBMV6+ZfqSBvsmcho7m8eB3uPt9d9tsm5sHVfVdhbsa3LjnxozI/G2eu47cOJeb+dL2pob/uBCpak2fC8sVs79DDy2by/q7ttr6XDe/64B+Z2NWai4ktLCz3hcxNzb4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM1ztMPVFZoGxokLjjENvitlbdjZqGsz0njo9Wlsmn+avqbh9KnHpPY//+4OqZ04cUJqRWaSDUyP4wmzvdPTM1Kr1bUprOk3HWp1PcZprk3U46BBEVlbAy9WNwabwNZMiEO1qjsWm1CIkmlqnaYuhEbXl3b1e7up7hd2pt3TGpBSNGtSy02H3NQ0JO9npvm4WdD0VQ+PVga/JLrrf8syNXONz15xWGrdSMOhllaXpZa11qXWdgFPke7Xnrp+x3RDx9bN9SWp5WbMaG3o2HJ+dVFq+8s69hVbg42TH157UJZZuO4mqTUSbZBdqut/N6uaMLNKRc+dTltDfSpVPSbYmdx175pvu8bdJXNd2t7ophF4yTVCH76mbcCEC2Iw22ECECpmjhYKE8RgxhYXQlM316XLWHD/3TsyATaFP3j6Hea3aLUH5xqb27r+dkf3tWcCAKtVPU71htbabTMRNL912cxvsTO54AV3zriQmNwFBZhrxn02Ndd5eWg8SEzIS9c8c7jMHDdq5mYM8vEHWu2bCZ4LSY1NSKoLG7PjvPlzHHfssr6ZL6aD174LxXBjfIh0XTZcxozpsdngwgTYuHAd7EwTsybAcdtc0yUTTNPT+X/HBII26jpuxOYdQT507ptFQrWsxVpV19+3oXjKXLohpHqNb62tSG1tbVVqbROCt3ha3xudO3VKavO7F6S2d/eM1A4e0OUevOfOgX8/8ch3ZZmeeY8yv/eQ1G59y09J7cCRa6VWlPRdVWZf1bzwMD7+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVhObBsY2hMYkrrgAG9fA1/Uoz02T5MpQJ/TWlgYsPPjgvVK7+86vSG11XUMhYhN2UIp0v1xzeJPLElwGS6+n3VNX13RbNjY39MPmONVMmMxkQ8M9FpcGQxuSpgkcirXpaK+rDWt7PQ2cycwBcL9/2XSzL5V+iOwkXNpMg/PCNN/um0CFYBqN1xJz/brxq6JNnaP64HV097nzssxB0w253df1F5VZqV138yuktm7Gkdv/VkNyFs9q0M37/ulrpHb5a18lta1VbcJcmOv8rr/6K6l9/q++KrWff+tPSu1CZ/C3OPLqG2SZclNDHFwD67Jp8N82Y1W1pL9FYvq2l1LXMh87kQtKsDdaF7xgGqbHw4l6IYS+aY5eMsvlQyl4kZlnFGa8sU3fa3ptzc3pGJfnJlCu5wLqzD4kui0lEx7hIyp0OffZfmrmGma5za3BJvpb7dGCfkxv/FCtaZP2ra2W1DpmLldO9LMvopc7LjGZmcu4wJnIJqm4EBITxmeWc+tLs8Hzt9vTIIqumeu70JjCjI+OC26KzTNB7sJ6TPCEDasxx6QwxySOzHOHGZfd8NUfet5xv6G98N3Paj7pAmciN9C7+4HbB+xIU3UNoSnMfSsxzyf9SOcGzTkNUqk2pvU7SiZkrhh8IWJylkLU1+eQzcULUltr6badPn1Oaisr+m6l12rrchc0cGZjQ5+TstSMo21drmrmAbX4Oqnd9+T9Unusqtf5dHNw7lY2qTGpCRJ6/MFvS23tqaNS+7HrXyu1K173j6S25+CVUiuX9X2Tn/MpRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clO+xPTgiE0/DFsz64uCNgaIStoPo5fq/47/1MmzA/++5+67ZJkzJ49LrR5rP4HpWkNqnVz3ITXbm5v+B5HpO1evTUgtFHpUUtOzIaro+lzfkPa29lQ4fkz7HRw7fnLg39Ozu2SZvfsOSG1iYkpqienpaNplhfb2mtTSnvY22GqZfphBexbg0pdlrv+QLpeahkGJ66ET9NqPTG+gvulNcuLcYM+RBzb0PF2ZNteH6T97YK/2YJman5dalunOntvQXrhT+/Vare7fJ7VPffF23ZYDl0stNd/bmtovtct//K1Su1Cdk1o/HTye10zqvjbNONo040jVnABprL9/v6zjo+1JzH+HwzN8ZzNzP3b9mc0cwvVZi8y5mpn+j836YD/byab2GWq3Tc/Eqs4pKlXTG7fQe6+be1Vqo/XxLkwfIHdtJaZPb6+n43Jujkm1qn0tN7f0GLR7w5/VY+L62KWmJ+/Wlt4Lul1znKraGylLzXzR9HHDzuT6K7r+gkninhNMb3rT49WNLe4+2OsMXkdubm7PXdvTUmu5eV5JzfXhesnbSZ/73uD21fSfNT0yh/s8PvPF5nu1Ntzr0v1emenj5vYhN/ebwjTQS0wvTTemZanrJYqdqJRqb2Pt0hpCo6bnVm9L5zK9rvZDLPX1PUcysSi1+q5DA//OzPuW1aU1qf31n35Gak89dVxq7j1KtarbVjd5AJ32itSKQseHcllzROKePhfW6/p+ZbKh37t2Tn+f3IwRC4f3DPy7s67rmpzU+ehEWX/X/qOPSm17aUlqX39Y81b2vuZmqb3u1rdJLVx5hdYMnsQAAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTU10+zS9CgPsWka7AJsokgbgG6ua6PQY8eflNrDDz0w8O/epoY4LExqE89aSZu+n19Zk5pr/FuYAIws0n3tm0NaKmlbWNOrOqyt6X50u9oo9vz5c1I7d1abwh4/oWE15y6cH/h3XNbtnZmdkVqjps1ZZyanpdZs6nLLK/q7njur+3D23GmpfeQ3/k+p4dK33dbzfnVZz6Pbv/w3Urv22qul9oZbtLnuk8ePSW1pTQNmLgyFzkwc1ga8Z834EJc1nOGKV10jtcr8gtR6Z/Ra+Ge3/YzUrr7cNAM2oVymz3potzQI7PSZC1I7OKEBM6+88U1SO3f+jNTqm4PBYptf+aYss3H0lNS2Lzsktd1zuh2Ny7UW79HaZmtLapE7KNiRIhNOUJhabMII+ibpxM2DpqdNe/i+/rfgRm1wudjMlQqzKtOjPRRBA126WgolM70rm3CZwgQqxCVdrmRqva6GNpRM8EKzqvO0Vkc/u7ppdiQaXF/JzNEKM2/t97XYb+u+VkyD+9gEFKY9HVuB73OBI5kJdTFZJTbAxIUtdcyF7kJdhkNN4ki3zYWwlNyg4UJezDjiAjdtYph5dixyEzZlwnpic4zLiY63LmzLPQMG873Df8rjxky3r30TJGRydEJkiu4eVJgHSnecsDOl62e11tPzvtU+L7XN5ZNSmzTBeHvndVIStUwQZ3cwsLMxMSPLLHY1vGXxjG5HNdJAud27NTTz6iv0eeLIkSNSW17S55/jx56Q2snTulzbBPgUub4jcfPKfXv3SO2VV+tzYWkoVHD6Bn3W7ZtwrKPful9qm+t6jCdaWps8qNvx+BMPSO2OZT0mP3vLh6Tm8BeRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMZu5LCaqQltRFoq6XvMJNFVtkwDzLOnn5Lao088KLUTZrl4qGF6s6bfOdeoSa3INAAjdh2STePjwjVNLrThcG5qa2vaxHRjU0MxNjfXpNZu67Hb2NiQ2vamhjFMTE5KLRSDjUxPm+N74qTuf6nQ37psmlpXKtpo3jW6zk0z6I2NNalhZ6rW9PptTkxI7RXXvkJq0yZsKa7o+h49dlxqf/v1O6QWDTUbv+cBbfx7ZnVbanv2aDPkYyYAIcu04fJf/+XnpTY/1ZDazM+/S2rf+NZdUiuV9bp0oRANE0pWruuxO3F6WWpFUxszL5QHx7493z4qy6x8T0O1Th/QJtdnOzq2zlyhTZ6rB7WWXrZbape/Ws8d7Ewlk2CSm3u+6/8fpXr97l0w90FzDbbbJmQhGaxlfW0+npuciDg2wQauph8NvVSvrV5qgmnK7jt0/tXr6X6lJrRhuqFjWtuE2pw7r0F+udmTOBrc5oppql+uaKDE5qb+hkVhgolMeEjecaEgIwZgYEeKbIDnaOeMPY3M/NwF3eQmJGWYe4ZzATklE/rkwlXc+rJMx4eyCfczhyS0O/ocl6U6Zrg01cKM8+Yr7G9RMkE0ydD46o6vP+b6I+bm5uKesd32usAddzyxM514/CGpdQu9LhcXNXCkWdV7dKej7zS6uQmYOatBlGFj6B5d0wC4U0cfkdqBPXt1XWZOVZgkv4P7Nazm1jdogGmnrfOMKP9HUvvCF2+X2j336XPhwsIuXV+kY2mjodfqK48ckFoyFLaVlPQ37Kzps9ljX/k7qRUT+n5ofWtJaq8286Abbnm91I6/iPc3/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOazm8CFtutlutaW2vKyNMs+cPqa1M9rEdGtdA1wqJjyhXh1sbtowTdXnTVBLL9PdTVa16WrItPGxa2ZfMg2ci742YV5d1Qag1Zo2VJ2a0jCOffsXpHbq5EmpXTirtVpNj11tqHl7s2GavUZacx2ys1T3NUr0mPRMs/3UNJfOC10fdqbUNPhOKnrN7NqtwST79u2TWlTWz9anZ6RWmLClmdnBsSQ5qdfpgUiDWn76re+U2hPdNam1trVB8rEzp6X2zXvOSO01N2nD5c/8iQbdTE7NSO31t+jY9/WvfVVq7/2nvyy1xm4Nk5nfNSu1w0Pj4d5HdNyP6vrfw87WdXzomLCxekvvGc1H9bML11wttYmm/o7YmXLT7D8ygQJ10///wLzONZpNnWucWdTrvJfr/bI83Gy9pPdxN/ewMQZ9E4oQuVAEF8zjAhV0XE5NeETJfEfdhcSs6WdXNzR4Lzf/zdwFWURD31ur6XjeNUE6NgDEHU4zN0xiF5pjwkPC8weFAP9Q3wQ8uQCTcqLzGxdgE8x4Ew+tz57jZR3PXGiKHR/M85kTx2YMNvtqSiEy45cbHwoTCJObY+I+WzHHIB9Kr+r1NLgqNcfT7pcJFrNjnAuwMSGpLocVO9O37/2m1Eru9U+qJ83UjIZVZps6lwmRPp+c3dL5+bELg8E5UcXE55l5fb6xIrWtVOcUaxt6LVx1+KDUHjt2Xmr/6xtfk9psXY/TVVdcKbUL5xel1jdjWrdjAnEinQd1u/p+regPXvtxuSnLbG/oujZaWkvNs25xxRVSW3n8Cantu+46qV39uuulNir+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlM3+SWPH9UmlhcuXJBat7MttV1zGu7QautyqWnwXR8KeqkFEy6TadPVNNVGwrEJw4naulxkmhzHphlwbr6j3tBG0j/2Y9rsM830s1nWldqxY49J7cSJo1JrdzakFg+Fdgw3qg4hhFJimjKb5vglc+xqNW1s6xpEd01T5645dtiZ2p2W1JYXNfTpD//os1L72Z96h9Te/La3SO27jz4qtY7pq540BsOxzOURZk2gRN/0j9+8oAExM1MapBI39DpKgjZmbpTrUqtWNISln+tGtzp6vW20dAxuVnVH4qpui2tg/Z3lwQbW+xP9XffOa+DQgUkzjuzR5eJY92uibULJTNP3hP8Oh2fkJuzABdPsm9frrVHXa395Xa+tVqYhKc2GfkkpDK6vMKkD1US/M8t0rhSZAITCJCCkPRc4Y0JyInO9meC9tplDrSzrtd/u6DEpV/V7TZ5ECCYQJxrat1ZLt6NnwmpCMA3zR+RCfUrmGJMdge/rmzlxu6PPMd2eCe1LXFiJ+RJz0bjzsloeHIP6JnAmNoFMuQnSceE6Tsmszz0TOO55wj3HFOa6LKLRgmkcN74OHyu3bS5XrJ+bca9k7gVmvI3MfkUmOsg972JnOndWQyLr5ppp1Oaktm6myVupzvUnpk148bqe55X5/QP/vuHm1+jnjus7jlMP3Ce1QzMaTNp+VIM+6019nlha0Wex+x/QZ8J6pNfR/r17pebGw81tDW9e39TjNDOh2xdyPfB5MThunjPBfg+dfEpqqXnf1jDv5S5s6voaVR3Als4dl9prD+tz96h4EgMAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiOH1SyaoIjTp7UpaFLWxuVTs9oA1TVSjs64Rsfa7HS4ga/p3RySQtc1WdFmwPWKNk0uIm0anZt3tq5BdG6aEJu+8qHsNrowzUn72oTY9Vbu9DXUZn17XWoLuwebu5bN7xDHepw6PV2/6ZlsGz/3TbfmItcFSyWT7oEdaXpSA1fqJjTlX77/V6UWpXpi9lNzXZoracKMX0snzg78u7WojZpnk3mpnT9zTGrpioZ5tdsaFLF+clFqM4Vumwt4ys1448ItGmVNINs7sUtqtUi/t9XVMTJqaRPm0xfODfy7FzSw4vJrD0ltwTVqTkxDZxOoUZ3UWntbGzMXqY5p2KFKOmZMNPQ8mjThMqcvaIPvJdOkfXJa11c3gW95Oni/LJV1muZCJ8ylEHJzf+8HrdVrGsLT6+ox2drQa2Z7U8egjhkf0r4JdamYKaiZGxU9XV/FBF6EaPCz3dZowTRuTuVCgp5jQZGb0AoXKIGdqdXSe/6WmQdELkzSPIu4vygpmQAuFzozHPAUu+A9E9SSmXAGFx5XLuuY6farcM+EZpwrmeQ599xh12f2zW2fGzezVMegJBn8rL3GU61lfTMu2ecps/+R+bVdCI978MSOFJt3C90tna/3+xqukqQ6Z6/Geu2vtXRusNXTZ4wrrrlq4N/7rjwiy1w4rYEr503QZ7ur124Sm+e6Cd2OJNELLjHXzK45fSYqJfpM1DFzFDdP295ekVo10ufd5Q097mcuDL6HO39e38udOXVCaq2e7uuUed1SXDABNlM6ptef+J7U9v7d30vt8BXX6JcY/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOaxmc1MbZxamAWpswh4K00U962tjz05HG2WmmTZA7XQHG6XOVJuyzMzsjNS6PV1/o6VNTPMVbcSqrYBDiAqbzCKlwjQmdo2UE9NIOSS6fVMTU1KrVHS5TleP3bWvvHbg31mm27GyrE1hN13Yg2mQnJnQHBfqU23qb5Z23FHGTrS5pkFLvZ6GInz1y1+R2lVHrpJazQTdxB1d30xJh8St/uB1ed31r5Vl5huTUjM5WGH/wT26XEvDLm644oDU9kzMSO3AVENqb7vxWqk1q9oM+fpXaCPhy0yATbOu37Fi7gdTiQkDG/63abQ+PTUttcXTGupTM+lYSUUDbIqSjt8NE7YV53oPws5UjvXeM9MwcwNzi1rfMvdyEwoxWdcxqNfVuUFn6D5Ya+g1UzMBNhVz7XbN/Klu5mhb27odKys6LkWmEXxS0fWVNfsmlExonenvHtJUr18z1QixGUtSCdUYNbDBTFJsbcS1uSQ/wmrwLBeU4B7HdDkXOFMy4S9luz4VDYXa5CaYxoW3uDGuVtP7sQuwGf3aMs9TJo3PXW+5CdNxx8mF87jQmcwEpyZD++a2w/2uuRkLHRcSlLvjaQ5nYQKzsDOVzHN+P9fnH5es293WOcTsnlmp1eo6j483dX0rTx0f+Pfpuj43VDo6MXjFYX2u6/b1et49q88rRw4f1u3Y0KCX2Rn97PwuDVve2NbAUhfoW2/o+oI57q2Wvl/51n0PSu3J46cG/j1l8p0rq/rsPD+hz38hMe/Dyno8e2saanRu9ZTUHvzcn0jt1v/7vfq9Bn8RCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rydKO1DpdDSxIXQPUkjb+XVteltrmhjYAbfX0O/rZYHP0lb6uP++dkVq7rc3Xl9rasLNvGhUXLpjGNAN2DYLPnTtn1qfL9U1zZRfQsbm+IbUj+zTcYn1Tj+f60srAvxuTGrLhVGvaCD8q6T6029pkNjOHbsKE1aybJqvYoXJtDG5yEkKtrI2Om6ZB8D133S21xx/QZsBz0zNSmxw6pbsr2ry3UtPz/g1zGkyzu6bBDq37HpDaP811aJ7Y1GbIxV9rWM8/uaDXfTXo+B2Wvi2lPaZx+7nGSf3srt26LenzN3OPlkyT5zsfldrG2fNSqzQ1pCub0N86Ns2vXc/otVX9fULQoB9c+hZmNF2l2dDa4orOF3ITULcwr6EN5tIPWy39b8HFULhBZDNOzJzHZBPUaroPW1s6Vq0smzHDXEdVE5zjghfS1GyMCZmII53zpCbcb7Kh84XEBE+0pem7C6sxQRHmGMex+W3cbpnfP/I/GvA0c3pMTuk53u3oPd8Fk7hwFRcSk6b6PFEauueXTfhUZEJT3DneNQGZIWjNhca49RUu1MVchG45F1aTJLpv7ZbOjdJUx0gXElQZOlZ5rt8Z24AcrWVmzlu45TJdzh8TwmrwtIPmmt6/e7/U2pM6x04TnTy/6lVXS23vwUNSe12kISmNoXnF7NyMLDNjAjfrVRPIa0JtilzHkYXd+h1nz+p4+55f+nmp7d+3V2qnTj8ltYnv6lzLXoJmjGi39Jly1YQGl4rBz6bmHU96+rTUZmc0XMgFGU41dR/WuvrerNjUfegvaoDNqPiLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjN3JYzZNPaqDA+XMaYuAajfdNx86tNW2y6UJYeqaZ+XBT343VFVkmNs2VbRiMVEIIiTZpjzLTkNz0Uc5zUzSaJqxluPFxCL6p8+GDGkxzw5VXSM0F3ey5bLChbHNWm5humMapd959p9T+1zfukFpqGqD2zW9x5eXXSC3r2l8DO9CuuTmpuWvrvf/s/5JaFOv1+xd/+j+kduyRx6T2RNBzNfQGr/3Ns0uyyH6TpPNTB1+l25Zp+FbR0mCtqZ5eR9W2GdPq2ki6qsNoqNV0vOnNayPpkgmoiKb0O5K9C1LLTAhEOtQcvlfWhtPZtDbIru3fJbVwQMNlKvPTUouOarPmiml0HRIXZIGdqFnRc2FxTe+D51f1HtWo6D26UnZhMnp9JCYQZfi/D0eRzj2y3IwPZb3GN7d0ucUVHSAmTFhPKdbvTfvaHL5vpjxppkXXuL1vEnZcSEwp1vX1evrZvBia0pZGm4+5AJDhEI+nt0OX65p5SxTp1NoFGWJn6puxoGxqdRMSWZhry4XfuJO6ZAJXhq+3KDLjmRkfXWiKDasx2+bCdVwqV2GCHSomoDAx9/KS+Y5Kotdlz2yzC/WpVXW+NLwtmQlm7Zt9CDqM2rCepKzbW4p0X92zbcneW7ATvWbP5VK74sgRqW0c0GCW2oLOxaeaOu+enND5xxWX75Pa3PTgdeTecTxHQt9IXEjTmTMapLJ3nwZu7t+vAT4TE3rdz5nnji996UtSW17Sd1OjBhU3q3pcDl41+P6ms6KBNoUL8DRjdcXcCxJz3PuTOjec3NZjl5Zf+PsbRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM23vvl3Umt3OlLLTY9R15g5Mgv2utpQsyjru9LeUGPP3DRQT0zD5dw0Enb9wwsTuFM2XcoL00DdNR2dn5+X2pVXXik11+i5XjdN5M3xfPz++3T7TLjHrvnBxrPze7U57bbZjrvu/KbULpw/K7V+rr9F2tNjUjZNo3fv0uMEPMuc93mq12pc0mbmC/MarrLfnPunFrWp8WZ5cJyr7q3JMs3Vbd22J5+U2uT8pNQ6pjF6NqljVWzGlnxRmyH3Zg7q+qa0kXQ/0e/ITBf186eOSW1jnx7PXZN6/ZZ3DY43e268UZapXXOVbseMNlz+0oP3SG39gu7D3uPawPltb7xZalO7teEydqa1LT3vV9c1rKZe00C5hWkThGQCZtKOjlVOPDx36ZsQg5quf7ulY9DSBQ3Hak7p+FWYsbWXmnAsM1/KUhMaY4P8dH2FyXEoCp27bW3qnCQ3xyUEHfv1C0yQjgm2SM29pWS2t2QavLtQGxfaiB3KjA/93JxvJnivXNYxKLaBD1pKTEDBMBfU4kKleqmOmTXzvFIzQXFb2zpWuXBNF0zjQj1zMzdyQS+xmfNMmnCHiabuR9Xshzxmulwac5zcvlbruv6yC051z6yMLfgB2mf0OeH4ZVdL7amTF6SWnzivtVTPy2uO6HPHFYc1YHI4MMueu/Z0dkW94JZXNEx0a3tNavPzGtRbrepzkgtJdcFSLoyu3dZ5S6Wi869aTY/nrTe/VmqzM4PBOR0TlNfb1Hnr6ta61NY21qS2vqrLdVsmBHFZl+tXR5h7PQf+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOl2vR8eUmbmKamIXlkGiQnpgmzS7qpFNqYOJQGm4dGpmFp5rqlF+Y7C/1O1ww4uGbQwYRnBBO4Y5qxbptmzZ2ONhntm/3obG9JLXPN8U3z6+Mnjg/8uzap4Rnu2LVNI/zINI+NTCP4ktm2wmyba5gPPCvScaSb6jmzurwotekFDaaZ3XdIascXT0qtMtSR/PJDV8gyV+Qa3DR5UrejbK63pKtNynuby1ILuS6X7T0stUd3aYPofkMbst/4Y7ofC9O6fesPPyy182dPS23X7JzU5idnBv/d01tO3/xerWBCfcx4e3p1Q2oTM9pcOTqwT2ppn/8Oh6etb7tgFh1vppp6/k5O6HI9My6VzHTLTSviZLDoQk4yM29ZWtR5QXNSG6NHJrSvm2mggsldCGnmUmhc43YTDOhu76bBe2H2zX20kpiJWjS4ZC8z6zcpHpH5Tsc1pDe5iDYo0C2Hnck9E7j5b2aCTipVfSYqxXpyueBM9zwx/B2RO1FNOIO7YqomSGbSzHnc9RGbcWluTucU3baGpG52dR5QMutzf3vTNME0JZM25UJ8Wq3B5+Jepsd8c0vH5cKMaA0TmmNzPPpmbHFjmvnNsENdrs8ER9v6TmdlWYMe3XiQmkDQ+Tm9jvpuviDrH/U8NfMME2w3OTEhtU5H99Wtz22LqzXM89TExJTUqlUNdWk29fnEhVc9fkzDTjudwfcwm1v6XmbLjDdb2ya0sKZzw5J5xl7d2tTPzs1IrW6ei0fF1AgAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlOKtAlvnnel1jIhLK7ZelLWZqfVijbPzDTTJPSzwcaeeaELJYlpDB9pM9UoaHPOzDRu75p+qrkLiOnqZ48fPy616elpqVWrGkaRprpv29vaPDQxDZdrsTaJrk8MNkpNYj1O3a42Nu11tEF03jc/jmnC7MJq2i1tqNra1rAe7FDuenMhC6mOS0um4XJc1rElntBG6Ksbel7O1AevmQOveo0sM93Qa62Xa0Pj9SMHpFap63LTM3odTe4+IrX7Wjre/I+7vy21uKvX6iuv2C81FyhRn5qXmmu4XATdltbiYOjO0Qce1c/t0mO3ekjDZcqJNsKvJzrulffv1u2Y1/G2dXZFatdde6XUcOlzISzVRP87baOq90sX/hJMkFu9pvf33IS2Zf2he21Jv/PCBf1cXNE5VSnRbVtd0zlaUtF5UN8EuGR9F1phmsj3XeKfC7XRpWyQQ1W37/ABbQ6fDw1gJ09riEU7db/XaDW3rza00Mx5Yxt4iJ2oZAIgSiZ4oRzrPa9WM6EQJiS0Z4JunOFzNTHjWdmNLWa53ATkdNs6r49NAMREXferkuh1X6rrOFqK9f7uBhcXiONGqpbZ5m0TDNHpDj4Dt3s6LrvQoMlJnT/FZpy3wTTm2CUmENbtF3amA7e8VmpPPa4Bm73IhGP19dzKcw1XKYK+D4rN+wVZl8ucM7dZe+c1H15b14CYinn+K5d1HLHpUOaLXVhNra7f4bjgHBde/Pd33Sm1jY3B+YwLz3Njy/a2vr95zfU3Su3gPg11PXZCQ3OuvFyDaQ7svUxqo2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rKUwgzOSENuwsl/XdZrurjTKjkjZArZiG6VlXG6CWhhozD4fXhBBCZlJuIl19iGNtwpyaJs8l07je9Fm3jYS/+8ADUltaWpJaxYTVVCuuMbNpol4yDdNNk+QjR64a+PeaCedYXV2T2pkzp/U7TWPXwjV7NQkYJ596Qmrtlv7W2KFMwJE57UPoa+PffkubFT919rjUlhcvSG1hl4akzM8vDBbqGpJw6J+8Q2rX/ktdV9rW6y0u68CUtHW/loI2ZL/v7+6W2qlMG61XNjS04Wuf+bTUbk61Of4r3vyTUjv0ahPYM6+hM93yYAP6YybQ5n9vLkrt3u/8vdSOXPdqXf+q/tZ7X/fjUmuZe1Aw4yN2ppK5m89O6vwmNvOWNDX/PdcEvaQmBK9a1utt+B7aMgF4WW6CKDLTVL6j86DCBPT1czO/MY3QcxdC41IRRuv5HiLz38ILM1+olHWqumvaNJsfaqLf2dYAjJOLOj7mZoPNLciKTPCITeGxRwA7kQsXcddbuabjw969GihQmPP33PnzUmubeUXZBIcOy0xoppvrd92zngtuivWacWFOqXn+c0kW1aoep+Hgqufavs1tPSadjn5vp621bGgOUZhrvNHU+8jkxITUfOSZGZfM/rvfwi2HnWmto3PdZkXvjZs1PVdDbsKr+vrOxbxeCefMe44iH7wGZ8y14AKpMhO4+Zd/9ZdS+/KX/0Zqs3OzUvvl975Paq+89lqpuTc9hXm/lJv53alTx6XWbGqoTcWEkpVLJgy5MxhUvLKqITelfEFqHbNtffPOqGbmvFOz+tw52dTfLCm/8PGGv4gEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHYjh9WESJudzs9rE8ui0CAHFxyz3dKG4V3TDLiTalPUXmew2WnfNCXu57q9cUWbf87t0qabLhUjMkk3jUZTakeuuFJqKysrUjt24rjUej0TutPXY1cyTYgrpllzZhqUfu/hRwf+feDAwZHWv7Soja+DDabR4xSZxv0d0zQ7Nb81dqaeCRLpp9pofG1Vz8snHtFwqMlpbfD+5je+QWrHDu6S2vLi2uB2nNPgl62mNld+YnVTasl9D0stP3lMajMPnZLaQ1e+Smpn9+gY/LafeLvUnrz3HqmdeuQ+qe0ra7PiSkv3d6KvY8ujjzwktW/dccfAv+//7r2yTFo3Tepb+ltXF/TekrhbWK7jyKYJ69m7a49+FjtSvWHCDkxaSZbpuFQyy5npR+iboJfchM5UksFzumayJGamdM6zvK5f2k21Vq6YYJq+mUNlpvm4uZc7kYtesOEvJvDOzD9cSE7f/BaNoWO1d07Hs/VNPeZrLZ1nBRNMFIJZzrXpN1k1uQ2wwU4Um7CazAwatboGGzRNuENiwpzKJvzSPYsM3xs7Hb33ZuZ+n8Tu8dEF2JjAURNM4wKp3HI9EybqgsBSM4dsmWfMrnnu6pvx0AXClIfG6npNj3nd/A42cMb8/u5ZzHGhNiUXooUdqW3eIxw6dEBqe3bPSa3bNc/l5lydntL3IV/9xl1Sm00G1/fW/bpte1+lwZT3X9Dz+Utf+pLUNjd1rn/06FGpLczrs16zrvPAM2fOSO2pp05KbXlRx9Z6TcfvrU0NLF1f11qlYt6bDIVtZW6ckoofC1w4WJzoGFyraqjRgcv0vdGLwUgFAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOxGD6sxLTD7pgGqa8JbNw2XG3VtgJl2dX1JrO9KO53B5r+5CatxDZJDol3fd83NSm15eVVqzeak1Fyz9KlJbY7e62owz/KSbnOlrPvaNqENLsAm7em+JWZ/V1eWB/5dM42U3e/Vz7S5dpHr9vb72nTVbUccaWPbckmPMXamJ598Ump5ptf09pZeH1stDUIqlbWBcVzW87JsGqZnpcFrdcqEpuQ9HQtOPqgNkvd+51GpRWefkNr6qu7DyQVtrryqpfCq3a/X5ebOSu2J6neldqq7LLXyd7+pX3JSA4EePv6Y1Hq9wd9selrHx73meDaqumMLCzou1evauH/5rDaXTsxYFbuQCexIpZLOWza2TWBSbM5Bcw81Pb9DmmnT905Ha6WhoJfYzIEa5js3E93etKvjUpqaBue5C54zKTlG5JJZXAjNSGsLweUztDsaRrG+boJ+5ga3OYl1/3fPaEP6dk/X1TXzysgEdLj5pw31IawGz3BhTi7AptHQ+2XJjAcu4MmF2lSrOn4Nf+/yss4BkkS3rVrRMahvQmPaJpjUBV1GZgyOTKCCC5dZN2F0vdQ8J5kQMZer5Z476w19Zq0NhYT6v+zRfY3NvgYTiPpiuHAd7EwuhKXT1TBN8woi5Lk+d0UmyK1mgpqWzq/rZ7PBa3Uz1mu3saChOUcf2ZbaTTfdpOs319v3vvc9qd1//31S67T1O9bWdPvcc2fJXL8Lc/occ2xL19c276uSio7fUTw4v5me0WNebeo9o72q77RcDFa5rOfJmgnSKcz8plrRe8uo+ItIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clhNv69dfjsdbdjpuGbeE00NK6lOaJPNRkMbYOb54LakqTZI7pla1y3X0eakUa7L7ZqZltpTJ09J7eGHNMShZcIzNja1UWzTNBnNetroeXJSQ12uvuYaqZ0y21cfCgman9X9ck2zE9MMe25eG5smFW26Ojk5I7VKtFdqDz98TGrYmfKuNiTfsNeRXqtPntRglvax41Ir13RsmazruNRoDP73mqyh2/bo0nmpbT2pwTS3TOt3Htj1Kqk9XtX9uv3J41Jrn9eG7CuLet1vmcbU5wodW+IJE8bQviC1SkeP8W6zbzNzewb+3TTj+YwJLpua0HGpMavBYtsmJKjc02PS29SGyz0zLmFnco27MxeC19day4xVcaxrnJrS+3tuQmJ6Q+d0EjQ0JjNBedWq/nflnlkujnV93b7ugw07iExQhj16LzwowYXVZH1d3/lVHb+yaPDaT3s6R22aAJDLD2hg1vKGHpPNto4t3Z7Z18JMrd1hwo4UmxAWF0pVN+eqC6Zx4TfuhCtXdM4+v7B74N89E9y0vaXzhywz14IJXUjNcjWzHYkJgnLf0TPf4Z4xS2asqlX12aZSGS20sGK2efh7i9yMy+Zzbmy1ATaGHVndEERYDZ5x/EkNznzkMQ2XdM9dzbqOQWUTejU9Py+1mhm/hoP8TsQHZJmHvndOaiePaW1hz36ptTs6L7ji8GGpbZqAqwtLJqwz0UCYlTUNf8lMOFbfBKy6UJ9duzScp2oCCUMxeDyjyF34uh1lk5544bw+s/b7Oga127oP99yv4T9JrNv7kz/7Dt0+g7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiP3iBxVyfQ+iUxPk7SnvQjSXPv5JKZXx/D/3r1aMX1UTNOMjuktsra2rus3r2fPnDoutU3z2a1N/XDf9Opw+99L9DiVSvrZ5oT2VNu/T3surq1qH4NKdbBfyaFDB2WZCxcWpZYmul/79mhfg2tv2CU19/ucOKq9VI4fMz0RsCM1Ta/GCyt6vV1Y0lqpof2+9s9PSK3R1PNtqqLX1saZ0wP//ru//5+yzF0PPayfe+opqR173c1S+6lb3iq13rT2LVo+pr0fO0+dkdrfN3X7Njb0OE1P6v7vnVuQWt7QYxIFHb8aJe2/VK0M1uJE92uipr/X7ikdz9a39TtzLYX1De1pubmpfWMqczpWYWdyc5TY9NXJg57jUUn7k0WRnuebW3ovr9Z0nEuzwd5F7a7pS9nRE7+srcjCzIS5p5reaUlivqOl9+j8RfQdG7VFYmHmPMH0j1sxx6C9NlgrRbpfSU23ZNb0xp0o63ast/SzZ5d1ue2efq/vpYmdqGTGm6lp7YvsekSOzHyHu3yrQ/3e9h3Qnm2L53SesbSozwmF6XnbMPOHihusDNcjsmR62E9O6PzO9cMs2b+90W3OC71+875uS54N9tMsmXHK9dwvmX6Qrjeu631p/37IfZgekXjG40e1H+TyovZ5r5nzt9vW/up9c32cPvOk1Kqm/3s81Ifw2/fqudsx67/m8JVSm5nVOcD8rL6XcBkntZqOrauruq9xrDkia+srUnO9Zm+66Uap7d6tvTSzrm5fiHTcCGFwDCpMb++sMO/gTJ/xNNXxYW1d97Vs3t9cWNbnSRPBMjL+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOaTpQumMbVXKPQzDTSrZgGvq5dZ3mo+W/VNAmNzHbUK7q7kw1t5m56EoeNDW1iWi/r93YzPU7bXQ1K6AT9krSny0WRHrtS0Eau589p49lOu6Xb1xn8ju3NTVmm3dKGpd3emtS227r/Dz+kTUzdr7i9YU69WLcFO9Na11xHbQ2b2t5cltoVl18mtel5DSY5c0bDZP7XPXdKrb+1NvDv5XPnZJmzTx2XWts0Wv/Kd++V2gOnjkntNa+5UWrTuyalduaJ81IrTNPo/QuzUpud2yO1WqQN3htT2kQ/MmNfOTEN6NPB32zCNKmfrOv6CxOosWHGs44JrOh3TcBXU0NBMrIj8IzCnAtZX8+jdkvHoF0T2sy7Y8avJdMIffeCnvuloWtkfU3vx0msG5zELiDFBDGY+cP0RE1qWWrmLSaEJXqJ/3u2y12ITVhemuvcaDjXJzbj2dqWaVxvgmQmKvqde2Z0fUWunz1+QYMXM/67P55Rqehzx8Sk3t/dLcpd0z4HyS33/De94fCaEELYu08DbKpmH1ZXNMTBBfO4bcvMg1c31fu72/9qVbfF1fJMx6/MpSyYsAz3nFmrDtZ6qQm0MYEzsQkFceEykZkHuVphtjcxczTsTOfOanBtlup8Oqnq/a1a1flNyZyrpdjc38wz0Mb24L0xMeF0iRlbMhOE5QJdHn9Cn3/m5mekVq7qNbi9qO8gDl+mgb6753TetmuXhtC84tprpObGkZIbwM2+Db8ii8xY2DPH3LyWCnFsxgfznWmm86W+mRun2QsPx2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rqdfrUnNNeF1YTRxrA8yqq40YfhMPNfaMTKPPxH3ONO+NTDPzLNX9qpjtnWxoE9fMNA3upNrgfmtbG9BvbWkz+40NDX/pdvSzK0uLuj7z2WZjMLRhZXlJ19/WJvU9c0xOPKmfbXe02Wu9rs2vy4mGR5hMI+xQWy1t9t8w19vll2sj4a72Nw8ba9qsuWuut9DXrr7HTx0f+PfSml5rs1O6bfsmpqRWq+m1MDehjZl31bU2dUDHqlLFBE9M6fdO1nXsq5RMuIUJoyibPsrNSW3WXKtPSC3dHjzGiWkMn5jx2437k+YeND81I7XuihmDGvrZEL3w5sq4tHR72uDbRSy45UJhgptiXW5y0gSnmBC8JBmca1SqZt5S6PoTEwqRmgbvZTcPMo3mIxMe6I5K8RyRGqOw0RmmEXooudA+s1x/cD9Ss66lTZ0/lXOdj0Qz5jjlOn5NTeqY3tw0TfrbTHDwNBckUjZBbrl5nnDhKiUXamKeWZxRrlQXHrFrt4bduSAV92zSz/X6aHX0uaNtau55wgVlFCZQw9X6JvRqeAwOIYSk7B6XB9dXNn/b48Y4F+CamAAbO7K6UBuzXMPMl7AzNeozUmvlOk++cOGC1Mplvd5cEFRk5h+VigmwHJKZpMDYvFvq9/XBzuXXbG7rnGrXbg2SMY8Y4aqrD0vt2mteIbWGGasnTCBmyVzTWU+vfRc25f5OcPi5yI5nZmxxgXouZLBkgoMqJhgxmHtLOX7h8xv+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlO1jXpHa1LuGhjHrlOoWV3JNMocbkxseqSGkmm0XjILjtr4t2L2v5xobcs0V65E2ph6rqJhD9NTk7rc7IzUNje0yez66rLU0q5uy+TuXQP/zjNtALu9pSE32y1dV7enn3XhP1FVm7iG3DQ71cOEHSpPRwuPqJumyXEwgSgmKKK1rmucm9DlthcGr9VmTRsLHzy4V2oLcwu6bWbcq5R1DCr1df8rZry55rIDUitXtLl0yPVazVo6jrjgr1kXfjM3o+tzOR5D43ClovswO6/rKsx/Iysy07g/0wbJ9RmzvfNzUqtVGHDwtCzV88g1Xy9MbWlD7417d+k9r2nGoI1NvS7X1gfXNz2loQO1st4/220NxUszHVu6JuimMH3G+25uZOdQ+lkXgGGDadyHzXzRBtmZ5fL+0LeYJvBFoZ9bXmtJrV7X37C1pb9XzwScuZCRmHAsPMMFRrlnFh90otdvlul44AI2X6jCXNElF+A5rffeC+fPSm3NhAcG86xXMfM7F2TnglPzyIzp5hi74A333FmYZIzh4dCF3PjPmV/W1cz4mJv1uWdbNz5iZ4pKel7GsZ73LjPFheimJjDLj2nPf626MOOmCX5JU5NCaiYuhRkfu229v080dV61sGeX1hb02SHqm/HGXJe5eT5xzPAVYhPANXxHcO/W3Ks1N299Mdz9wAfujIaRCgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDYjRxW4xZ0zTQjG8agTUztZ22Lc5WHwQagWd80zoy0cWZpxF6arulqkuj2JokuV6lpA9jNljZ73drUWmbCX1xIUMUE2DTrHV3frAu/mRj4t2sU26jpd7rGtnGsDWXLZW3Ib5vYumbQL6LZKS4trvl233T07fY0oCEzIU2uWfHW2gWpba8vSq1RHzx/SyU97/OuNm8upbodLiClbP57kGvyHMU6zmVmnKuYsTU2Y1W7o8e4OdGQWmJ+i5ZpYF2p6mfrtcHxYNKMj4UJcdhe35Bab1uPZ72mDacnZ2el1jd9+6N8tEbSuPT1TRCSuwZdtkrLJKmsbOu4NFvXa7BR0e8ozw1eRyur27JMbtbVyXRd622dFzQbZhwxcygbAFG4puejNkI38zQXgmHGG9dr3YXphKGG8SXTzN3NMnum+fxGS8f0qKTj1/a23lsSG+7I/AZPa9T1vmWvrBEvrcLcywpzTrvnMxucMrwus3W5OZ/bHR1vWl3zbGLGlsmJCam55xM3CMcmjMNd+05sAmbcGOQCqIbDTguzX3GsY0Figgfd+t19yYViuON5/rzOb7EzufMoMc/0E5MaNrW+ruG1zoS5fisVfR/gAoJl29z14eYjJijuumtfqSs0zxizsybUclrfmdhx1IwPwyHKIYRQ5LqcG9NsUFnkgq+G/m3GjCTWuWFmkkTtPpj7g9te+xO+iEAc/iISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNiNHFbTbGgQwShNvRanKwAABtFJREFUjp9rORtMYlbnPhsNLeganvdNA3nT69Q3JXYLmuWyTBulun2oVbVhayj0eLZb+mEXxtHva+PRZlObX9dqNanV64Pf637CWk2bnbqgEFezDWXd8XS/WW4aU2NH2tzY1GKu5317S0NNtjdXpXbq1AmpXVg8p1+R6zWdD13nuW387Jr86sVVNddWo6pNo00GjQ1UqE9ocE69qU2YW1trUquYQIWyady+vaW/hQ16MUEWeWcwYKa7oduRJDo+5pmOD3UXhtPQcW99S5trV01Ijh457FSVit4r+5k5x82FmZlzdW1dg+fStq5vdsoF+Q2ur1rV6zRN9TtNKUzO6FneqOg1vtky8wwb5uTmfPrFowYPugbv7ivyQrfFhVEM19w80AVvuNryuoZsJCVdX2S2w4VHjNCjHztE3YW2uXPGBJP4UITRwqZiE0YgJ+aIYVHufK6YML7p6Wldzsw9XIBlluqcr2yCLBIzbxkOrnqae1bU78jNeGCDc4a5Mcn8Xi6MI01N4KH5zmpsAkDMfmUpz1N4Wt+E0cXBBNXWTQCtCbrMzDXj3tW4McgFogxzgTbuOt3Y0Ln+/n17pbZtAoOnp/U5qdHQ/c/MHMK9+7DhWG78toEwOh64sU+Hal2XnfO4gC8bmuMCGm0yjX52xHAwh7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fVjNJg9Ifhmiu716Lue4drtvmnqbkACNeI0zUSdt8xaghL2TRmjmMNXmiY4AX3Hd2uNpbv9UxzfNP8uNsdDI9oNk3YRX1Can3ze/XM+tvtttTcPvRN8IbtLY0daWtDQ2jKpul3t62BAufOaQjN4tKS1Nz14c7VaCiEpV7Ra7dSduOUaT5v9qHXM9uRasPhenNSalPTs1LTFsch9DIdH1yAS82EdmQlHW9SM84VJtwiSwc/G5mAr6Sk42O9qcc4NqE251YWpeY665emZ6TW6+q5A3yfa0juwpyyrl5xPZPz0uuaMIZYv6MxdFk26iacoNBxZGtFQ6X6mW5bJdZ5RtfsQ5E/f1Dg0zUzFkjFB164uZYbq0ql0Zqj94eCg/w+KBdWk/VdQKEJq3F7ayab0ejTbVzi3PNJZubEhQlpikzIhHuOceE3bpI9nDFnQ0jdKW5qtarOH3bvWpDa4qJuW2rmBkU82kNBYoIXEhPy5Y5JZsZI93zigmOGx8NeqmOXHwzNYqP+huY52YVdhIjxBk8rldyzjhsLzHsTM+cpmYu/a879KNUTfThsyo03m5s6l3EhVevr+pz45JNPSm1h9y6puXt+au7vbu5h3xFFepxysz533CMzX3Dzz+GBw809bJiZDQd2YYzmKw03r7ITvBHxF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxm7kbrYuxME1141cuIxpYmmbfcamIfkIITmuiXBsakXmmjebpuIu7GDUsJ6SOSZmv4JpbOoaE/swHd2WxIRlpD3TPHXoO9JUgyj6fW1sG5lACdvs1p0TpgFuyRynLHUxG9iJ3HnUN7XUNNydmNRQl925NkxfX1+R2uqqCT8pBs/L3DQyT00D+WZdG7eXTMhEapqlB9un2I1BpuGyCWEpzDZXTDhWyTQ9j02gRjrc4T748J9+f/D3qZpGysGMrWlfj8lWV9ffyXW55uSUboc5TzqtLd0W7EiZOXcdFx7h7/m6WFrodbTZMcFz2eD1kFbM/d58gZsHtdu6Xyupnve91OxDYcIZzHXvGqG7vuVuXuUCKlxzeDeHyMx8LhoaXyPz39oL0xje3W/cf6d/Ef3YbWYFdiZ3P3LPTvakseeqnpjD994QQkiSsn4yGg5AGI2d65tas6HBc+2mBmKura9JzT3H5Wa/3NhSrWjIV88875RLekzK5igk8fMfu76Zt9iwThNi4X5VNzeM3Pjowrz4MyM84x+94dVS29rellqv54JwW1oz15E7z92z0vB7Dv/OQM/nhnmeajQ0bHfvvv1S27VrXmqpCcXrmmenWs08x7l3RGbgdJkuhXm4c0FlJRMSNDxI2HBVs22xed/m7g8uIMetzwaavYi5EUMVAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLGLCt+lGwAAAAAAAABeMvxFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAsfv/AJY9ImxcxnAkAAAAAElFTkSuQmCC\n", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_dark_issuedark_score
0True0.237196
1True0.197229
2True0.254188
3True0.229170
4True0.208907
.........
195False0.793840
196False1.000000
197False0.971560
198False0.862236
199False0.973533
\n", + "

200 rows × 2 columns

\n", + "
" + ], "text/plain": [ - "
" + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", + "\n", + "[200 rows x 2 columns]" ] }, "metadata": {}, @@ -4272,47 +4166,51 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "from IPython.display import display\n", + "\n", + "# Get the correlation scores for image properties\n", + "correlation_scores = lab._correlations_df\n", + "print(\"Correlation scores for image properties:\")\n", + "display(correlation_scores)\n", + "\n", + "# Get image-specific issues\n", + "issue_name = \"dark\"\n", + "image_issues = lab.get_issues(issue_name)\n", + "print(\"\\nImage-specific issues:\")\n", + "display(image_issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "\n", - "def plot_images(dataset_dict):\n", - " \"\"\"Plots the first 15 images from the dataset dictionary.\"\"\"\n", - " images = dataset_dict['image']\n", - " labels = dataset_dict['label']\n", - " \n", - " # Define the number of images to plot\n", - " num_images_to_plot = 15\n", - " num_cols = 5 # Number of columns in the plot grid\n", - " num_rows = (num_images_to_plot + num_cols - 1) // num_cols # Calculate rows needed\n", - " \n", - " # Create a figure\n", - " fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))\n", - " axes = axes.flatten()\n", - " \n", - " # Plot each image\n", - " for i in range(num_images_to_plot):\n", - " img = images[i]\n", - " label = labels[i]\n", - " axes[i].imshow(img)\n", - " axes[i].set_title(f'Label: {label}')\n", - " axes[i].axis('off')\n", - " \n", - " # Hide any remaining empty subplots\n", - " for i in range(num_images_to_plot, len(axes)):\n", - " axes[i].axis('off')\n", - " \n", - " # Show the plot\n", - " plt.tight_layout()\n", - " plt.show()\n", + "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", + "\n", + "Interpreting the results:\n", + "\n", + "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", + "\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", "\n", - "plot_images(dataset_dict)\n", - "plot_images(transformed_dataset_dict)" + "For real-world datasets, pay attention to:\n", + "\n", + "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Prevalent issues in the image_issues DataFrame\n", + "\n", + "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", + "\n", + "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 5. Finding image-specific property scores" + "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", + "\n", + "To understand the impact of spurious correlations, it can be helpful to compare our results with a dataset that doesn't have artificially introduced biases. In this case, we'll use the original CIFAR-10 subset." ] }, { @@ -4320,10 +4218,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:44.590173Z", - "iopub.status.busy": "2024-07-18T04:06:44.589828Z", - "iopub.status.idle": "2024-07-18T04:06:45.471688Z", - "shell.execute_reply": "2024-07-18T04:06:45.471060Z" + "iopub.execute_input": "2024-07-30T16:36:38.512133Z", + "iopub.status.busy": "2024-07-30T16:36:38.511200Z", + "iopub.status.idle": "2024-07-30T16:36:39.047457Z", + "shell.execute_reply": "2024-07-30T16:36:39.046797Z" } }, "outputs": [ @@ -4338,7 +4236,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1ba93e19df2346d8bc2249fbbe28c2da", + "model_id": "5704008e778b464799f617edec73de43", "version_major": 2, "version_minor": 0 }, @@ -4355,45 +4253,9 @@ "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n", - "Finding class_imbalance issues ...\n", - "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d35057cc20b446b2915fc9ff955d81f2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/200 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -4423,7 +4285,7 @@ " \n", " 0\n", " dark_score\n", - " 0.295\n", + " 0.300\n", " \n", " \n", " 1\n", @@ -4453,7 +4315,7 @@ " \n", " 6\n", " blurry_score\n", - " 0.325\n", + " 0.335\n", " \n", " \n", "\n", @@ -4461,29 +4323,25 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.295\n", + "0 dark_score 0.300\n", "1 light_score 0.415\n", "2 low_information_score 0.325\n", "3 odd_aspect_ratio_score 0.500\n", "4 odd_size_score 0.500\n", "5 grayscale_score 0.500\n", - "6 blurry_score 0.325" + "6 blurry_score 0.335" ] }, "metadata": {}, "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "### Image-specific property scores in the transformed dataset" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Image-specific issues in original dataset:\n" + ] }, { "data": { @@ -4506,59 +4364,86 @@ " \n", " \n", " \n", - " property\n", - " score\n", + " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " dark_score\n", - " 0.000\n", + " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.185\n", + " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " low_information_score\n", - " 0.015\n", + " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " odd_size_score\n", - " 0.500\n", + " False\n", + " 0.699518\n", " \n", " \n", - " 5\n", - " grayscale_score\n", - " 0.500\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 6\n", - " blurry_score\n", - " 0.015\n", + " 195\n", + " False\n", + " 0.793840\n", + " \n", + " \n", + " 196\n", + " False\n", + " 1.000000\n", + " \n", + " \n", + " 197\n", + " False\n", + " 0.971560\n", + " \n", + " \n", + " 198\n", + " False\n", + " 0.862236\n", + " \n", + " \n", + " 199\n", + " False\n", + " 0.973533\n", " \n", " \n", "\n", + "

200 rows × 2 columns

\n", "" ], "text/plain": [ - " property score\n", - "0 dark_score 0.000\n", - "1 light_score 0.185\n", - "2 low_information_score 0.015\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", - "6 blurry_score 0.015" + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", + "\n", + "[200 rows x 2 columns]" ] }, "metadata": {}, @@ -4566,28 +4451,35 @@ } ], "source": [ - "# Function to find image-specific property scores given the dataset object\n", - "def get_property_scores(dataset):\n", - " lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n", - " lab.find_issues()\n", - " return lab._spurious_correlation()\n", - "\n", - "# Finds specific property score in the dataframe containing property scores \n", - "def get_specific_property_score(property_scores_df, property_name):\n", - " return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]\n", - "\n", - "# Finding scores in original and transformed dataset\n", - "standard_property_scores = get_property_scores(dataset)\n", - "transformed_property_scores = get_property_scores(transformed_dataset)\n", - "\n", - "# Displaying the scores dataframe\n", - "display(Markdown(\"### Image-specific property scores in the original dataset\"))\n", - "display(standard_property_scores)\n", - "display(Markdown(\"### Image-specific property scores in the transformed dataset\"))\n", - "display(transformed_property_scores)\n", - "\n", - "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n", - "assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')" + "# Load the original dataset\n", + "original_data_dir = \"CIFAR-10-subset/original_images\"\n", + "original_dataset = load_image_dataset(original_data_dir)\n", + "\n", + "# Create a new Datalab instance and run analysis\n", + "original_lab = Datalab(data=original_dataset, label_name=\"label\", image_key=\"image\")\n", + "original_lab.find_issues()\n", + "\n", + "# Compare correlation scores\n", + "original_scores = original_lab._correlations_df\n", + "print(\"Correlation scores for original dataset:\")\n", + "display(original_scores)\n", + "\n", + "# Compare image-specific issues\n", + "original_issues = original_lab.get_issues(\"dark\")\n", + "print(\"\\nImage-specific issues in original dataset:\")\n", + "display(original_issues)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When comparing the results:\n", + "\n", + "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "2. Compare the number and types of image-specific issues detected.\n", + "\n", + "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] } ], @@ -4612,7 +4504,125 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "082f92a4818742ecbc4d1f4857988df5": { + "0a74b29d3db14bd1b43bfa76b01669f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d5b18ce4d00414fa7849f07f919f0c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "23ab6deed4f548d781711f2b69e1626d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7913d94eed4408cb306a3e2b47761cb", + "placeholder": "​", + "style": "IPY_MODEL_872924f1144146c999720f92d3ee8e2b", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "2ed4efbeb1874db0a5e2316cc6fdcc53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4d36e246db746c4acbc8f4787f82381", + "IPY_MODEL_357fb341466f4d6da6ea707fd3c1d55b", + "IPY_MODEL_5360fa3a0eed4207b44167db7bcfd0fa" + ], + "layout": "IPY_MODEL_f59fcaa8e8d04931980396c1bdc42425", + "tabbable": null, + "tooltip": null + } + }, + "357fb341466f4d6da6ea707fd3c1d55b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4628,94 +4638,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_32918bfba49c4b3b9416a88ed2da11e2", + "layout": "IPY_MODEL_f2cb72313c294a56bc0221871a2d5717", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8c33c90c192140fcb39f8e0fb7da534c", + "style": "IPY_MODEL_df924bb590a44f27a4f68916d0e77c53", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "19e7b8a023924ce1bdaa09961f57d5eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1ba93e19df2346d8bc2249fbbe28c2da": { + "489ca8ef4e094a6182021355bf8ff0e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23585f5daef7407391eadac7dbad07dc", - "IPY_MODEL_fdefd9edead8430e994cc0b608b54228", - "IPY_MODEL_b5a2e16c332146b09a0dd2087d5d539c" - ], - "layout": "IPY_MODEL_83981ca81e904c5da7185a278ae24f01", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a74b29d3db14bd1b43bfa76b01669f5", + "placeholder": "​", + "style": "IPY_MODEL_a8c94e907c12444e8d0364601f96e159", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 703.72it/s]" } }, - "23585f5daef7407391eadac7dbad07dc": { + "5360fa3a0eed4207b44167db7bcfd0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4730,15 +4686,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df3530bc714a437eb8417ba37251ba85", + "layout": "IPY_MODEL_845e948b5a894d6e94a4e04bf148519c", "placeholder": "​", - "style": "IPY_MODEL_347a7b0a267544dc826ad2b3d5f1049c", + "style": "IPY_MODEL_0d5b18ce4d00414fa7849f07f919f0c2", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 768.56it/s]" + } + }, + "5704008e778b464799f617edec73de43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_23ab6deed4f548d781711f2b69e1626d", + "IPY_MODEL_91b05b3271df489f93fcfc926fa4996d", + "IPY_MODEL_489ca8ef4e094a6182021355bf8ff0e0" + ], + "layout": "IPY_MODEL_bd875ac3a62042068a132488eecbb1c4", + "tabbable": null, + "tooltip": null } }, - "32918bfba49c4b3b9416a88ed2da11e2": { + "5bed25780c8d4b9c990b530de43dde8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4791,7 +4771,7 @@ "width": null } }, - "347a7b0a267544dc826ad2b3d5f1049c": { + "72b98c9996864aa9abad1934ce4b27c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4809,25 +4789,23 @@ "text_color": null } }, - "4239c58acfb54ff6adf6796d156be031": { + "7b2d92c1f6624498af65bda8fd36806a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5ba7f559a9da406493cf8689d8496a25": { + "845e948b5a894d6e94a4e04bf148519c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4880,7 +4858,7 @@ "width": null } }, - "756f2e8b41ae4894b44c354d6b8cc1f3": { + "872924f1144146c999720f92d3ee8e2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4898,7 +4876,33 @@ "text_color": null } }, - "83981ca81e904c5da7185a278ae24f01": { + "91b05b3271df489f93fcfc926fa4996d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bed25780c8d4b9c990b530de43dde8e", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b2d92c1f6624498af65bda8fd36806a", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "9ab790ab579f415bbc804c1f992660a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4951,23 +4955,25 @@ "width": null } }, - "8c33c90c192140fcb39f8e0fb7da534c": { + "a8c94e907c12444e8d0364601f96e159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93a20e1de6f0471daf520d49388c326d": { + "b7913d94eed4408cb306a3e2b47761cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5020,88 +5026,7 @@ "width": null } }, - "b5a2e16c332146b09a0dd2087d5d539c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ba7f559a9da406493cf8689d8496a25", - "placeholder": "​", - "style": "IPY_MODEL_4239c58acfb54ff6adf6796d156be031", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 681.35it/s]" - } - }, - "bf6016b0169f460290ed5938134db880": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c8838ce4540a48b487ecdf51e26a4c5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d35057cc20b446b2915fc9ff955d81f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dff6d70ab4ed4762bc4586d001f53274", - "IPY_MODEL_082f92a4818742ecbc4d1f4857988df5", - "IPY_MODEL_ff9de7e97a1047acabe0749ea6273a26" - ], - "layout": "IPY_MODEL_fb7e314d793f46dcbea0cef7c9a2f60f", - "tabbable": null, - "tooltip": null - } - }, - "df3530bc714a437eb8417ba37251ba85": { + "bd875ac3a62042068a132488eecbb1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5154,7 +5079,7 @@ "width": null } }, - "dff6d70ab4ed4762bc4586d001f53274": { + "d4d36e246db746c4acbc8f4787f82381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5169,15 +5094,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2a6647ccce04986a5bc483752fbbb50", + "layout": "IPY_MODEL_9ab790ab579f415bbc804c1f992660a0", "placeholder": "​", - "style": "IPY_MODEL_756f2e8b41ae4894b44c354d6b8cc1f3", + "style": "IPY_MODEL_72b98c9996864aa9abad1934ce4b27c3", "tabbable": null, "tooltip": null, "value": "100%" } }, - "e2a6647ccce04986a5bc483752fbbb50": { + "df924bb590a44f27a4f68916d0e77c53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f2cb72313c294a56bc0221871a2d5717": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5230,7 +5171,7 @@ "width": null } }, - "fb7e314d793f46dcbea0cef7c9a2f60f": { + "f59fcaa8e8d04931980396c1bdc42425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5282,55 +5223,6 @@ "visibility": null, "width": null } - }, - "fdefd9edead8430e994cc0b608b54228": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93a20e1de6f0471daf520d49388c326d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c8838ce4540a48b487ecdf51e26a4c5f", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ff9de7e97a1047acabe0749ea6273a26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19e7b8a023924ce1bdaa09961f57d5eb", - "placeholder": "​", - "style": "IPY_MODEL_bf6016b0169f460290ed5938134db880", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 672.89it/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 35668b032..b41d28ba4 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:49.364909Z", - "iopub.status.busy": "2024-07-18T04:06:49.364426Z", - "iopub.status.idle": "2024-07-18T04:06:50.490342Z", - "shell.execute_reply": "2024-07-18T04:06:50.489718Z" + "iopub.execute_input": "2024-07-30T16:36:43.263935Z", + "iopub.status.busy": "2024-07-30T16:36:43.263754Z", + "iopub.status.idle": "2024-07-30T16:36:44.677036Z", + "shell.execute_reply": "2024-07-30T16:36:44.676454Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.492975Z", - "iopub.status.busy": "2024-07-18T04:06:50.492531Z", - "iopub.status.idle": "2024-07-18T04:06:50.495387Z", - "shell.execute_reply": "2024-07-18T04:06:50.494931Z" + "iopub.execute_input": "2024-07-30T16:36:44.679704Z", + "iopub.status.busy": "2024-07-30T16:36:44.679219Z", + "iopub.status.idle": "2024-07-30T16:36:44.681960Z", + "shell.execute_reply": "2024-07-30T16:36:44.681516Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.497498Z", - "iopub.status.busy": "2024-07-18T04:06:50.497161Z", - "iopub.status.idle": "2024-07-18T04:06:50.508789Z", - "shell.execute_reply": "2024-07-18T04:06:50.508333Z" + "iopub.execute_input": "2024-07-30T16:36:44.684134Z", + "iopub.status.busy": "2024-07-30T16:36:44.683779Z", + "iopub.status.idle": "2024-07-30T16:36:44.695519Z", + "shell.execute_reply": "2024-07-30T16:36:44.695059Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:50.510953Z", - "iopub.status.busy": "2024-07-18T04:06:50.510604Z", - "iopub.status.idle": "2024-07-18T04:06:55.636999Z", - "shell.execute_reply": "2024-07-18T04:06:55.636495Z" + "iopub.execute_input": "2024-07-30T16:36:44.697494Z", + "iopub.status.busy": "2024-07-30T16:36:44.697321Z", + "iopub.status.idle": "2024-07-30T16:36:50.818481Z", + "shell.execute_reply": "2024-07-30T16:36:50.817920Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index c3e4aed8f..3a4b6f1a2 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 908e32eaa..0e282dd07 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:57.905922Z", - "iopub.status.busy": "2024-07-18T04:06:57.905505Z", - "iopub.status.idle": "2024-07-18T04:06:59.031674Z", - "shell.execute_reply": "2024-07-18T04:06:59.031132Z" + "iopub.execute_input": "2024-07-30T16:36:53.364898Z", + "iopub.status.busy": "2024-07-30T16:36:53.364365Z", + "iopub.status.idle": "2024-07-30T16:36:54.816084Z", + "shell.execute_reply": "2024-07-30T16:36:54.815502Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:59.034547Z", - "iopub.status.busy": "2024-07-18T04:06:59.034090Z", - "iopub.status.idle": "2024-07-18T04:06:59.037514Z", - "shell.execute_reply": "2024-07-18T04:06:59.037039Z" + "iopub.execute_input": "2024-07-30T16:36:54.819086Z", + "iopub.status.busy": "2024-07-30T16:36:54.818586Z", + "iopub.status.idle": "2024-07-30T16:36:54.821882Z", + "shell.execute_reply": "2024-07-30T16:36:54.821439Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:06:59.039633Z", - "iopub.status.busy": "2024-07-18T04:06:59.039294Z", - "iopub.status.idle": "2024-07-18T04:07:02.365487Z", - "shell.execute_reply": "2024-07-18T04:07:02.364710Z" + "iopub.execute_input": "2024-07-30T16:36:54.824015Z", + "iopub.status.busy": "2024-07-30T16:36:54.823672Z", + "iopub.status.idle": "2024-07-30T16:36:58.536010Z", + "shell.execute_reply": "2024-07-30T16:36:58.535180Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.368915Z", - "iopub.status.busy": "2024-07-18T04:07:02.368093Z", - "iopub.status.idle": "2024-07-18T04:07:02.410734Z", - "shell.execute_reply": "2024-07-18T04:07:02.410117Z" + "iopub.execute_input": "2024-07-30T16:36:58.539755Z", + "iopub.status.busy": "2024-07-30T16:36:58.538755Z", + "iopub.status.idle": "2024-07-30T16:36:58.591095Z", + "shell.execute_reply": "2024-07-30T16:36:58.590433Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.413396Z", - "iopub.status.busy": "2024-07-18T04:07:02.413137Z", - "iopub.status.idle": "2024-07-18T04:07:02.451147Z", - "shell.execute_reply": "2024-07-18T04:07:02.450498Z" + "iopub.execute_input": "2024-07-30T16:36:58.593884Z", + "iopub.status.busy": "2024-07-30T16:36:58.593478Z", + "iopub.status.idle": "2024-07-30T16:36:58.639623Z", + "shell.execute_reply": "2024-07-30T16:36:58.638845Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.453755Z", - "iopub.status.busy": "2024-07-18T04:07:02.453375Z", - "iopub.status.idle": "2024-07-18T04:07:02.456615Z", - "shell.execute_reply": "2024-07-18T04:07:02.456146Z" + "iopub.execute_input": "2024-07-30T16:36:58.642513Z", + "iopub.status.busy": "2024-07-30T16:36:58.642101Z", + "iopub.status.idle": "2024-07-30T16:36:58.645752Z", + "shell.execute_reply": "2024-07-30T16:36:58.645291Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.458726Z", - "iopub.status.busy": "2024-07-18T04:07:02.458390Z", - "iopub.status.idle": "2024-07-18T04:07:02.460984Z", - "shell.execute_reply": "2024-07-18T04:07:02.460533Z" + "iopub.execute_input": "2024-07-30T16:36:58.647868Z", + "iopub.status.busy": "2024-07-30T16:36:58.647530Z", + "iopub.status.idle": "2024-07-30T16:36:58.650324Z", + "shell.execute_reply": "2024-07-30T16:36:58.649625Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.463310Z", - "iopub.status.busy": "2024-07-18T04:07:02.462737Z", - "iopub.status.idle": "2024-07-18T04:07:02.489598Z", - "shell.execute_reply": "2024-07-18T04:07:02.489036Z" + "iopub.execute_input": "2024-07-30T16:36:58.652675Z", + "iopub.status.busy": "2024-07-30T16:36:58.652185Z", + "iopub.status.idle": "2024-07-30T16:36:58.676038Z", + "shell.execute_reply": "2024-07-30T16:36:58.675495Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d7a01475effc42c7a0d0df5831be2afd", + "model_id": "57581a07cda143f5ae3947a8ceb2effa", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2060b8b81e144c6a49a7e7fa3958df1", + "model_id": "8036196b7e194ee38336f33c15df9344", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.494143Z", - "iopub.status.busy": "2024-07-18T04:07:02.493831Z", - "iopub.status.idle": "2024-07-18T04:07:02.500460Z", - "shell.execute_reply": "2024-07-18T04:07:02.499905Z" + "iopub.execute_input": "2024-07-30T16:36:58.681445Z", + "iopub.status.busy": "2024-07-30T16:36:58.681234Z", + "iopub.status.idle": "2024-07-30T16:36:58.688163Z", + "shell.execute_reply": "2024-07-30T16:36:58.687730Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.502621Z", - "iopub.status.busy": "2024-07-18T04:07:02.502180Z", - "iopub.status.idle": "2024-07-18T04:07:02.505851Z", - "shell.execute_reply": "2024-07-18T04:07:02.505417Z" + "iopub.execute_input": "2024-07-30T16:36:58.690192Z", + "iopub.status.busy": "2024-07-30T16:36:58.689845Z", + "iopub.status.idle": "2024-07-30T16:36:58.693407Z", + "shell.execute_reply": "2024-07-30T16:36:58.692931Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.507955Z", - "iopub.status.busy": "2024-07-18T04:07:02.507640Z", - "iopub.status.idle": "2024-07-18T04:07:02.513939Z", - "shell.execute_reply": "2024-07-18T04:07:02.513397Z" + "iopub.execute_input": "2024-07-30T16:36:58.695508Z", + "iopub.status.busy": "2024-07-30T16:36:58.695194Z", + "iopub.status.idle": "2024-07-30T16:36:58.701664Z", + "shell.execute_reply": "2024-07-30T16:36:58.701093Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.516039Z", - "iopub.status.busy": "2024-07-18T04:07:02.515728Z", - "iopub.status.idle": "2024-07-18T04:07:02.555933Z", - "shell.execute_reply": "2024-07-18T04:07:02.555220Z" + "iopub.execute_input": "2024-07-30T16:36:58.703807Z", + "iopub.status.busy": "2024-07-30T16:36:58.703473Z", + "iopub.status.idle": "2024-07-30T16:36:58.753286Z", + "shell.execute_reply": "2024-07-30T16:36:58.752623Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.558438Z", - "iopub.status.busy": "2024-07-18T04:07:02.558213Z", - "iopub.status.idle": "2024-07-18T04:07:02.598165Z", - "shell.execute_reply": "2024-07-18T04:07:02.597449Z" + "iopub.execute_input": "2024-07-30T16:36:58.756242Z", + "iopub.status.busy": "2024-07-30T16:36:58.755751Z", + "iopub.status.idle": "2024-07-30T16:36:58.810969Z", + "shell.execute_reply": "2024-07-30T16:36:58.810185Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.601310Z", - "iopub.status.busy": "2024-07-18T04:07:02.600741Z", - "iopub.status.idle": "2024-07-18T04:07:02.727436Z", - "shell.execute_reply": "2024-07-18T04:07:02.726793Z" + "iopub.execute_input": "2024-07-30T16:36:58.813764Z", + "iopub.status.busy": "2024-07-30T16:36:58.813494Z", + "iopub.status.idle": "2024-07-30T16:36:58.954189Z", + "shell.execute_reply": "2024-07-30T16:36:58.953479Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:02.730278Z", - "iopub.status.busy": "2024-07-18T04:07:02.729603Z", - "iopub.status.idle": "2024-07-18T04:07:05.738103Z", - "shell.execute_reply": "2024-07-18T04:07:05.737444Z" + "iopub.execute_input": "2024-07-30T16:36:58.956979Z", + "iopub.status.busy": "2024-07-30T16:36:58.956298Z", + "iopub.status.idle": "2024-07-30T16:37:02.028094Z", + "shell.execute_reply": "2024-07-30T16:37:02.027507Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.740463Z", - "iopub.status.busy": "2024-07-18T04:07:05.740273Z", - "iopub.status.idle": "2024-07-18T04:07:05.799846Z", - "shell.execute_reply": "2024-07-18T04:07:05.799281Z" + "iopub.execute_input": "2024-07-30T16:37:02.030600Z", + "iopub.status.busy": "2024-07-30T16:37:02.030207Z", + "iopub.status.idle": "2024-07-30T16:37:02.089072Z", + "shell.execute_reply": "2024-07-30T16:37:02.088458Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.801850Z", - "iopub.status.busy": "2024-07-18T04:07:05.801541Z", - "iopub.status.idle": "2024-07-18T04:07:05.841021Z", - "shell.execute_reply": "2024-07-18T04:07:05.840447Z" + "iopub.execute_input": "2024-07-30T16:37:02.091254Z", + "iopub.status.busy": "2024-07-30T16:37:02.091064Z", + "iopub.status.idle": "2024-07-30T16:37:02.134008Z", + "shell.execute_reply": "2024-07-30T16:37:02.133534Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "a846fe33", + "id": "984213fa", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "abe989bf", + "id": "2618e545", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "682e16e3", + "id": "1e0becd2", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "82d68237", + "id": "cba58da6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.843106Z", - "iopub.status.busy": "2024-07-18T04:07:05.842779Z", - "iopub.status.idle": "2024-07-18T04:07:05.850387Z", - "shell.execute_reply": "2024-07-18T04:07:05.849822Z" + "iopub.execute_input": "2024-07-30T16:37:02.136245Z", + "iopub.status.busy": "2024-07-30T16:37:02.136064Z", + "iopub.status.idle": "2024-07-30T16:37:02.143652Z", + "shell.execute_reply": "2024-07-30T16:37:02.143210Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "e698fd46", + "id": "fea318fb", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e6b8075c", + "id": "6afc3734", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.852549Z", - "iopub.status.busy": "2024-07-18T04:07:05.852221Z", - "iopub.status.idle": "2024-07-18T04:07:05.870747Z", - "shell.execute_reply": "2024-07-18T04:07:05.870171Z" + "iopub.execute_input": "2024-07-30T16:37:02.145731Z", + "iopub.status.busy": "2024-07-30T16:37:02.145388Z", + "iopub.status.idle": "2024-07-30T16:37:02.165432Z", + "shell.execute_reply": "2024-07-30T16:37:02.164935Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "307c5ea3", + "id": "b8513ca9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:05.873062Z", - "iopub.status.busy": "2024-07-18T04:07:05.872717Z", - "iopub.status.idle": "2024-07-18T04:07:05.876179Z", - "shell.execute_reply": "2024-07-18T04:07:05.875603Z" + "iopub.execute_input": "2024-07-30T16:37:02.167476Z", + "iopub.status.busy": "2024-07-30T16:37:02.167285Z", + "iopub.status.idle": "2024-07-30T16:37:02.170854Z", + "shell.execute_reply": "2024-07-30T16:37:02.170369Z" } }, "outputs": [ @@ -1622,99 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03f5f6546d474242bff21fb50168dc50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "042b5f7e6c694220aa1fa02292722c76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b7dad2904b8473591e036cf2e6f2053", - "placeholder": "​", - "style": "IPY_MODEL_3ec9bfd2314245f4b085fd8f68c1ca26", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "10eb4ef59cef44678cef5470d00d8c38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "142e5edc286d4e3790a59d3eb720f384": { + "0b139128833c45f089e40c4755cc2721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1732,25 +1640,33 @@ "text_color": null } }, - "196062f1252744b0bf7d1cd007823e1a": { + "2cc4889e619f4d3e9043341064b11c7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52bb780bf78947d192b9701de2336602", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a7b7b5c4aa8470db022c5fd5f7f5217", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "235633e658e345b7954a45d55013630c": { + "3fad135171fd4a1783040cd5e00be0a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1765,33 +1681,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78ce2f50bcd64118ac50de4e4d76ec75", + "layout": "IPY_MODEL_bf526f5c8d204d9dabafe472f6d5a633", "placeholder": "​", - "style": "IPY_MODEL_142e5edc286d4e3790a59d3eb720f384", + "style": "IPY_MODEL_cab24e4c26614d0496ef8c4fa57cb547", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1028368.56it/s]" } }, - "3ec9bfd2314245f4b085fd8f68c1ca26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b7dad2904b8473591e036cf2e6f2053": { + "52bb780bf78947d192b9701de2336602": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1844,59 +1742,84 @@ "width": null } }, - "57900003d6e54605b35f04067ae68062": { + "57581a07cda143f5ae3947a8ceb2effa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03f5f6546d474242bff21fb50168dc50", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_10eb4ef59cef44678cef5470d00d8c38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8254c641447480aa7f722801a84cae4", + "IPY_MODEL_2cc4889e619f4d3e9043341064b11c7c", + "IPY_MODEL_3fad135171fd4a1783040cd5e00be0a8" + ], + "layout": "IPY_MODEL_7b88ca779115406292c37cba27c25c20", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "6207ca46ed83432aa9815e733e24936c": { - "model_module": "@jupyter-widgets/controls", + "617558923b2244798dd8e64734279f0c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f935868fd7e4502803a5d16b92a2924", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e7a29fb812664299960bcc8fa3e70872", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e6e3cc4bb714d3f8590c41b962b2a1e": { + "6fa5f4c53bb04dfe94f30f73c931e9ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1911,15 +1834,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9057d5406e10486eb9b0d222aec6c173", + "layout": "IPY_MODEL_8c5f02c3ba3b4e35a7fb7b38460ea0c9", "placeholder": "​", - "style": "IPY_MODEL_93e759109ba04075acb0a71d2e97372b", + "style": "IPY_MODEL_f809c3480764400ea9f63b20e3e395c1", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1074003.02it/s]" + "value": "number of examples processed for checking labels: " } }, - "6f935868fd7e4502803a5d16b92a2924": { + "7b88ca779115406292c37cba27c25c20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1972,7 +1895,47 @@ "width": null } }, - "78ce2f50bcd64118ac50de4e4d76ec75": { + "8036196b7e194ee38336f33c15df9344": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fa5f4c53bb04dfe94f30f73c931e9ce", + "IPY_MODEL_acbe71dfaa064b86ac9d438d3f49c584", + "IPY_MODEL_ad2efaf794734426b265156be3d7a946" + ], + "layout": "IPY_MODEL_e9893acd97ab48599094be49c014c0aa", + "tabbable": null, + "tooltip": null + } + }, + "815bf26fdf864b97a1dcad97921e8ca0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "884f09022ec44bdc8c0f021616c3bac7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2025,7 +1988,7 @@ "width": null } }, - "9057d5406e10486eb9b0d222aec6c173": { + "8c5f02c3ba3b4e35a7fb7b38460ea0c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,49 +2041,23 @@ "width": null } }, - "93e759109ba04075acb0a71d2e97372b": { + "9a7b7b5c4aa8470db022c5fd5f7f5217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2060b8b81e144c6a49a7e7fa3958df1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_235633e658e345b7954a45d55013630c", - "IPY_MODEL_6207ca46ed83432aa9815e733e24936c", - "IPY_MODEL_ca86fa6464b747efa8cb70b6b43d5c8b" - ], - "layout": "IPY_MODEL_fd3bd7e5134a40e88254588af30968c5", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "ca86fa6464b747efa8cb70b6b43d5c8b": { + "a8254c641447480aa7f722801a84cae4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2135,55 +2072,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2a4770130074f03a1f894fe91ba0ef7", + "layout": "IPY_MODEL_617558923b2244798dd8e64734279f0c", "placeholder": "​", - "style": "IPY_MODEL_196062f1252744b0bf7d1cd007823e1a", + "style": "IPY_MODEL_0b139128833c45f089e40c4755cc2721", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1367514.59it/s]" + "value": "number of examples processed for estimating thresholds: " } }, - "d7a01475effc42c7a0d0df5831be2afd": { + "acbe71dfaa064b86ac9d438d3f49c584": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_042b5f7e6c694220aa1fa02292722c76", - "IPY_MODEL_57900003d6e54605b35f04067ae68062", - "IPY_MODEL_6e6e3cc4bb714d3f8590c41b962b2a1e" - ], - "layout": "IPY_MODEL_ec1db4ec95cb4fa487df30123ab7e1fc", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ea2d8ca3aa264b30ab6829a95956260e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_815bf26fdf864b97a1dcad97921e8ca0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "e7a29fb812664299960bcc8fa3e70872": { + "ad2efaf794734426b265156be3d7a946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_884f09022ec44bdc8c0f021616c3bac7", + "placeholder": "​", + "style": "IPY_MODEL_d8abcd65840740c1ab4448e80f8d6650", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1696313.19it/s]" } }, - "ec1db4ec95cb4fa487df30123ab7e1fc": { + "bf526f5c8d204d9dabafe472f6d5a633": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2236,7 +2182,43 @@ "width": null } }, - "f2a4770130074f03a1f894fe91ba0ef7": { + "cab24e4c26614d0496ef8c4fa57cb547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d8abcd65840740c1ab4448e80f8d6650": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e9893acd97ab48599094be49c014c0aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,7 +2271,7 @@ "width": null } }, - "fd3bd7e5134a40e88254588af30968c5": { + "ea2d8ca3aa264b30ab6829a95956260e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2323,24 @@ "visibility": null, "width": null } + }, + "f809c3480764400ea9f63b20e3e395c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 484d8de84..839c45673 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:10.188653Z", - "iopub.status.busy": "2024-07-18T04:07:10.188169Z", - "iopub.status.idle": "2024-07-18T04:07:11.330300Z", - "shell.execute_reply": "2024-07-18T04:07:11.329753Z" + "iopub.execute_input": "2024-07-30T16:37:06.847486Z", + "iopub.status.busy": "2024-07-30T16:37:06.846996Z", + "iopub.status.idle": "2024-07-30T16:37:08.300373Z", + "shell.execute_reply": "2024-07-30T16:37:08.299802Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.332925Z", - "iopub.status.busy": "2024-07-18T04:07:11.332477Z", - "iopub.status.idle": "2024-07-18T04:07:11.336208Z", - "shell.execute_reply": "2024-07-18T04:07:11.335748Z" + "iopub.execute_input": "2024-07-30T16:37:08.303031Z", + "iopub.status.busy": "2024-07-30T16:37:08.302535Z", + "iopub.status.idle": "2024-07-30T16:37:08.306381Z", + "shell.execute_reply": "2024-07-30T16:37:08.305889Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.338250Z", - "iopub.status.busy": "2024-07-18T04:07:11.337833Z", - "iopub.status.idle": "2024-07-18T04:07:11.871502Z", - "shell.execute_reply": "2024-07-18T04:07:11.870959Z" + "iopub.execute_input": "2024-07-30T16:37:08.308567Z", + "iopub.status.busy": "2024-07-30T16:37:08.308093Z", + "iopub.status.idle": "2024-07-30T16:37:08.564617Z", + "shell.execute_reply": "2024-07-30T16:37:08.564044Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.873441Z", - "iopub.status.busy": "2024-07-18T04:07:11.873281Z", - "iopub.status.idle": "2024-07-18T04:07:11.878931Z", - "shell.execute_reply": "2024-07-18T04:07:11.878446Z" + "iopub.execute_input": "2024-07-30T16:37:08.567009Z", + "iopub.status.busy": "2024-07-30T16:37:08.566570Z", + "iopub.status.idle": "2024-07-30T16:37:08.572786Z", + "shell.execute_reply": "2024-07-30T16:37:08.572249Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.880976Z", - "iopub.status.busy": "2024-07-18T04:07:11.880651Z", - "iopub.status.idle": "2024-07-18T04:07:11.887373Z", - "shell.execute_reply": "2024-07-18T04:07:11.886907Z" + "iopub.execute_input": "2024-07-30T16:37:08.575053Z", + "iopub.status.busy": "2024-07-30T16:37:08.574648Z", + "iopub.status.idle": "2024-07-30T16:37:08.581553Z", + "shell.execute_reply": "2024-07-30T16:37:08.580995Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.889413Z", - "iopub.status.busy": "2024-07-18T04:07:11.889074Z", - "iopub.status.idle": "2024-07-18T04:07:11.893459Z", - "shell.execute_reply": "2024-07-18T04:07:11.892989Z" + "iopub.execute_input": "2024-07-30T16:37:08.583694Z", + "iopub.status.busy": "2024-07-30T16:37:08.583295Z", + "iopub.status.idle": "2024-07-30T16:37:08.588214Z", + "shell.execute_reply": "2024-07-30T16:37:08.587641Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.895449Z", - "iopub.status.busy": "2024-07-18T04:07:11.895115Z", - "iopub.status.idle": "2024-07-18T04:07:11.900660Z", - "shell.execute_reply": "2024-07-18T04:07:11.900222Z" + "iopub.execute_input": "2024-07-30T16:37:08.590172Z", + "iopub.status.busy": "2024-07-30T16:37:08.589849Z", + "iopub.status.idle": "2024-07-30T16:37:08.595724Z", + "shell.execute_reply": "2024-07-30T16:37:08.595139Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.902522Z", - "iopub.status.busy": "2024-07-18T04:07:11.902251Z", - "iopub.status.idle": "2024-07-18T04:07:11.906435Z", - "shell.execute_reply": "2024-07-18T04:07:11.905884Z" + "iopub.execute_input": "2024-07-30T16:37:08.597670Z", + "iopub.status.busy": "2024-07-30T16:37:08.597361Z", + "iopub.status.idle": "2024-07-30T16:37:08.601523Z", + "shell.execute_reply": "2024-07-30T16:37:08.600966Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.908561Z", - "iopub.status.busy": "2024-07-18T04:07:11.908243Z", - "iopub.status.idle": "2024-07-18T04:07:11.972621Z", - "shell.execute_reply": "2024-07-18T04:07:11.972012Z" + "iopub.execute_input": "2024-07-30T16:37:08.603521Z", + "iopub.status.busy": "2024-07-30T16:37:08.603187Z", + "iopub.status.idle": "2024-07-30T16:37:08.669967Z", + "shell.execute_reply": "2024-07-30T16:37:08.669384Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.977951Z", - "iopub.status.busy": "2024-07-18T04:07:11.975122Z", - "iopub.status.idle": "2024-07-18T04:07:11.988974Z", - "shell.execute_reply": "2024-07-18T04:07:11.988486Z" + "iopub.execute_input": "2024-07-30T16:37:08.672642Z", + "iopub.status.busy": "2024-07-30T16:37:08.672054Z", + "iopub.status.idle": "2024-07-30T16:37:08.683309Z", + "shell.execute_reply": "2024-07-30T16:37:08.682790Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:11.991731Z", - "iopub.status.busy": "2024-07-18T04:07:11.991456Z", - "iopub.status.idle": "2024-07-18T04:07:12.012930Z", - "shell.execute_reply": "2024-07-18T04:07:12.012429Z" + "iopub.execute_input": "2024-07-30T16:37:08.685772Z", + "iopub.status.busy": "2024-07-30T16:37:08.685236Z", + "iopub.status.idle": "2024-07-30T16:37:08.705410Z", + "shell.execute_reply": "2024-07-30T16:37:08.704880Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.016335Z", - "iopub.status.busy": "2024-07-18T04:07:12.015426Z", - "iopub.status.idle": "2024-07-18T04:07:12.021208Z", - "shell.execute_reply": "2024-07-18T04:07:12.020724Z" + "iopub.execute_input": "2024-07-30T16:37:08.707757Z", + "iopub.status.busy": "2024-07-30T16:37:08.707363Z", + "iopub.status.idle": "2024-07-30T16:37:08.711693Z", + "shell.execute_reply": "2024-07-30T16:37:08.711182Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.024634Z", - "iopub.status.busy": "2024-07-18T04:07:12.023730Z", - "iopub.status.idle": "2024-07-18T04:07:12.029722Z", - "shell.execute_reply": "2024-07-18T04:07:12.029237Z" + "iopub.execute_input": "2024-07-30T16:37:08.714035Z", + "iopub.status.busy": "2024-07-30T16:37:08.713629Z", + "iopub.status.idle": "2024-07-30T16:37:08.718166Z", + "shell.execute_reply": "2024-07-30T16:37:08.717631Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.032990Z", - "iopub.status.busy": "2024-07-18T04:07:12.032270Z", - "iopub.status.idle": "2024-07-18T04:07:12.041800Z", - "shell.execute_reply": "2024-07-18T04:07:12.041134Z" + "iopub.execute_input": "2024-07-30T16:37:08.720507Z", + "iopub.status.busy": "2024-07-30T16:37:08.720111Z", + "iopub.status.idle": "2024-07-30T16:37:08.731439Z", + "shell.execute_reply": "2024-07-30T16:37:08.730910Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.044012Z", - "iopub.status.busy": "2024-07-18T04:07:12.043657Z", - "iopub.status.idle": "2024-07-18T04:07:12.048264Z", - "shell.execute_reply": "2024-07-18T04:07:12.047845Z" + "iopub.execute_input": "2024-07-30T16:37:08.733378Z", + "iopub.status.busy": "2024-07-30T16:37:08.733061Z", + "iopub.status.idle": "2024-07-30T16:37:08.737822Z", + "shell.execute_reply": "2024-07-30T16:37:08.737271Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.050252Z", - "iopub.status.busy": "2024-07-18T04:07:12.049932Z", - "iopub.status.idle": "2024-07-18T04:07:12.161492Z", - "shell.execute_reply": "2024-07-18T04:07:12.160998Z" + "iopub.execute_input": "2024-07-30T16:37:08.739993Z", + "iopub.status.busy": "2024-07-30T16:37:08.739678Z", + "iopub.status.idle": "2024-07-30T16:37:08.850454Z", + "shell.execute_reply": "2024-07-30T16:37:08.849916Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.163832Z", - "iopub.status.busy": "2024-07-18T04:07:12.163548Z", - "iopub.status.idle": "2024-07-18T04:07:12.169337Z", - "shell.execute_reply": "2024-07-18T04:07:12.168771Z" + "iopub.execute_input": "2024-07-30T16:37:08.852557Z", + "iopub.status.busy": "2024-07-30T16:37:08.852223Z", + "iopub.status.idle": "2024-07-30T16:37:08.858285Z", + "shell.execute_reply": "2024-07-30T16:37:08.857774Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:12.171714Z", - "iopub.status.busy": "2024-07-18T04:07:12.171220Z", - "iopub.status.idle": "2024-07-18T04:07:14.132704Z", - "shell.execute_reply": "2024-07-18T04:07:14.132092Z" + "iopub.execute_input": "2024-07-30T16:37:08.860639Z", + "iopub.status.busy": "2024-07-30T16:37:08.860116Z", + "iopub.status.idle": "2024-07-30T16:37:11.081523Z", + "shell.execute_reply": "2024-07-30T16:37:11.080894Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.136911Z", - "iopub.status.busy": "2024-07-18T04:07:14.135833Z", - "iopub.status.idle": "2024-07-18T04:07:14.150521Z", - "shell.execute_reply": "2024-07-18T04:07:14.150012Z" + "iopub.execute_input": "2024-07-30T16:37:11.085782Z", + "iopub.status.busy": "2024-07-30T16:37:11.084683Z", + "iopub.status.idle": "2024-07-30T16:37:11.100012Z", + "shell.execute_reply": "2024-07-30T16:37:11.099506Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.154039Z", - "iopub.status.busy": "2024-07-18T04:07:14.153107Z", - "iopub.status.idle": "2024-07-18T04:07:14.157115Z", - "shell.execute_reply": "2024-07-18T04:07:14.156603Z" + "iopub.execute_input": "2024-07-30T16:37:11.103570Z", + "iopub.status.busy": "2024-07-30T16:37:11.102644Z", + "iopub.status.idle": "2024-07-30T16:37:11.106644Z", + "shell.execute_reply": "2024-07-30T16:37:11.106149Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.160572Z", - "iopub.status.busy": "2024-07-18T04:07:14.159645Z", - "iopub.status.idle": "2024-07-18T04:07:14.165136Z", - "shell.execute_reply": "2024-07-18T04:07:14.164638Z" + "iopub.execute_input": "2024-07-30T16:37:11.110093Z", + "iopub.status.busy": "2024-07-30T16:37:11.109154Z", + "iopub.status.idle": "2024-07-30T16:37:11.114773Z", + "shell.execute_reply": "2024-07-30T16:37:11.114272Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.168650Z", - "iopub.status.busy": "2024-07-18T04:07:14.167719Z", - "iopub.status.idle": "2024-07-18T04:07:14.201487Z", - "shell.execute_reply": "2024-07-18T04:07:14.200991Z" + "iopub.execute_input": "2024-07-30T16:37:11.118266Z", + "iopub.status.busy": "2024-07-30T16:37:11.117324Z", + "iopub.status.idle": "2024-07-30T16:37:11.149228Z", + "shell.execute_reply": "2024-07-30T16:37:11.148699Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.204946Z", - "iopub.status.busy": "2024-07-18T04:07:14.204060Z", - "iopub.status.idle": "2024-07-18T04:07:14.715733Z", - "shell.execute_reply": "2024-07-18T04:07:14.715232Z" + "iopub.execute_input": "2024-07-30T16:37:11.152348Z", + "iopub.status.busy": "2024-07-30T16:37:11.151900Z", + "iopub.status.idle": "2024-07-30T16:37:11.662729Z", + "shell.execute_reply": "2024-07-30T16:37:11.662153Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.719208Z", - "iopub.status.busy": "2024-07-18T04:07:14.718293Z", - "iopub.status.idle": "2024-07-18T04:07:14.851216Z", - "shell.execute_reply": "2024-07-18T04:07:14.850601Z" + "iopub.execute_input": "2024-07-30T16:37:11.665547Z", + "iopub.status.busy": "2024-07-30T16:37:11.665125Z", + "iopub.status.idle": "2024-07-30T16:37:11.811588Z", + "shell.execute_reply": "2024-07-30T16:37:11.810893Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.854177Z", - "iopub.status.busy": "2024-07-18T04:07:14.853837Z", - "iopub.status.idle": "2024-07-18T04:07:14.860224Z", - "shell.execute_reply": "2024-07-18T04:07:14.859741Z" + "iopub.execute_input": "2024-07-30T16:37:11.814740Z", + "iopub.status.busy": "2024-07-30T16:37:11.814355Z", + "iopub.status.idle": "2024-07-30T16:37:11.821641Z", + "shell.execute_reply": "2024-07-30T16:37:11.821112Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.862683Z", - "iopub.status.busy": "2024-07-18T04:07:14.862372Z", - "iopub.status.idle": "2024-07-18T04:07:14.868198Z", - "shell.execute_reply": "2024-07-18T04:07:14.867715Z" + "iopub.execute_input": "2024-07-30T16:37:11.825192Z", + "iopub.status.busy": "2024-07-30T16:37:11.824261Z", + "iopub.status.idle": "2024-07-30T16:37:11.832276Z", + "shell.execute_reply": "2024-07-30T16:37:11.831780Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.870508Z", - "iopub.status.busy": "2024-07-18T04:07:14.870130Z", - "iopub.status.idle": "2024-07-18T04:07:14.875378Z", - "shell.execute_reply": "2024-07-18T04:07:14.874887Z" + "iopub.execute_input": "2024-07-30T16:37:11.835774Z", + "iopub.status.busy": "2024-07-30T16:37:11.834852Z", + "iopub.status.idle": "2024-07-30T16:37:11.842134Z", + "shell.execute_reply": "2024-07-30T16:37:11.841617Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.877652Z", - "iopub.status.busy": "2024-07-18T04:07:14.877284Z", - "iopub.status.idle": "2024-07-18T04:07:14.881329Z", - "shell.execute_reply": "2024-07-18T04:07:14.880859Z" + "iopub.execute_input": "2024-07-30T16:37:11.845557Z", + "iopub.status.busy": "2024-07-30T16:37:11.844646Z", + "iopub.status.idle": "2024-07-30T16:37:11.849988Z", + "shell.execute_reply": "2024-07-30T16:37:11.849571Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.883619Z", - "iopub.status.busy": "2024-07-18T04:07:14.883248Z", - "iopub.status.idle": "2024-07-18T04:07:14.887859Z", - "shell.execute_reply": "2024-07-18T04:07:14.887364Z" + "iopub.execute_input": "2024-07-30T16:37:11.852085Z", + "iopub.status.busy": "2024-07-30T16:37:11.851735Z", + "iopub.status.idle": "2024-07-30T16:37:11.856242Z", + "shell.execute_reply": "2024-07-30T16:37:11.855836Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.890172Z", - "iopub.status.busy": "2024-07-18T04:07:14.889802Z", - "iopub.status.idle": "2024-07-18T04:07:14.967278Z", - "shell.execute_reply": "2024-07-18T04:07:14.966734Z" + "iopub.execute_input": "2024-07-30T16:37:11.858461Z", + "iopub.status.busy": "2024-07-30T16:37:11.858025Z", + "iopub.status.idle": "2024-07-30T16:37:11.938221Z", + "shell.execute_reply": "2024-07-30T16:37:11.937709Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.969554Z", - "iopub.status.busy": "2024-07-18T04:07:14.969394Z", - "iopub.status.idle": "2024-07-18T04:07:14.980191Z", - "shell.execute_reply": "2024-07-18T04:07:14.979708Z" + "iopub.execute_input": "2024-07-30T16:37:11.940497Z", + "iopub.status.busy": "2024-07-30T16:37:11.940305Z", + "iopub.status.idle": "2024-07-30T16:37:11.950235Z", + "shell.execute_reply": "2024-07-30T16:37:11.949598Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.983421Z", - "iopub.status.busy": "2024-07-18T04:07:14.982704Z", - "iopub.status.idle": "2024-07-18T04:07:14.986309Z", - "shell.execute_reply": "2024-07-18T04:07:14.985259Z" + "iopub.execute_input": "2024-07-30T16:37:11.952707Z", + "iopub.status.busy": "2024-07-30T16:37:11.952413Z", + "iopub.status.idle": "2024-07-30T16:37:11.955525Z", + "shell.execute_reply": "2024-07-30T16:37:11.954939Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.988371Z", - "iopub.status.busy": "2024-07-18T04:07:14.988062Z", - "iopub.status.idle": "2024-07-18T04:07:14.997162Z", - "shell.execute_reply": "2024-07-18T04:07:14.996732Z" + "iopub.execute_input": "2024-07-30T16:37:11.957491Z", + "iopub.status.busy": "2024-07-30T16:37:11.957322Z", + "iopub.status.idle": "2024-07-30T16:37:11.968955Z", + "shell.execute_reply": "2024-07-30T16:37:11.968450Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:14.999345Z", - "iopub.status.busy": "2024-07-18T04:07:14.999017Z", - "iopub.status.idle": "2024-07-18T04:07:15.005252Z", - "shell.execute_reply": "2024-07-18T04:07:15.004791Z" + "iopub.execute_input": "2024-07-30T16:37:11.971083Z", + "iopub.status.busy": "2024-07-30T16:37:11.970902Z", + "iopub.status.idle": "2024-07-30T16:37:11.977806Z", + "shell.execute_reply": "2024-07-30T16:37:11.977330Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:15.007199Z", - "iopub.status.busy": "2024-07-18T04:07:15.006868Z", - "iopub.status.idle": "2024-07-18T04:07:15.009987Z", - "shell.execute_reply": "2024-07-18T04:07:15.009541Z" + "iopub.execute_input": "2024-07-30T16:37:11.979672Z", + "iopub.status.busy": "2024-07-30T16:37:11.979501Z", + "iopub.status.idle": "2024-07-30T16:37:11.982695Z", + "shell.execute_reply": "2024-07-30T16:37:11.982238Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:15.011951Z", - "iopub.status.busy": "2024-07-18T04:07:15.011621Z", - "iopub.status.idle": "2024-07-18T04:07:19.005757Z", - "shell.execute_reply": "2024-07-18T04:07:19.005204Z" + "iopub.execute_input": "2024-07-30T16:37:11.984563Z", + "iopub.status.busy": "2024-07-30T16:37:11.984385Z", + "iopub.status.idle": "2024-07-30T16:37:16.038898Z", + "shell.execute_reply": "2024-07-30T16:37:16.038334Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:19.009017Z", - "iopub.status.busy": "2024-07-18T04:07:19.008110Z", - "iopub.status.idle": "2024-07-18T04:07:19.011999Z", - "shell.execute_reply": "2024-07-18T04:07:19.011599Z" + "iopub.execute_input": "2024-07-30T16:37:16.041419Z", + "iopub.status.busy": "2024-07-30T16:37:16.041044Z", + "iopub.status.idle": "2024-07-30T16:37:16.044136Z", + "shell.execute_reply": "2024-07-30T16:37:16.043742Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:19.013973Z", - "iopub.status.busy": "2024-07-18T04:07:19.013518Z", - "iopub.status.idle": "2024-07-18T04:07:19.016164Z", - "shell.execute_reply": "2024-07-18T04:07:19.015768Z" + "iopub.execute_input": "2024-07-30T16:37:16.046136Z", + "iopub.status.busy": "2024-07-30T16:37:16.045835Z", + "iopub.status.idle": "2024-07-30T16:37:16.048832Z", + "shell.execute_reply": "2024-07-30T16:37:16.048207Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 773aea810..63d074d15 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:22.076336Z", - "iopub.status.busy": "2024-07-18T04:07:22.075827Z", - "iopub.status.idle": "2024-07-18T04:07:23.267351Z", - "shell.execute_reply": "2024-07-18T04:07:23.266808Z" + "iopub.execute_input": "2024-07-30T16:37:19.514665Z", + "iopub.status.busy": "2024-07-30T16:37:19.514193Z", + "iopub.status.idle": "2024-07-30T16:37:20.970203Z", + "shell.execute_reply": "2024-07-30T16:37:20.969599Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.269779Z", - "iopub.status.busy": "2024-07-18T04:07:23.269491Z", - "iopub.status.idle": "2024-07-18T04:07:23.449090Z", - "shell.execute_reply": "2024-07-18T04:07:23.448580Z" + "iopub.execute_input": "2024-07-30T16:37:20.972868Z", + "iopub.status.busy": "2024-07-30T16:37:20.972378Z", + "iopub.status.idle": "2024-07-30T16:37:20.975839Z", + "shell.execute_reply": "2024-07-30T16:37:20.975373Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.451531Z", - "iopub.status.busy": "2024-07-18T04:07:23.451185Z", - "iopub.status.idle": "2024-07-18T04:07:23.462992Z", - "shell.execute_reply": "2024-07-18T04:07:23.462568Z" + "iopub.execute_input": "2024-07-30T16:37:20.977983Z", + "iopub.status.busy": "2024-07-30T16:37:20.977647Z", + "iopub.status.idle": "2024-07-30T16:37:20.988855Z", + "shell.execute_reply": "2024-07-30T16:37:20.988422Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.465102Z", - "iopub.status.busy": "2024-07-18T04:07:23.464771Z", - "iopub.status.idle": "2024-07-18T04:07:23.699321Z", - "shell.execute_reply": "2024-07-18T04:07:23.698710Z" + "iopub.execute_input": "2024-07-30T16:37:20.990750Z", + "iopub.status.busy": "2024-07-30T16:37:20.990413Z", + "iopub.status.idle": "2024-07-30T16:37:21.236239Z", + "shell.execute_reply": "2024-07-30T16:37:21.235736Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.701468Z", - "iopub.status.busy": "2024-07-18T04:07:23.701288Z", - "iopub.status.idle": "2024-07-18T04:07:23.726925Z", - "shell.execute_reply": "2024-07-18T04:07:23.726344Z" + "iopub.execute_input": "2024-07-30T16:37:21.238707Z", + "iopub.status.busy": "2024-07-30T16:37:21.238345Z", + "iopub.status.idle": "2024-07-30T16:37:21.264617Z", + "shell.execute_reply": "2024-07-30T16:37:21.264131Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:23.729027Z", - "iopub.status.busy": "2024-07-18T04:07:23.728854Z", - "iopub.status.idle": "2024-07-18T04:07:25.797394Z", - "shell.execute_reply": "2024-07-18T04:07:25.796767Z" + "iopub.execute_input": "2024-07-30T16:37:21.266767Z", + "iopub.status.busy": "2024-07-30T16:37:21.266578Z", + "iopub.status.idle": "2024-07-30T16:37:23.611867Z", + "shell.execute_reply": "2024-07-30T16:37:23.611160Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:25.799776Z", - "iopub.status.busy": "2024-07-18T04:07:25.799466Z", - "iopub.status.idle": "2024-07-18T04:07:25.818394Z", - "shell.execute_reply": "2024-07-18T04:07:25.817813Z" + "iopub.execute_input": "2024-07-30T16:37:23.614599Z", + "iopub.status.busy": "2024-07-30T16:37:23.614210Z", + "iopub.status.idle": "2024-07-30T16:37:23.634028Z", + "shell.execute_reply": "2024-07-30T16:37:23.633465Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:25.820464Z", - "iopub.status.busy": "2024-07-18T04:07:25.820179Z", - "iopub.status.idle": "2024-07-18T04:07:27.394088Z", - "shell.execute_reply": "2024-07-18T04:07:27.393509Z" + "iopub.execute_input": "2024-07-30T16:37:23.636438Z", + "iopub.status.busy": "2024-07-30T16:37:23.635973Z", + "iopub.status.idle": "2024-07-30T16:37:25.305599Z", + "shell.execute_reply": "2024-07-30T16:37:25.304862Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.396818Z", - "iopub.status.busy": "2024-07-18T04:07:27.396136Z", - "iopub.status.idle": "2024-07-18T04:07:27.409817Z", - "shell.execute_reply": "2024-07-18T04:07:27.409253Z" + "iopub.execute_input": "2024-07-30T16:37:25.308828Z", + "iopub.status.busy": "2024-07-30T16:37:25.307885Z", + "iopub.status.idle": "2024-07-30T16:37:25.322222Z", + "shell.execute_reply": "2024-07-30T16:37:25.321727Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.411938Z", - "iopub.status.busy": "2024-07-18T04:07:27.411554Z", - "iopub.status.idle": "2024-07-18T04:07:27.487589Z", - "shell.execute_reply": "2024-07-18T04:07:27.486978Z" + "iopub.execute_input": "2024-07-30T16:37:25.324721Z", + "iopub.status.busy": "2024-07-30T16:37:25.324152Z", + "iopub.status.idle": "2024-07-30T16:37:25.419049Z", + "shell.execute_reply": "2024-07-30T16:37:25.418364Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.490046Z", - "iopub.status.busy": "2024-07-18T04:07:27.489661Z", - "iopub.status.idle": "2024-07-18T04:07:27.700426Z", - "shell.execute_reply": "2024-07-18T04:07:27.699861Z" + "iopub.execute_input": "2024-07-30T16:37:25.421430Z", + "iopub.status.busy": "2024-07-30T16:37:25.421173Z", + "iopub.status.idle": "2024-07-30T16:37:25.644270Z", + "shell.execute_reply": "2024-07-30T16:37:25.643645Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.702570Z", - "iopub.status.busy": "2024-07-18T04:07:27.702242Z", - "iopub.status.idle": "2024-07-18T04:07:27.719037Z", - "shell.execute_reply": "2024-07-18T04:07:27.718497Z" + "iopub.execute_input": "2024-07-30T16:37:25.646795Z", + "iopub.status.busy": "2024-07-30T16:37:25.646428Z", + "iopub.status.idle": "2024-07-30T16:37:25.665764Z", + "shell.execute_reply": "2024-07-30T16:37:25.665270Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.721046Z", - "iopub.status.busy": "2024-07-18T04:07:27.720735Z", - "iopub.status.idle": "2024-07-18T04:07:27.731534Z", - "shell.execute_reply": "2024-07-18T04:07:27.730958Z" + "iopub.execute_input": "2024-07-30T16:37:25.667885Z", + "iopub.status.busy": "2024-07-30T16:37:25.667692Z", + "iopub.status.idle": "2024-07-30T16:37:25.678270Z", + "shell.execute_reply": "2024-07-30T16:37:25.677775Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.733768Z", - "iopub.status.busy": "2024-07-18T04:07:27.733373Z", - "iopub.status.idle": "2024-07-18T04:07:27.825217Z", - "shell.execute_reply": "2024-07-18T04:07:27.824625Z" + "iopub.execute_input": "2024-07-30T16:37:25.680557Z", + "iopub.status.busy": "2024-07-30T16:37:25.680215Z", + "iopub.status.idle": "2024-07-30T16:37:25.783566Z", + "shell.execute_reply": "2024-07-30T16:37:25.782891Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.827744Z", - "iopub.status.busy": "2024-07-18T04:07:27.827350Z", - "iopub.status.idle": "2024-07-18T04:07:27.961216Z", - "shell.execute_reply": "2024-07-18T04:07:27.960600Z" + "iopub.execute_input": "2024-07-30T16:37:25.786394Z", + "iopub.status.busy": "2024-07-30T16:37:25.785963Z", + "iopub.status.idle": "2024-07-30T16:37:25.944890Z", + "shell.execute_reply": "2024-07-30T16:37:25.944224Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.963793Z", - "iopub.status.busy": "2024-07-18T04:07:27.963318Z", - "iopub.status.idle": "2024-07-18T04:07:27.967349Z", - "shell.execute_reply": "2024-07-18T04:07:27.966769Z" + "iopub.execute_input": "2024-07-30T16:37:25.947223Z", + "iopub.status.busy": "2024-07-30T16:37:25.947014Z", + "iopub.status.idle": "2024-07-30T16:37:25.951228Z", + "shell.execute_reply": "2024-07-30T16:37:25.950663Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.969456Z", - "iopub.status.busy": "2024-07-18T04:07:27.969185Z", - "iopub.status.idle": "2024-07-18T04:07:27.972925Z", - "shell.execute_reply": "2024-07-18T04:07:27.972378Z" + "iopub.execute_input": "2024-07-30T16:37:25.953418Z", + "iopub.status.busy": "2024-07-30T16:37:25.953075Z", + "iopub.status.idle": "2024-07-30T16:37:25.957102Z", + "shell.execute_reply": "2024-07-30T16:37:25.956520Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:27.974780Z", - "iopub.status.busy": "2024-07-18T04:07:27.974604Z", - "iopub.status.idle": "2024-07-18T04:07:28.011316Z", - "shell.execute_reply": "2024-07-18T04:07:28.010835Z" + "iopub.execute_input": "2024-07-30T16:37:25.959055Z", + "iopub.status.busy": "2024-07-30T16:37:25.958872Z", + "iopub.status.idle": "2024-07-30T16:37:25.996394Z", + "shell.execute_reply": "2024-07-30T16:37:25.995898Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.013167Z", - "iopub.status.busy": "2024-07-18T04:07:28.012994Z", - "iopub.status.idle": "2024-07-18T04:07:28.054350Z", - "shell.execute_reply": "2024-07-18T04:07:28.053903Z" + "iopub.execute_input": "2024-07-30T16:37:25.998305Z", + "iopub.status.busy": "2024-07-30T16:37:25.998128Z", + "iopub.status.idle": "2024-07-30T16:37:26.039427Z", + "shell.execute_reply": "2024-07-30T16:37:26.038868Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.056361Z", - "iopub.status.busy": "2024-07-18T04:07:28.056029Z", - "iopub.status.idle": "2024-07-18T04:07:28.151883Z", - "shell.execute_reply": "2024-07-18T04:07:28.151289Z" + "iopub.execute_input": "2024-07-30T16:37:26.041607Z", + "iopub.status.busy": "2024-07-30T16:37:26.041417Z", + "iopub.status.idle": "2024-07-30T16:37:26.162225Z", + "shell.execute_reply": "2024-07-30T16:37:26.161548Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.154465Z", - "iopub.status.busy": "2024-07-18T04:07:28.154094Z", - "iopub.status.idle": "2024-07-18T04:07:28.255502Z", - "shell.execute_reply": "2024-07-18T04:07:28.254823Z" + "iopub.execute_input": "2024-07-30T16:37:26.165084Z", + "iopub.status.busy": "2024-07-30T16:37:26.164618Z", + "iopub.status.idle": "2024-07-30T16:37:26.285845Z", + "shell.execute_reply": "2024-07-30T16:37:26.285184Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.258165Z", - "iopub.status.busy": "2024-07-18T04:07:28.257804Z", - "iopub.status.idle": "2024-07-18T04:07:28.470060Z", - "shell.execute_reply": "2024-07-18T04:07:28.469555Z" + "iopub.execute_input": "2024-07-30T16:37:26.288464Z", + "iopub.status.busy": "2024-07-30T16:37:26.288093Z", + "iopub.status.idle": "2024-07-30T16:37:26.502063Z", + "shell.execute_reply": "2024-07-30T16:37:26.501416Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.472345Z", - "iopub.status.busy": "2024-07-18T04:07:28.471991Z", - "iopub.status.idle": "2024-07-18T04:07:28.679158Z", - "shell.execute_reply": "2024-07-18T04:07:28.678514Z" + "iopub.execute_input": "2024-07-30T16:37:26.504441Z", + "iopub.status.busy": "2024-07-30T16:37:26.503981Z", + "iopub.status.idle": "2024-07-30T16:37:26.744760Z", + "shell.execute_reply": "2024-07-30T16:37:26.744174Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.681512Z", - "iopub.status.busy": "2024-07-18T04:07:28.681268Z", - "iopub.status.idle": "2024-07-18T04:07:28.687496Z", - "shell.execute_reply": "2024-07-18T04:07:28.686962Z" + "iopub.execute_input": "2024-07-30T16:37:26.747291Z", + "iopub.status.busy": "2024-07-30T16:37:26.746891Z", + "iopub.status.idle": "2024-07-30T16:37:26.752870Z", + "shell.execute_reply": "2024-07-30T16:37:26.752415Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.689401Z", - "iopub.status.busy": "2024-07-18T04:07:28.689228Z", - "iopub.status.idle": "2024-07-18T04:07:28.907545Z", - "shell.execute_reply": "2024-07-18T04:07:28.907027Z" + "iopub.execute_input": "2024-07-30T16:37:26.754943Z", + "iopub.status.busy": "2024-07-30T16:37:26.754598Z", + "iopub.status.idle": "2024-07-30T16:37:26.972039Z", + "shell.execute_reply": "2024-07-30T16:37:26.971400Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:28.909667Z", - "iopub.status.busy": "2024-07-18T04:07:28.909321Z", - "iopub.status.idle": "2024-07-18T04:07:29.967572Z", - "shell.execute_reply": "2024-07-18T04:07:29.967037Z" + "iopub.execute_input": "2024-07-30T16:37:26.974261Z", + "iopub.status.busy": "2024-07-30T16:37:26.974064Z", + "iopub.status.idle": "2024-07-30T16:37:28.066231Z", + "shell.execute_reply": "2024-07-30T16:37:28.065649Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 04b78b7b1..fd2c70404 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:34.296538Z", - "iopub.status.busy": "2024-07-18T04:07:34.296363Z", - "iopub.status.idle": "2024-07-18T04:07:35.422497Z", - "shell.execute_reply": "2024-07-18T04:07:35.421862Z" + "iopub.execute_input": "2024-07-30T16:37:32.718320Z", + "iopub.status.busy": "2024-07-30T16:37:32.718143Z", + "iopub.status.idle": "2024-07-30T16:37:34.160547Z", + "shell.execute_reply": "2024-07-30T16:37:34.159900Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.425676Z", - "iopub.status.busy": "2024-07-18T04:07:35.425102Z", - "iopub.status.idle": "2024-07-18T04:07:35.428437Z", - "shell.execute_reply": "2024-07-18T04:07:35.427876Z" + "iopub.execute_input": "2024-07-30T16:37:34.163333Z", + "iopub.status.busy": "2024-07-30T16:37:34.163023Z", + "iopub.status.idle": "2024-07-30T16:37:34.166128Z", + "shell.execute_reply": "2024-07-30T16:37:34.165659Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.430702Z", - "iopub.status.busy": "2024-07-18T04:07:35.430517Z", - "iopub.status.idle": "2024-07-18T04:07:35.438434Z", - "shell.execute_reply": "2024-07-18T04:07:35.437884Z" + "iopub.execute_input": "2024-07-30T16:37:34.168192Z", + "iopub.status.busy": "2024-07-30T16:37:34.168013Z", + "iopub.status.idle": "2024-07-30T16:37:34.175994Z", + "shell.execute_reply": "2024-07-30T16:37:34.175519Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.440572Z", - "iopub.status.busy": "2024-07-18T04:07:35.440110Z", - "iopub.status.idle": "2024-07-18T04:07:35.486384Z", - "shell.execute_reply": "2024-07-18T04:07:35.485828Z" + "iopub.execute_input": "2024-07-30T16:37:34.178122Z", + "iopub.status.busy": "2024-07-30T16:37:34.177688Z", + "iopub.status.idle": "2024-07-30T16:37:34.225806Z", + "shell.execute_reply": "2024-07-30T16:37:34.225161Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.488599Z", - "iopub.status.busy": "2024-07-18T04:07:35.488257Z", - "iopub.status.idle": "2024-07-18T04:07:35.504681Z", - "shell.execute_reply": "2024-07-18T04:07:35.504225Z" + "iopub.execute_input": "2024-07-30T16:37:34.228546Z", + "iopub.status.busy": "2024-07-30T16:37:34.228175Z", + "iopub.status.idle": "2024-07-30T16:37:34.246251Z", + "shell.execute_reply": "2024-07-30T16:37:34.245703Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.506559Z", - "iopub.status.busy": "2024-07-18T04:07:35.506378Z", - "iopub.status.idle": "2024-07-18T04:07:35.510269Z", - "shell.execute_reply": "2024-07-18T04:07:35.509744Z" + "iopub.execute_input": "2024-07-30T16:37:34.248429Z", + "iopub.status.busy": "2024-07-30T16:37:34.248067Z", + "iopub.status.idle": "2024-07-30T16:37:34.251958Z", + "shell.execute_reply": "2024-07-30T16:37:34.251523Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.512387Z", - "iopub.status.busy": "2024-07-18T04:07:35.511994Z", - "iopub.status.idle": "2024-07-18T04:07:35.528137Z", - "shell.execute_reply": "2024-07-18T04:07:35.527604Z" + "iopub.execute_input": "2024-07-30T16:37:34.254230Z", + "iopub.status.busy": "2024-07-30T16:37:34.253755Z", + "iopub.status.idle": "2024-07-30T16:37:34.270486Z", + "shell.execute_reply": "2024-07-30T16:37:34.269879Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.530221Z", - "iopub.status.busy": "2024-07-18T04:07:35.529800Z", - "iopub.status.idle": "2024-07-18T04:07:35.555407Z", - "shell.execute_reply": "2024-07-18T04:07:35.554844Z" + "iopub.execute_input": "2024-07-30T16:37:34.272682Z", + "iopub.status.busy": "2024-07-30T16:37:34.272503Z", + "iopub.status.idle": "2024-07-30T16:37:34.299362Z", + "shell.execute_reply": "2024-07-30T16:37:34.298706Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:35.557521Z", - "iopub.status.busy": "2024-07-18T04:07:35.557213Z", - "iopub.status.idle": "2024-07-18T04:07:37.509880Z", - "shell.execute_reply": "2024-07-18T04:07:37.509298Z" + "iopub.execute_input": "2024-07-30T16:37:34.302325Z", + "iopub.status.busy": "2024-07-30T16:37:34.301951Z", + "iopub.status.idle": "2024-07-30T16:37:36.536542Z", + "shell.execute_reply": "2024-07-30T16:37:36.535928Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.512502Z", - "iopub.status.busy": "2024-07-18T04:07:37.511961Z", - "iopub.status.idle": "2024-07-18T04:07:37.518638Z", - "shell.execute_reply": "2024-07-18T04:07:37.518085Z" + "iopub.execute_input": "2024-07-30T16:37:36.540387Z", + "iopub.status.busy": "2024-07-30T16:37:36.538845Z", + "iopub.status.idle": "2024-07-30T16:37:36.547424Z", + "shell.execute_reply": "2024-07-30T16:37:36.546819Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.520639Z", - "iopub.status.busy": "2024-07-18T04:07:37.520331Z", - "iopub.status.idle": "2024-07-18T04:07:37.532904Z", - "shell.execute_reply": "2024-07-18T04:07:37.532451Z" + "iopub.execute_input": "2024-07-30T16:37:36.549619Z", + "iopub.status.busy": "2024-07-30T16:37:36.549270Z", + "iopub.status.idle": "2024-07-30T16:37:36.562222Z", + "shell.execute_reply": "2024-07-30T16:37:36.561697Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.534769Z", - "iopub.status.busy": "2024-07-18T04:07:37.534595Z", - "iopub.status.idle": "2024-07-18T04:07:37.541067Z", - "shell.execute_reply": "2024-07-18T04:07:37.540607Z" + "iopub.execute_input": "2024-07-30T16:37:36.564431Z", + "iopub.status.busy": "2024-07-30T16:37:36.564072Z", + "iopub.status.idle": "2024-07-30T16:37:36.570665Z", + "shell.execute_reply": "2024-07-30T16:37:36.570168Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.543185Z", - "iopub.status.busy": "2024-07-18T04:07:37.542911Z", - "iopub.status.idle": "2024-07-18T04:07:37.545708Z", - "shell.execute_reply": "2024-07-18T04:07:37.545133Z" + "iopub.execute_input": "2024-07-30T16:37:36.572817Z", + "iopub.status.busy": "2024-07-30T16:37:36.572406Z", + "iopub.status.idle": "2024-07-30T16:37:36.575372Z", + "shell.execute_reply": "2024-07-30T16:37:36.574796Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.547886Z", - "iopub.status.busy": "2024-07-18T04:07:37.547445Z", - "iopub.status.idle": "2024-07-18T04:07:37.550823Z", - "shell.execute_reply": "2024-07-18T04:07:37.550384Z" + "iopub.execute_input": "2024-07-30T16:37:36.577427Z", + "iopub.status.busy": "2024-07-30T16:37:36.577104Z", + "iopub.status.idle": "2024-07-30T16:37:36.580747Z", + "shell.execute_reply": "2024-07-30T16:37:36.580200Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.552820Z", - "iopub.status.busy": "2024-07-18T04:07:37.552645Z", - "iopub.status.idle": "2024-07-18T04:07:37.555115Z", - "shell.execute_reply": "2024-07-18T04:07:37.554670Z" + "iopub.execute_input": "2024-07-30T16:37:36.582932Z", + "iopub.status.busy": "2024-07-30T16:37:36.582604Z", + "iopub.status.idle": "2024-07-30T16:37:36.585678Z", + "shell.execute_reply": "2024-07-30T16:37:36.585251Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.557056Z", - "iopub.status.busy": "2024-07-18T04:07:37.556883Z", - "iopub.status.idle": "2024-07-18T04:07:37.561041Z", - "shell.execute_reply": "2024-07-18T04:07:37.560482Z" + "iopub.execute_input": "2024-07-30T16:37:36.587663Z", + "iopub.status.busy": "2024-07-30T16:37:36.587336Z", + "iopub.status.idle": "2024-07-30T16:37:36.591506Z", + "shell.execute_reply": "2024-07-30T16:37:36.590945Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.563256Z", - "iopub.status.busy": "2024-07-18T04:07:37.562843Z", - "iopub.status.idle": "2024-07-18T04:07:37.591846Z", - "shell.execute_reply": "2024-07-18T04:07:37.591369Z" + "iopub.execute_input": "2024-07-30T16:37:36.593587Z", + "iopub.status.busy": "2024-07-30T16:37:36.593411Z", + "iopub.status.idle": "2024-07-30T16:37:36.622081Z", + "shell.execute_reply": "2024-07-30T16:37:36.621614Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:37.593815Z", - "iopub.status.busy": "2024-07-18T04:07:37.593607Z", - "iopub.status.idle": "2024-07-18T04:07:37.598269Z", - "shell.execute_reply": "2024-07-18T04:07:37.597815Z" + "iopub.execute_input": "2024-07-30T16:37:36.624325Z", + "iopub.status.busy": "2024-07-30T16:37:36.623993Z", + "iopub.status.idle": "2024-07-30T16:37:36.628891Z", + "shell.execute_reply": "2024-07-30T16:37:36.628307Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 2d0d39b6e..85921d220 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:40.549664Z", - "iopub.status.busy": "2024-07-18T04:07:40.549497Z", - "iopub.status.idle": "2024-07-18T04:07:41.730292Z", - "shell.execute_reply": "2024-07-18T04:07:41.729739Z" + "iopub.execute_input": "2024-07-30T16:37:39.759530Z", + "iopub.status.busy": "2024-07-30T16:37:39.759170Z", + "iopub.status.idle": "2024-07-30T16:37:41.225938Z", + "shell.execute_reply": "2024-07-30T16:37:41.225361Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.732831Z", - "iopub.status.busy": "2024-07-18T04:07:41.732430Z", - "iopub.status.idle": "2024-07-18T04:07:41.924995Z", - "shell.execute_reply": "2024-07-18T04:07:41.924470Z" + "iopub.execute_input": "2024-07-30T16:37:41.228688Z", + "iopub.status.busy": "2024-07-30T16:37:41.228204Z", + "iopub.status.idle": "2024-07-30T16:37:41.249656Z", + "shell.execute_reply": "2024-07-30T16:37:41.249163Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.927419Z", - "iopub.status.busy": "2024-07-18T04:07:41.927009Z", - "iopub.status.idle": "2024-07-18T04:07:41.940256Z", - "shell.execute_reply": "2024-07-18T04:07:41.939813Z" + "iopub.execute_input": "2024-07-30T16:37:41.252375Z", + "iopub.status.busy": "2024-07-30T16:37:41.251838Z", + "iopub.status.idle": "2024-07-30T16:37:41.265158Z", + "shell.execute_reply": "2024-07-30T16:37:41.264726Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:41.942329Z", - "iopub.status.busy": "2024-07-18T04:07:41.942007Z", - "iopub.status.idle": "2024-07-18T04:07:44.554754Z", - "shell.execute_reply": "2024-07-18T04:07:44.554282Z" + "iopub.execute_input": "2024-07-30T16:37:41.267369Z", + "iopub.status.busy": "2024-07-30T16:37:41.266961Z", + "iopub.status.idle": "2024-07-30T16:37:43.948010Z", + "shell.execute_reply": "2024-07-30T16:37:43.947423Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:44.557154Z", - "iopub.status.busy": "2024-07-18T04:07:44.556790Z", - "iopub.status.idle": "2024-07-18T04:07:45.887262Z", - "shell.execute_reply": "2024-07-18T04:07:45.886610Z" + "iopub.execute_input": "2024-07-30T16:37:43.950421Z", + "iopub.status.busy": "2024-07-30T16:37:43.950035Z", + "iopub.status.idle": "2024-07-30T16:37:45.317858Z", + "shell.execute_reply": "2024-07-30T16:37:45.317234Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:45.889687Z", - "iopub.status.busy": "2024-07-18T04:07:45.889483Z", - "iopub.status.idle": "2024-07-18T04:07:45.893592Z", - "shell.execute_reply": "2024-07-18T04:07:45.893123Z" + "iopub.execute_input": "2024-07-30T16:37:45.320689Z", + "iopub.status.busy": "2024-07-30T16:37:45.320261Z", + "iopub.status.idle": "2024-07-30T16:37:45.325116Z", + "shell.execute_reply": "2024-07-30T16:37:45.324609Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:45.895685Z", - "iopub.status.busy": "2024-07-18T04:07:45.895358Z", - "iopub.status.idle": "2024-07-18T04:07:47.938953Z", - "shell.execute_reply": "2024-07-18T04:07:47.938261Z" + "iopub.execute_input": "2024-07-30T16:37:45.327504Z", + "iopub.status.busy": "2024-07-30T16:37:45.327099Z", + "iopub.status.idle": "2024-07-30T16:37:47.549771Z", + "shell.execute_reply": "2024-07-30T16:37:47.549091Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:47.941361Z", - "iopub.status.busy": "2024-07-18T04:07:47.941011Z", - "iopub.status.idle": "2024-07-18T04:07:47.949262Z", - "shell.execute_reply": "2024-07-18T04:07:47.948769Z" + "iopub.execute_input": "2024-07-30T16:37:47.552479Z", + "iopub.status.busy": "2024-07-30T16:37:47.551972Z", + "iopub.status.idle": "2024-07-30T16:37:47.560612Z", + "shell.execute_reply": "2024-07-30T16:37:47.560120Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:47.951205Z", - "iopub.status.busy": "2024-07-18T04:07:47.950934Z", - "iopub.status.idle": "2024-07-18T04:07:50.493764Z", - "shell.execute_reply": "2024-07-18T04:07:50.493249Z" + "iopub.execute_input": "2024-07-30T16:37:47.562648Z", + "iopub.status.busy": "2024-07-30T16:37:47.562368Z", + "iopub.status.idle": "2024-07-30T16:37:50.183671Z", + "shell.execute_reply": "2024-07-30T16:37:50.183000Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.495904Z", - "iopub.status.busy": "2024-07-18T04:07:50.495718Z", - "iopub.status.idle": "2024-07-18T04:07:50.499462Z", - "shell.execute_reply": "2024-07-18T04:07:50.498995Z" + "iopub.execute_input": "2024-07-30T16:37:50.186114Z", + "iopub.status.busy": "2024-07-30T16:37:50.185699Z", + "iopub.status.idle": "2024-07-30T16:37:50.189636Z", + "shell.execute_reply": "2024-07-30T16:37:50.189140Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.501330Z", - "iopub.status.busy": "2024-07-18T04:07:50.501162Z", - "iopub.status.idle": "2024-07-18T04:07:50.504431Z", - "shell.execute_reply": "2024-07-18T04:07:50.503994Z" + "iopub.execute_input": "2024-07-30T16:37:50.191867Z", + "iopub.status.busy": "2024-07-30T16:37:50.191497Z", + "iopub.status.idle": "2024-07-30T16:37:50.195269Z", + "shell.execute_reply": "2024-07-30T16:37:50.194765Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:50.506301Z", - "iopub.status.busy": "2024-07-18T04:07:50.506126Z", - "iopub.status.idle": "2024-07-18T04:07:50.509100Z", - "shell.execute_reply": "2024-07-18T04:07:50.508661Z" + "iopub.execute_input": "2024-07-30T16:37:50.197502Z", + "iopub.status.busy": "2024-07-30T16:37:50.197113Z", + "iopub.status.idle": "2024-07-30T16:37:50.200387Z", + "shell.execute_reply": "2024-07-30T16:37:50.199867Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index c73a5e42a..b908d214b 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:53.027507Z", - "iopub.status.busy": "2024-07-18T04:07:53.027336Z", - "iopub.status.idle": "2024-07-18T04:07:54.203836Z", - "shell.execute_reply": "2024-07-18T04:07:54.203291Z" + "iopub.execute_input": "2024-07-30T16:37:52.967876Z", + "iopub.status.busy": "2024-07-30T16:37:52.967697Z", + "iopub.status.idle": "2024-07-30T16:37:54.423334Z", + "shell.execute_reply": "2024-07-30T16:37:54.422716Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:54.206499Z", - "iopub.status.busy": "2024-07-18T04:07:54.205989Z", - "iopub.status.idle": "2024-07-18T04:07:56.950673Z", - "shell.execute_reply": "2024-07-18T04:07:56.949957Z" + "iopub.execute_input": "2024-07-30T16:37:54.426120Z", + "iopub.status.busy": "2024-07-30T16:37:54.425563Z", + "iopub.status.idle": "2024-07-30T16:37:55.812519Z", + "shell.execute_reply": "2024-07-30T16:37:55.811700Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.953257Z", - "iopub.status.busy": "2024-07-18T04:07:56.953039Z", - "iopub.status.idle": "2024-07-18T04:07:56.956605Z", - "shell.execute_reply": "2024-07-18T04:07:56.956021Z" + "iopub.execute_input": "2024-07-30T16:37:55.815457Z", + "iopub.status.busy": "2024-07-30T16:37:55.815048Z", + "iopub.status.idle": "2024-07-30T16:37:55.818533Z", + "shell.execute_reply": "2024-07-30T16:37:55.817973Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.958812Z", - "iopub.status.busy": "2024-07-18T04:07:56.958471Z", - "iopub.status.idle": "2024-07-18T04:07:56.965097Z", - "shell.execute_reply": "2024-07-18T04:07:56.964666Z" + "iopub.execute_input": "2024-07-30T16:37:55.820681Z", + "iopub.status.busy": "2024-07-30T16:37:55.820334Z", + "iopub.status.idle": "2024-07-30T16:37:55.827147Z", + "shell.execute_reply": "2024-07-30T16:37:55.826691Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:56.967310Z", - "iopub.status.busy": "2024-07-18T04:07:56.966946Z", - "iopub.status.idle": "2024-07-18T04:07:57.458211Z", - "shell.execute_reply": "2024-07-18T04:07:57.457607Z" + "iopub.execute_input": "2024-07-30T16:37:55.829268Z", + "iopub.status.busy": "2024-07-30T16:37:55.828920Z", + "iopub.status.idle": "2024-07-30T16:37:56.150888Z", + "shell.execute_reply": "2024-07-30T16:37:56.150240Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.460514Z", - "iopub.status.busy": "2024-07-18T04:07:57.460329Z", - "iopub.status.idle": "2024-07-18T04:07:57.465713Z", - "shell.execute_reply": "2024-07-18T04:07:57.465150Z" + "iopub.execute_input": "2024-07-30T16:37:56.154023Z", + "iopub.status.busy": "2024-07-30T16:37:56.153563Z", + "iopub.status.idle": "2024-07-30T16:37:56.159171Z", + "shell.execute_reply": "2024-07-30T16:37:56.158713Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.467728Z", - "iopub.status.busy": "2024-07-18T04:07:57.467432Z", - "iopub.status.idle": "2024-07-18T04:07:57.471282Z", - "shell.execute_reply": "2024-07-18T04:07:57.470724Z" + "iopub.execute_input": "2024-07-30T16:37:56.161294Z", + "iopub.status.busy": "2024-07-30T16:37:56.160941Z", + "iopub.status.idle": "2024-07-30T16:37:56.164954Z", + "shell.execute_reply": "2024-07-30T16:37:56.164403Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:57.473417Z", - "iopub.status.busy": "2024-07-18T04:07:57.473021Z", - "iopub.status.idle": "2024-07-18T04:07:58.320437Z", - "shell.execute_reply": "2024-07-18T04:07:58.319767Z" + "iopub.execute_input": "2024-07-30T16:37:56.166946Z", + "iopub.status.busy": "2024-07-30T16:37:56.166762Z", + "iopub.status.idle": "2024-07-30T16:37:57.061837Z", + "shell.execute_reply": "2024-07-30T16:37:57.061214Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.322734Z", - "iopub.status.busy": "2024-07-18T04:07:58.322537Z", - "iopub.status.idle": "2024-07-18T04:07:58.596192Z", - "shell.execute_reply": "2024-07-18T04:07:58.595728Z" + "iopub.execute_input": "2024-07-30T16:37:57.064231Z", + "iopub.status.busy": "2024-07-30T16:37:57.064020Z", + "iopub.status.idle": "2024-07-30T16:37:57.269680Z", + "shell.execute_reply": "2024-07-30T16:37:57.269071Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.598116Z", - "iopub.status.busy": "2024-07-18T04:07:58.597937Z", - "iopub.status.idle": "2024-07-18T04:07:58.602256Z", - "shell.execute_reply": "2024-07-18T04:07:58.601801Z" + "iopub.execute_input": "2024-07-30T16:37:57.271779Z", + "iopub.status.busy": "2024-07-30T16:37:57.271589Z", + "iopub.status.idle": "2024-07-30T16:37:57.276069Z", + "shell.execute_reply": "2024-07-30T16:37:57.275620Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:58.604102Z", - "iopub.status.busy": "2024-07-18T04:07:58.603930Z", - "iopub.status.idle": "2024-07-18T04:07:59.051714Z", - "shell.execute_reply": "2024-07-18T04:07:59.051138Z" + "iopub.execute_input": "2024-07-30T16:37:57.277956Z", + "iopub.status.busy": "2024-07-30T16:37:57.277779Z", + "iopub.status.idle": "2024-07-30T16:37:57.741717Z", + "shell.execute_reply": "2024-07-30T16:37:57.741080Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.054893Z", - "iopub.status.busy": "2024-07-18T04:07:59.054683Z", - "iopub.status.idle": "2024-07-18T04:07:59.362985Z", - "shell.execute_reply": "2024-07-18T04:07:59.362380Z" + "iopub.execute_input": "2024-07-30T16:37:57.744943Z", + "iopub.status.busy": "2024-07-30T16:37:57.744706Z", + "iopub.status.idle": "2024-07-30T16:37:58.080727Z", + "shell.execute_reply": "2024-07-30T16:37:58.080133Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.365227Z", - "iopub.status.busy": "2024-07-18T04:07:59.364819Z", - "iopub.status.idle": "2024-07-18T04:07:59.721287Z", - "shell.execute_reply": "2024-07-18T04:07:59.720689Z" + "iopub.execute_input": "2024-07-30T16:37:58.083717Z", + "iopub.status.busy": "2024-07-30T16:37:58.083475Z", + "iopub.status.idle": "2024-07-30T16:37:58.448789Z", + "shell.execute_reply": "2024-07-30T16:37:58.448130Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:07:59.723711Z", - "iopub.status.busy": "2024-07-18T04:07:59.723524Z", - "iopub.status.idle": "2024-07-18T04:08:00.129832Z", - "shell.execute_reply": "2024-07-18T04:08:00.129234Z" + "iopub.execute_input": "2024-07-30T16:37:58.451979Z", + "iopub.status.busy": "2024-07-30T16:37:58.451737Z", + "iopub.status.idle": "2024-07-30T16:37:58.897902Z", + "shell.execute_reply": "2024-07-30T16:37:58.897266Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.134389Z", - "iopub.status.busy": "2024-07-18T04:08:00.134195Z", - "iopub.status.idle": "2024-07-18T04:08:00.555058Z", - "shell.execute_reply": "2024-07-18T04:08:00.554472Z" + "iopub.execute_input": "2024-07-30T16:37:58.902565Z", + "iopub.status.busy": "2024-07-30T16:37:58.902206Z", + "iopub.status.idle": "2024-07-30T16:37:59.331261Z", + "shell.execute_reply": "2024-07-30T16:37:59.330642Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.557791Z", - "iopub.status.busy": "2024-07-18T04:08:00.557601Z", - "iopub.status.idle": "2024-07-18T04:08:00.745423Z", - "shell.execute_reply": "2024-07-18T04:08:00.744861Z" + "iopub.execute_input": "2024-07-30T16:37:59.334413Z", + "iopub.status.busy": "2024-07-30T16:37:59.334051Z", + "iopub.status.idle": "2024-07-30T16:37:59.529024Z", + "shell.execute_reply": "2024-07-30T16:37:59.528352Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.747619Z", - "iopub.status.busy": "2024-07-18T04:08:00.747438Z", - "iopub.status.idle": "2024-07-18T04:08:00.951881Z", - "shell.execute_reply": "2024-07-18T04:08:00.951263Z" + "iopub.execute_input": "2024-07-30T16:37:59.531621Z", + "iopub.status.busy": "2024-07-30T16:37:59.531147Z", + "iopub.status.idle": "2024-07-30T16:37:59.713867Z", + "shell.execute_reply": "2024-07-30T16:37:59.713268Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.954083Z", - "iopub.status.busy": "2024-07-18T04:08:00.953900Z", - "iopub.status.idle": "2024-07-18T04:08:00.956913Z", - "shell.execute_reply": "2024-07-18T04:08:00.956455Z" + "iopub.execute_input": "2024-07-30T16:37:59.716604Z", + "iopub.status.busy": "2024-07-30T16:37:59.716372Z", + "iopub.status.idle": "2024-07-30T16:37:59.719701Z", + "shell.execute_reply": "2024-07-30T16:37:59.719240Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:00.958720Z", - "iopub.status.busy": "2024-07-18T04:08:00.958549Z", - "iopub.status.idle": "2024-07-18T04:08:01.900993Z", - "shell.execute_reply": "2024-07-18T04:08:01.900441Z" + "iopub.execute_input": "2024-07-30T16:37:59.721469Z", + "iopub.status.busy": "2024-07-30T16:37:59.721297Z", + "iopub.status.idle": "2024-07-30T16:38:00.653952Z", + "shell.execute_reply": "2024-07-30T16:38:00.653313Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:01.903897Z", - "iopub.status.busy": "2024-07-18T04:08:01.903502Z", - "iopub.status.idle": "2024-07-18T04:08:02.024595Z", - "shell.execute_reply": "2024-07-18T04:08:02.024142Z" + "iopub.execute_input": "2024-07-30T16:38:00.656659Z", + "iopub.status.busy": "2024-07-30T16:38:00.656200Z", + "iopub.status.idle": "2024-07-30T16:38:00.806657Z", + "shell.execute_reply": "2024-07-30T16:38:00.806013Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.026835Z", - "iopub.status.busy": "2024-07-18T04:08:02.026498Z", - "iopub.status.idle": "2024-07-18T04:08:02.149086Z", - "shell.execute_reply": "2024-07-18T04:08:02.148602Z" + "iopub.execute_input": "2024-07-30T16:38:00.809105Z", + "iopub.status.busy": "2024-07-30T16:38:00.808873Z", + "iopub.status.idle": "2024-07-30T16:38:01.017879Z", + "shell.execute_reply": "2024-07-30T16:38:01.017223Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.151149Z", - "iopub.status.busy": "2024-07-18T04:08:02.150799Z", - "iopub.status.idle": "2024-07-18T04:08:02.892035Z", - "shell.execute_reply": "2024-07-18T04:08:02.891450Z" + "iopub.execute_input": "2024-07-30T16:38:01.020087Z", + "iopub.status.busy": "2024-07-30T16:38:01.019752Z", + "iopub.status.idle": "2024-07-30T16:38:01.734744Z", + "shell.execute_reply": "2024-07-30T16:38:01.734246Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:02.894338Z", - "iopub.status.busy": "2024-07-18T04:08:02.894143Z", - "iopub.status.idle": "2024-07-18T04:08:02.898103Z", - "shell.execute_reply": "2024-07-18T04:08:02.897554Z" + "iopub.execute_input": "2024-07-30T16:38:01.737160Z", + "iopub.status.busy": "2024-07-30T16:38:01.736731Z", + "iopub.status.idle": "2024-07-30T16:38:01.740592Z", + "shell.execute_reply": "2024-07-30T16:38:01.740039Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index b4b348024..51298fe0f 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:04<00:00, 41662854.99it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]
 

-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index db08980fc..3df92007c 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:05.194442Z", - "iopub.status.busy": "2024-07-18T04:08:05.194273Z", - "iopub.status.idle": "2024-07-18T04:08:07.990167Z", - "shell.execute_reply": "2024-07-18T04:08:07.989536Z" + "iopub.execute_input": "2024-07-30T16:38:03.978289Z", + "iopub.status.busy": "2024-07-30T16:38:03.977787Z", + "iopub.status.idle": "2024-07-30T16:38:07.296478Z", + "shell.execute_reply": "2024-07-30T16:38:07.295899Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:07.993089Z", - "iopub.status.busy": "2024-07-18T04:08:07.992487Z", - "iopub.status.idle": "2024-07-18T04:08:08.306676Z", - "shell.execute_reply": "2024-07-18T04:08:08.306053Z" + "iopub.execute_input": "2024-07-30T16:38:07.299136Z", + "iopub.status.busy": "2024-07-30T16:38:07.298701Z", + "iopub.status.idle": "2024-07-30T16:38:07.318355Z", + "shell.execute_reply": "2024-07-30T16:38:07.317750Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:08.309275Z", - "iopub.status.busy": "2024-07-18T04:08:08.308985Z", - "iopub.status.idle": "2024-07-18T04:08:08.313469Z", - "shell.execute_reply": "2024-07-18T04:08:08.312921Z" + "iopub.execute_input": "2024-07-30T16:38:07.320466Z", + "iopub.status.busy": "2024-07-30T16:38:07.320062Z", + "iopub.status.idle": "2024-07-30T16:38:07.324323Z", + "shell.execute_reply": "2024-07-30T16:38:07.323777Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:08.315749Z", - "iopub.status.busy": "2024-07-18T04:08:08.315344Z", - "iopub.status.idle": "2024-07-18T04:08:15.710803Z", - "shell.execute_reply": "2024-07-18T04:08:15.710242Z" + "iopub.execute_input": "2024-07-30T16:38:07.326455Z", + "iopub.status.busy": "2024-07-30T16:38:07.325959Z", + "iopub.status.idle": "2024-07-30T16:38:11.831429Z", + "shell.execute_reply": "2024-07-30T16:38:11.830839Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 65536/170498071 [00:00<05:54, 480174.66it/s]" + " 1%| | 917504/170498071 [00:00<00:20, 8226376.49it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:57, 956605.73it/s]" + " 6%|▋ | 10846208/170498071 [00:00<00:02, 59307309.31it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:59, 2869713.68it/s]" + " 13%|█▎ | 22511616/170498071 [00:00<00:01, 84811001.30it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3473408/170498071 [00:00<00:16, 9967088.73it/s]" + " 20%|██ | 34209792/170498071 [00:00<00:01, 97255735.33it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8978432/170498071 [00:00<00:06, 23993424.46it/s]" + " 27%|██▋ | 45875200/170498071 [00:00<00:01, 104168464.41it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12845056/170498071 [00:00<00:05, 28406729.61it/s]" + " 34%|███▍ | 57573376/170498071 [00:00<00:01, 108391005.55it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17596416/170498071 [00:00<00:04, 34211430.57it/s]" + " 41%|████ | 69271552/170498071 [00:00<00:00, 111144409.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22249472/170498071 [00:00<00:03, 37768341.91it/s]" + " 47%|████▋ | 80936960/170498071 [00:00<00:00, 112866681.19it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26542080/170498071 [00:01<00:03, 39303818.64it/s]" + " 54%|█████▍ | 92635136/170498071 [00:00<00:00, 114109378.79it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 31686656/170498071 [00:01<00:03, 42912353.67it/s]" + " 61%|██████ | 104300544/170498071 [00:01<00:00, 114843936.89it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 36077568/170498071 [00:01<00:03, 42821253.72it/s]" + " 68%|██████▊ | 115933184/170498071 [00:01<00:00, 115260750.98it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41091072/170498071 [00:01<00:02, 44483581.19it/s]" + " 75%|███████▍ | 127631360/170498071 [00:01<00:00, 115738038.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45580288/170498071 [00:01<00:02, 44029931.37it/s]" + " 82%|████████▏ | 139296768/170498071 [00:01<00:00, 115934009.59it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 50561024/170498071 [00:01<00:02, 45704439.03it/s]" + " 89%|████████▊ | 150994944/170498071 [00:01<00:00, 116207199.22it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55181312/170498071 [00:01<00:02, 44384083.52it/s]" + " 95%|█████████▌| 162627584/170498071 [00:01<00:00, 116186659.71it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60129280/170498071 [00:01<00:02, 45411992.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 38%|███▊ | 64716800/170498071 [00:01<00:02, 44963014.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████ | 69599232/170498071 [00:01<00:02, 45683897.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▎ | 74285056/170498071 [00:02<00:02, 46016824.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 79036416/170498071 [00:02<00:01, 45854658.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83918848/170498071 [00:02<00:01, 46668759.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88604672/170498071 [00:02<00:01, 46174985.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 93552640/170498071 [00:02<00:01, 46706268.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 46441658.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 103251968/170498071 [00:02<00:01, 47507283.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 108036096/170498071 [00:02<00:01, 46191263.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▋ | 113082368/170498071 [00:02<00:01, 46992738.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117800960/170498071 [00:02<00:01, 46099619.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122716160/170498071 [00:03<00:01, 46753587.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127401984/170498071 [00:03<00:00, 46589077.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 132284416/170498071 [00:03<00:00, 47236308.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 137035776/170498071 [00:03<00:00, 46277779.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142016512/170498071 [00:03<00:00, 47148951.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 146767872/170498071 [00:03<00:00, 46600796.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 151683072/170498071 [00:03<00:00, 47332021.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156434432/170498071 [00:03<00:00, 46258206.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161710080/170498071 [00:03<00:00, 48137919.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166559744/170498071 [00:04<00:00, 46952044.94it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 41662854.99it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:15.713264Z", - "iopub.status.busy": "2024-07-18T04:08:15.712838Z", - "iopub.status.idle": "2024-07-18T04:08:15.717532Z", - "shell.execute_reply": "2024-07-18T04:08:15.717089Z" + "iopub.execute_input": "2024-07-30T16:38:11.833918Z", + "iopub.status.busy": "2024-07-30T16:38:11.833462Z", + "iopub.status.idle": "2024-07-30T16:38:11.838434Z", + "shell.execute_reply": "2024-07-30T16:38:11.837866Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:15.719428Z", - "iopub.status.busy": "2024-07-18T04:08:15.719259Z", - "iopub.status.idle": "2024-07-18T04:08:16.258630Z", - "shell.execute_reply": "2024-07-18T04:08:16.258056Z" + "iopub.execute_input": "2024-07-30T16:38:11.840562Z", + "iopub.status.busy": "2024-07-30T16:38:11.840251Z", + "iopub.status.idle": "2024-07-30T16:38:12.371586Z", + "shell.execute_reply": "2024-07-30T16:38:12.371033Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.260848Z", - "iopub.status.busy": "2024-07-18T04:08:16.260520Z", - "iopub.status.idle": "2024-07-18T04:08:16.767687Z", - "shell.execute_reply": "2024-07-18T04:08:16.767215Z" + "iopub.execute_input": "2024-07-30T16:38:12.373894Z", + "iopub.status.busy": "2024-07-30T16:38:12.373541Z", + "iopub.status.idle": "2024-07-30T16:38:12.887091Z", + "shell.execute_reply": "2024-07-30T16:38:12.886524Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.769863Z", - "iopub.status.busy": "2024-07-18T04:08:16.769508Z", - "iopub.status.idle": "2024-07-18T04:08:16.772822Z", - "shell.execute_reply": "2024-07-18T04:08:16.772376Z" + "iopub.execute_input": "2024-07-30T16:38:12.889299Z", + "iopub.status.busy": "2024-07-30T16:38:12.888937Z", + "iopub.status.idle": "2024-07-30T16:38:12.892536Z", + "shell.execute_reply": "2024-07-30T16:38:12.892076Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:16.774860Z", - "iopub.status.busy": "2024-07-18T04:08:16.774532Z", - "iopub.status.idle": "2024-07-18T04:08:29.229998Z", - "shell.execute_reply": "2024-07-18T04:08:29.229404Z" + "iopub.execute_input": "2024-07-30T16:38:12.894534Z", + "iopub.status.busy": "2024-07-30T16:38:12.894200Z", + "iopub.status.idle": "2024-07-30T16:38:25.488449Z", + "shell.execute_reply": "2024-07-30T16:38:25.487794Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "424409b5a3c248919a596aef89b959d3", + "model_id": "23a512869c5e4f05a2356b8f464b1bcc", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:29.232469Z", - "iopub.status.busy": "2024-07-18T04:08:29.232033Z", - "iopub.status.idle": "2024-07-18T04:08:31.261531Z", - "shell.execute_reply": "2024-07-18T04:08:31.260905Z" + "iopub.execute_input": "2024-07-30T16:38:25.490754Z", + "iopub.status.busy": "2024-07-30T16:38:25.490545Z", + "iopub.status.idle": "2024-07-30T16:38:27.681301Z", + "shell.execute_reply": "2024-07-30T16:38:27.680552Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:31.264147Z", - "iopub.status.busy": "2024-07-18T04:08:31.263800Z", - "iopub.status.idle": "2024-07-18T04:08:31.486008Z", - "shell.execute_reply": "2024-07-18T04:08:31.485290Z" + "iopub.execute_input": "2024-07-30T16:38:27.684463Z", + "iopub.status.busy": "2024-07-30T16:38:27.683946Z", + "iopub.status.idle": "2024-07-30T16:38:27.951193Z", + "shell.execute_reply": "2024-07-30T16:38:27.950604Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:31.488468Z", - "iopub.status.busy": "2024-07-18T04:08:31.488018Z", - "iopub.status.idle": "2024-07-18T04:08:32.142236Z", - "shell.execute_reply": "2024-07-18T04:08:32.141607Z" + "iopub.execute_input": "2024-07-30T16:38:27.953780Z", + "iopub.status.busy": "2024-07-30T16:38:27.953567Z", + "iopub.status.idle": "2024-07-30T16:38:28.631392Z", + "shell.execute_reply": "2024-07-30T16:38:28.630768Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.144771Z", - "iopub.status.busy": "2024-07-18T04:08:32.144585Z", - "iopub.status.idle": "2024-07-18T04:08:32.436148Z", - "shell.execute_reply": "2024-07-18T04:08:32.435672Z" + "iopub.execute_input": "2024-07-30T16:38:28.634456Z", + "iopub.status.busy": "2024-07-30T16:38:28.633952Z", + "iopub.status.idle": "2024-07-30T16:38:28.975662Z", + "shell.execute_reply": "2024-07-30T16:38:28.975098Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.438256Z", - "iopub.status.busy": "2024-07-18T04:08:32.437904Z", - "iopub.status.idle": "2024-07-18T04:08:32.675912Z", - "shell.execute_reply": "2024-07-18T04:08:32.675301Z" + "iopub.execute_input": "2024-07-30T16:38:28.978011Z", + "iopub.status.busy": "2024-07-30T16:38:28.977574Z", + "iopub.status.idle": "2024-07-30T16:38:29.207618Z", + "shell.execute_reply": "2024-07-30T16:38:29.206996Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.678608Z", - "iopub.status.busy": "2024-07-18T04:08:32.678123Z", - "iopub.status.idle": "2024-07-18T04:08:32.775298Z", - "shell.execute_reply": "2024-07-18T04:08:32.774751Z" + "iopub.execute_input": "2024-07-30T16:38:29.209892Z", + "iopub.status.busy": "2024-07-30T16:38:29.209709Z", + "iopub.status.idle": "2024-07-30T16:38:29.298647Z", + "shell.execute_reply": "2024-07-30T16:38:29.297971Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:32.778213Z", - "iopub.status.busy": "2024-07-18T04:08:32.777804Z", - "iopub.status.idle": "2024-07-18T04:08:43.316731Z", - "shell.execute_reply": "2024-07-18T04:08:43.316056Z" + "iopub.execute_input": "2024-07-30T16:38:29.301052Z", + "iopub.status.busy": "2024-07-30T16:38:29.300869Z", + "iopub.status.idle": "2024-07-30T16:38:39.931040Z", + "shell.execute_reply": "2024-07-30T16:38:39.930336Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:43.319383Z", - "iopub.status.busy": "2024-07-18T04:08:43.319007Z", - "iopub.status.idle": "2024-07-18T04:08:45.511352Z", - "shell.execute_reply": "2024-07-18T04:08:45.510818Z" + "iopub.execute_input": "2024-07-30T16:38:39.933469Z", + "iopub.status.busy": "2024-07-30T16:38:39.933256Z", + "iopub.status.idle": "2024-07-30T16:38:42.292073Z", + "shell.execute_reply": "2024-07-30T16:38:42.291503Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.513955Z", - "iopub.status.busy": "2024-07-18T04:08:45.513429Z", - "iopub.status.idle": "2024-07-18T04:08:45.711540Z", - "shell.execute_reply": "2024-07-18T04:08:45.711028Z" + "iopub.execute_input": "2024-07-30T16:38:42.295015Z", + "iopub.status.busy": "2024-07-30T16:38:42.294328Z", + "iopub.status.idle": "2024-07-30T16:38:42.501084Z", + "shell.execute_reply": "2024-07-30T16:38:42.500563Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.713788Z", - "iopub.status.busy": "2024-07-18T04:08:45.713606Z", - "iopub.status.idle": "2024-07-18T04:08:45.716870Z", - "shell.execute_reply": "2024-07-18T04:08:45.716441Z" + "iopub.execute_input": "2024-07-30T16:38:42.503445Z", + "iopub.status.busy": "2024-07-30T16:38:42.503259Z", + "iopub.status.idle": "2024-07-30T16:38:42.506470Z", + "shell.execute_reply": "2024-07-30T16:38:42.506025Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:45.718925Z", - "iopub.status.busy": "2024-07-18T04:08:45.718613Z", - "iopub.status.idle": "2024-07-18T04:08:45.726667Z", - "shell.execute_reply": "2024-07-18T04:08:45.726221Z" + "iopub.execute_input": "2024-07-30T16:38:42.508323Z", + "iopub.status.busy": "2024-07-30T16:38:42.508151Z", + "iopub.status.idle": "2024-07-30T16:38:42.517729Z", + "shell.execute_reply": "2024-07-30T16:38:42.517288Z" }, "nbsphinx": "hidden" }, @@ -1337,59 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13b75646e4ae45bb8738a8342199ed8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ea943e162c94baba190703922291391": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "26b0e201445143b6ad5363d6f61e02c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "424409b5a3c248919a596aef89b959d3": { + "23a512869c5e4f05a2356b8f464b1bcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1404,16 +1168,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eb3b2b87a32446c892767b6727cf7c96", - "IPY_MODEL_62d287d26948474db68cc5ea75df7b81", - "IPY_MODEL_e35529740133431397715ff5e470a55e" + "IPY_MODEL_58618ff0d8be415dbaa56326b7b1db8c", + "IPY_MODEL_633d743f49c44f93be1bfe7c09cb76e5", + "IPY_MODEL_313c673f5ae140548d908be43be34294" ], - "layout": "IPY_MODEL_5955528c2a2f4be686f4bb6106813bff", + "layout": "IPY_MODEL_f1fa8803defc478f8f1a9688f96d5a79", "tabbable": null, "tooltip": null } }, - "5955528c2a2f4be686f4bb6106813bff": { + "3094116b83c34a98b8ed5ce27da55168": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1466,7 +1230,71 @@ "width": null } }, - "62d287d26948474db68cc5ea75df7b81": { + "313c673f5ae140548d908be43be34294": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afe5f4fb71e54d6b97c4b44ecea40c54", + "placeholder": "​", + "style": "IPY_MODEL_59856c986feb4d3abc586fed584de5c0", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 274MB/s]" + } + }, + "58618ff0d8be415dbaa56326b7b1db8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3094116b83c34a98b8ed5ce27da55168", + "placeholder": "​", + "style": "IPY_MODEL_7105d5b497e34139b8cba14426fdd044", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "59856c986feb4d3abc586fed584de5c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "633d743f49c44f93be1bfe7c09cb76e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1482,17 +1310,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7d11920d1e3a4b0f923cc702ffaaadcd", + "layout": "IPY_MODEL_6eb5b857715449aaa4e92a9a9560a833", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1ea943e162c94baba190703922291391", + "style": "IPY_MODEL_dae8ad4cd0df4444bf5ff766e8012dc4", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "7d11920d1e3a4b0f923cc702ffaaadcd": { + "6eb5b857715449aaa4e92a9a9560a833": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1545,7 +1373,25 @@ "width": null } }, - "83d24ca021e7439990012fc1cfae5ebc": { + "7105d5b497e34139b8cba14426fdd044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afe5f4fb71e54d6b97c4b44ecea40c54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1598,53 +1444,23 @@ "width": null } }, - "e35529740133431397715ff5e470a55e": { + "dae8ad4cd0df4444bf5ff766e8012dc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f169574227104d7b94f6e1a96b5ff27b", - "placeholder": "​", - "style": "IPY_MODEL_13b75646e4ae45bb8738a8342199ed8d", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 305MB/s]" - } - }, - "eb3b2b87a32446c892767b6727cf7c96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83d24ca021e7439990012fc1cfae5ebc", - "placeholder": "​", - "style": "IPY_MODEL_26b0e201445143b6ad5363d6f61e02c4", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f169574227104d7b94f6e1a96b5ff27b": { + "f1fa8803defc478f8f1a9688f96d5a79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 28ed3a546..7c5c07d39 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:49.857100Z", - "iopub.status.busy": "2024-07-18T04:08:49.856925Z", - "iopub.status.idle": "2024-07-18T04:08:51.033463Z", - "shell.execute_reply": "2024-07-18T04:08:51.032826Z" + "iopub.execute_input": "2024-07-30T16:38:46.925237Z", + "iopub.status.busy": "2024-07-30T16:38:46.925067Z", + "iopub.status.idle": "2024-07-30T16:38:48.345531Z", + "shell.execute_reply": "2024-07-30T16:38:48.344960Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.036042Z", - "iopub.status.busy": "2024-07-18T04:08:51.035764Z", - "iopub.status.idle": "2024-07-18T04:08:51.053474Z", - "shell.execute_reply": "2024-07-18T04:08:51.052908Z" + "iopub.execute_input": "2024-07-30T16:38:48.348157Z", + "iopub.status.busy": "2024-07-30T16:38:48.347674Z", + "iopub.status.idle": "2024-07-30T16:38:48.365919Z", + "shell.execute_reply": "2024-07-30T16:38:48.365467Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.055718Z", - "iopub.status.busy": "2024-07-18T04:08:51.055333Z", - "iopub.status.idle": "2024-07-18T04:08:51.058387Z", - "shell.execute_reply": "2024-07-18T04:08:51.057846Z" + "iopub.execute_input": "2024-07-30T16:38:48.368246Z", + "iopub.status.busy": "2024-07-30T16:38:48.367803Z", + "iopub.status.idle": "2024-07-30T16:38:48.370780Z", + "shell.execute_reply": "2024-07-30T16:38:48.370332Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.060619Z", - "iopub.status.busy": "2024-07-18T04:08:51.060155Z", - "iopub.status.idle": "2024-07-18T04:08:51.265981Z", - "shell.execute_reply": "2024-07-18T04:08:51.265535Z" + "iopub.execute_input": "2024-07-30T16:38:48.372766Z", + "iopub.status.busy": "2024-07-30T16:38:48.372450Z", + "iopub.status.idle": "2024-07-30T16:38:48.468454Z", + "shell.execute_reply": "2024-07-30T16:38:48.467839Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.268127Z", - "iopub.status.busy": "2024-07-18T04:08:51.267788Z", - "iopub.status.idle": "2024-07-18T04:08:51.448821Z", - "shell.execute_reply": "2024-07-18T04:08:51.448311Z" + "iopub.execute_input": "2024-07-30T16:38:48.471122Z", + "iopub.status.busy": "2024-07-30T16:38:48.470653Z", + "iopub.status.idle": "2024-07-30T16:38:48.475521Z", + "shell.execute_reply": "2024-07-30T16:38:48.475049Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.450979Z", - "iopub.status.busy": "2024-07-18T04:08:51.450781Z", - "iopub.status.idle": "2024-07-18T04:08:51.660929Z", - "shell.execute_reply": "2024-07-18T04:08:51.660315Z" + "iopub.execute_input": "2024-07-30T16:38:48.477468Z", + "iopub.status.busy": "2024-07-30T16:38:48.477131Z", + "iopub.status.idle": "2024-07-30T16:38:48.720327Z", + "shell.execute_reply": "2024-07-30T16:38:48.719696Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.663179Z", - "iopub.status.busy": "2024-07-18T04:08:51.662774Z", - "iopub.status.idle": "2024-07-18T04:08:51.667262Z", - "shell.execute_reply": "2024-07-18T04:08:51.666686Z" + "iopub.execute_input": "2024-07-30T16:38:48.722633Z", + "iopub.status.busy": "2024-07-30T16:38:48.722278Z", + "iopub.status.idle": "2024-07-30T16:38:48.726622Z", + "shell.execute_reply": "2024-07-30T16:38:48.726163Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.669382Z", - "iopub.status.busy": "2024-07-18T04:08:51.669036Z", - "iopub.status.idle": "2024-07-18T04:08:51.674698Z", - "shell.execute_reply": "2024-07-18T04:08:51.674244Z" + "iopub.execute_input": "2024-07-30T16:38:48.728701Z", + "iopub.status.busy": "2024-07-30T16:38:48.728352Z", + "iopub.status.idle": "2024-07-30T16:38:48.734485Z", + "shell.execute_reply": "2024-07-30T16:38:48.734046Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.676720Z", - "iopub.status.busy": "2024-07-18T04:08:51.676391Z", - "iopub.status.idle": "2024-07-18T04:08:51.678866Z", - "shell.execute_reply": "2024-07-18T04:08:51.678427Z" + "iopub.execute_input": "2024-07-30T16:38:48.736597Z", + "iopub.status.busy": "2024-07-30T16:38:48.736263Z", + "iopub.status.idle": "2024-07-30T16:38:48.738985Z", + "shell.execute_reply": "2024-07-30T16:38:48.738429Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:08:51.680800Z", - "iopub.status.busy": "2024-07-18T04:08:51.680488Z", - "iopub.status.idle": "2024-07-18T04:09:00.539921Z", - "shell.execute_reply": "2024-07-18T04:09:00.539355Z" + "iopub.execute_input": "2024-07-30T16:38:48.741068Z", + "iopub.status.busy": "2024-07-30T16:38:48.740746Z", + "iopub.status.idle": "2024-07-30T16:38:57.890643Z", + "shell.execute_reply": "2024-07-30T16:38:57.890064Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.542544Z", - "iopub.status.busy": "2024-07-18T04:09:00.542172Z", - "iopub.status.idle": "2024-07-18T04:09:00.549395Z", - "shell.execute_reply": "2024-07-18T04:09:00.548943Z" + "iopub.execute_input": "2024-07-30T16:38:57.893640Z", + "iopub.status.busy": "2024-07-30T16:38:57.893011Z", + "iopub.status.idle": "2024-07-30T16:38:57.900759Z", + "shell.execute_reply": "2024-07-30T16:38:57.900288Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.551482Z", - "iopub.status.busy": "2024-07-18T04:09:00.551165Z", - "iopub.status.idle": "2024-07-18T04:09:00.554829Z", - "shell.execute_reply": "2024-07-18T04:09:00.554351Z" + "iopub.execute_input": "2024-07-30T16:38:57.903196Z", + "iopub.status.busy": "2024-07-30T16:38:57.902725Z", + "iopub.status.idle": "2024-07-30T16:38:57.906622Z", + "shell.execute_reply": "2024-07-30T16:38:57.906179Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.556730Z", - "iopub.status.busy": "2024-07-18T04:09:00.556561Z", - "iopub.status.idle": "2024-07-18T04:09:00.559924Z", - "shell.execute_reply": "2024-07-18T04:09:00.559463Z" + "iopub.execute_input": "2024-07-30T16:38:57.908608Z", + "iopub.status.busy": "2024-07-30T16:38:57.908262Z", + "iopub.status.idle": "2024-07-30T16:38:57.911716Z", + "shell.execute_reply": "2024-07-30T16:38:57.911253Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.561758Z", - "iopub.status.busy": "2024-07-18T04:09:00.561590Z", - "iopub.status.idle": "2024-07-18T04:09:00.564614Z", - "shell.execute_reply": "2024-07-18T04:09:00.564159Z" + "iopub.execute_input": "2024-07-30T16:38:57.913595Z", + "iopub.status.busy": "2024-07-30T16:38:57.913317Z", + "iopub.status.idle": "2024-07-30T16:38:57.916287Z", + "shell.execute_reply": "2024-07-30T16:38:57.915835Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.566608Z", - "iopub.status.busy": "2024-07-18T04:09:00.566208Z", - "iopub.status.idle": "2024-07-18T04:09:00.574230Z", - "shell.execute_reply": "2024-07-18T04:09:00.573776Z" + "iopub.execute_input": "2024-07-30T16:38:57.918353Z", + "iopub.status.busy": "2024-07-30T16:38:57.918022Z", + "iopub.status.idle": "2024-07-30T16:38:57.925798Z", + "shell.execute_reply": "2024-07-30T16:38:57.925354Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.576300Z", - "iopub.status.busy": "2024-07-18T04:09:00.575910Z", - "iopub.status.idle": "2024-07-18T04:09:00.578480Z", - "shell.execute_reply": "2024-07-18T04:09:00.578034Z" + "iopub.execute_input": "2024-07-30T16:38:57.927921Z", + "iopub.status.busy": "2024-07-30T16:38:57.927572Z", + "iopub.status.idle": "2024-07-30T16:38:57.930349Z", + "shell.execute_reply": "2024-07-30T16:38:57.929874Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.580633Z", - "iopub.status.busy": "2024-07-18T04:09:00.580237Z", - "iopub.status.idle": "2024-07-18T04:09:00.703841Z", - "shell.execute_reply": "2024-07-18T04:09:00.703327Z" + "iopub.execute_input": "2024-07-30T16:38:57.932400Z", + "iopub.status.busy": "2024-07-30T16:38:57.932062Z", + "iopub.status.idle": "2024-07-30T16:38:58.059365Z", + "shell.execute_reply": "2024-07-30T16:38:58.058741Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.705943Z", - "iopub.status.busy": "2024-07-18T04:09:00.705589Z", - "iopub.status.idle": "2024-07-18T04:09:00.829071Z", - "shell.execute_reply": "2024-07-18T04:09:00.828455Z" + "iopub.execute_input": "2024-07-30T16:38:58.061937Z", + "iopub.status.busy": "2024-07-30T16:38:58.061368Z", + "iopub.status.idle": "2024-07-30T16:38:58.173574Z", + "shell.execute_reply": "2024-07-30T16:38:58.172969Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:00.831504Z", - "iopub.status.busy": "2024-07-18T04:09:00.831176Z", - "iopub.status.idle": "2024-07-18T04:09:01.327951Z", - "shell.execute_reply": "2024-07-18T04:09:01.327366Z" + "iopub.execute_input": "2024-07-30T16:38:58.176096Z", + "iopub.status.busy": "2024-07-30T16:38:58.175756Z", + "iopub.status.idle": "2024-07-30T16:38:58.686374Z", + "shell.execute_reply": "2024-07-30T16:38:58.685762Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.330201Z", - "iopub.status.busy": "2024-07-18T04:09:01.329830Z", - "iopub.status.idle": "2024-07-18T04:09:01.439967Z", - "shell.execute_reply": "2024-07-18T04:09:01.439456Z" + "iopub.execute_input": "2024-07-30T16:38:58.689154Z", + "iopub.status.busy": "2024-07-30T16:38:58.688791Z", + "iopub.status.idle": "2024-07-30T16:38:58.788057Z", + "shell.execute_reply": "2024-07-30T16:38:58.787414Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.442336Z", - "iopub.status.busy": "2024-07-18T04:09:01.441869Z", - "iopub.status.idle": "2024-07-18T04:09:01.450335Z", - "shell.execute_reply": "2024-07-18T04:09:01.449911Z" + "iopub.execute_input": "2024-07-30T16:38:58.790444Z", + "iopub.status.busy": "2024-07-30T16:38:58.790105Z", + "iopub.status.idle": "2024-07-30T16:38:58.799165Z", + "shell.execute_reply": "2024-07-30T16:38:58.798679Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.452412Z", - "iopub.status.busy": "2024-07-18T04:09:01.452106Z", - "iopub.status.idle": "2024-07-18T04:09:01.454865Z", - "shell.execute_reply": "2024-07-18T04:09:01.454378Z" + "iopub.execute_input": "2024-07-30T16:38:58.801513Z", + "iopub.status.busy": "2024-07-30T16:38:58.801103Z", + "iopub.status.idle": "2024-07-30T16:38:58.804084Z", + "shell.execute_reply": "2024-07-30T16:38:58.803524Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:01.456775Z", - "iopub.status.busy": "2024-07-18T04:09:01.456602Z", - "iopub.status.idle": "2024-07-18T04:09:07.281893Z", - "shell.execute_reply": "2024-07-18T04:09:07.281280Z" + "iopub.execute_input": "2024-07-30T16:38:58.806513Z", + "iopub.status.busy": "2024-07-30T16:38:58.805981Z", + "iopub.status.idle": "2024-07-30T16:39:04.543731Z", + "shell.execute_reply": "2024-07-30T16:39:04.543118Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:07.284419Z", - "iopub.status.busy": "2024-07-18T04:09:07.284045Z", - "iopub.status.idle": "2024-07-18T04:09:07.292412Z", - "shell.execute_reply": "2024-07-18T04:09:07.291957Z" + "iopub.execute_input": "2024-07-30T16:39:04.546340Z", + "iopub.status.busy": "2024-07-30T16:39:04.545828Z", + "iopub.status.idle": "2024-07-30T16:39:04.554540Z", + "shell.execute_reply": "2024-07-30T16:39:04.553952Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:07.294524Z", - "iopub.status.busy": "2024-07-18T04:09:07.294199Z", - "iopub.status.idle": "2024-07-18T04:09:07.357921Z", - "shell.execute_reply": "2024-07-18T04:09:07.357469Z" + "iopub.execute_input": "2024-07-30T16:39:04.556793Z", + "iopub.status.busy": "2024-07-30T16:39:04.556293Z", + "iopub.status.idle": "2024-07-30T16:39:04.620999Z", + "shell.execute_reply": "2024-07-30T16:39:04.620353Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 73c96ca08..c4e78a813 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"454c04298568464e900ed58997051dc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d69aaf5b8d44dd99124d63caa7d8614": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "911fe71d3be64e2ab2071f4f6dcc1016": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_454c04298568464e900ed58997051dc4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d69aaf5b8d44dd99124d63caa7d8614", "tabbable": null, "tooltip": null, "value": 30.0}}, "0a20edbe6a594498909b06e9c5396420": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8145b7e889a47059348256665e43ab0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5fa676c9a584d139234c30abd25aa09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a20edbe6a594498909b06e9c5396420", "placeholder": "\u200b", "style": "IPY_MODEL_b8145b7e889a47059348256665e43ab0", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "bcdf5d53ec1f4db8b5a3a858dc8846ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a5e964186ae49038b1cc962b672b697": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a160cb8119042b1b0257cd745f36bb2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcdf5d53ec1f4db8b5a3a858dc8846ac", "placeholder": "\u200b", "style": "IPY_MODEL_6a5e964186ae49038b1cc962b672b697", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007815.98it/s]"}}, "0cd83a443fc84266ad25416b5aff0bb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b72b2c1cac4c46cf8fdcb9a698c41e2d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5fa676c9a584d139234c30abd25aa09", "IPY_MODEL_911fe71d3be64e2ab2071f4f6dcc1016", "IPY_MODEL_9a160cb8119042b1b0257cd745f36bb2"], "layout": "IPY_MODEL_0cd83a443fc84266ad25416b5aff0bb7", "tabbable": null, "tooltip": null}}, "4461ec16ae5e4721b352a3fbdc75a0b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48cb8a66bcd1494f941da6683a3b6919": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4f26cc2fc788433487e0331c48aac4f9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4461ec16ae5e4721b352a3fbdc75a0b4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_48cb8a66bcd1494f941da6683a3b6919", "tabbable": null, "tooltip": null, "value": 30.0}}, "8d8b7fb74f8c417e9e17f911ecde280f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "178f9c96dbf64c2e84d718e79f53936f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0e8c0a9e25994e2ca3f8d2ece39596a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d8b7fb74f8c417e9e17f911ecde280f", "placeholder": "\u200b", "style": "IPY_MODEL_178f9c96dbf64c2e84d718e79f53936f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "a25b5530380249f99eb6ee49ba220301": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c8208c77c3240628ff0208ff4f0a4a9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5ad76449c39401cafbc62f08675233c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a25b5530380249f99eb6ee49ba220301", "placeholder": "\u200b", "style": "IPY_MODEL_5c8208c77c3240628ff0208ff4f0a4a9", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.19it/s]"}}, "b42b51ac859041f9a41fac789eb47c0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59e1bc568b054e7ba3e6e8735e0b46ca": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0e8c0a9e25994e2ca3f8d2ece39596a5", "IPY_MODEL_4f26cc2fc788433487e0331c48aac4f9", "IPY_MODEL_d5ad76449c39401cafbc62f08675233c"], "layout": "IPY_MODEL_b42b51ac859041f9a41fac789eb47c0f", "tabbable": null, "tooltip": null}}, "1a80b216c35947cf815d6f2bb5ebb85f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f98050f4a9814463893abb2bd49e930a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6b9a6b3902894a6ab4c4db415e0f19ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a80b216c35947cf815d6f2bb5ebb85f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f98050f4a9814463893abb2bd49e930a", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "b8749ed68a6f4dffb642e2951426ac92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67b5edcec1d74ae4b54af34d8696f99b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6608049421140b1ac4d14b7c43eab7d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b8749ed68a6f4dffb642e2951426ac92", "placeholder": "\u200b", "style": "IPY_MODEL_67b5edcec1d74ae4b54af34d8696f99b", "tabbable": null, "tooltip": null, "value": "100%"}}, "6fcefb4cf9864027ab426517dbece0c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c39fc393d73430e8a4d2b5f1b4b4b73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e401b5ec83c4494bb96085914e21687b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fcefb4cf9864027ab426517dbece0c9", "placeholder": "\u200b", "style": "IPY_MODEL_7c39fc393d73430e8a4d2b5f1b4b4b73", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007150147.31it/s]"}}, "74ab83b9cd4a4714bae4d108f607cf6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abf636d0171541789af2388c3416e5d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a6608049421140b1ac4d14b7c43eab7d", "IPY_MODEL_6b9a6b3902894a6ab4c4db415e0f19ac", "IPY_MODEL_e401b5ec83c4494bb96085914e21687b"], "layout": "IPY_MODEL_74ab83b9cd4a4714bae4d108f607cf6f", "tabbable": null, "tooltip": null}}, "92567ab696d3482d8ad371a2eef0cbdb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "596bafdfec9e406bbffa6835ef386484": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "719774e4d63942a4a4f87677b419ca45": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92567ab696d3482d8ad371a2eef0cbdb", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_596bafdfec9e406bbffa6835ef386484", "tabbable": null, "tooltip": null, "value": 30.0}}, "756e70ea38bd4cd59509987c5d800737": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10749c7cde6b4303a9ca2d45595c2710": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "94fecb2db41d48eb88721abbc823752d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_756e70ea38bd4cd59509987c5d800737", "placeholder": "\u200b", "style": "IPY_MODEL_10749c7cde6b4303a9ca2d45595c2710", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "18ef129f375049d085108684638b6023": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ff3d452491e4d93a5a3403c464a60b8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae60fa4e2c044172b0e99b28c0a04e0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_18ef129f375049d085108684638b6023", "placeholder": "\u200b", "style": "IPY_MODEL_5ff3d452491e4d93a5a3403c464a60b8", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.32it/s]"}}, "9be448ce653f4a0fbede9675cfe3afb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa25231490e54be4825aa7b428111c87": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_94fecb2db41d48eb88721abbc823752d", "IPY_MODEL_719774e4d63942a4a4f87677b419ca45", "IPY_MODEL_ae60fa4e2c044172b0e99b28c0a04e0c"], "layout": "IPY_MODEL_9be448ce653f4a0fbede9675cfe3afb2", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"15b6c6e4483e414bbffdca6b1332ba45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b0bd8d97261484186cbbc3b754ec950": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e298261bfee74f53a9d4ee7608c7dbba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", "tabbable": null, "tooltip": null, "value": 30.0}}, "984b4a402c5e4260b8d9a0f92ba2547b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbd95489418e417688ccd6e6da39d464": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb262a4cefe2454ea0bfaf1857eaaaa0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", "placeholder": "\u200b", "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "c103e73e53c7487084bdb73546e2c3f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3ac3d6d5373421680b5cdfd9f305953": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d9c48453ded44f187c73beb3ab94bef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", "placeholder": "\u200b", "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007809.67it/s]"}}, "aace38a5bc714ce49401be885a999f66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c621015e28040a280bd1034a80975dc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef"], "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", "tabbable": null, "tooltip": null}}, "b6e50060b45f4c09ba567bff5d89bbd4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1789c1a5e684dd89f01bb738355ab84": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "665af0e8c3f645a59c02f43043fdff51": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", "tabbable": null, "tooltip": null, "value": 30.0}}, "4289a1e8279c46b0b291b9d03ed580e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4d10f8bafa946de89419591759057de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e636b5573aab44bba46435bd71934d2c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", "placeholder": "\u200b", "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7ee856f3b3b6489cadb00bc56b8cfbfd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7759184621734da7ad7af7156fef025c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e5a8275ab144dd1837b3acb899ba516": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", "placeholder": "\u200b", "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.14it/s]"}}, "806c92b800564387bef7dd39a678fbdd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f880a204f2942c89dcc00391ef9c5e7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e636b5573aab44bba46435bd71934d2c", "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516"], "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", "tabbable": null, "tooltip": null}}, "b2fe9990927042c6bb636763d7937e0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c59fdcdcb4d04accba7ce0c3d58c5eb0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec065695ccda4be494a55a12d2a2a747": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f0d230f541b948e9a2051618e62f2712": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b240753a02c4bcf9fe60a2a6583280e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3959826deb41466c9cff772fbcdc14cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", "placeholder": "\u200b", "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", "tabbable": null, "tooltip": null, "value": "100%"}}, "d3f1e045fd804f4a9b2bc2eab9679b2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd16bea5c99646b898f24b1cf3d54721": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53ec7ed5cdda45ee9abaa821657d4972": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", "placeholder": "\u200b", "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154765.99it/s]"}}, "a779351ef43a464290826c053fbba728": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8aadf42791a644d7aa84ea5ea93db52a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972"], "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", "tabbable": null, "tooltip": null}}, "916b2b82c5da485e96eb7becee3ab269": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86ce7a15782f4be0bdcea8d3e956fdd3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6f0287eca6f748f48079369ebec0af00": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", "tabbable": null, "tooltip": null, "value": 30.0}}, "6d36dca0c74f4a7d8aaeeab44134b5ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "842810ddd25f4f9a91f6c1488c693fed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7ab2dd5b34e14de4aee5ee3ca7cd1e03": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", "placeholder": "\u200b", "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "8fcef29a8bc14e859cd9c969f9e518fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2a8b93dbec1492481abde0df026087e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4dcefed1766446b8c69b4d02fab4125": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", "placeholder": "\u200b", "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.41it/s]"}}, "3a237c75a8f54cf38e283f9c7d217f3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd34f6363dd94413a10ce5318e70a5ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125"], "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 907281bf0..ddf315699 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:10.560124Z", - "iopub.status.busy": "2024-07-18T04:09:10.559958Z", - "iopub.status.idle": "2024-07-18T04:09:13.104127Z", - "shell.execute_reply": "2024-07-18T04:09:13.103356Z" + "iopub.execute_input": "2024-07-30T16:39:08.949260Z", + "iopub.status.busy": "2024-07-30T16:39:08.949088Z", + "iopub.status.idle": "2024-07-30T16:39:10.916447Z", + "shell.execute_reply": "2024-07-30T16:39:10.915748Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:09:13.106805Z", - "iopub.status.busy": "2024-07-18T04:09:13.106609Z", - "iopub.status.idle": "2024-07-18T04:10:28.268458Z", - "shell.execute_reply": "2024-07-18T04:10:28.267678Z" + "iopub.execute_input": "2024-07-30T16:39:10.918962Z", + "iopub.status.busy": "2024-07-30T16:39:10.918773Z", + "iopub.status.idle": "2024-07-30T16:40:31.011988Z", + "shell.execute_reply": "2024-07-30T16:40:31.011219Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:28.271144Z", - "iopub.status.busy": "2024-07-18T04:10:28.270903Z", - "iopub.status.idle": "2024-07-18T04:10:29.405571Z", - "shell.execute_reply": "2024-07-18T04:10:29.405039Z" + "iopub.execute_input": "2024-07-30T16:40:31.014861Z", + "iopub.status.busy": "2024-07-30T16:40:31.014482Z", + "iopub.status.idle": "2024-07-30T16:40:32.523099Z", + "shell.execute_reply": "2024-07-30T16:40:32.522526Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.408244Z", - "iopub.status.busy": "2024-07-18T04:10:29.407724Z", - "iopub.status.idle": "2024-07-18T04:10:29.411085Z", - "shell.execute_reply": "2024-07-18T04:10:29.410512Z" + "iopub.execute_input": "2024-07-30T16:40:32.525566Z", + "iopub.status.busy": "2024-07-30T16:40:32.525262Z", + "iopub.status.idle": "2024-07-30T16:40:32.528712Z", + "shell.execute_reply": "2024-07-30T16:40:32.528246Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.413314Z", - "iopub.status.busy": "2024-07-18T04:10:29.413010Z", - "iopub.status.idle": "2024-07-18T04:10:29.416803Z", - "shell.execute_reply": "2024-07-18T04:10:29.416373Z" + "iopub.execute_input": "2024-07-30T16:40:32.530916Z", + "iopub.status.busy": "2024-07-30T16:40:32.530497Z", + "iopub.status.idle": "2024-07-30T16:40:32.534386Z", + "shell.execute_reply": "2024-07-30T16:40:32.533915Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.418928Z", - "iopub.status.busy": "2024-07-18T04:10:29.418571Z", - "iopub.status.idle": "2024-07-18T04:10:29.422140Z", - "shell.execute_reply": "2024-07-18T04:10:29.421708Z" + "iopub.execute_input": "2024-07-30T16:40:32.536602Z", + "iopub.status.busy": "2024-07-30T16:40:32.536175Z", + "iopub.status.idle": "2024-07-30T16:40:32.539968Z", + "shell.execute_reply": "2024-07-30T16:40:32.539531Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.424233Z", - "iopub.status.busy": "2024-07-18T04:10:29.423908Z", - "iopub.status.idle": "2024-07-18T04:10:29.426602Z", - "shell.execute_reply": "2024-07-18T04:10:29.426181Z" + "iopub.execute_input": "2024-07-30T16:40:32.542052Z", + "iopub.status.busy": "2024-07-30T16:40:32.541706Z", + "iopub.status.idle": "2024-07-30T16:40:32.544446Z", + "shell.execute_reply": "2024-07-30T16:40:32.544021Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:10:29.428591Z", - "iopub.status.busy": "2024-07-18T04:10:29.428256Z", - "iopub.status.idle": "2024-07-18T04:11:06.947288Z", - "shell.execute_reply": "2024-07-18T04:11:06.946575Z" + "iopub.execute_input": "2024-07-30T16:40:32.546293Z", + "iopub.status.busy": "2024-07-30T16:40:32.546119Z", + "iopub.status.idle": "2024-07-30T16:41:10.690446Z", + "shell.execute_reply": "2024-07-30T16:41:10.689776Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b72b2c1cac4c46cf8fdcb9a698c41e2d", + "model_id": "3c621015e28040a280bd1034a80975dc", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59e1bc568b054e7ba3e6e8735e0b46ca", + "model_id": "0f880a204f2942c89dcc00391ef9c5e7", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:06.950015Z", - "iopub.status.busy": "2024-07-18T04:11:06.949795Z", - "iopub.status.idle": "2024-07-18T04:11:07.618088Z", - "shell.execute_reply": "2024-07-18T04:11:07.617601Z" + "iopub.execute_input": "2024-07-30T16:41:10.693189Z", + "iopub.status.busy": "2024-07-30T16:41:10.692781Z", + "iopub.status.idle": "2024-07-30T16:41:11.146443Z", + "shell.execute_reply": "2024-07-30T16:41:11.145848Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:07.620378Z", - "iopub.status.busy": "2024-07-18T04:11:07.619929Z", - "iopub.status.idle": "2024-07-18T04:11:10.617575Z", - "shell.execute_reply": "2024-07-18T04:11:10.616973Z" + "iopub.execute_input": "2024-07-30T16:41:11.148909Z", + "iopub.status.busy": "2024-07-30T16:41:11.148535Z", + "iopub.status.idle": "2024-07-30T16:41:14.025111Z", + "shell.execute_reply": "2024-07-30T16:41:14.024529Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:10.619936Z", - "iopub.status.busy": "2024-07-18T04:11:10.619515Z", - "iopub.status.idle": "2024-07-18T04:11:43.703098Z", - "shell.execute_reply": "2024-07-18T04:11:43.702508Z" + "iopub.execute_input": "2024-07-30T16:41:14.027425Z", + "iopub.status.busy": "2024-07-30T16:41:14.027043Z", + "iopub.status.idle": "2024-07-30T16:41:46.636156Z", + "shell.execute_reply": "2024-07-30T16:41:46.635613Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf636d0171541789af2388c3416e5d8", + "model_id": "8aadf42791a644d7aa84ea5ea93db52a", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:43.705345Z", - "iopub.status.busy": "2024-07-18T04:11:43.704988Z", - "iopub.status.idle": "2024-07-18T04:11:59.439667Z", - "shell.execute_reply": "2024-07-18T04:11:59.439016Z" + "iopub.execute_input": "2024-07-30T16:41:46.638629Z", + "iopub.status.busy": "2024-07-30T16:41:46.638229Z", + "iopub.status.idle": "2024-07-30T16:42:01.915473Z", + "shell.execute_reply": "2024-07-30T16:42:01.914892Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:11:59.442385Z", - "iopub.status.busy": "2024-07-18T04:11:59.441988Z", - "iopub.status.idle": "2024-07-18T04:12:03.320177Z", - "shell.execute_reply": "2024-07-18T04:12:03.319687Z" + "iopub.execute_input": "2024-07-30T16:42:01.918239Z", + "iopub.status.busy": "2024-07-30T16:42:01.917804Z", + "iopub.status.idle": "2024-07-30T16:42:05.845501Z", + "shell.execute_reply": "2024-07-30T16:42:05.844878Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:03.322503Z", - "iopub.status.busy": "2024-07-18T04:12:03.322159Z", - "iopub.status.idle": "2024-07-18T04:12:04.826127Z", - "shell.execute_reply": "2024-07-18T04:12:04.825565Z" + "iopub.execute_input": "2024-07-30T16:42:05.847761Z", + "iopub.status.busy": "2024-07-30T16:42:05.847553Z", + "iopub.status.idle": "2024-07-30T16:42:07.336104Z", + "shell.execute_reply": "2024-07-30T16:42:07.335452Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa25231490e54be4825aa7b428111c87", + "model_id": "bd34f6363dd94413a10ce5318e70a5ff", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:04.828561Z", - "iopub.status.busy": "2024-07-18T04:12:04.828379Z", - "iopub.status.idle": "2024-07-18T04:12:04.858249Z", - "shell.execute_reply": "2024-07-18T04:12:04.857723Z" + "iopub.execute_input": "2024-07-30T16:42:07.338634Z", + "iopub.status.busy": "2024-07-30T16:42:07.338421Z", + "iopub.status.idle": "2024-07-30T16:42:07.369072Z", + "shell.execute_reply": "2024-07-30T16:42:07.368500Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:04.860698Z", - "iopub.status.busy": "2024-07-18T04:12:04.860465Z", - "iopub.status.idle": "2024-07-18T04:12:11.011245Z", - "shell.execute_reply": "2024-07-18T04:12:11.010640Z" + "iopub.execute_input": "2024-07-30T16:42:07.371445Z", + "iopub.status.busy": "2024-07-30T16:42:07.371243Z", + "iopub.status.idle": "2024-07-30T16:42:13.423924Z", + "shell.execute_reply": "2024-07-30T16:42:13.423326Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:11.013336Z", - "iopub.status.busy": "2024-07-18T04:12:11.013156Z", - "iopub.status.idle": "2024-07-18T04:12:11.069138Z", - "shell.execute_reply": "2024-07-18T04:12:11.068595Z" + "iopub.execute_input": "2024-07-30T16:42:13.426357Z", + "iopub.status.busy": "2024-07-30T16:42:13.425904Z", + "iopub.status.idle": "2024-07-30T16:42:13.482723Z", + "shell.execute_reply": "2024-07-30T16:42:13.482084Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a20edbe6a594498909b06e9c5396420": { + "0f880a204f2942c89dcc00391ef9c5e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e636b5573aab44bba46435bd71934d2c", + "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", + "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516" + ], + "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", + "tabbable": null, + "tooltip": null + } + }, + "15b6c6e4483e414bbffdca6b1332ba45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,7 +1115,53 @@ "width": null } }, - "0cd83a443fc84266ad25416b5aff0bb7": { + "2e5a8275ab144dd1837b3acb899ba516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", + "placeholder": "​", + "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.14it/s]" + } + }, + "3959826deb41466c9cff772fbcdc14cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", + "placeholder": "​", + "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3a237c75a8f54cf38e283f9c7d217f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,66 +1214,31 @@ "width": null } }, - "0e8c0a9e25994e2ca3f8d2ece39596a5": { + "3c621015e28040a280bd1034a80975dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d8b7fb74f8c417e9e17f911ecde280f", - "placeholder": "​", - "style": "IPY_MODEL_178f9c96dbf64c2e84d718e79f53936f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", + "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", + "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef" + ], + "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "10749c7cde6b4303a9ca2d45595c2710": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "178f9c96dbf64c2e84d718e79f53936f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "18ef129f375049d085108684638b6023": { + "4289a1e8279c46b0b291b9d03ed580e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,7 +1291,79 @@ "width": null } }, - "1a80b216c35947cf815d6f2bb5ebb85f": { + "53ec7ed5cdda45ee9abaa821657d4972": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", + "placeholder": "​", + "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 154765.99it/s]" + } + }, + "5d9c48453ded44f187c73beb3ab94bef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", + "placeholder": "​", + "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 809.67it/s]" + } + }, + "665af0e8c3f645a59c02f43043fdff51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6d36dca0c74f4a7d8aaeeab44134b5ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1309,7 +1416,92 @@ "width": null } }, - "4461ec16ae5e4721b352a3fbdc75a0b4": { + "6f0287eca6f748f48079369ebec0af00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "7759184621734da7ad7af7156fef025c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ab2dd5b34e14de4aee5ee3ca7cd1e03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", + "placeholder": "​", + "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "7b240753a02c4bcf9fe60a2a6583280e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ee856f3b3b6489cadb00bc56b8cfbfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1554,7 @@ "width": null } }, - "454c04298568464e900ed58997051dc4": { + "806c92b800564387bef7dd39a678fbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1415,49 +1607,25 @@ "width": null } }, - "48cb8a66bcd1494f941da6683a3b6919": { + "842810ddd25f4f9a91f6c1488c693fed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f26cc2fc788433487e0331c48aac4f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4461ec16ae5e4721b352a3fbdc75a0b4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48cb8a66bcd1494f941da6683a3b6919", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "596bafdfec9e406bbffa6835ef386484": { + "86ce7a15782f4be0bdcea8d3e956fdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1473,7 +1641,7 @@ "description_width": "" } }, - "59e1bc568b054e7ba3e6e8735e0b46ca": { + "8aadf42791a644d7aa84ea5ea93db52a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1488,114 +1656,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0e8c0a9e25994e2ca3f8d2ece39596a5", - "IPY_MODEL_4f26cc2fc788433487e0331c48aac4f9", - "IPY_MODEL_d5ad76449c39401cafbc62f08675233c" + "IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", + "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", + "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972" ], - "layout": "IPY_MODEL_b42b51ac859041f9a41fac789eb47c0f", + "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", "tabbable": null, "tooltip": null } }, - "5c8208c77c3240628ff0208ff4f0a4a9": { + "8b0bd8d97261484186cbbc3b754ec950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ff3d452491e4d93a5a3403c464a60b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67b5edcec1d74ae4b54af34d8696f99b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a5e964186ae49038b1cc962b672b697": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b9a6b3902894a6ab4c4db415e0f19ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a80b216c35947cf815d6f2bb5ebb85f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f98050f4a9814463893abb2bd49e930a", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "bar_color": null, + "description_width": "" } }, - "6fcefb4cf9864027ab426517dbece0c9": { + "8fcef29a8bc14e859cd9c969f9e518fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,33 +1734,7 @@ "width": null } }, - "719774e4d63942a4a4f87677b419ca45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92567ab696d3482d8ad371a2eef0cbdb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_596bafdfec9e406bbffa6835ef386484", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "74ab83b9cd4a4714bae4d108f607cf6f": { + "916b2b82c5da485e96eb7becee3ab269": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1727,7 +1787,7 @@ "width": null } }, - "756e70ea38bd4cd59509987c5d800737": { + "984b4a402c5e4260b8d9a0f92ba2547b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1780,25 +1840,30 @@ "width": null } }, - "7c39fc393d73430e8a4d2b5f1b4b4b73": { + "a4dcefed1766446b8c69b4d02fab4125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", + "placeholder": "​", + "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.41it/s]" } }, - "8d8b7fb74f8c417e9e17f911ecde280f": { + "a779351ef43a464290826c053fbba728": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1851,33 +1916,7 @@ "width": null } }, - "911fe71d3be64e2ab2071f4f6dcc1016": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_454c04298568464e900ed58997051dc4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d69aaf5b8d44dd99124d63caa7d8614", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "92567ab696d3482d8ad371a2eef0cbdb": { + "aace38a5bc714ce49401be885a999f66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,58 +1964,12 @@ "overflow": null, "padding": null, "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "94fecb2db41d48eb88721abbc823752d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_756e70ea38bd4cd59509987c5d800737", - "placeholder": "​", - "style": "IPY_MODEL_10749c7cde6b4303a9ca2d45595c2710", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "9a160cb8119042b1b0257cd745f36bb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcdf5d53ec1f4db8b5a3a858dc8846ac", - "placeholder": "​", - "style": "IPY_MODEL_6a5e964186ae49038b1cc962b672b697", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 815.98it/s]" + "top": null, + "visibility": null, + "width": null } }, - "9be448ce653f4a0fbede9675cfe3afb2": { + "b2fe9990927042c6bb636763d7937e0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,23 +2022,7 @@ "width": null } }, - "9d69aaf5b8d44dd99124d63caa7d8614": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a25b5530380249f99eb6ee49ba220301": { + "b6e50060b45f4c09ba567bff5d89bbd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2098,7 +2075,7 @@ "width": null } }, - "a6608049421140b1ac4d14b7c43eab7d": { + "bb262a4cefe2454ea0bfaf1857eaaaa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2113,39 +2090,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b8749ed68a6f4dffb642e2951426ac92", + "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", "placeholder": "​", - "style": "IPY_MODEL_67b5edcec1d74ae4b54af34d8696f99b", + "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "aa25231490e54be4825aa7b428111c87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_94fecb2db41d48eb88721abbc823752d", - "IPY_MODEL_719774e4d63942a4a4f87677b419ca45", - "IPY_MODEL_ae60fa4e2c044172b0e99b28c0a04e0c" - ], - "layout": "IPY_MODEL_9be448ce653f4a0fbede9675cfe3afb2", - "tabbable": null, - "tooltip": null + "value": "number of examples processed for estimating thresholds: 100%" } }, - "abf636d0171541789af2388c3416e5d8": { + "bd34f6363dd94413a10ce5318e70a5ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2160,39 +2113,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a6608049421140b1ac4d14b7c43eab7d", - "IPY_MODEL_6b9a6b3902894a6ab4c4db415e0f19ac", - "IPY_MODEL_e401b5ec83c4494bb96085914e21687b" + "IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", + "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", + "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125" ], - "layout": "IPY_MODEL_74ab83b9cd4a4714bae4d108f607cf6f", + "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", "tabbable": null, "tooltip": null } }, - "ae60fa4e2c044172b0e99b28c0a04e0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18ef129f375049d085108684638b6023", - "placeholder": "​", - "style": "IPY_MODEL_5ff3d452491e4d93a5a3403c464a60b8", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.32it/s]" - } - }, - "b42b51ac859041f9a41fac789eb47c0f": { + "c103e73e53c7487084bdb73546e2c3f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2245,31 +2175,25 @@ "width": null } }, - "b72b2c1cac4c46cf8fdcb9a698c41e2d": { + "c2a8b93dbec1492481abde0df026087e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5fa676c9a584d139234c30abd25aa09", - "IPY_MODEL_911fe71d3be64e2ab2071f4f6dcc1016", - "IPY_MODEL_9a160cb8119042b1b0257cd745f36bb2" - ], - "layout": "IPY_MODEL_0cd83a443fc84266ad25416b5aff0bb7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b8145b7e889a47059348256665e43ab0": { + "c3ac3d6d5373421680b5cdfd9f305953": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2287,60 +2211,23 @@ "text_color": null } }, - "b8749ed68a6f4dffb642e2951426ac92": { - "model_module": "@jupyter-widgets/base", + "c59fdcdcb4d04accba7ce0c3d58c5eb0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bcdf5d53ec1f4db8b5a3a858dc8846ac": { + "d3f1e045fd804f4a9b2bc2eab9679b2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2393,30 +2280,69 @@ "width": null } }, - "c5fa676c9a584d139234c30abd25aa09": { + "d4d10f8bafa946de89419591759057de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd16bea5c99646b898f24b1cf3d54721": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e298261bfee74f53a9d4ee7608c7dbba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a20edbe6a594498909b06e9c5396420", - "placeholder": "​", - "style": "IPY_MODEL_b8145b7e889a47059348256665e43ab0", + "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": 30.0 } }, - "d5ad76449c39401cafbc62f08675233c": { + "e636b5573aab44bba46435bd71934d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2431,38 +2357,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a25b5530380249f99eb6ee49ba220301", + "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", "placeholder": "​", - "style": "IPY_MODEL_5c8208c77c3240628ff0208ff4f0a4a9", + "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.19it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "e401b5ec83c4494bb96085914e21687b": { + "ec065695ccda4be494a55a12d2a2a747": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fcefb4cf9864027ab426517dbece0c9", - "placeholder": "​", - "style": "IPY_MODEL_7c39fc393d73430e8a4d2b5f1b4b4b73", + "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 150147.31it/s]" + "value": 4997683.0 + } + }, + "f0d230f541b948e9a2051618e62f2712": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f98050f4a9814463893abb2bd49e930a": { + "f1789c1a5e684dd89f01bb738355ab84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2477,6 +2459,24 @@ "bar_color": null, "description_width": "" } + }, + "fbd95489418e417688ccd6e6da39d464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index cf4143048..fb54a4777 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 1cfa9de2e..6a696df89 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:13.563318Z", - "iopub.status.busy": "2024-07-18T04:12:13.563162Z", - "iopub.status.idle": "2024-07-18T04:12:15.665934Z", - "shell.execute_reply": "2024-07-18T04:12:15.665276Z" + "iopub.execute_input": "2024-07-30T16:42:16.108435Z", + "iopub.status.busy": "2024-07-30T16:42:16.108277Z", + "iopub.status.idle": "2024-07-30T16:42:17.473595Z", + "shell.execute_reply": "2024-07-30T16:42:17.472949Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-18 04:12:13-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-30 16:42:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.49.183, 2400:52e0:1a01::1001:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.183|:443... connected.\r\n", + "185.93.1.250, 2400:52e0:1a00::1070:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -116,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.71MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-18 04:12:13 (5.71 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-30 16:42:16 (6.62 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-18 04:12:14-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.140.161, 52.217.200.145, 16.182.74.81, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.140.161|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-07-30 16:42:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.138.89, 52.217.134.249, 52.216.41.17, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.138.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,34 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 160.53K 750KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.42M 3.31MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 49%[========> ] 7.97M 12.4MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 99%[==================> ] 16.12M 18.8MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 19.0MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-18 04:12:15 (19.0 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-30 16:42:17 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -218,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:15.668596Z", - "iopub.status.busy": "2024-07-18T04:12:15.668398Z", - "iopub.status.idle": "2024-07-18T04:12:16.911759Z", - "shell.execute_reply": "2024-07-18T04:12:16.911145Z" + "iopub.execute_input": "2024-07-30T16:42:17.476282Z", + "iopub.status.busy": "2024-07-30T16:42:17.475905Z", + "iopub.status.idle": "2024-07-30T16:42:18.926532Z", + "shell.execute_reply": "2024-07-30T16:42:18.925850Z" }, "nbsphinx": "hidden" }, @@ -232,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cebb53dd00e3df7a864b21f23652f08e0654101d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -258,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.914442Z", - "iopub.status.busy": "2024-07-18T04:12:16.914008Z", - "iopub.status.idle": "2024-07-18T04:12:16.917267Z", - "shell.execute_reply": "2024-07-18T04:12:16.916832Z" + "iopub.execute_input": "2024-07-30T16:42:18.929007Z", + "iopub.status.busy": "2024-07-30T16:42:18.928712Z", + "iopub.status.idle": "2024-07-30T16:42:18.932103Z", + "shell.execute_reply": "2024-07-30T16:42:18.931658Z" } }, "outputs": [], @@ -311,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.919339Z", - "iopub.status.busy": "2024-07-18T04:12:16.919000Z", - "iopub.status.idle": "2024-07-18T04:12:16.922078Z", - "shell.execute_reply": "2024-07-18T04:12:16.921530Z" + "iopub.execute_input": "2024-07-30T16:42:18.934243Z", + "iopub.status.busy": "2024-07-30T16:42:18.933903Z", + "iopub.status.idle": "2024-07-30T16:42:18.937344Z", + "shell.execute_reply": "2024-07-30T16:42:18.936919Z" }, "nbsphinx": "hidden" }, @@ -332,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:16.924213Z", - "iopub.status.busy": "2024-07-18T04:12:16.923864Z", - "iopub.status.idle": "2024-07-18T04:12:26.037149Z", - "shell.execute_reply": "2024-07-18T04:12:26.036588Z" + "iopub.execute_input": "2024-07-30T16:42:18.939414Z", + "iopub.status.busy": "2024-07-30T16:42:18.939071Z", + "iopub.status.idle": "2024-07-30T16:42:28.307360Z", + "shell.execute_reply": "2024-07-30T16:42:28.306819Z" } }, "outputs": [], @@ -409,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.039560Z", - "iopub.status.busy": "2024-07-18T04:12:26.039344Z", - "iopub.status.idle": "2024-07-18T04:12:26.044846Z", - "shell.execute_reply": "2024-07-18T04:12:26.044413Z" + "iopub.execute_input": "2024-07-30T16:42:28.310072Z", + "iopub.status.busy": "2024-07-30T16:42:28.309609Z", + "iopub.status.idle": "2024-07-30T16:42:28.315308Z", + "shell.execute_reply": "2024-07-30T16:42:28.314851Z" }, "nbsphinx": "hidden" }, @@ -452,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.046633Z", - "iopub.status.busy": "2024-07-18T04:12:26.046462Z", - "iopub.status.idle": "2024-07-18T04:12:26.386018Z", - "shell.execute_reply": "2024-07-18T04:12:26.385389Z" + "iopub.execute_input": "2024-07-30T16:42:28.317438Z", + "iopub.status.busy": "2024-07-30T16:42:28.317037Z", + "iopub.status.idle": "2024-07-30T16:42:28.691191Z", + "shell.execute_reply": "2024-07-30T16:42:28.690527Z" } }, "outputs": [], @@ -492,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.388817Z", - "iopub.status.busy": "2024-07-18T04:12:26.388359Z", - "iopub.status.idle": "2024-07-18T04:12:26.392513Z", - "shell.execute_reply": "2024-07-18T04:12:26.392066Z" + "iopub.execute_input": "2024-07-30T16:42:28.693775Z", + "iopub.status.busy": "2024-07-30T16:42:28.693565Z", + "iopub.status.idle": "2024-07-30T16:42:28.698316Z", + "shell.execute_reply": "2024-07-30T16:42:28.697696Z" } }, "outputs": [ @@ -567,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:26.394754Z", - "iopub.status.busy": "2024-07-18T04:12:26.394386Z", - "iopub.status.idle": "2024-07-18T04:12:29.007823Z", - "shell.execute_reply": "2024-07-18T04:12:29.007030Z" + "iopub.execute_input": "2024-07-30T16:42:28.700484Z", + "iopub.status.busy": "2024-07-30T16:42:28.700147Z", + "iopub.status.idle": "2024-07-30T16:42:31.466890Z", + "shell.execute_reply": "2024-07-30T16:42:31.466180Z" } }, "outputs": [], @@ -592,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.011403Z", - "iopub.status.busy": "2024-07-18T04:12:29.010454Z", - "iopub.status.idle": "2024-07-18T04:12:29.015308Z", - "shell.execute_reply": "2024-07-18T04:12:29.014770Z" + "iopub.execute_input": "2024-07-30T16:42:31.470029Z", + "iopub.status.busy": "2024-07-30T16:42:31.469337Z", + "iopub.status.idle": "2024-07-30T16:42:31.473767Z", + "shell.execute_reply": "2024-07-30T16:42:31.473222Z" } }, "outputs": [ @@ -631,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.017563Z", - "iopub.status.busy": "2024-07-18T04:12:29.017204Z", - "iopub.status.idle": "2024-07-18T04:12:29.023529Z", - "shell.execute_reply": "2024-07-18T04:12:29.022965Z" + "iopub.execute_input": "2024-07-30T16:42:31.476028Z", + "iopub.status.busy": "2024-07-30T16:42:31.475684Z", + "iopub.status.idle": "2024-07-30T16:42:31.481390Z", + "shell.execute_reply": "2024-07-30T16:42:31.480918Z" } }, "outputs": [ @@ -812,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.025886Z", - "iopub.status.busy": "2024-07-18T04:12:29.025543Z", - "iopub.status.idle": "2024-07-18T04:12:29.053000Z", - "shell.execute_reply": "2024-07-18T04:12:29.052460Z" + "iopub.execute_input": "2024-07-30T16:42:31.483594Z", + "iopub.status.busy": "2024-07-30T16:42:31.483253Z", + "iopub.status.idle": "2024-07-30T16:42:31.509722Z", + "shell.execute_reply": "2024-07-30T16:42:31.509269Z" } }, "outputs": [ @@ -917,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.055238Z", - "iopub.status.busy": "2024-07-18T04:12:29.054781Z", - "iopub.status.idle": "2024-07-18T04:12:29.059137Z", - "shell.execute_reply": "2024-07-18T04:12:29.058579Z" + "iopub.execute_input": "2024-07-30T16:42:31.511897Z", + "iopub.status.busy": "2024-07-30T16:42:31.511537Z", + "iopub.status.idle": "2024-07-30T16:42:31.516114Z", + "shell.execute_reply": "2024-07-30T16:42:31.515643Z" } }, "outputs": [ @@ -994,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:29.061173Z", - "iopub.status.busy": "2024-07-18T04:12:29.061001Z", - "iopub.status.idle": "2024-07-18T04:12:30.455263Z", - "shell.execute_reply": "2024-07-18T04:12:30.454724Z" + "iopub.execute_input": "2024-07-30T16:42:31.518017Z", + "iopub.status.busy": "2024-07-30T16:42:31.517821Z", + "iopub.status.idle": "2024-07-30T16:42:33.009420Z", + "shell.execute_reply": "2024-07-30T16:42:33.008849Z" } }, "outputs": [ @@ -1169,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-18T04:12:30.457343Z", - "iopub.status.busy": "2024-07-18T04:12:30.457166Z", - "iopub.status.idle": "2024-07-18T04:12:30.461345Z", - "shell.execute_reply": "2024-07-18T04:12:30.460894Z" + "iopub.execute_input": "2024-07-30T16:42:33.011845Z", + "iopub.status.busy": "2024-07-30T16:42:33.011502Z", + "iopub.status.idle": "2024-07-30T16:42:33.015539Z", + "shell.execute_reply": "2024-07-30T16:42:33.015098Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 53671a1bb..b023d4814 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "cebb53dd00e3df7a864b21f23652f08e0654101d", + commit_hash: "774f5b4625f50853a4527b3bf0414f14a7116208", }; \ No newline at end of file